
1

An Algorithm for Fitting MMPP to IP Traffic
Traces

Soshant Bali and Victor S. Frost

Abstract— A method for fitting very long IP traffic traces to a
Markov Modulated Poisson Process (MMPP) model is proposed
in this paper. We compare our method to a previously published
technique using several 24 hour traces. Our method is useful
when the traces are very long and exhibit diurnal traffic changes.

I. I NTRODUCTION

M MPP is an attractive model for backbone Internet traf-
fic. It has been recognized that at the packet or byte

level Internet traffic is not modeled well using the Poisson
process.

The contribution of this paper is a new algorithm for fitting
MMPP to an IP traffic trace. Some of the previous approaches
to estimating MMPP parameters use the maximum likelihood
estimator (MLE) method [2]. The MLE method is computa-
tionally expensive and requires that the number of states be
specified as an input in advance. In [1] a computationally
inexpensive method was proposed that does not require the
user to input the number of states. It was shown that the
method from [1] results in a reasonably accurate MMPP model
for medium sized traces. However, this method may not be
very accurate when there is a need to model longer traces
that exhibit diurnal traffic variations [3]. In this paper we
modify the method proposed in [1] and show, using several
24 hour traces, that the new method provides a better model
for longer traces at the expense of an increased number of
states. Although it is not desirable to have a large number of
MMPP states, the algorithm proposed in this paper can be used
to generate an accurate MMPP model of long traffic traces
when computational resources for dealing with an increased
number of MMPP states are available.

II. F ITTING DATA TO A MMPP

The algorithm for fitting MMPP is divided into four parts.
Part A, C and D of this algorithm are similar to the corre-
sponding parts in algorithm 1 (see [1]). Part B is new and
allows multiple states to have the same rate. The algorithm
in part A computes the basic rates needed for modeling the
data. These rates are assigned to states using the procedure
discussed in part B. Once the states are assigned, the state
transition probability matrix of the discrete MMPP (D-MMPP)
is computed in part C. Finally part D computes the rate matrix
for MMPP from the state transition probability matrix of D-
MMPP.

A. Choosing the Rates

Let λ1 ≥ λ2 ≥ ... ≥ λN be the rates, whereN is unknown.
λ1 should cover the largest observation, so choose

λ1 + 2
√

λ1 = peak of the data.

Authors are with Information and Telecommunication Technology Center,
Department of Electrical Engineering and Computer Science, University of
Kansas. This work was supported in part by NSF grant ANI-0125410.

Fig. 1. 24 hour long sample trace with rates shown as horizontal lines

Solving this equation, we get

λ1 = (
√

1 + peak− 1)2.

The lower bound of data covered by any state with rateλ1

is λ1− 2
√

λ1, which is chosen as the upper bound of rate
λ2, i.e.,

λ2 + 2
√

λ2 = λ1 − 2
√

λ1.

Solving, we get

λ2 = (
√

λ1 − 2)2.

This procedure can be repeated to get the values ofλ3 from
λ2, λ4 from λ3 and so on. The stopping point is the minimum
rate in the data. RateλN covers the minimum of the data.

B. Choosing the States

Figure 1 shows a plot of 24 hours of data collected in
Feb-April 2000 at the University of Auckland Internet uplink
1. Rates determined using step A are shown as horizontal
lines in this figure. Consider rateλ8 (marked in the figure)
and note that this rate is visited rarely by data points between
reference pointsr0 and r1; and frequently betweenr1 and
r2. If in the MMPP model of this trace we decide to assign
only one state with rateλ8, then the mean time in this state
determined using the entire trace is going to be too small to
model data points betweenr1 and r2 and too high to model
data points betweenr0 and r1. However, if we decide to
assign two states with rateλ8, one state having a mean time
determined using data points betweenr0 and r1, and the
other state having a mean time in state determined using data
samples betweenr1 and r2, then the trace can be modeled
more accurately. The algorithm that follows identifies regions
in a given traffic trace that can be modeled using same set
of states (referred to as state sets). Regions that cannot be
modeled using the same set of states are assigned new state
sets as needed.

1Data from NLANR Measurement and Network Analysis Group

2

Let L be a set consisting of all rates, i.e.,L =
{λ1, λ2, ..., λN}. Define “state set” (denoted asSS) to be
a set of states with rates chosen from setL in such a
way that no two states in a state set have the same rate.
For example, consider a state setSSi consisting of states
{sil, sim, ..., sip}. Here, statesij is a state in setSSi and
has a rateλj , λj ∈ L. Let there be a total ofnSS different
state sets. Then,SS1 ∪SS2 ∪ ...∪SSnSS

= U , where U is
the universal set consisting of all the MMPP model states.

