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ABSTRACT
With the increased popularity of ubiquitous computing and
connectivity, the Internet of Things (IoT) also introduces
new vulnerabilities and attack vectors. While secure data
collection (i.e. the upward link) has been well studied in
the literature, secure data dissemination (i.e. the downward
link) remains an open problem. Attribute-based encryp-
tion (ABE) and outsourced-ABE has been used for secure
message distribution in IoT, however, existing mechanisms
suffer from extensive computation and/or privacy issues. In
this paper, we explore the problem of privacy-preserving tar-
geted broadcast in IoT. We propose two multi-cloud-based
outsourced-ABE schemes, namely the parallel-cloud ABE
and the chain-cloud ABE, which enable the receivers to par-
tially outsource the computationally expensive decryption
operations to the clouds, while preventing user attributes
from being disclosed. In particular, the proposed solution
protects three types of privacy (i.e., data, attribute and ac-
cess policy privacy) by enforcing collaborations among mul-
tiple clouds. Our schemes also provide delegation verifia-
bility that allows the receivers to verify whether the clouds
have faithfully performed the outsourced operations. We
extensively analyze the security guarantees of the proposed
mechanisms and demonstrate the effectiveness and efficiency
of our schemes with simulated resource-constrained IoT de-
vices, which outsource operations to Amazon EC2 and Mi-
crosoft Azure.

1. INTRODUCTION
Today’s computing technologies and ubiquitous connec-

tivity have led to a pervasive deployment of intelligence into
our daily life in areas as diverse as healthcare (e.g., wearable
fitness tracking, remote patient monitoring), home automa-
tion (e.g., smart thermostat, security monitoring), smart
grid (e.g., load balancing, smart pricing), smart cities (e.g.,
smart traffic control, distributed pollution monitoring), etc.
With more than 20 billions of devices to be connected to the
Internet by 2021, as forecast by Cisco and Ericsson [8], the
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Internet of Things (IoT) materializes a vision of a future In-
ternet that utilizes the sensing and computing capabilities of
various devices to facilitate interaction of humans with envi-
ronment. This has led to the emergence of new categories of
applications with impact across industries, businesses, and
ultimately, end users.

The charm of IoT lies in its capability of interconnecting
various sensing devices with varying computation and com-
munication capacity to the Internet. For example, connect-
ing millions of sensors and smart meters to the utilities and
power plants makes the aging power grid “smart”. The two-
way communication capability not only facilitates utilities to
collect a variety of real-time, fine-grained data (e.g., power
consumption, voltage, phase angle) from smart meters, but
also enables them to publish important messages (e.g., con-
trol commands, dynamic prices) to smart devices [23]. Sim-
ilarly, the success of wearable devices and e-health depends
not only on the real-time data sensing and reporting, but
also on the timely reaction (e.g., firmware upgrade, param-
eter adjustment) and value-added services (e.g., customized
healthy living tips, targeted advertisements) from healthcare
service providers and third parties [3]. For example, consider
the high risk of heart attacks in extremely hot weather, it
is a desirable feature for a wearable device manufacturer to
send control messages to devices to increase the measure-
ment frequency of blood pressure and oxygen saturation for
elder users with heart diseases and overweight issues.

Nevertheless, with all devices connected and using the In-
ternet infrastructure for data exchange, IoT and its two-way
communication expose a new attack surface to adversaries,
which makes it susceptible to various security and privacy
issues. Consider the tremendous loss due to system failures
and attacks, such as power outage and patient data breach,
security and privacy has become one of the most important
aspects in the design and deployment of IoT applications.
Various schemes have been proposed to secure IoT commu-
nication and data exchange, which span over a variety of
topics including but not limited to privacy-preserving data
collection [18, 21], detection and prevention of false data
injection [17, 20, 14, 27], patient monitoring [25, 22], etc.
However, most of the attention has been concentrated on
secure data collection, which considers only one direction
(i.e., the upward link) of the two-way communication. Lit-
tle work has been done to secure the other direction (i.e.,
the downward link), where messages are pushed to millions
of end devices, neglecting the fact that data along this di-
rection sometimes contains sensitive information, such as
system parameters, user-specific prices and healthcare in-
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formation, and thus needs an enhanced protection.
Conventionally, to securely publish data to a specific tar-

get group, the sender (e.g., a control center in smart grid or
a value-added service provider in an e-health system) sends
data in an encrypted form to each device in a unicast man-
ner. Given the huge number of devices in IoT applications,
this will incur a large communication and computation over-
head [13] as well as a high complexity for key management.
To alleviate the overhead, approaches based on broadcast
encryption have been proposed to encrypt the message for
an arbitrary set of receivers so that only members of the
target group can recover its content. However, solutions
based on conventional broadcast encryption [10, 7] require
the sender to store key materials for all recipients and incur
a storage requirement for the sender. This makes them im-
practical for IoT applications with a huge number of receiv-
ing devices. Besides, in the conventional broadcast encryp-
tion, all members in the broadcast set need to be notified of
the change [7], which incurs a non-negligible communication
overhead to support the incremental growth of the number
of users. Therefore, neither option is particularly appealing
in the context of IoT.

A more promising solution is to encrypt the message ac-
cording to common characteristics that specify a set of users
as the qualified recipients. For example, recipients can be
categorized by their geographical locations such as “users in
San Francisco”. Bethencourt et al. proposed the concept of
ciphertext policy (CP-ABE) [4], which is conceptually sim-
ilar to role-based access control but more fine-grained and
flexible. In the CP-ABE model, a user is associated with a
set of attributes reflected in her secret key and the access
policies, which define the attributes that an authorized user
should own, are embedded in the ciphertext. The sender en-
crypts a message under an access policy so that only autho-
rized users with attributes satisfying the access policy can
decrypt the message. The ABE schemes enable a sender to
define dynamic access policies without knowing specific re-
ceivers in the system beforehand, and thus suit the IoT sce-
nario to enforce fine-grained access control on a large num-
ber of receivers. However, a major drawback of ABE is the
computational cost for decryption, which increases linearly
with the complexity of the access policy (i.e., the number
of attributes), due to the expensive paring operations when
the receiver matches her attributes to the access policy. As
tested in [13], it took about 30 seconds for a smart phone (in
particular an iPhone 3G in that experiment) to decrypt a ci-
phertext containing 100 attributes. For resource-constrained
recipients that are typical in an IoT application, the com-
putational cost is too expensive to afford. With the emer-
gence of cloud computing infrastructures such as Amazon
EC2 and Microsoft Azure, outsourced-ABE schemes have
been proposed [13, 29, 15, 19] to leverage the computational
power of the clouds by outsourcing a part of the expensive
decryption operations to them.

