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Abstract. Software based cryptographic services are subject to various
memory attacks that expose sensitive keys. This poses serious threats
to data confidentiality of the stakeholder. Recent research has made
progress in safekeeping these keys by employing isolation at all levels.
However, all of them depend on the security of the operating system
(OS), which is extremely hard to guarantee in practice. To solve this
problem, this work designs a virtual hardware cryptographic token with
the help of virtualization technology. By pushing cryptographic primi-
tives to ring -1, sensitive key materials are never exposed to the guest
OS, thus confidentiality is retained even if the entire guest OS is com-
promised. The prototype implements the RSA algorithm on KVM and
we have developed the corresponding driver for the Linux OS. Exper-
imental results validate that our implementation leaks no copy of any
sensitive material in the “guest-physical” address space of the guest OS.
Meanwhile, nearly 1,000 2048-bit RSA private requests can be served per
second.
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1 Introduction

In computer and communications systems, data confidentiality is often provided
by encryption. The strength of encryption mechanisms depend on both the secu-
rity of the encryption algorithm and the secrecy of cryptographic keys. Over
the years, there has been several encryption algorithms that withstand contin-
uous cryptographic analyses. However, in a practical deployment, various reasons
may cause the exposure of keys. For instance, key manager’s dereliction of duty,
improper software implementations, permeate attacks, etc. all put the keys at risk.
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In particular, software vulnerabilities that leak memory regions to unautho-
rized subjects are main threats against the confidentiality of the keys. They
extend to every level of the software stack and are often difficult to detect,
due to the complication of computer systems. The sensitive data spread across
the whole memory space (both kernel and user spaces) for longer than tradi-
tionally thought, even if the used memory is freed [1–3]. Applications designed
with security in mind that zeros memory space containing the keys may also be
fooled by the compiler, as such “superfluous” operations may be removed as a
result of optimization [1]. Mobile-devices hoard a mass of sensitive information
in plain-text in both RAM and stable storage. These data are very likely to be
leaked once the device is lost [4]. The recently discovered OpenSSL vulnerability,
namely Heartbleed [5], allows remote attackers without any privileged creden-
tials to steal private keys. The bug is attributed to the loose inspection on the
request packet that triggers a buffer over-read. Moreover, there are numerous
subversions at the OS level that leak arbitrary kernel space memory to user
space [6–8].

To migrate these attacks, threshold cryptosystems [9] and intrusion-resilient
cryptosystems [10] are designed to withstand disclosure of some portion of the
keys. In [11], keys are scrambled and dispersed in memory, but re-assembled in
x86 SSE XMM registers when cryptographic computation is needed. Nikos et al.
proposed implementing a cryptographic framework inside Linux kernel and pro-
viding cryptographic service to user space through a proven secure interface [12].
Unfortunately, all the above solutions only mitigate the problem to some extent.
If the entire memory image is obtained by the attacker somehow, all “hidden”
information is disclosed.

One of the most efficient and effective ways to safekeep keys is to employ
hardware security modules (HSM). For example, Luna G5 is an usb-attached
device that uses a dedicated chip to store user keys and perform cryptographic
computation [13]. The keys are well protected both logically (keys cannot be
legally accessed through the software interface) and physically (illegal physical
invasion cannot obtain the keys). Optionally, whenever a cryptographic key is
used, a LED flickers to alert the user that the key is being accessed. Since such
approaches are secure and efficient, especially in insecure environments, they
are often adopted in the industry, e.g., for authentication in online banking.
However, hardware-based solutions all require additional costs, and are vendor
dependent.

Motivation. We observe that hardware virtualization technology (VT-x for
Intel and SVM for AMD) has been widely supported in commodity computers.
By running a virtual machine, another layer of software isolation is added. The
compromise of the guest OS does not harm the security the virtual machine
monitor (VMM) or hypervisor. Based on this property, it is feasible to emulate
a “HSM” in VMM for the guest OS such that arbitrary malicious code running
in guest OS (including ring 0 malware) does not harm the key security.
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In this paper, we present virtio-ct, a software virtual cryptographic token
that aims to inherit some key advantages of a HSM. In particular, on top of
virtualization technology, a virtio-ct virtual device:

– provides guest OS with RSA cryptographic service using emulated PCI
interface.

– decouples cryptographic keys from the guest OS.
– is OS agnostic.
– audits all the accesses to the keys and emits physical signals in a

mandatory way.