Given an IP traffic trace, the new algorithm forms the state
setsSSi and the numbernSS using the following procedure.
Divide the IP traffic trace into non-overlapping windows, each
of size W samples. If there are a total ofnt samples in the
IP traffic trace, then the trace can be divided into at least
nW = bnt

W c non-overlapping windows of sizeW .
Two setsDi andVi are associated with each windowi. Set

Di is the set of dominant rates (defined below) in windowi
and setVi is the set of rates visited in windowi. A sample
j from IP traffic trace having a valuexj is defined to “visit”
rateλk if λk−2

√
λk < xj < λk +2

√
λk. If rate λk is visited

by at least one of the samples in windowi, then λk ∈ Vi.
Let ni

λk
be the number of samples in windowi that visit

rate λk. Dominant setDi is the set of rates most frequently
visited by samples in windowi, and is formed using the
following procedure. Sort elements of setVi in decreasing
order of the number of times the rates are visited to form
the setV s

i . Let Di be an empty set. Traverse the elements of
set V s

i in the forward order (rate visited maximum number
of times first). If the current element from setV s

i is λk,
add rateλk to set Di if∑

λl∈Di
ni

λl
+ ni

λk

W
< η, (1)

whereη is a constant (e.g.,η = 0.85). Keep adding rates to
Di until the first elementλk from setV s

i is encountered for
which equation 1 does not hold. SetDi is now the dominant
set.

Once the setsDi andVi are computed∀i, i ∈ {1, 2, ..., nW },
the algorithm divides the windows into groups that can be
modeled using the same state sets. InitializenSS = 1 and
SS1 = ∅ (empty set). PerformSS1 ← V1, where the operation
SS1 ← V1 creates new states inSS1 such thatSS1 contains
all states with rates inSS1∪V1. For example, ifVx = {λ3, λ4}
and SSy = {sy2, sy3}, then after the operationSSy ← Vx,
SSy = {sy2, sy3, sy4}. Also initializeDSS

1 = D1, whereDSS
1

is the dominant set associated with state setSS1 (each state
set SSk will have a dominant setDSS

k associated with it).
For each windowi, let wSS

i be the state set number for
the state set that is best suited to model the samples in that
window. Traverse the windows in the forward order from
i = 2 to i = nW . Let j be the state set index, then for each
j, j ∈ {1, 2, ..., nSS}, computeDi − DSS

j and DSS
j − Di

(set subtraction). Also compute|Di−DSS
j | and |DSS

j −Di|
(number of elements in the set). Check for the condition

|Di −DSS
j |+ |DSS

j −Di| > 2. (2)

If equation 2 hold for somej = l, then samples in win-
dow i can be modeled using state setSSl. Thus perform the
operationswSS

i = l and SSl ← Vi. However, if equation 2
does not hold for allj, j ∈ {1, 2, ..., nSS}, then a new state
set should be created. PerformnSS = nSS + 1, SSnSS

= ∅
and SSnSS

← Vi. These operations create a new state set

and assign appropriate states to the state set. Once the new
state set is created, assignwSS

i = nSS wherei is the current
window. Also associate a dominant set with the new state
set, i.e.,DSS

nSS
= Di. After the algorithm has traversed all

of the nW windows and performed the operations discussed
above, the resultant state sets contain the desired states of
the D-MMPP. The setU contains all of the states for the
D-MMPP model of the traffic trace.

C. Fitting the Markov Chain

Consider a samplexk that belongs to some windowi. The
samples in windowi can be modeled using states in state set
SSwSS

i
. Then there exists exactly one stateswSS

i
l ∈ SSwSS

i

such thatλl− 2
√

λl < xk < λl + 2
√

λl. This stateswSS
i

l is
the phase of samplexk. Compute the phase of each data
sample and denote phase of samplexk asφk. Then for each
observation{xk, k = 1, 2, ..., (nW × W)} there exists a
corresponding phase{φk, k = 1, 2, ..., (nW ×W)} (Since set
U consists of all the states,φk ∈ U for all k.). Let the setU
containnu states, i.e.,U = {u1, u2, ..., unu

}. Let P = (puiuj
)

be the transition matrix of the phase process. The MLE of
puiuj is

puiuj =
number of transitions fromui to uj

number of transitions out ofui
. (3)

Matrix P obtained using equation 3 is the required state tran-
sition matrix for the D-MMPP.

D. Fitting an MMPP

The rate matrixQ of an MMPP can be obtained from
P matrix of the D-MMPP using

quiuj
= puiuj

, i 6= j; quiui
= puiui

− 1. (4)

If Q is derived fromP using equation 4, then the mean
sojourn time in stateui (for every i) is the same for the
two processes (D-MMPP and MMPP).