However, privacy becomes a critical concern when out-
sourcing decryption operations to a cloud. Most of the ex-
isting outsourced-ABE approaches assume that the cloud is
fully trusted to host all attributes of a user. In the real world,
a cloud server is rarely fully trusted by both the sender and
the recipient, especially when user attributes involve multi-
ple sensitive categories. For example, a cloud that is trusted
to process attributes such as“age”and“location”may not be
able to access attributes related to users’ health status, such

as “having heart disease X” and “weight>Y ”. Therefore, it
is more reasonable to assume a cloud as honest-but-curious,
that is, it follows the protocol honestly but tries its best to
infer users’ private information. Specifically, there are three
major privacy concerns: (1) Data privacy. The sender, e.g.,
value-added service providers, requires its messages and ser-
vices to be only accessible to a group of qualified users. Nei-
ther the cloud nor other unauthorized users should be able
to access the published data. (2) Attribute privacy. As ex-
plained in the above example, attributes contain sensitive
information about the user and thus should be protected as
much as possible from being disclosed to the cloud. And
(3) Access policy privacy. Access policies containing infor-
mation about data to be published, data sender and data
recipient also need to be protected. A stronger privacy re-
quirement is to hide the access policy to avoid privacy infer-
ence attacks. We argue that the importance of three types of
privacy can be ranked as: data privacy > attribute privacy
> access policy privacy.

In general, outsourcing the decryption operations to the
cloud is a promising technique to publish information to a
group of resource-constrained devices in IoT applications.
However, protecting the three types of private information
in the targeted broadcasting is still challenging. To address
the privacy issues discussed above, we propose two novel CP-
ABE schemes that employ multiple clouds to collaboratively
complete the outsourced operations, namely parallel-cloud
CP-ABE and chain-cloud CP-ABE. Our schemes delegate
user attributes and the decryption operations to multiple
clouds, and coordinate them to translate an ABE cipher-
text into an ElGamal-type ciphertext, without revealing the
original message, the accurate set of user attributes, or the
complete access policy to the clouds.

Besides protecting the three types of privacy, our schemes
also provide two additional features that are desirable in
the IoT data publishing scenario: (i) Delegation verifiability.
When we outsource the operations for matching attributes
to the access policy to the cloud, it is important for the
receiver to be able to verify the correctness and complete-
ness of the messages processed by the cloud. For example, a
“cheating” cloud server may violate the honest-but-curious
assumption and discard messages without performing the
matching operation to save its own communication and com-
putation resources. Therefore, the delegation verifiability
can be considered as a security enhancement for IoT data
publishing applications. And (ii) Lightweight operations on
receivers. Since the receivers are resource-constrained de-
vices, the operations of decryption and verification at the
receiver end are expected to be kept light-weight, which is
supported in our solution.

The main contributions of this work are as follows:

• To the best of our knowledge, our work is among the
first to protect user attributes against cloud service
providers in an outsourced-ABE setting using multiple
clouds.

• We propose two multi-cloud-based, outsourced-ABE
schemes. The parallel-cloud scheme provides a bet-
ter performance with strong privacy protection but
less system flexibility and less expressiveness for ac-
cess policies, while the chain-cloud scheme supports
flexible customization and expressive access policies at
the cost of processing latency.

• We present a lightweight mechanism that allows users
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to efficiently verify the correctness and completeness
of the partial decryption in clouds.

• Our schemes enable a new application for data publish-
ing in IoT, namely privacy-preserving targeted broad-
casting, which is not possible in the past. This new
type of data publishing application will benefit not
only end users but also information senders such as
third-party value-added services providers.

• We thoroughly analyze the security of our proposed
schemes and evaluate the performance with experi-
ments using Amazon EC2 and Windows Azure.

2. PRELIMINARIES

2.1 Bilinear Maps
Let G0 and G1 be two multiplicative cyclic groups of prime

order p, and g be a generator of G0. e is a bilinear map
e : G0 ×G0 → G1 with the following properties:

1. Bilinearity: e(ua, vb) = e(u, v)ab for all u, v ∈ G0 and
a, b ∈ Zp.

2. No-degeneracy: e(g, g) ̸= 1.

3. Computability: for all u, v ∈ G0, the bilinear map e is
efficiently computable.

2.2 Linear Secret Sharing Scheme (LSSS)
A (k,n)-LSSS shares a secret s over a set of n parties with

linear reconstruction property. The secret s is divided to n
parties in such a way that any k or more parties can recover
the secret and any k−1 or less leave the secret completely un-
dermined. Specifically, Shamir’s secret-sharing scheme [26]
is constructed as:

1. Pick k − 1 random points to define a polynomial q(x)
of degree k − 1 with q(0) = s.

2. Share the secret over n parties by computing q(i) for
any i ∈ {1, · · · , n}.

3. Reconstruct the polynomial from any k parties de-
noted by a set S, using interpolation q(x) =∑k

i=1 q(i)∆i,S(x). The Lagrange coefficient is∆i,S(x) =∏
j∈S,j ̸=i

x−j
i−j , where S(x) denotes an element of S. Fi-

nally, recover the secret s = q(0).

2.3 Bloom Filter
Bloom filter (BF) [5] is a space-efficient probabilistic data

structure for an approximate representation of a set S, which
is typically implemented using a bit-array of w bits with k
hash functions. Given an arbitrary element x, a BF supports
approximate membership queries “x ∈ S?”. It can yield
false positive answers but never false negative ones. The
probability of false positives can be adjusted by varying w
and k, as a tradeoff between space efficiency and the false
positive rate.

3. PARALLEL-CLOUD SCHEME
Existing outsourced ABE schemes assume the cloud provi-

der is fully trusted and thus delegate attributes to a single
cloud server. However, under the honest-but-curious setting,
this assumption is no longer valid. To prevent the cloud
server from inferring user privacy from outsourced keys and
attributes, we propose a new secure data publishing ap-
proach that employs multiple non-colluding cloud servers.

