Summary of DSB-LC

Spectrum of DSB-LC
$B_{\mathrm{RF}}=2 B_{\mathrm{bb}}$.
Not power efficient, power efficiency $=\frac{\mu^{2}}{2+\mu^{2}}$ with maximum $=33 \%$.
Poor low frequency response.
Very simple receiver, envelope detector. No carrier recovery required.
ASK is a form of DSB-LC, an envelope detector followed by an integrate and dump can be used as an ASK receiver.

Summary of SSB
$B_{\mathrm{RF}}=B_{\mathrm{bb}}$
Transmitter- Sideband Filtering, requires sharp frequency cut-off on the BPF
Transmitter-Phasing, requires wideband constant amplitude phase shifting filter.
Needs a coherent receiver, carrier synchronization is required.
SSB-LC is feasible, wastes power in transmitting the carrier, enables the use of an envelope detector with poor LF response.
Introduced a signal space diagram for analog modulated signals.

Summary of VSB

$B_{\mathrm{bb}}<B_{\mathrm{RF}}<2 B_{\mathrm{bb}}$
Requires a transmit BPF with specific characteristics, $H_{v}\left(f+f_{c}\right)+H_{v}\left(f-f_{c}\right)=$ constant
VSB without a large carrier requires carrier synchronization.
VSB-LC can be received with an envelope detector.

Moduation	B_{RF}	Transmitter Complexity	Receiver Complexity	Power Efficency
DSB - SC	$2 \mathrm{~B}_{\mathrm{bb}}$	Simple	Complex Requires Carrier Recovery	Adequate
DSB - LC	$2 \mathrm{~B}_{\mathrm{bb}}$	Simple	Simple Envelope Detector	Poor
SSB	B_{bb}	Complex	Complex Requires Carrier Recovery	Adequate
VSB - SC	$\mathrm{B}_{\mathrm{bb}}<\mathrm{B}_{\mathrm{RF}}<2 \mathrm{~B}_{\mathrm{bb}}$	Complex	Complex Requires Carrier Recovery	Adequate
VSB - LC	$\mathrm{B}_{\mathrm{bb}}<\mathrm{B}_{\mathrm{RF}}<2 \mathrm{~B}_{\mathrm{bb}}$	Complex	Simple Envelope Detector	Poor

Summary of FM and PM

Instantaneous phase $\theta_{i}(t)$ and frequency $f_{i}(\mathrm{t})=\frac{1}{2 \pi} \frac{\mathrm{~d} \theta_{i}(t)}{\mathrm{dt}}(\mathrm{Hz})$
$\operatorname{In} \operatorname{FM} f_{i}(\mathrm{t}) \propto x_{\mathrm{bb}}(\mathrm{t})$.
In PM $\theta_{i}(t) \propto x_{b b}(\mathrm{t})$
The spectrum of $X_{F M}(\mathrm{f})$ is not a translation of $X_{b b}(\mathrm{f})$.
FM (PM) is a non-linear modulation
Considered the special case of $x_{\mathrm{bb}}(t)=A_{m} \cos \left(2 \pi f_{m} \mathrm{t}\right)$
For $x_{\mathrm{bb}}(t)=A_{m} \cos \left(2 \pi f_{c} \mathrm{t}\right)$ defined the frequency deviation $\Delta \mathrm{f}$ and the FM modulation index $\beta=\frac{\Delta f}{f_{m}}$
For $x_{\mathrm{bb}}(t)=A_{m} \cos \left(2 \pi \pi_{c} \mathrm{t}\right)$ the FM signal is

$$
\begin{aligned}
x_{\mathrm{FM}}(\mathrm{t}) & =A_{c} \cos \left(2 \pi f_{c} t+\beta \sin \left(2 \pi f_{m} t\right)\right) \\
& =A_{c} \sum_{n=-\infty}^{\infty} J_{n}(\beta) \cos \left(2 \pi\left(f_{c}+n f_{m}\right) \mathrm{t}\right)
\end{aligned}
$$

