Surface Current Density

Consider now the problem where we have moving surface charge $\rho_{s}(\bar{r})$.

The result is surface current!

Say at a given point \bar{r} located on a surface S, charge is moving in direction $\hat{a}_{\text {max }}$.

Now, consider a small length of contour $\Delta \ell$ that is centered at point \bar{r}, and oriented such that it is orthogonal to unit vector $\hat{a}_{\text {max }}$. Since charge is moving across this small length, we can define a current ΔI that represents the current flowing across $\Delta \ell$.

Note vector $\Delta I \hat{a}_{\text {max }}$ therefore represents both the magnitude (ΔI) and direction $\hat{a}_{\text {max }}$ of the current flowing across contour $\Delta \ell$ at point \bar{r}.

From this, we can define a surface current density $J_{s}(\bar{r})$ at every point \bar{r} on surface S by normalizing $\Delta I \hat{a}_{\text {max }}$ by dividing by the length $\Delta \ell$:

$$
J_{s}(\bar{r})=\lim _{\Delta \in \rightarrow 0} \frac{\Delta I \hat{a}_{\max }}{\Delta \ell} \quad\left[\frac{A \mathrm{mps}}{\mathrm{~m}}\right]
$$

The result is a vector field!
NOTE: The unit of surface current density is current/length: for example, A / m.

Given that we know surface current density $J_{s}(\bar{r})$ throughout some volume, we can find the total current across any arbitrary contour C as:

$$
I=\int_{c} J_{s}(\bar{r}) \cdot \hat{a}_{n} d \ell
$$

This looks very much like the contour integral we studied in the previous chapter. However, there is one big difference!

The differential vector $\hat{a}_{n} d \ell$ is a vector that tangential to surface S (i.e., it lies on surface S), but is normal to contour C !

This of course is the opposite of the differential vector $\overline{d \ell}$ in that $\overline{d \ell}$ lies tangential to the contour:

As a result, we find that $\overline{d \ell} \cdot \hat{a}_{n} d \ell=0$. However, note the magnitude of each vector is identical:

$$
|\overline{d \ell}|=\left|a_{n} d \ell\right|=d \ell
$$

For example, consider the planar surface $z=3$. On this surface is a contour that is a circle, radius 2 , centered around the z axis.

For the contour integrals we studied in Section 2-5, we would use:

$$
\overline{d \ell}=\hat{a}_{\phi} \rho d \phi
$$

However, to determine the total current flowing across the contour, we use $\hat{a}_{n}=\hat{a}_{\rho}$ and $d \ell=\rho d \phi$. Note the directions of these two differential vectors are different, but their magnitudes are the same.

$S(z=3)$

The integral for determining the total current flowing from inside the circle to outside the circle is therefore:

$$
\begin{aligned}
I & =\int_{C} J(\bar{r}) \cdot \hat{a}_{n} d \ell \\
& =\int_{c} J(\bar{r}) \cdot \hat{a}_{\rho} \rho d \phi \\
& =\int_{0}^{2 \pi} J(\bar{r}) \cdot \hat{a}_{\rho} 2 d \phi
\end{aligned}
$$