…

…
, …

, , …

, 

…

, , ….

, 

, ….

…

Health domain

:
Geolocation domain

, ,, , , , ,,,,,,,,,,,,, …………………………….…...…………………….…………….…………….……….……

Figure 1: Framework of privacy-preserving targeted broad-
cast in e-healthcare using parallel-cloud scheme.

We first present a parallel-cloud scheme that divides the at-
tribute set into m parts and outsources each part to one
cloud server. The cloud servers operate on the received ac-
cess structure and ciphertext messages in parallel, and send
the intermediate results to the receiver separately. In this
process, as long as the cloud servers do not collude with each
other, we can protect the complete set of user attributes from
any single semi-honest cloud server.

3.1 System Model and Scheme Overview
In this scheme, the system consists of three entities, as

shown in Figure 1: the sender, such as a value-added service
provider or a wearable device manufacturer, publishing a
message in the encrypted form; m cloud servers partially
decrypting the ciphertext; and a large set of targeted device
users receiving and decrypting the message. In addition, a
trusted authority (TA) is implicitly assumed to be in charge
of the distribution and management of attributes and private
keys to users and cloud servers.

To enforce the fine-grained broadcasting, the sender en-
crypts a message according to a specific access policy A in
the form of a series of AND gates. For instance, an access
structure A = DeviceA ∧ HeartDisease ∧ Overweight ∧
CityB defines that only the user living in City B who is a
customer wearing device A with the heart disease and the
overweight issue can decrypt the message. For the simplicity
of exposition, we let N denote the universal attribute set of
n attributes. The TA divides N into m mutually exclusive
subsets as N = N1 ∪ · · · ∪Nm, where Ni ∩Nj = ∅ for any
i ̸= j, and then outsources each Ni to a cloud server.

For privacy preserving considerations, the attribute split-
ting and distribution should follow two strategies. First,
each subset of attributes is only about one aspect (or do-
main) of the user. Attributes in any single subset should
not provide information for inference attacks. Secondly, the
attribute subset is assigned to a cloud considering its ser-
vice domain and trust level. For example, the cloud server
of a private hospital is trusted to host all health-related at-
tributes, while common user attributes such as location can
be distributed to a public cloud server.

Correspondingly, the access structure is also divided into
m parts such that A = A1 ∪ · · · ∪ Am. When the sender
sends the main ciphertext and access structures to cloud
servers, each cloud server, on behalf of the receiver, checks
if the attributes of the receiver satisfy the access structure.
Based on the result of this fine-grained access control, each
cloud server decrypts a part of the message and sends it to
the user, who will combine the intermediate results received
from all the servers to recover the original message.
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3.2 Construction
Setup(λ, N , m). The TA calls the Setup algorithm to gen-
erate a public key PK and a master keyMK. The algorithm
takes as input the security parameter λ, a universal attribute
set N and the number of cloud servers m. It chooses a bilin-
ear group G0 of prime order p with a generator g, and the
bilinear map e : G0 × G0 → G1. Next, the setup algorithm
chooses two randoms α,β ∈ Zp and generates PK and MK:

PK = (G0, g, h = gβ , e(g, g)α),

MK = (β, gα).

KeyGen(MK, S, t). Assume each user has a set of at-
tributes S = S1 ∪ · · · ∪ Sm, where S1 ⊆ N1, · · · , Sm ⊆ Nm

and ∀i̸=jSi ∩ Sj = ∅. When a new user (e.g., a wearable de-
vice) joins the system, it registers to the TA with S and a
random t ∈ Zp chosen by itself. Then, the TA calls the key
generation algorithm to prepare a transformation key TK
for the clouds to perform partial decryption, from which
the user can recover the final message with his private key
SK = t. In particular, KeyGen selects a random r ∈ Zp and
a random rj ∈ Zp for each attribute j ∈ S, and takes S,
t, and the master key MK as input to generate the trans-
formation key. TK is set as TK = (D = gt(α+r)/β , Dj =
grH(j)rj , Dj

′ = grj , ∀j ∈ S). H and H1 denote collision-
free hash functions, where H : {0, 1}∗ → G0. Finally, the
TA distributes D, Dj , and D′j to Cloudj .

Encrypt(PK, M , A). To broadcast a message M under
the access structure A, the sender first chooses m random
numbers s1, · · · , sm ∈ Zp, where the secret si is shared by
all attributes in Ai. Let ki = |Ai| be the number of elements
in Ai and index(y) be the index of the attribute y in Ai.
To share the secret, a polynomial qi(x) of degree ki − 1 is
constructed for Ai, where qi(0) = si and the other ki − 1
values are randomly set to complete the construction. Given
Ai, the ciphertext CT is then constructed as:

C̃ = Me(g, g)αs, C = hs, CTi

where s =
∑

si, and CTi =

Ai, Cy = gqi(index(y)), C′y = H(y)qi(index(y)), ∀y ∈ Ai

To allow the receiver to verify the correctness and com-
pleteness of the transformation performed by the clouds, the
sender also generates a verification value V = senderID|
H1(A)|seq(H1(A))|T , where“|”denotes concatenation. H1(A)
is the digest of the access policy A, seq(H1(A)) is the se-
quence number of the message regarding the access policy
A, and T is the timestamp of the message. The sender main-
tains the sequence number for each access policy, and in-
creases its value by 1 when sending a new message under that
access policy. Then, the sender generates the signature of
message M and verification value V as σ = sign(H1(M |V )).
Finally, the sender randomly chooses a cloud, e.g., Cloud1,
to hold (C̃, C,σ), and sends CTi and V to Cloudi.