Like a real HSM, by designing an interface only for requests and responses,
the cryptographic keys are never exposed to the guest OS. So even kernel com-
promise cannot retrieve the keys. At the same time, as virtio-ct is a software
solution, users benefit from its flexibility, low costs and easy use.

The prototype is implemented on top of Kernel-based Virtual Machine
(KVM) [14] and uses QEMU [15] as its user space device emulator. The com-
munication channel is based on virtio [16], the de-facto standard for para-
virtualization I/O. Experimental results show that virtio-ct achieves nearly
1,000 2048-bit RSA private key encryptions per second on an Intel core i7-
4770S CPU.

Limitations. virtio-ct resembles a real HSM in many aspects, except that
it is not resilient to physical attacks. A HSM defeats invasive physical attack
by enclosing the key information in a tamper-sensing device. However, when
a machine running virtio-ct services falls into an attacker’s hand, this
attacker could launch physical attacks to the RAM chip, for example, cold-boot
attack [17].

virtio-ct only provides cryptographic key storage and computation ser-
vices. A full Trusted Platform Module (TPM) also offers many other capacities
like remote attestation [18]. Virtual TPM (vTPM) is a superset of virtio-ct.
However, our work makes sense because of the following reasons: (1) vTPM
needs a physical TPM to establish trust while virtio-ct does not rely on it.
(2) A full vTPM is relatively error prone and may encounter many challenges
because of its complexity. (3) System programmer needs expertise to work with
TPM. In contrast, the application programming interface (API) of virtio-ct is
much simpler: we provide services through the OpenSSL API by encapsulating
several ioctl system calls.

Outline. The remainder of our paper is structured as follows: First, Sect. 2
introduces related works in this field. Then we describe the system model and
applications of virtio-ct and clarify the attack model of it in Sect. 3. Next we
give background information about VMM and virtio in Sect. 4. We introduce
the design and implementation of virtio-ct in Sect. 5. Evaluations in terms
of performance and security are presented in Sect. 6. Finally, Sect. 7 draws the
conclusion.
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2 Related Work

Protecting cryptographic keys from unauthorized access is a prerequisite for the
security of the entire cryptographic system. Toward this, there are two generic
ways. The first one keeps keys in the same memory space of the OS, while
depends on software mechanisms to ensure strong isolation. Chow et al. pro-
posed a secure deallocation mechanism to minimize the exposure of the keys [1].
Nikos et al. proposed a cryptographic framework inside Linux kernel to provide
cryptographic service to user space through a proven secure interface [12]. Intel
Software Guard Extension (SGX) solves the problem in hardware [19]. Specif-
ically, it supplies new instructions to seal legitimate software inside an enclave
and protected environment, irrespective of the privilege level of the malware.

virtio-ct falls into the second category, which escrows the key to a trusted
third party. The keys are accessed either through network, PCI-E or usb inter-
face in HSM solution. CleanOS [4] on the other hand, evicts the key that was
used to encrypt sensitive data locally to the cloud when the data is not in active
use. vTMP [18] emulates a TMP device in the cloud environment. It extended
the current TPM V1.2 command set with virtual TPM management commands
that allow users to create and delete instances of TPMs. Each created instance
of a TPM holds an association with a VM throughout its lifetime on the plat-
form. Compared with vTMP, virtio-ct provides a small yet important subset
in the perspective of cryptographic computing. virtio-ct is more flexible (no
dependance on real TPM) and efficient.

3 System Model and Threat Model

System Model. virtio-ct is designed to isolate cryptographic computation
from the OS in commodity platform. For a secure conscious user, he or she would
expect to run untrusted applications in an isolated environment to avoid possible
infection to the host, while access sensitive data through a secure interface. To
this end, the user may create a VM to execute that application while employ
virtio-ct to request cryptographic service. Whenever the guest OS accesses
the cryptographic keys, virtio-ct emits physical signals to notify the user, just
like a real HSM.

Threat Model. We consider an attacker who can execute arbitrary code in the
legacy OS – both in user space and kernel space. The attacker can achieve this
by injecting customized code via buffer overflow attacks or implanting system
level rootkits and Trojans. This implies that the attacker is able to manipulate
page tables to access all desired memory regions.

We assume the attacker has no physical access to the computer. Otherwise,
hardware-based attacks such as cold-boot attacks [17] or even bus-probing could
be used to harm the security of the RAM chips.

