An Algorithm for Fitting MMPP to IP Traffic
Traces
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Abstract— A method for fitting very long IP traffic traces to a T by ‘ . , 3
Markov Modulated Poisson Process (MMPP) model is proposed
in this paper. We compare our method to a previously published
technique using several 24 hour traces. Our method is useful
when the traces are very long and exhibit diurnal traffic changes.
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|. INTRODUCTION 3 13 il HET
MPP is an attractive model for backbone Internet traf g DD ek ; T e
fic. It has been recognized that at the packet or byt 5 .
level Internet traffic is not modeled well using the Poissor §
process. 0 2
The contribution of this paper is a new algorithm for fitting 0 ! 23 Sam3|e mper 0 8“04

MMPP to an IP traffic trace. Some of the previous approaches

to estimating MMPP parameters use the maximum likelihoda. 1. 24 hour long sample trace with rates shown as horizontal lines
estimator (MLE) method [2]. The MLE method is computa-

tionally expensive and requires that the number of states $elving this equation, we get

specified as an input in advance. In [1] a computationally N = (/1 + peak— 1)2
inexpensive method was proposed that does not require the 1= (vi+p )

user to input the number of states. It was shown that t{&€ lower bound of data covered by any state with rage
method from [1] results in a reasonably accurate MMPP modgl M —2V/A1, which is chosen as the upper bound of rate
for medium sized traces. However, this method may not Be: 1-€-

very accurate when there is a need to model longer traces A2 +2\/)\72= AL — 2\/)\71~

that exhibit diurnal traffic variations [3]. In this paper weg
modify the method proposed in [1] and show, using severa
24 hour traces, that the new method provides a better model Ao = (VA - 2)%

for longer traces at the expense of an increased numberTofis procedure can be repeated to get the values;dfom
states. Although it is not desirable to have a large number ®f, )\, from A3 and so on. The stopping point is the minimum
MMPP states, the algorithm proposed in this paper can be usatk in the data. Ratay covers the minimum of the data.
to generate an accurate MMPP model of long traffic traces
when computational resources for dealing with an increasgd
number of MMPP states are available. '

Plving, we get

Choosing the States

Figure 1 shows a plot of 24 hours of data collected in
Il. FITTING DATA TO A MMPP Feb-April 2000 at the University of Auckland Internet uplink

The algorithm for fitting MMPP is divided into four parts.”- Rates determined using step A are shown as horizontal
Part A, C and D of this algorithm are similar to the correlines in this figure. Consider rates (marked in the figure)
sponding parts in algorithm 1 (see [1]). Part B is new ar@d note that this rate is visited rarely by data points between
allows multiple states to have the same rate. The algoritigference points;, and r1; and frequently between;, and
in part A computes the basic rates needed for modeling the !f in the MMPP model of this trace we decide to assign
data. These rates are assigned to states using the procefi one state with rates, then the mean time in this state
discussed in part B. Once the states are assigned, the st#gf€rmined using the entire trace is going to be too small to
transition probability matrix of the discrete MMPP (D-MMPP)Nodel data points between andr, and too high to model
is computed in part C. Finally part D computes the rate matri@ta points betweem, and r;. However, if we decide to
for MMPP from the state transition probability matrix of D-2ssign two states with ratks, one state having a mean time

MMPP. determined using data points betweef and r;, and the
other state having a mean time in state determined using data
A. Choosing the Rates samples between; andr,, then the trace can be modeled

more accurately. The algorithm that follows identifies regions

in a given traffic trace that can be modeled using same set
of states (referred to as state sets). Regions that cannot be
modeled using the same set of states are assigned new state
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Let \; > Xy > ... > Ay be the rates, wher®& is unknown.
A1 should cover the largest observation, so choose

A1 + 24/ = peak of the data



Let L be a set consisting of all rates, i.€., = and assign appropriate states to the state set. Once the new
{A1, A2, ..., A\n}. Define “state set” (denoted aSS) to be state set is created, assigr;?s = ngg Wherei is the current
a set of states with rates chosen from detin such a  window. Also associate a dominant set with the new state
way that no two states in a state set have the same ratet, i.e.,D;?fS = D;. After the algorithm has traversed all
For example, consider a state s&b; consisting of states of the ny, windows and performed the operations discussed
{sit, Sim, ---» Sip . Here, states;; is a state in setSS; and above, the resultant state sets contain the desired states of
has a rate\;, A\; € L. Let there be a total ofigg different the D-MMPP. The setU contains all of the states for the
state sets. Then$S; USS,U...USS, ., =U, whereU is D-MMPP model of the traffic trace.
the universal set consisting of all the MMPP model states.