Transform(CTi, TKi). When a cloud, e.g., Cloudi, re-
ceives CTi, it uses the transformation key TKi to partially
decrypt the ciphertext and transforms it into a form whose
decryption is less computationally costly. In particular, the
cloud first checks if Ai ⊆ Si. If not, it returns an error sym-
bol ⊥, indicating that the user does not satisfy the access

structure. If Ai ⊆ Si, for each attribute j ∈ Ai, it computes:

DecryptNode(CTi, TKi, j) =
e(Dj , Cj)
e(D′j , C

′
j)

=
e(grH(j)rj , gqi(index(j)))

e(grj , H(j)qi(index(j)))

= e(g, g)rqi(index(j))

After the cloud computes the values for all attributes in
Ai, it combines them to partially recover the secret si that
is shared in Ai. In particular, it computes F (Ai) as below
and sends the result together with V to the receiver:

F (Ai) =
∏

j∈Ai

(e(g, g)rqi(index(j)))∆j,Ai (0)

= e(g, g)r
∑

j∈Ai qi(index(j))·∆j,Ai (0)

= e(g, g)rqi(0)

= e(g, g)rsi

With C and D, Cloud1 computes D̃ as:

D̃ = e(C,D)

= e(gβs, gt(α+r)/β)

= e(g, g)st(α+r)

Finally, it sends the partially decrypted ciphertext C̃, D̃
and σ to the receiver.

Decrypt(C̃, D̃, F (Ai), SK). If the receiver receives m parts
of partial ciphertexts, she knows that her attributes satisfy
the access policy. Otherwise, she discards the partial cipher-
text without decryption.

With its private key SK and the ciphertext transformed
by the clouds (i.e., D̃ and F (Ai)s), the receiver recovers the
original message as:

C̃
(D̃)1/t∏m
i=1 F (Ai)

=
C̃

(e(g,g)st(α+r))1/t∏m
i=1 e(g,g)rsi

=
C̃

e(g,g)s(α+r)

e(g,g)rs

=
Me(g, g)αs

e(g, g)αs
= M.

In the above computation, it is obvious that the receiver
does not need any paring operation to recover the message.
Instead, it only takes one exponentiation and m multipli-
cation operations regardless of the complexity of the ac-
cess structure. Compared to the original CP-ABE, which
requires 2

∑
|Ai| pairings, our scheme greatly reduces the

computational overhead at the receiver.

Verify(M,σ, V). To verify the completeness of the opera-
tions done by the clouds, the receiver needs to check if all
the verification values are consistent. As long as at least one
cloud is honest, the received verification data is authentic.
Then, the receiver randomly chooses a V from m partial
ciphertexts, and uses senderID and H1(A) to look up the
sequence number seqprv(H1(A)) of the previous round for
H1(A) from senderID. The receiver verifies the complete-
ness, that is, she has received all messages intended to her,
by checking if seq(H1(A)) = seqprv(H1(A)) + 1. If not, this
indicates some messages are discarded by dishonest cloud(s).
After the completeness verification, the receiver checks M |V
against the signature σ to verify the correctness of the re-
covered message, and updates seq(H1(A)).
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Figure 2: Framework of privacy-preserving targeted broad-
cast in e-healthcare using chain-cloud scheme.

Discussions. The parallel-cloud scheme hides the complete
set of user attributes from a single cloud server, and signif-
icantly reduces the computational overhead at the receiver.
However, it yields three drawbacks. First, the scheme only
supports the AND gate in the access structure. Thus, it is
less expressive comparing to the monotone structure pro-
posed in the original CP-ABE design [4], which supports
k-threshold gates. Secondly, the scheme uses the number
of clouds, m, as a system-wide parameter, which makes the
system structure very rigid. It requires all the receiver to
use the same value for m, and imposes an additional burden
to the sender, who is required to split the access structure
into m pieces and distribute to m cloud servers. As individ-
ual users may have different needs regarding the protection
of the attribute privacy, schemes that provide a flexible pri-
vacy setting are more desirable. Finally, the parallel-scheme
incurs unnecessary communication between a cloud and the
receiver. For example, when Cloudi successfully matches Ai

to Si but Cloudj fails to match Aj , Cloudi has to partially
decrypt the message and forward the intermediate result to
the receiver, regardless of the fact that the message can-
not be decrypted by the user eventually. Frequent partial
matchings incur an increasing computation and communica-
tion overhead to the clouds. To overcome these drawbacks,
we propose an enhanced scheme using a chain-cloud struc-
ture and present it in the next section.

4. CHAIN-CLOUD SCHEME

4.1 Overview and System Model
Unlike the parallel-cloud scheme, which requires the send-

ers to connect to a same m cloud servers simultaneously,
the chain-cloud scheme allows each receiver to specify how
many clouds to use and how attributes are delegated to each
cloud. As shown in Figure 2, three receivers choose three
sets of clouds to form three different paths to three devices.
Moreover, the chain-cloud scheme allows the sender to en-
crypt a message under an expressive access policy A with
k-threshold gates. That is, an access policy can be satisfied
with any k or more attributes.

To support this, we employ a Bloom filter [5] in each cloud
to hold the part of attributes delegated to it. In particular,
when a cloud receives an encrypted message, it first checks
if the attributes that are delegated to it satisfy the access
structure: if so, the cloud server partially decrypts the mes-
sage and sends the result to the receiver; otherwise, it further
looks up all the attributes in the access policy against the
Bloom filter to check if the attributes have a chance to satisfy
the access structure. If the Bloom filter look-up returns a
positive result, it indicates that it is possible the receiver has

…

Figure 3: The Bloom filter sent to each cloud.

the required attribute(s) to satisfy the access structure. So,
the cloud should decrypt the attributes in the access struc-
ture as many as possible and forward the partially decrypted
message to a next cloud. If the Bloom filter returns a nega-
tive result, which means the user does not have the required
attribute(s) for sure, the cloud should stop propagating the
message. Starting from the first cloud, this process repeats
until either a cloud in the path finds that the access struc-
ture cannot be satisfied, or the partially decrypted message
is successfully forwarded to the receiver.

4.2 Construction
Setup(λ, N). The setup algorithm is similar to the one in
the parallel-cloud scheme, except that it does not require a
specific value for m, i.e., the number of clouds to be used.

BloomFilterGen(S, [Cloudi]). In the parallel-cloud sche-
me, the user (i.e., receiver) decides the clouds to be used and
calls the BloomFilterGen algorithm, which takes the user’s
attribute set S and the number of clouds m as input to
generate m Bloom filters. Therefore, the user has a full con-
trol in deciding how to delegate her attributes to multiple
clouds and in what order, by taking the sensitiveness of her
attributes and her trust to cloud service providers into ac-
count. This not only provides a flexible mechanism for the
user to determine her own multi-cloud platform setting, but
also fits the real-world cloud usage scenario. That is, health-
related attributes are likely to be stored in a private hospital
cloud (and thus more trusted), while profile attributes can
be delegated to public clouds.