We also assume that the underlying VMM is mostly safe. The compromise of
the guest OS cannot escape from the VMM. That is to say, the adversary cannot
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interfere with Virtual Machine Control Structures (VMCSs), Extended Page
Tables (EPTs) and other sensitive structures that require higher privilege. Note
that a trend in designing VMMs is that the code size is reducing. For example,
the Xen hypervisor [20] has approximately 100 kilo lines of code (KLOC) while
BitVisor [21] has only 20 KLOC. The result is that it is easier to verify the
security of VMM itself.

4 Background

This section first gives an overview of several popular virtualization solutions,
with detailed description of Kernel-based Virtual Machine (KVM). Then virtio,
a de-facto standard for para-virtualization I/O devices is explained. virtio-ct
is implemented on top of both solutions.

4.1 VMMs and KVM

VMM is a software layer that abstracts isolated virtual hardware platforms on
which several independent guest OSes run in parallel. These virtual machines
(VMs) share the same set of physical resources with VMM acting as resource
manager and device emulator. VMM guarantees that VMs cannot access each
other’s resources, including memory regions.

With the prevalence of hardware virtualization extensions, most instructions
of the guest OS can be executed directly in the CPU. Unlike those in the host OS,
they are executed in a separated non-root mode. In this mode, certain predefined
events that are considered risky can be intercepted by the VMM, for example,
privileged instructions, interrupts and I/O instructions. In this way, VMM runs
in a more privileged level because it can decide whether or not these guest-issued
sensitive operations can be executed. In both modes, the executable can run in
either of the four privilege levels defined in the x86 platform. So traditional
OSes that employ separated privilege levels do not have to modify its code to
accommodate the virtualized environment.

There are two types of VMM architectures. Type I VMMs run natively on the
bare-metal hardware and implement all the VMM functions itself. This include
Xen, VMware ESX/ESXi, Hyper-V, etc. On the contrary, Type II VMMs run in
the context of the host OS. This simplifies the design of the VMM because many
of the host OS’s functionalities can be used readily. Most notable implantations
among these are VMware Workstation, Oracle VirtualBox and KVM.

KVM. KVM is implemented as a loadable kernel module originally for Linux on
the x86 platform, but later ported to PowerPC, System z (i.e., S/390) and ARM
platforms. The KVM module is the core of the KVM solution. It initializes the
CPU hardware and provides a serial of VMM management interfaces through the
ioctl system call, for instance, creating a VM, mapping the physical address of
the VM, and assigning virtual CPUs (vCPUs). A dedicated user space program,
namely QEMU, provides for PC platform emulation and calls the KVM interface
to execute guest OS code.
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Fig. 1. Three vCPU modes in which the guest OS runs

In KVM, a guest OS is presented as a normal QEMU process and each vCPU
is a thread. A QEMU process has three execution modes, namely, guest mode,
kernel mode and user mode, as shown in Fig. 1. In guest mode, guest OS executes
most of its instructions, either in user space or kernel space. Certain event causes
a VM-EXIT and is intercepted by the KVM module. Then the QEMU process is in
kernel mode. Based on the event that causes the trap, the exit handler deals with
it inside the kernel or transfers it to user space. The former is called a lightweight
exit while the latter is called a heavyweight exit, because the transfer leads to
inter-ring switches. In user mode, QEMU accomplishes the exit handler and then
calls the ioctl system call to resume the guest.

4.2 Virtio

In a full virtualization environment, the guest OS is unaware of being virtual-
ized and requires no change of code. However, when encountering I/O opera-
tions, emulating hardware at the lowest level is inefficient. Conversely, in a para-
virtualization environment, the guest and the VMM can work cooperatively to
boost the I/O performance. Correspondingly, device drivers of guest OS should
be modified (Fig. 2).

virtio-pci virtio-net virtio-blk …...
virtio

Virtio Back-end Drivers

Virtio Front-end Drivers

KVM

Guest Kernel

virtio-ring

Host
User
App

Guest Userspace
QEMU-KVM

...

Host Kernel

Fig. 2. Virtio architecture
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Many virtualization solutions have their own para-virtualization I/O drivers
with varying features and optimizations. virtio, developed by Rusty, aims to
provide a standardized virtual I/O mechanism that works on multiple VMMs.
To this end, virtio abstracts a common set of emulated devices and the VMM
exports them through a common application binary interface (ABI). In this way,
a particular device driver in guest OS can work with multiple VMMs as long as
these VMMs implement the required behaviors in their back-ends.

