1/4

Surface Current Density

Consider now the problem where we have moving surface charge $\rho_s(\overline{r})$.

Say at a given point \overline{r} located on a surface S, charge is moving in **direction** \hat{a}_{max} .

Now, consider a **small length** of contour $\Delta \ell$ that is centered at point \overline{r} , and oriented such that it is orthogonal to unit vector \hat{a}_{max} . Since charge is moving across this small length, we can define a **current** ΔI that represents the current flowing across

S

 $\Lambda \ell$.

Note vector $\Delta I \hat{a}_{max}$ therefore represents both the magnitude (ΔI) and direction \hat{a}_{max} of the current flowing across contour $\Delta \ell$ at point \overline{r} .

From this, we can define a surface current density $\mathbf{J}_{s}(\overline{\mathbf{r}})$ at every point $\overline{\mathbf{r}}$ on surface S by normalizing $\Delta I \, \hat{a}_{max}$ by dividing by the length $\Delta \ell$:

$$\mathbf{J}_{s}(\overline{\mathbf{r}}) = \lim_{\Delta \ell \to 0} \frac{\Delta \mathcal{I} \ \hat{a}_{max}}{\Delta \ell} \qquad \left[\frac{\mathrm{Amps}}{\mathrm{m}}\right]$$

The result is a vector field !

NOTE: The unit of **surface** current density is current/**length**; for example, A/m.

Given that we know surface current density $\mathbf{J}_{s}(\overline{\mathbf{r}})$ throughout some volume, we can find the total **current** across **any** arbitrary **contour** \mathbf{C} as:

$$\boldsymbol{I} = \int_{\mathcal{C}} \boldsymbol{J}_{s}(\boldsymbol{\overline{r}}) \cdot \boldsymbol{\hat{a}}_{n} \boldsymbol{d}' \boldsymbol{\ell}$$

This looks very much like the contour integral we studied in the previous chapter. However, there is one **big** difference!

Jim Stiles

The differential vector $\hat{a}_n d\ell$ is a vector that tangential to **surface** S (i.e., it lies on surface S), but is **normal** to contour C!

This of course is the **opposite** of the differential vector $\overline{d\ell}$ in that $\overline{d\ell}$ lies **tangential** to the contour:

 $\hat{a}_n d\ell$

As a result, we find that $\overline{d\ell} \cdot \hat{a}_n d\ell = 0$. However, note the **magnitude** of each vector is identical:

$$\left|\overline{d\ell}\right| = \left|\hat{a}_n \, d\ell\right| = d\ell$$

For example, consider the planar surface z=3. On this surface is a contour that is a circle, radius 2, centered around the z-axis.

For the contour integrals we studied in Section 2-5, we would use:

$$d\ell = \hat{a}_{\phi} \rho d\phi$$

However, to determine the total current flowing across the contour, we use $\hat{a}_n = \hat{a}_\rho$ and $d\ell = \rho d\phi$. Note the directions of these two differential vectors are different, but their magnitudes are the same.

С