The selected m clouds are organized as a chain. Each
cloud delegates a subset of attributes (Si), from which the
Bloom filter is generated. Here, we use an example to ex-
plain the generation process. Suppose the size of the univer-
sal attribute set N is 200 and the user selects three clouds,
where Cloud1 is responsible for the attributes in S1 ⊆ [1, 100],
Cloud2 for S2 ⊆ [101, 160] and Cloud3 for S3 ⊆ [161, 200].
To build the Bloom filter BF 1 for Cloud1, the attributes
j ∈ S2 and j′ ∈ S3 are inserted into the BF 1. We can ad-
just the false positive rate by changing the size of the Bloom
filter and the number of hash functions. To further increase
the probability of false positives, we randomly set some bits
in the filter to 1 to introduce noise. As shown in Figure 3,
our Bloom filer consists of two parts. The first part is a
lookup table used by a cloud to locate the next cloud, which
is in charge of a specific range of attributes, and the second
part is the noisy Bloom filter, which contains attributes in
Cloudi+1, · · · , Cloudm, and the noise bits.
In the chain-cloud scheme, each user has her own cloud

usage specification (CUS) for attribute delegation and can
change it anytime without informing the senders. This makes
it more flexible than the parallel-cloud scheme. Then, the
user sends the cloud usage specification to the TA to cor-
rectly distribute the corresponding transformation keys to
the clouds in use.

KeyGen(MK,S, t, CUS). The KeyGen algorithm takes as
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input the master key, a user’s attribute set S and private key
t, and her cloud usage specification CUS. It generates the
private key SK and the transformation key TK in the same
way as described in Section 3.2. Then, the TA sends the cor-
responding transformation key TK to each cloud according
to the CUS.

Encrypt(PK, M , A). The chain-cloud scheme can sup-
port expressive access policies such as access tree defined in
the original CP-ABE [4]. Here, we take access tree as an
example to briefly explain the encryption algorithm.

Let T be the access tree representing the access structure
A. Each non-leaf node x of the tree is a threshold gate
associated with a threshold value kx, where 0 < kx ≤ numx

for a node with numx children. A leaf node is associated
with an attribute and a threshold k = 1. We index the
children of each node from 1 to numx, and use index(x) to
return the index value of x among its sibling nodes.

Upon receiving an encrypted message, the cloud checks if
the access tree is satisfied. Let Tx denote a subtree rooted at
node x. If a set of attributes γ satisfies the access tree Tx, we
denote it as Tx(γ) = 1. Tx(γ) can be computed recursively:
for a leaf node x, Tx(γ) returns 1 if the attribute of x is in
γ; for a non-leaf node y, the cloud evaluates Ty′(γ) for all
the children y′ of node y, and sets Ty(γ) to 1 if at least ky
children return 1.

To encrypt a message, the Encrypt() algorithm first chooses
a polynomial qx in a top-down manner, starting from the
root R, for each node x in the tree. For each node x in the
tree, the degree dx of the polynomial qx is set to kx−1, where
kx is the threshold. For the root R, the algorithm chooses a
random secret s ∈ Zp and sets qR(0) = s. Then, it chooses
dR additional random values to construct qR completely.
For any other node x, it sets qx(0) = qparent(x)(index(x)),
where parent(x) denote the parent node of x, and chooses
dx additional randoms to define qx.
Let Y be the set of leaf nodes in A. Once the access tree

is defined, the algorithm encrypts the message as below and
sends the the ciphertext to the first cloud server in the chain.

CT =(A, C̃ = Me(g, g)αs, C = hs,

∀y ∈ Y : Cy = gqy(0), C′y = H(y)qy(0)).

Transform(CT, TKi). When Cloudi receives the partially
decrypted ciphertext from the previous cloud in the chain,
it calls Transform() for further decryption.

For a leaf node x with attribute j ∈ Ni and j ∈ Si, Cloudi
calls DecryptNode(), which is described in Section 3.2, and

computes
e(Dj ,Cj)

e(D′
j ,C

′
j)

= e(g, g)rqj(0). The node is then marked

as satisfied and the node value is set to e(g, g)rqj(0).
If j ∈ Ni but j ̸∈ Si, which means attribute j is in charge

of Cloudj but does not belong to the attribute set Sj of the
user, we should set the node value to an error symbol ⊥,
indicating unsatisfied.

If j ̸∈ Si but j /∈ Ni, the attribute j (i.e., a leaf node) may
be outsourced to another cloud. So, Cloudi looks it up in the
Bloom filter and sets the node to ⊥ if the result is negative.
Note that, a positive result cannot guarantee the ownership
of the attribute due to the false positive introduced by the
Bloom filter. Also, not all the leaf nodes are associated
with an attribute. Some are the internal nodes before the
transformation done by the previous cloud.

We then compute the value for the non-leaf nodes in a

bottom-up manner. For a non-leaf node x, we choose an
arbitrary kx−sized set Ex of its child nodes z to test if it
satisfies node x. If such set exists, we compute the value of
x as Vx:

Vx =
∏

z∈Ex

V
∆i,E′

x(0)
z ,where i=index(z) and E′

x={index(z):z∈Ex}

=
∏

z∈Ex

(e(g, g)rqz(0))
∆i,E′

x
(0)

=
∏

z∈Ex

(e(g, g)r·qparent(z)(index(z)))
∆i,E′

x
(0)

=
∏

z∈Ex

e(g, g)
r·qx(i)·∆i,E′

x
(0)

= e(g, g)r·qx(0).

Otherwise, the value of x is set to ⊥. Repeatedly, we com-
pute the value of the root node R as VR = e(g, g, )rqR(0) =
e(g, g)rs.

Next, Cloudi computes D̃ = e(g, g, )st(α+r) as described

in Section 3.2, and forwards C̃, D̃, VR to the receiver. If the
computation stops before arriving at root R but the Bloom
filter indicates that an attribute satisfying the access struc-
ture may exist in subsequent cloud servers, Cloudi looks up
the table in Figure 3 and forwards the intermediate result to
the next cloud that probably hold the attributes to satisfy
the entire tree. If no such cloud exists, it stops propagat-
ing and thus reduces the computation and communication
overhead in the subsequent clouds. In this way, the noisy
Bloom filter designed for the chain-cloud scheme increases
the transformation efficiency. Only when an access policy
can probably be satisfied by certain subsequent clouds, the
current cloud forwards the message.