Current virtio implements a virtio-over-PCI model to discovery virtio devices.
Each virtio device is driven by two-layered guest-to-VMM communication.

Device Discovery. Because of the universal use of PCI devices, most VMMs
support some forms of PCI emulation and most OSes have easy-to-use PCI
driver model. A virtio-over-PCI model simplifies the coding of both sides in the
virtualization environment.

Any PCI device with vendor ID of 0x1AF4 and Device ID 0x1000 through
0x10FF is recognized as a virtio device. The probe function of the PCI driver first
allocates necessary resource (port I/O, MMIO regions and interrupt number)
for the PCI device, and then calls register virtio device(), which puts the
device on a virtual bus, namely virtio-bus. Virtio drivers pick up the devices on
virtio-bus and recognize the particular virtio device based on the subsystem
vendor and device ids of its underlying PCI device.

Virtio. The struct virtio device passed in to the virtio driver contains a
virtio config ops struct, which is an array of function pointers. These func-
tions can be used to configure/reset the device by reading/writing a configuration
space in the first I/O region of the PCI device. In addition, a dedicated function
find vq() can be used to instantiate several virtqueues which conceptually
attach front-end drivers to back-end drivers.

Transport Abstraction and Virtio ring. Virtqueue is the second abstrac-
tion layer for transport. There are functions on it to (1) write new buffers (2) get
used buffers (3) notify VMM that new buffers have been added, etc. In addition,
when VMM consumes the data and feeds back results to the guest, a callback
function is called as an interrupt handler. This callback function is assigned by
function find vq() when the virtqueue is instantiated.

Theoretically, this layer can be implemented in any way, provided that
the guest and the VMM abide by the same rule. Current virtio implements
virtio ring, a simple ring-based scheme. The buffers are represented as scatter-
gather list, which are chained by the vring desc data structure. Newly added
buffers and used buffers are indicated by available ring and used ring respec-
tively. The addresses of the buffers are allocated dynamically inside the guest.
To inform the VMM of these addresses, guest writes “guest-physical” addresses
to the configure space. The actual “host-virtual” addresses can be calculated by
simply adding an offset.
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5 Design and Implementation

As shown above, virtio exhibits an extreme slim architecture and a flexible
interface that greatly reduce the effort to port it to other platforms. Although
its original purpose is to standardize virtual I/O devices, we find that it has the
building block to implement a virtual cryptographic device. Indeed, virtqueue
is an ideal place to exchange requests and responses.

In this section, we first explain the design goals of virtio-ct. Then we show
the way we export keys to the VM. Next, we describe the implementation of
actual cryptography service. Finally, the user API and usage are demonstrated.

5.1 Design Goals

The most primary design goal of virtio-ct is that cryptographic keys and sensitive
intermediate state during computation should never be accessible by the VM. To
this end, the shared buffers that are accessible by both sides should be restricted
to those only contain the input/output of the computation. The actual RSA
keys and its context should never be exposed to the memory space of the VM.

Meanwhile, every access to the key should be strictly audited and notified.
Otherwise, malicious processes could stealthily sign any data it wants to sign
once the OS kernel is compromised.

5.2 Key Initialization

virtio-ct instantiates two pairs of virtqueues during initialization. A pair of
virtqueues is a channel between VMM and VM: one for transmission and one
for receiving. One pair of them serves for the cryptographic computation. The
left one is reserved for the purpose of key management, which communicates
between VMM and VM about the key information as shown in Fig. 3.

Management Channel. By default, a virtio-ct device only contains a man-
agement channel and a pair of virtqueues. The actual RSA token is specified
as a separate device, namely virtio-ct-token. A virtio-ct-token device is
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Fig. 3. virtio-ct architecture
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back-ended by a RSA private key file in PEM format, which is decrypted by
a pass phrase when the VM is launched. During initialization of virtio-ct,
it sends management messages through the reserved management channel to
add the token to virtio-ct dynamically. In particular, we define the following
commands:

– VIRTIO CT READY: VM notifies VMM that virtio-ct is ready for use.
– VIRTIO CT TOKEN ADD: VMM sends information about virtio-ct-token to

the VM.
– VIRTIO CT TOKEN READY: VM acknowledges VMM of the added token.
– VIRTIO CT TOKEN NAME: VMM sends VM a user friendly string that describes

a given token.
– VIRTIO CT TOKEN PUBKEY: VMM sends VM the plain-text public key of a given

token.