The characteristics (spectrum) of $X_{F M}(f)$ are driven by the properties of the Bessel function $J_{n}(\beta)$ Spectrum of FM signals with tone modulation.
The approximate RF bandwidth for FM is $B_{\mathrm{RF}}=2 B_{\mathrm{bb}}(1+\beta)$
The average power in $x_{\mathrm{FM}}(\mathrm{t})=P_{\mathrm{FM}}=\frac{A_{c}{ }^{2}}{2}$, same as the power in an unmodulated carrier.
FM transmitters;
Indirect FM
VCO
FM demodulators;
Differentiator/envelope detector
Balanced discriminator
PLL
Digital FM techniques;
FSK
M-ary FSK
DPSK
For coherent FSK systems orthogonal carriers can be used with $\Delta \mathrm{f}=\frac{1}{T_{s}}$
For non-coherent FSK systems $\Delta \mathrm{f} \geq \frac{2}{T_{s}}$ and a noncoherent (envelope) receiver can be used.
The approximate RF bandwidth for BFSK $=2 \Delta \mathrm{f}+(1+\alpha) r_{s}$
Summary of Superheterodyne Receiver

Down converts RF signal to a fixed IF frequency.
RF section provides sensitivity; Bandwidth of RF section $=B_{R F}$
IF section provides selectivity; Bandwidth of IF section $=B_{R F}$
As desired carrier frequency changes the local oscillator frequency changes
$f_{\mathrm{IF}}=f_{\mathrm{LO}}-f_{c}$
Image frequency
Summary of Communications Channels, Noise and Link Budgets

Path loss, function of the carrier frequency and the environment.
Antenna gain, function of the carrier frequency and the antenna size, i.e., the size of the antenna relative to the wavelength.
Signal-to-noise ratio $(\mathrm{S} / \mathrm{N}), \mathrm{S} / \mathrm{N}$ is the $\frac{\text { Power in } x_{0}(t)}{\text { Powerin } n_{0}(t)}$.
Flat noise, $S_{n}(f)=\frac{N_{o}}{2} \forall f$. Noise Power $=N_{0} B$
Thermal noise, kTB noise; Noise Power = kTB
External noise input to the receiver is modeled as an $T_{a}=$ antenna temperature (or $T_{a}=T_{i}$).
Specification of component noise using equivalent temperature of the device, T_{e}.
Noise Power $=N_{0} \mathrm{~B}=\mathrm{kTB}=k\left(T_{a}+T_{e}\right) \mathrm{B}, N_{0}=k\left(T_{a}+T_{e}\right)$
Specification of component noise using noise figure of the device, F .
Relationship between equivalent temperature and noise figure $T_{e}=T_{0}(\mathrm{~F}-1) . T_{0}=290$
Noise figure of resistive attenuator, $\mathrm{F}=1+(L-1) \frac{T_{P}}{T_{o}}$ if $T_{P}=T_{o}$ then $\mathrm{F}=\mathrm{L}$.
For multistage systems $T_{e}=T_{1}+\frac{T_{2}}{G_{1}}+\frac{T_{3}}{G_{1} G_{2}}+\frac{T_{4}}{G_{1} G_{2} G_{3}} \ldots$.
For multistage systems $\mathrm{F}=F_{1}+\frac{F_{2}-1}{G_{1}}+\frac{F_{3}-1}{G_{1} G_{2}}+\frac{F_{4}-1}{G_{1} G_{2} G_{3}} \ldots .$.
Link budgets are used to evaluate system tradeoffs.
$(S / N)_{\text {pre }}=\frac{P_{T} G_{T} G_{R}}{L_{M} L_{p} k\left(T_{a}+T_{0}(F-1)\right) B_{e}}$
In dB
$(S / N)_{\text {pre }}(\mathrm{dB})=P_{T}+G_{T}+G_{R}-L_{M^{-}} L_{p}-10 \log \left(k\left(T_{a}+T_{0}(F-1)\right)-10 \log \left(B_{e}\right)\right.$

If $T_{a}=T_{o}$ then

$$
\begin{aligned}
(S / N)_{\text {pre }}(\mathrm{dB}) & =P_{T}+G_{T}+G_{R}-L_{M}-L_{p}-10 \log \left(k T_{0} B_{e}\right)-\mathrm{F} \\
& =P_{T}+G_{T}+G_{R}-L_{M} L_{p}-10 \log \left(k T_{0}\right)-10 \log \left(B_{e}\right)-\mathrm{F}
\end{aligned}
$$