As shown in the example in Figure 4, when Cloud1 finds
that the access tree is satisfied by itself and Cloud3, it
skips Cloud2 and directly forwards the intermediate result
to Cloud3.

Decrypt(C̃, D̃, VR, SK). Once receiving the partially de-
crypted message from a cloud server, the receiver performs
the final decryption operation as below.

C̃
(D̃)1/t

VR

=
C̃

(e(g,g)st(α+r))1/t

e(g,g)rs

=
C̃

e(g,g)s(α+r)

e(g,g)rs

=
Me(g, g)αs

e(g, g)αs
= M.

Obviously, the decryption overhead on resource-constrained
devices is reduced to one exponentiation operation in the
chain-cloud scheme.

Verify(M,σ, V ). The verification algorithm of the chain-
cloud scheme is similar to the one in the parallel-cloud scheme
discussed in Section 3.2. The sender counts the message
encrypted under the access policy A, generates the verifi-
cation data V = senderID|H1(A)|seq(H1(A))|T , and signs
the message and verification data as σ = sign(H1(M |V )).
Once the receiver recovers the plaintext M and the veri-

fication value V , she first checks them against the signature
σ to verify the correctness of the transformation, and then
verifies the completeness by comparing if the received se-
quence number is greater than the stored sequence number
by 1, for the access policy A.
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1/2 Value 2/2

1/1 Value 1/1

Satisfied
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Satisfied

Satisfied Satisfied

Satisfied Satisfied

The sender specifies the access 
policy tree and sends it with the 
ciphertext to the first cloud.

checks the attributes in the tree against the 
Bloom filter in Fig 3 and finds that Attribute 190 
does not exist in the user’s attribute set, but the 
access tree might be satisfied by itself and .

satisfies the tree as much as possible and 
replaces the satisfied node or subtree with a value.

forwards the partially satisfied tree to 
.

finds that it can satisfy the tree. 
So it finally recovers the value at root 
node R and forwards the value with the 
ciphertext to the receiver.

The receiver 
recovers the 
plaintext using the 
received value 
and ciphertext. 

Sender Receiver

Figure 4: A transformation example: attributes set[1,100] is outsourced to Cloud1, [101, 160] to Cloud2, and [162,200] to
Cloud3.

5. SECURITY ANALYSIS AND
PERFORMANCE EVALUATION

In this section, we first analyze the security features of
the proposed multi-cloud ABE schemes, and then explain
our implementation of the two schemes on Amazon EC2
and Microsoft Azure.

5.1 Security Analysis
Data Privacy. The sender does not want the clouds or
other unauthorized parties to access the message it sends to
a target group of users. From the decryption algorithms in
Section 3.2 and Section 4.2, we see that an adversary needs
to be able to cancel out e(g, g)αs from the ciphertext C̃ to
recover the plaintext message. In doing so, he needs to be
able to compute the pairing value over C from the ciphertext
and D from the transformation key, respectively, to cancel
out the secret e(g, g)rs. The security of the pairing operation
ensures that an unauthorized party without knowing the
correct r and s cannot recover this secret. Meanwhile, since
the paring value is blinded by the private key t in our scheme,
it is impossible for a cloud to recover the plaintext, even
though it has access to e(g, g)rs.

Attribute Privacy. To reduce the computational cost at
the devices, the operation of matching the attributes to the
access structure is outsourced to the cloud. As the attributes
of the user are disclosed to the cloud, it introduces a seri-
ous privacy concern, especially when the attributes contain
sensitive information about the user. One may argue that
in real-world, attributes delegated to the clouds are repre-
sented in the form of a hash value, instead of the meaningful
raw text, and thus incurs less privacy risk. Actually, a ma-
licious cloud can still launch the dictionary attack to check
every possible word against the hash value. Therefore, the
attribute privacy is considered unprotected in all the exist-
ing outsourced ABE schemes using a single cloud.

In our multi-cloud schemes, each cloud server is only in
charge of a part of attributes, so that no single cloud can
learn the complete set of attributes of a user. This signifi-
cantly reduces the privacy leakage caused by the attribute-
based inference attacks due to outsourced decryption. To
formally assess the improved protection to attribute privacy
in our multi-cloud schemes, we define accuracy as a mea-

sure of the degree of knowledge about a user, and compare
with the outsourced ABE schemes using a single cloud. The
higher the accuracy, the more the cloud knows about a user.

Accuracy =
TP + TN

TP + FP + TN + FN

where TP, FP, TN, FN represent true positive, false posi-
tive, true negative, and false negative, respectively. Specifi-
cally, TP denotes the number of attributes that the cloud is
certain that a user has, and TN denotes the number of at-
tributes that the cloud is certain that a user does not have.
From the definition, we see that the lower bound of accuracy
is 0.5, when the cloud has no knowledge about a user and
thus can only guess with a probability of 0.5.

Assume the universal attribute set is N , a user’s attribute
set is S, and the number of clouds is m. In the single-cloud
outsourced ABE, the accuracy achieves its upper bound,
(|S|+ |N − S|)/|N | = 1, since the cloud clearly knows that
the user owns |S| attributes and does not own the remaining
|N − S| attributes.
In the parallel-cloud scheme, each cloud server works in-

dependently from other clouds. It knows only the attributes
outsourced to itself, i.e., |S|/m attributes. For the remain-
ing attributes, it can only guess with a probability of 0.5.
So, the accuracy is at most (|S|/m+0.5(|N |− |S|/m))/|N |.
In a setting that |N | = 200, |S| = 100,m = 5, the accu-
racy is 0.55. Obviously, the parallel-cloud scheme improves
attribute privacy significantly compared to the single-cloud
outsourced ABE.

In the chain-cloud scheme, for the sake of efficiency, each
cloud stores a Bloom filter to check if the access policy has
a chance of being satisfied by the subsequent clouds. This
incurs attribute privacy leakage. However, the degree of
leakage is controllable by the user by carefully selecting the
cloud and determining its position in the cloud chain. This
is because the cloud which is closer to the tail of the chain
cannot test the membership of any attribute in the clouds
that are closer to the head of the chain. Moreover, the user
can further adjust the false positives caused by the Bloom
filter by adding noise, changing its size and the number of
hash functions. In an extreme case, to prevent a cloud from
inferring the attributes in other clouds from the Bloom filter,
all positions in a Bloom filter need to be set to 1. With
these noise bits, the cloud forwards all the messages that are
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not satisfied so far, which is actually equivalent to disabling
the Bloom filter. As a result, each cloud knows only the
attributes it holds.