The management message has the following structure (len is variable, so this
code will not compile):

struct virtio_ct_management {
__u16 cmd; /* command */
__u8 buffer[len]; /* command data */

};

We do not support hot-plugging and changing RSA keys when VM is running.
These features may be useful for VM migration but is not of particular impor-
tance in our scenario.

5.3 Cryptographic Service

VM and VMM exchange cryptographic requests/responses though a virtqueue
pair. VMM calls the OpenSSL cryptographic library to do the actual computa-
tion. The request message is sent in the following layout (in len is variable, so
this code will not compile):

struct virtio_ct_request {
__u16 cmd;
__u16 padding;
__u16 in_len;
__u8 buffer[in_len];

};

cmd decides which of the 4 following operations should be performed: (1) encryp-
tion with public key (2) decryption with public key (3) encryption with private
key (4) decryption with private key. padding denotes the padding modes. They
are PKCS1, OAEP, SSLV23 or NO-PADDING. All of them are supported by OpenSSL.
We note that public key calculations are completely unnecessary to be pushed
in VMM, because public keys are safe to be store in VM. User should consider
perform public calculation directly in VM instead of in VMM for efficiency. We
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enable CRT, sliding windows and Montgomery multiplication to boost perfor-
mance, and also RSA-blinding to defeat against timing side channel attack on
RSA keys [22].

The response message is much simpler:

struct virtio_ct_response {
__u16 out_len;
__u8 buffer[out_len];

};

If an error occurs (different padding methods have different restrictions on input
length), out len is 0 and buffer is omitted.

Audit. Although the primary goal of virtio-ct is not on access control of
the cryptographic service, we do not want unauthorized RSA operations to be
performed stealthily without the RSA key owner knowing about it. We write a
log whenever VM requests for cryptographic service. Meanwhile, just like a real
HSM, virtio-ct makes a sound by driving the pc-speaker that is a standard
component of the PC platform to notify the user. Note that audit is accomplished
in the VMM, so the VM cannot suppress this when it issues cryptographic
request.

5.4 Use Case

This section first demonstrates the user interface to launch a VM with virtio-ct
support. Then we show the application programming interface (API) for Linux
developers. The implementation of windows driver is in progress.

User Interface. virtio-ct consists of a virtual PCI device (virtio-ct) and
a cryptographic token (virtio-ct-token) that is logically attached to it. To
add cryptographic token support to a VM, users append a virtio-ct-pci
and a virtio-ct-token option to the QEMU command line. virtio-ct-pci
is interpreted into a virtio-ct virtual device as shown in Fig. 3 while
virtio-ct-token is the actual token, which requires a PEM formatted pri-
vate key file as back-end. In Fig. 4, the VM is assigned a cryptographic token
that is associated with a distinct printable identifier “key0” thought the name
argument and an encrypted private key file “/data/prikey0.pem” through the
privatekeypath argument.

Fig. 4. virtio-ct command line options
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API Structure. virtio-ct supports two categories of APIs. The sysfs
attributes are used to export token’s name and public key. These are useful
for device identification. For example, udev rules can be configured to create
symlink to the token device by its name (Fig. 5).

sysfs

ioctl

/sys/class/virtio-ct/virtio-ct-token/publickey
/sys/class/virtio-ct/virtio-ct-token/name

/dev/virtio-ct-token

Guest KernelGuest Userspace

O
pe

nS
Sl

AP
I

APP

APP

APP

APP

Fig. 5. virtio-ct API

The other category of API is used for the actual cryptographic services
described in Sect. 5.3. Accordingly, there are 4 kinds of ioctl commands to per-
form a public/private encryption/decryption. The used padding mode is included
in the ioctl messages. Furthermore, we encapsulate this device specific API
to a universal applicable module – an OpenSSL engine. When the RSA key
is loaded through the function ENGINE load private key(), the corresponding
virtual token can be used to do cryptographic computation by calling widely used
OpenSSL routines. This would be useful for the easy integration of virtio-ct
into other cryptographic programs.

6 Evaluation

6.1 Performance

We show the throughput of the virtio-ct prototype, and compare it with the
native OpenSSL implementation inside the VM. In addition, we measured the
system load of both the VMM and VM when calling virtio-ct service. All
the experiments were conducted using 2048-bit RSA keys to do a private key
encryption, and the padding mode is PKCS1. The target machine is a Lenovo
PC with an Intel core i7-4770S CPU and 8 GB memory. The used CPU has 4
physical cores with hyper-threading support.