Given an IP traffic trace, the.new algorithm forms the state Fitting the Markov Chain
setsSS; and the numbengs using the following procedure. ) i '
Divide the IP traffic trace into non-overlapping windows, each Consider a sample,. that belongs to some window The
of size W samples. If there are a total of samples in the samples in window can be modeled using states in state set
IP traffic trace, then the trace can be divided into at leaSthwss- Then there exists exactly one stafgss; € 55,55
nw = I—%J non-oveﬂapping windows of sizél’ . such that)\; 72\/)\7[ <xKp < N +2\/)\71 This Stateswfsl IS

Two setsD; andV; are associated with each windawSet the phase of sample;. Compute the phase of each data
D; is the set of dominant rates (defined below) in window sample and denote phase of sampjeas ¢,. Then for each
and setV; is the set of rates visited in window A sample observation{z;,k = 1,2,..,(nw x W)} there exists a
j from IP traffic trace having a value; is defined to “visit” corresponding phas@py., k = 1,2, ..., (nw x W)} (Since set
rate A\ if Ay —2v/Ap < 2; < A\p+2V/Ag. If rate )y, is visited U consists of all the stategy, € U for all £.). Let the set/
by at least one of the samples in windawthen ), € V;. containn, states, i.el/ = {uy, uz, ..., un, }. Lt P = (py,u,)
Let nj, be the number of samples in windoivthat visit be the transition matrix of the phase process. The MLE of
rate \;. Dominant setD; is the set of rates most frequentlyPu;u; 1S
visited by samples in window, and is formed using the number of transitions fromu; to w;
following procedure. Sort elements of skt in decreasing Puiv; = ~imber of transitions out ofi; )
order of the number of times the rates are visited to formatrix P obtained using equation 3 is the required state tran-
the setV®. Let D, be an empty set. Traverse the elements @ftion matrix for the D-MMPP.
set V? in the forward order (rate visited maximum number
of times first). If the current element from sé&{® is A, D. Fitting an MMPP

add rate\, to set D; if
The rate matrix@ of an MMPP can be obtained from

_ni —|—ni X .
ZA‘ED"W’\’ Ak <o, (1) P matrix of the D-MMPP using

wheren is a constant (e.gy = 0.85). Keep adding rates to Quiu; = Puguyst # J Quiny = Puju; — 1- (4)
D; until the first element\, from setV;® is encountered for |f () is derived from P using equation 4, then the mean
which equation 1 does not hold. SB is now the dominant spjourn time in stateu; (for every i) is the same for the
set. two processes (D-MMPP and MMPP).

Once the set®; andV; are computedi, i € {1,2,...,nw },
the algorithm divides the windows into groups that can be m
modeled using the same state sets. Initializgs = 1 and o ) )
S5, = 0 (empty set). Perforn$'S, « Vi, where the operation Note that in Figure 1 Fhe_ mean arrival rate is about 100
S5, — V; creates new states ifiS; such thatS.s; contains packets/sec from the beginning of the trace to sample number

4 i 4
all states with rates i§.S;UV;. For example, i, = {\3, \;} 2% 104' In the region between sample numbers 10° and
and SS, = {s,2, 5,3}, then after the operatios, — V,, 3 x 10* mean arrival rate increases from 100 packets/sec to

S8, = {42, 5y3, Sy4}. Also initialize DS = D, whereD3S about 250 packets/sec. It then stays high at about 250 packets

. ! )
is the dominant set associated with state $6t (each state Per Second until sample numberx 10, where it decreases
set $5, will have a dominant seD,fS associated with it). to 200 packets/sec. We fitted MMPP to this trace using both

For each windowi, let wSS be the state set number foralgorithm 1 from [1] and the new algorithm proposed in this

the state set that is best suited to model the samples in t3per- Part A of the algorithm generates a set of 16 rates for

window. Traverse the windows in the forward order froliS trace. Since algorithm 1 allows only one state per rate,
i=210i=ny. Letj be the state set index, then for eacM/MPP model fitted using algorithm 1 has 16 states, each