To measure the accuracy, we need to set pFP , which is the
probability of false positive of the Bloom filter, and compute:

|S|
m + |N − S| ∗ (1− pFP ) + 0.5(|N |− |S|

m − |N − S| ∗ (1− pFP ))

|N |

where the fist part of the numerator is the true positives of
attributes that are outsourced to the cloud, the second part
is the true negatives that the cloud gets from the Bloom
filter, and the third part is the correct guess of the remaining
attributes with the probability of 0.5.

Let us set pFP to 0.6, for example, the accuracy on the fist
cloud of the chain, who knows the most information about
a user, is 0.65. We see that the cloud gets more accurate
information about a user from the chain-cloud scheme than
the parallel-cloud scheme. When the probability of false
positive is set to 1, it becomes equal to that in the parallel-
cloud scheme.

Access Policy Privacy. In the single-cloud outsourced
ABE, a cloud server can see the complete access policy and
further infer the underlying message. In our parallel-cloud
scheme, since an access policy is divided into multiple pieces,
each cloud knows only a part of the policy. In the chain-
cloud scheme, to support the flexible system structure and
the complete expressiveness of the access policy, the access
structure is distributed over the chain. Any cloud in the
chain has no knowledge about the attributes in previous
clouds, since the attributes that are satisfied in previous
clouds have been replaced with node values, which looks
like a random value. Therefore, a cloud that is closer to the
tail sees less about access structure. Besides, the chain is
organized in a way that more trusted clouds are placed at
the beginning positions, thus it is reasonable to assume that
allowing them to see a more access structure will not cause
severe privacy leakage.

Collusion Resistance. A major challenge to construct
a secure ABE scheme is to prevent colluding users so that
they cannot combine their attributes to satisfy an access pol-
icy, which they cannot decrypt individually. Our proposed
schemes are resistant to the colluding attacks. Similar as
the original CP-ABE design, we select a random r for each
user in the key generation algorithm, which results in dis-
tinct values for different users when recovered by the secret
sharing scheme.

Verifiability. Some messages from the sender may include
critical content, such as control commands, and thus the cor-
rectness verification of the transformation is very important.
We use the public-key signature scheme in both schemes
to enable end-to-end verification. Since the private key for
singing the message is only known to the sender, no cloud
nor adversary can forge a valid signature.

Another challenge is to verify the completeness of the
transformation. A cloud may accidentally fail in match-
ing an access policy to the attributes, due to system errors
or intentional misbehavior. To verify the completeness, the
sender and the receiver need to share a common knowledge
about how many messages are transmitted. We adopt a
stateful verification scheme for completeness, which main-
tains a continuously increasing counter for the messages that

Scheme Complexity of decryption
CP-ABE (2n+1)P + 2M2

Parallel-cloud CP-ABE E2 + 2M2

Chain-cloud CP-ABE E2 + (m+2)M2

Table 1: Comparison of asymptotic complexity of decryption
operation of different scheme.

are encrypted under a specific access policy A as the shared
knowledge. Since the counter is also signed by the sender,
the receiver can trust it to verify if any message is acciden-
tally or maliciously discarded. However, this completeness
verification still has limitations. If a malicious cloud never
forwards a message under a specific access structure, which
should have been satisfied by the receiver, the receiver can-
not build the shared knowledge and know the existence of
a message without interacting with the sender. A simple
yet effective countermeasure for the parallel-cloud scheme is
that the sender sends the complete access policy A instead
of a part Ai to each cloud and the cloud forwards it to the
receiver. The parallel-cloud scheme introduces redundancy
for completeness verification. As long as at least one cloud is
honest, the receiver can verify if she matches the access pol-
icy, and determines if a malicious cloud exists. The receiver
can afford such lightweight matching operation as it only
needs to compare if two attributes are identical. However,
the drawback of this countermeasure is that the cloud knows
the complete access policy, which may cause privacy leakage.
We argue that this is a reasonable price to pay, considering
the criticalness of the completeness. Moreover, completeness
verification remains a challenging task for the chain-cloud
scheme. Since only the last cloud successfully satisfying the
access policy will forward the message to the receiver, it does
not provide redundancy as the parallel-cloud scheme does.
In fact, the completeness verification is still a challenging
task even for the general outsourcing applications such as
searchable encryption, which involves only one cloud. To
the best of our knowledge, only accumulator [24] can pro-
vide the completeness verification at a very high cost, and
there is no known solution for outsourced ABE scheme. We
consider completeness verification for the chain-cloud out-
sourced ABE scheme an open problem for our future work.

5.2 Performance Evaluation
We implement the proposed parallel-cloud and chain-cloud

outsourced ABE schemes in real-world clouds, i.e., Amazon
EC2 and Microsoft Azure, and compare the performance
of our schemes with the one of the original CP-ABE [4] in
terms of asymptotic complexity and the experimental per-
formance.

Since we do not make changes to the encryption algorithm,
and the partial decryption is delegated to the cloud which is
assumed to have unlimited computation capability, we focus
on the comparison of the overhead at the recipient devices.
Note that in the implementation, a message itself is actually
encrypted using AES keys, which has fixed computational
overhead. So, we only evaluate the overhead introduced by
the ABE operations.

Table 1 compares the asymptotic complexity of the three
schemes, where P denotes the paring operation, E2 denotes
the group exponentiation, M2 denotes the group multipli-
cation in G2, n denotes the number of attributes in the ac-
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CP-ABE OP-CP-ABE OC-CP-ABE
2 clouds 1444 830 1620
5 clouds 1444 732 1931

Table 2: Comparison of the delay between the sending time
and the receiving time in the 2-cloud and 5-cloud settings
with 60 attributes in the access policy.

cess policy, and m denotes the number of clouds used in
the parallel-cloud outsourced ABE. Obviously, the compu-
tational complexity of our schemes is independent from the
complexity of access policy, which only needs a constant time
to recover the plaintext.