Throughput was measured in multi-core mode. Specifically, we enabled
hyper-threading on the host and assigned 6 vCPUs and 4 GB memory to the
VM. Each thread requests for private key encryption in an infinite loop. In Fig. 6,
we can see that the throughput of virtio-ct does not grow as the concurrency
level increases, instead, it decreases slightly. This is because only one I/O thread
can execute in the VMM and the increased threads only adds the burden of
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task scheduling. We will expand this in the next section. One interesting obser-
vation is that the standard deviations of both solution are extraordinarily high
when there are more threads. We attribute it to hyper-threading. In fact, when
2 threads are running in the same physical core, the speed is degraded as these
two logical threads share the same set of execution unit.

We next measured the latency for each cryptographic request. To minimize
the effect of hyper-threading and task scheduling, we assigned a single thread
to the VM and disabled hyper-threading on host. The average latencies are
1041.3 ms and 964.9 ms for virtio-ct and OpensSSL respectively. These values
are very close to the average processing time drawn in Fig. 6. This is somehow
expected: virtio-ct works in blocking mode and the RSA computation time is
much more than the time spent on context switching.

We then used the top utility to record the CPU load of both the host
and guest machine when there is one virtio-ct thread. Obviously, one thread
achieves the maximum throughput. System loads were recorded per second for
1000 s, and the statistics on average were calculated as shown in Table 1. Apart
from idle state, VM spent most of time in kernel mode and on handling hardware
interrupts. Note that VMM notifies VM of the returned data by virtual-interrupt
injection. In contrast, VMM spent most of time in user space. Indeed, RSA com-
putation runs inside the QEMU process which is in user mode.

Table 1. CPU state percentages for VM and VMM. The host machine has 4 physical
cores with hyper-threading enabled. VM is attributed 6 vCPUs and launches a single
thread to call virtio-ct service in an infinite loop.

User* Kernel Idle Wait for I/O Hardware interrupts Software interrupts

VM 0.043 13.830 74.334 2.372 8.819 0.602

VMM 24.987 1.142 73.735 0.098 0.032 0.006
∗User state presents time running both niced and un-niced user processes.
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Efficiency Issues. As shown above, the maximum throughput of virtio-ct
is close to that of native OpenSSL library with one vCPU, regardless of the
attributed number of vCPUs. This indicts that the current QEMU implementa-
tion can only execute one I/O thread simultaneously. Figures 7 and 8 list some
code snaps that handle I/O events. I/O could be served either in a dedicated
QEMU I/O thread or in vCPUs threads. However, there is a global mutex that
synchronizes core QEMU code across them. That is, only one thread can execute
code that handles I/O that may operate on global structures of QEMU. Note
that when there is not much I/O events, vCPU is in the guest mode for most
of the time, so several vCPUs can runs in parallel for computation-intensive
programs.

The current QEMU thread structure is sufficient for real I/O tasks when most
of CPU time are waste waiting for I/O completion. For virtual I/O that does
not involve real peripheral, like virtio-ct, the constraint that all the I/O must
be serialized is a big hit for performance. One of our future work is to allocate
more threads that are isolated from the QEMU context, so that cryptographic
service can be executed in parallel in these extra threads. In fact, VNC [23] and
SPICE [24] display protocols which involve intensive computation (video codecs,
display encryption, etc.) have adopted similar solutions.

6.2 Security

We performed extensive tests that observe the memory space of the VM to ensure
that there is no occurrence of private RSA keys. Inside the QEMU console,
we used the dump-guest-memory command to dump the memory image of the
VM and the info registers command to obtain register contents, and then
used various ways to find RSA keys. We first invoked an automatic tool called
RSAKeyFinder [25]. It searches for the patterns of DER-encoded RSA keys to
find suspicious memory contents. We successfully find out some occurrences of
RSA keys, but none of them is that used in virtio-ct. On the contrary, when
we ran the tool on the memory dump of the QEMU process, all the used keys
were recovered.

int main_loop_wait(...)