III. R ESULTS

Note that in Figure 1 the mean arrival rate is about 100
packets/sec from the beginning of the trace to sample number
2×104. In the region between sample numbers2×104 and
3×104 mean arrival rate increases from 100 packets/sec to
about 250 packets/sec. It then stays high at about 250 packets
per second until sample number6×104, where it decreases
to 200 packets/sec. We fitted MMPP to this trace using both
algorithm 1 from [1] and the new algorithm proposed in this
paper. Part A of the algorithm generates a set of 16 rates for
this trace. Since algorithm 1 allows only one state per rate,
MMPP model fitted using algorithm 1 has 16 states, each
having a unique rate. About 24 hours of data generated using
algorithm 1’s MMPP model is plotted in Figure 2. Note that
mean arrival rate is constant throughout the trace, unlike in
the original trace where the mean arrival rate changes with
the time of the day. MMPP model fitted to the same trace
(shown in Figure 1) using the new algorithm has a total of
48 states with a total of 4 state sets (nSS = 4). The four state
sets have 12, 12, 16 and 8 states. About 24 hours of data
generated using new algorithm’s MMPP model is shown in
Figure 3. The mean arrival rate changes with time for this
trace as the state transitions from one state set to another.

3

Fig. 2. Trace generated from a MMPP model of the original trace in
Figure 1 (using Algorithm 1)

Fig. 3. Trace generated from a MMPP model of the original trace in
Figure 1 (using the new algorithm)

We used two different methods to evaluate how well the
traces generated using the two MMPP models fit the original
trace. The first compares the mean queuing delays and the
second compares the loss rates of the original trace with that
of the traces generated using the two models. A fluid flow
simulation model [4] was used to determine the mean queuing
delays and loss rates. Packet size is assumed to be constant
(1000 bits) for the simulation. Service rate of the queue is
computed from the mean arrival rate of the entire trace and
the load (mean arrival rate/load). Mean queuing delays for
the three traces are plotted in Figure 4. Queuing delays for
the trace generated using algorithm 1 are close to the queuing
delays of the original trace only for low loads (less than
0.6). Queuing delays for the trace generated using the new
algorithm follows the queuing delays of the original trace very
closely even for loads greater than 0.6. Loss rate plots for
the three traces are shown in Figure 5. The load ranges from
0.4 to 0.99 since the three traces have very similar loss rates
for loads less than 0.4. When the buffer size is 50 packets,
loss rates for the three traces are almost the same. With a
buffer size of 5000 packets, the new algorithm models the
loss rate better than algorithm 1. Clearly the new method’s
MMPP model is a better fit than algorithm 1’s MMPP model.
The MMPP was fitted to two other 24 hour long data trace
using the two algorithms. Both these traces were collected
at the University of Auckland Internet uplink, the first one

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Load

M
ea

n
Q

ue
ui

ng
 D

el
ay

 (s
ec

)

Data Trace
New algorithm
Algorithm 1

Fig. 4. Mean queuing delays for the three traces (Data set 1)

0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

2

2.5

3 x 104

Load

Lo
ss

 ra
te

 (b
its

/s
ec

)

Data Trace (Queue size = 50 pkts)
New Algorithm (Queue size = 50 pkts)
Original Method (Queue size = 50 pkts)
Data Trace (Queue size = 5000 pkts)
New Algorithm (Queue size = 5000 pkts)
Original Method (Queue size = 5000 pkts)

Fig. 5. Loss rates for queue sizes 50 pkts and 5000 pkts (Data set 1)

in Feb-April 2000 and the second one in December 2003.
Mean queuing delays and loss rates for these data sets are
similar to the ones above. For a data trace with 86,400 data
points, Algorithm 1 took 50.8 sec and the new algorithm
took 154.7 sec to generate the transition probability matrix
from that 24 hour trace on a machine with a Pentium Xeon
3.2Ghz processor.

IV. CONCLUSION

A new method for modeling MMPP to IP trace was pro-
posed. It was shown by comparing mean delay and packet
loss rates that this method models the trace better than a
previously published method.

REFERENCES

[1] Daniel P. Heyman and David Lucantoni, Modeling Multiple IP Traffic
Streams with Rate Limits,IEEE/ACM Transactions on Networking, Vol.
11, No. 6, pp. 948-958, December 2003.

[2] A. Andersson and T. Ryden, Maximum Likelihood Estimation of a Struc-
tured MMPP with Applications to Traffic Modeling,13th ITC Specialist
Seminar, Monterey, CA, 2000.

[3] S. Bali, Y. Jin, V. S. Frost and T. Duncan, Characterizing User-perceived
Impairments Using End-to-end Measurements,International Journal of
Communication Systems, Vol. 18, No. 10, pp. 935-960, December 2005.

[4] Cameron Kiddle, Rob Simmonds, Carey Williamson and Brian Unger,
Hybrid Packet/Fluid Flow Network Simulation,Seventeenth Workshop
on Parallel and Distributed Simulation, June 10-13, 2003.