Next, we implement the original CP-ABE and our schem-
es using the Java Pairing-Based Cryptography Library [1].
We use Type A elliptic curve of 160-bit group order, which
provides 1024-bit discrete log security equivalently. The ex-
periments are conducted on the Raspberry Pi 2 [2], with
700MHz ARM A6 microprocessor and 512 MB RAM, to
simulate the resource-constrained IoT devices such as smart
phones acting as the gateway for wearable devices and smart
meters. We launch multiple Amazon EC2 and Windows
Azure instances to simulate the cloud service providers in
our schemes. The partial decryption in the clouds in the
parallel-cloud scheme is obviously efficient since all the cloud
servers decrypt the corresponding pieces simultaneously. How-
ever, for the chain-cloud scheme, since the partial decryp-
tion is conducted in a sequential manner, we are interested
in evaluating the delay introduced by the chain structure.

Figure 5 compares the decryption time of the original CP-
ABE, our proposed parallel-cloud CP-ABE and chain-cloud
CP-ABE on the Raspberry Pi 2, using a multi-cloud plat-
form of 5 clouds. Our asymptotic complexity analysis is con-
firmed by the real implementation, that is, the decryption
time of the original CP-ABE is proportional to the complex-
ity of the access structure, while the overhead in our schemes
is significantly reduced to a constant value, regardless of the
access structure. This shows the benefit of lightweight de-
cryption introduced by the outsourcing.

Finally, we evaluate the delay introduced by the multi-
cloud structure. To evaluate the chain-cloud scheme, we
connect the instances of EC2 and Azure alternately to mea-
sure the delay, since the communication time between two
servers from the same cloud service provider (e.g., two Ama-
zon instances) is negligible. The round trip time (RTT) of
two EC2 virtual machines (VMs) is less than 2 milliseconds,
while the RTT between an EC2 VM and an Azure VM is
around 60 milliseconds. The sender and the recipient are
synchronized through a Socket communication.

Table 2 compares the delay between the time of sending
out the ciphertext and the time of receiving all the par-
tially decrypted ciphertexts from the cloud servers. In this
experiment, the message is encrypted under an access pol-
icy with 60 attributes. We use the single-cloud outsourced
ABE as the base line, and compares the delay in the 2-cloud
and 5-cloud settings. We see that the parallel-cloud scheme
achieves the best performance in terms of delay, since each
cloud partially decrypts a small part of the ciphertext and
transmits it in a parallel way. Compared to the base line, the
chain-scheme has a larger delay, because all the clouds need
to sequentially decrypt the ciphertext, which introduces the
transmission delay and the delay caused by the serialization
and un-serialization of data for network transmission.
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Figure 5: Comparison of the decryption time between the
original CP-ABE, the parallel-cloud outsourced CP-ABE
and the chain-cloud outsourced CP-ABE with varying num-
ber of attributes in the access structure.

6. RELATED WORK
Attribute-based messaging. Extensive studies have been
done on secure data publishing. Bobba et al. developed an
attribute-based messaging system where senders can dynam-
ically create a list of recipients based on their attributes [6].
However, this scheme incurs high computational overhead
and thus only suits for traditional PC-based applications.
Fadlullah et al. proposed a secure targeted broadcast scheme
for smart grid where the utility encrypts a message using key
policy attribute-based encryption (KP-ABE) and broadcasts
the ciphertext to a specific group of users [9]. KP-ABE is
the first ABE scheme introduced by Sahai and Waters [12].
In KP-ABE, each encrypted message is labeled with a set of
attributes and each user is assigned a private key associated
with an access structure. A user decrypts an encrypted mes-
sage only when the attributes associated with the ciphertext
satisfy her access policy. Compared to CP-ABE, KP-ABE
is less expressive in specifying who has access to the en-
crypted message. Fadlullah’s ABE-based broadcast exploits
the original KP-ABE construction without outsourcing the
decryption operation. Although it avoids the problem of
attribute privacy leakage, it imposes a very large computa-
tional overhead on receivers, which is prohibitively high for
resource-constrained devices. In [15], the authors proposed
a practical ABE-based data sharing scheme using CP-ABE
and the outsourcing technique to reduce the overhead on
smart meters. However, this scheme is still susceptible to
the privacy leakage risk, that is, when a user delegates all
the attributes to a single cloud, the cloud is able to infer her
sensitive information from the attributes.

Verifiable outsourced attribute-based encryption. The
presented work is also related to verifiable outsourced ABE.
While the outsourced schemes [13, 29, 15] protect the data
privacy, they provide no guarantee to the correctness of the
transformation performed by the cloud server. Lai et al.
implemented a verifiable outsourced ABE approach by at-
taching an additional encrypted random message to the real
message and computing the digest of the two messages to-
gether [16]. The receiver recovers both messages and checks
the digest to verify the correctness of the received messages.
Similarly, Li et al. proposed an outsourced ABE with check-
ability by adding a redundant pre-shared k-length bit string
to each message. The receiver can detect the dishonest ac-
tion by checking the bit string. Although these schemes
can verify the correctness of the transformation at the cloud
server, they provide no guarantee to the completeness of the
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forwarded messages. That is, checking whether the cloud
completely forwards all messages that a user is qualified to
receive. This problem is somehow related to verifiable com-
putation [11, 24] and verifiable searchable encryption [28],
which guarantee the returned result is correct and complete.
However, these schemes rely on either expensive fully homo-
morphic encryption or the pre-sharing of certain knowledge
about the underlying message between the sender and the re-
ceiver, which is obviously infeasible in the privacy-preserving
targeted broadcast applications.

7. CONCLUSION
In this paper, we present two multi-cloud outsourced-ABE

schemes for privacy preserving targeted broadcast for IoT
devices. By enforcing the collaboration between multiple
clouds, our schemes significantly reduce the computational
overhead at the resource-constrained IoT devices. The new
schemes protect data privacy, attribute privacy and access
policy privacy. To the best of our knowledge, this is the first
work to utilize multi-cloud structure to prevent the disclo-
sure of attributes and access policies in outsourcing. Our
schemes also provide verifiability, which allows receivers to
verify the correctness and completeness of the outsourced
operations. Through intensive security analysis and exper-
iments with simulated IoT devices and commercial cloud
platforms, we demonstrate the security guarantees and out-
standing performance of the proposed schemes.
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