{

......

qemu_mutex_unlock_iothread();

g_poll_ret = qemu_poll_ns(

poll_fds, ...);

qemu_mutex_lock_iothread();

if(g_poll_ret > 0)

/* process I/O */

}

Fig. 7. Dedicated I/O thread

int kvm_cpu_exec(CPUState *cpu)

{

......

qemu_mutex_unlock_iothread();

run_ret = kvm_vcpu_ioctl(cpu,

KVM_RUN, 0);

qemu_mutex_lock_iothread();

kvm_arch_post_run(cpu, run);

/* process I/O */

}

Fig. 8. vCPU thread
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The second method is using a simple binary matching program bgrep. As
we know the plain-text of the keys, we used bgrep to match the key string
(including p, q, d and other CRT elements). It turned out that we never found a
binary sequence that overlaps for more than 3 bytes with any key. These experi-
ments proves that there will be no occurrence of escrowed RSA key copies when
employing virtio-ct. The compromise of guest OS will not effect the secure
storage of keys, provided that the VMM is implemented correctly.

7 Conclusions and Future Work

We present virtio-ct, a virtual cryptographic token in the KVM virtualization
environment. virtio-ct assembles a real HSM in that it never exposes the real
keys to the guest OS, so that the compromise of the guest OS will not threaten
the secrecy of the keys. Moreover, audit is enforced in a mandatory way when the
virtio-ct service is called. Because virtio-ct is a software solution and most
personal computers have support for hardware virtualization, it is more flexible
and economical to achieve cryptographic key isolation, compared with HSM
solutions. Our prototype achieves nearly 1,000 times RSA private operations
per second on a mainstream Intel desktop processor.

Future Work. We intend to extend the prototype with the following features.

1. Dedicated cryptographic threads to boost performance.
2. Physical memory attack resistance: We are resorting to solutions such as

PRIME [26] and Copker [27] to add cold-boot resistent in the VMM. As
a result, virtio-ct achieves comparable security strength with HSM in all
aspects.

3. Conformation to the PKCS#11 standard [28]. We plan to support more cryp-
tographic algorithms through this widely used standard API.

Acknowledgments. The authors would like to thank the anonymous reviewers for
their helpful suggestions and valuable comments. Le Guan, Jiwu Jing, Jing Wang
and Ziqiang Ma were partially supported by National 973 Program of China under
award No. 2014CB340603. Fengjun Li was partially supported by NSF under Award
No. EPS0903806 and matching support from the State of Kansas through the Kansas
Board of Regents, and the University of Kansas Research Investment Council Strategic
Initiative Grant (INS0073037).

References

1. Chow, J., Pfaff, B., Garfinkel, T., Rosenblum, M.: Shredding your garbage: reduc-
ing data lifetime through secure deallocation. In: 14th USENIX Security Sympo-
sium (2005)

2. The MITRE Corporation, CWE-226: Sensitive information uncleared before release
(2013). https://cwe.mitre.org/data/definitions/226.html

3. The MITRE Corporation, CWE-212: Improper cross-boundary removal of sensitive
data (2013). https://cwe.mitre.org/data/definitions/212.html

https://cwe.mitre.org/data/definitions/226.html
https://cwe.mitre.org/data/definitions/212.html


A Secure Cryptographic Token Service in Hypervisors 299

4. Tang, Y., Ames, P., Bhamidipati, S., Bijlani, A., Geambasu, R., Sarda, N.: Cleanos:
Limiting mobile data exposure with idle eviction. In: 10th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 12), Hollywood, CA, pp.
77–91 (2012)

5. National Vulnerability Database, CVE-2014-0160. http://web.nvd.nist.gov/view/
vuln/detail?vulnId=CVE-2014-0160

6. Engler, D., Chen, D., Hallem, S., Chou, A., Chelf, B.: Bugs as deviant behavior:
a general approach to inferring errors in systems code. In: 18th ACM Symposium
on Operating Systems Principles, pp. 57–72 (2001)

7. Lafon, M., Francoise, R.: CAN-2005-0400: Information leak in the Linux kernel
ext2 implementation (2005). http://www.securiteam.com

8. Guninski, G.: Linux kernel 2.6 fun, Windoze is a joke (2005). http://www.guninski.
com

9. Desmedt, Y.G., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)

10. Itkis, G., Reyzin, L.: SiBIR: signer-base intrusion-resilient signatures. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 499–514. Springer, Heidelberg (2002)

11. Parker, T.P., Xu, S.: A method for safekeeping cryptographic keys from memory
disclosure attacks. In: Chen, L., Yung, M. (eds.) INTRUST 2009. LNCS, vol. 6163,
pp. 39–59. Springer, Heidelberg (2010)
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