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Surface Current Density 
 
 
Consider now the problem where we have moving surface charge 

( )rsρ . 
 

The result is surface current! 
 
Say at a given point r located on a surface S, charge is moving in 
direction maxâ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now, consider a small length of contour ∆  that is centered at 
point r , and oriented such that it is orthogonal to unit vector 

maxâ .  Since charge is moving across this small length, we can 
define a current I∆ that represents the current flowing across 
∆ . 
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Note vector maxˆI a∆ therefore represents both the magnitude 
( )I∆  and direction maxâ  of the current flowing across contour∆  
at point r . 
 
From this, we can define a surface current density ( )rsJ  at 
every point r  on surface S by normalizing maxˆI a∆  by dividing by 
the length ∆ : 
 
 

( ) m̂ax
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The result is a vector field !   
 
NOTE:  The unit of surface current density is current/length; 
for example, A/m. 
 
Given that we know surface current density ( )rsJ  throughout 
some volume, we can find the total current across any arbitrary 
contour C as: 
 
 

( )r ˆs n
C

I a d= ⋅∫ J  

 
 

This looks very much like the contour integral we studied in the 
previous chapter.  However, there is one big difference! 
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The differential vector n̂a d  is a vector that tangential to 
surface S (i.e., it lies on surface S), but is normal to contour C! 
 
This of course is the opposite of the differential vector d  in 
that d  lies tangential to the contour: 
 
 
 
 
 
 
 
As a result, we find that 0ˆ nd a d⋅ = .  However, note the 
magnitude of each vector is identical: 
 

ˆ nd a d d= =  

 
For example, consider the planar surface z =3.  On this surface 
is a contour that is a circle, radius 2, centered around the z-
axis. 
 
For the contour integrals we studied in Section 2-5, we would 
use: 

ˆd a dφ ρ φ=  
 

However, to determine the total current flowing across the 
contour, we use ˆ ˆna aρ=  and d dρ φ= .  Note the directions of 
these two differential vectors are different, but their 
magnitudes are the same. 

ˆ na d

d C 
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The integral for determining the total current flowing from 
inside the circle to outside the circle is therefore: 
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S (z =3) 
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