$k=1.38 \times 10^{-23} \lambda=\frac{c}{f_{c}}(m)$ with $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
$T_{e}=T_{o}(F-1)$ with $T_{o}=290^{\circ}$
$S_{n}(f)=\frac{N_{0}}{2} \forall f \quad N_{0}=k\left(T_{a}+T_{e}\right)$
$T_{e}=T_{1}+\frac{T_{2}}{G_{1}}+\frac{T_{3}}{G_{1} G_{2}}$
$F=F_{1}+\frac{F_{2}-1}{G_{1}}+\frac{F_{3}-1}{G_{1} G_{2}}$
$G_{A n t}=\frac{4 \pi A_{e f f}}{\lambda^{2}}$
For dish (circular) antenna $G_{A n t}=\left(\frac{\pi D}{\lambda}\right)^{2} \quad D=\operatorname{Diameter}(m)$
Path Loss $=L_{p}=\left(\frac{4 \pi r}{\lambda}\right)^{2} r=$ distance (m)
$P_{T}=$ Tx Power: $G_{T}=T x$ Ant Gain: $G_{R}=\operatorname{Rec}$ Ant Gain
Received power $=P_{R}=\frac{P_{T} G_{T} G_{R}}{L_{p}}$
$(S / N)_{\text {Pre }}=\frac{P_{T} G_{T} G_{R}}{L_{M} L_{p} k\left(T_{a}+T_{e}\right) B_{e}}=\frac{P_{T} G_{T} G_{R}}{L_{M} L_{p} k\left(T_{a}+T_{o}(F-1)\right) B_{e}}$
$(S / N)_{p r e}(\mathrm{~dB})=P_{T}+G_{T}+G_{R}-L_{M}-L_{p}-10 \log \left(k\left(T_{a}+T_{0}(F-1)\right)-10 \log \left(B_{e}\right)\right.$