4, j €1{1,2,...,ngs}, compute D; — D5 and Dfs - D, havin_g a un'ique rate. About_24 hours _of dfata generated using
(set subtraction). Also compuqé)i—DjS| and IDJSSfDi| algonthm_ls MMP_P model is plotted in Figure 2. Note _that_
(number of elements in the set). Check for the conditiof€a" .a_rrlval rate is constant throughqut the trace, unlike in
the original trace where the mean arrival rate changes with
|D; — D?5| + |DSS — Dy| > 2. ) : :
¢ J J i the time of the day. MMPP model fitted to the same trace
If equation 2 hold for somej = [, then samples in win- (shown in Figure 1) using the new algorithm has a total of
dow i can be modeled using state $6%;. Thus perform the 48 states with a total of 4 state setss¢ = 4). The four state
operationSwa =1 and SS; < V;. However, if equation 2 sets have 12, 12, 16 and 8 states. About 24 hours of data
does not hold for allj, j € {1,2,...,nss}, then a new state generated using new algorithm’s MMPP model is shown in
set should be created. Performys = ngs+1, SS,s, =0 Figure 3. The mean arrival rate changes with time for this
and SS, .., < V;. These operations create a new state sieace as the state transitions from one state set to another.

nss

. RESuULTS



1200 T T 5000

-©-Data Trace

4500 -B- New g\gorithm
<1 Algorithm 1

1000 !

800

! | 5 3500
Q

Number of arrivals per second (packets)
Mean Queuing Delay (st

4 5
Sample number x10*

Fig. 2.  Trace generated from a MMPP model of the original trace iRig. 4. Mean queuing delays for the three traces (Data set 1)
Figure 1 (using Algorithm 1) )
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Fig. 5. Loss rates for queue sizes 50 pkts and 5000 pkts (Data set 1)
Fig. 3. Trace generated from a MMPP model of the original trace in
Figure 1 (using the new algorithm) . . .

in Feb-April 2000 and the second one in December 2003.

We used two different methods to evaluate how well thl\élean queuing delays and loss rates for these data sets are

traces generated using the two MMPP models fit the origin%{g?rlllg ' tﬁlégfitﬁrr;eslag%\:(e.szog 2 edcat: ngafheevﬁ?WSgigggtgita

trace. The first compares the mean queuing delays and 00k 154.7 sec to generate the transition probability matrix

second compares the loss r_ates of the original trace V.V'th tlf'r%m that 24 hour trace on a machine with a Pentium Xeon
of the traces generated using the two models. A fluid flo

. . ) ¥ 2Ghz processor.
simulation model [4] was used to determine the mean queuing P
delays and loss rates. Packet size is assumed to be constant v C
(1000 bits) for the simulation. Service rate of the queue is ' ONCLUS'ON
computed from the mean arrival rate of the entire trace andA new method for modeling MMPP to IP trace was pro-
the load (mean arrival rate/load). Mean queuing delays fgpsed. It was shown by comparing mean delay and packet
the three traces are plotted in Figure 4. Queuing delays 166s rates that this method models the trace better than a
the trace generated using algorithm 1 are close to the queuRtigviously published method.
delays of the original trace only for low loads (less than
0.6). Queuing delays for the trace generated using the new REFERENCES
algorithm follows the queuing delays of the original trace very] paniel P. Heyman and David Lucantoni, Modeling Multiple 1P Traffic
closely even for loads greater than 0.6. Loss rate plots for Streams with Rate LimitdEEE/ACM Transactions on Networkinyol.
i i 11, No. 6, pp. 948-958, December 2003.
the three tra(.:es are shown in Figure 5. The lo.ad. ranges frf A. Andersson and T. Ryden, Maximum Likelihood Estimation of a Struc-
0.4 to 0.99 since the three traces have ver;_/ S|r_n|Iar loss ra Stured MMPP with Applications to Traffic Modelind,3th ITC Specialist
for loads less than 0.4. When the buffer size is 50 packets, Seminar Monterey, CA, 2000.
loss rates for the three traces are almost the same Wiﬂ[,p]as. Bali, Y. Jin, V. S. Frost and T. Duncan, Characterizing User-perceived
. . ’ Impairments Using End-to-end Measuremenmtsernational Journal of
buffer size of 5000 paCket_S’ the new algorithm models the communication Systemsol. 18, No. 10, pp. 935-960, December 2005.
loss rate better than algorithm 1. Clearly the new method% Cameron Kiddle, Rob Simmonds, Carey Williamson and Brian Unger,
MMPP model is a better fit than algorithm 1's MMPP model Hybrid Packet/Fluid Flow Network SimulatiorSeventeenth Workshop
. " on Parallel and Distributed SimulationJune 10-13, 2003.
The MMPP was fitted to two other 24 hour long data trace
using the two algorithms. Both these traces were collected

at the University of Auckland Internet uplink, the first one



