10.3 CMOS Logic Gate Circuits

Reading Assignment: pp. 963-974

Q: Can't we build a more **complex** digital device than a simple digital inverter?

A:

HO: CMOS Device Structure

Q:

A: HO: Synthesis of CMOS Gates

HO: Examples of CMOS Logic Gates

Example: CMOS Logic Gate Synthesis

Example: Another CMOS Logic Gate Synthesis

<u>CMOS Device Structure</u>

For every CMOS device, there are essentially **two** separate circuits:

Synthesis of CMOS Gates

Let's consider the design synthesis of CMOS gates by considering the design synthesis of PUN and PDN separately.

PDN Design Synthesis

1. If the PDN is conducting, then the output will be low. Thus, we must find a Boolean expression for the complemented output \overline{Y} .

In turn, the PDN can only be conducting **if one or more** of the NMOS devices are **conducting**—and **NMOS** devices will be conducting (i.e., **triode** mode) when the **inputs are high** ($V_{GSN} = V_{DD}$).

Thus, we must express \overline{Y} in terms of un-complemented inputs A, B, C, etc (i.e., $\overline{Y} = f(A, B, C)$).

e.g., $\rightarrow \overline{Y} = A + BC$

This step may test our **Boolean algebraic** skills!

PUN Design Synthesis

1. If the PUN is conducting, then the output will be high. Thus, we must find a Boolean expression for the uncomplemented output Y.

In turn, the PUN can only be conducting **if one or more** of the PMOS devices are **conducting**—and **PMOS** devices will be conducting (i.e., **triode** mode) when the **inputs are low** (V_{GSP} = - V_{DD}).

Thus, we **must** express Y in terms of complemented inputs $\overline{A}, \overline{B}, \overline{C}$, etc (i.e., $Y = f(\overline{A}, \overline{B}, \overline{C})$).

e.g.,
$$\rightarrow Y = \overline{A} + \overline{B}\overline{C}$$

This step may test our Boolean algebraic skills!

Examples of CMOS Logic Gates

See if you can determine the **Boolean expression** that describes these **pull-down networks**:

<u>Example: CMOS Logic</u> <u>Gate Synthesis</u>

<u>Problem</u>: **Design** a CMOS digital circuit that realizes the Boolean function:

$$Y = \overline{A + B} + \overline{A} \overline{C}$$

Solution: Follow the steps of the design synthesis handout!

Step1: Design the PDN

First, we must **rewrite** the Boolean function as:

$$\overline{Y} = f(A, B, C)$$

In other words, write the **complemented output** in terms of **un-complemented inputs**.

Time to recall our **Boolean algebra** skills!

Logically, this result says:

Y is low if A is high, OR if both B AND C are high.

We can thus realize this logic with the following NMOS PDN:

Example: Another CMOS Logic Gate Synthesis

Now let's design a gate that realizes this Boolean algebraic expression:

$$\mathbf{Y} = \left(\overline{\mathbf{A}} + \overline{\mathbf{B}}\right)\mathbf{C}$$

Step 1: Design PDN

First, let's rewrite Boolean expression as $\overline{Y} = f(A,B,C)$:

 $Y = (\overline{A} + \overline{B})C$ $\overline{Y} = \overline{(\overline{A} + \overline{B})C}$ $\overline{Y} = (\overline{\overline{A} + \overline{B}}) + \overline{C}$ $\overline{Y} = AB + \overline{C}$

Q: Yikes! We cannot write this expression explicitly in terms of **uncomplemented** inputs A, B, and C! The input C appears as \overline{C} in the expression. What do we do **now**?

 $C' = \overline{C}$

A: An easy problem to solve! We can essentially make a substitution of variables:

And thus:

$\overline{\mathbf{Y}} = \mathbf{A}\mathbf{B} + \mathbf{C}'$

Therefore, the inputs to this logic gate should be A, B, and C' (i.e, A, B, and the complement of C).

Note that this Boolean expression "says" that:

"The ouput is low if either, A AND B are both high, OR C' is high"

Of course another way of "saying" this is:

"The output is low if either A AND B are both high, OR C is low"

The PDN is therefore:

Step 2: Design the PUN

Note we have as similar problem as before—the expression for Y **cannot** explicitly be written in terms of complemented inputs \overline{A} , \overline{B} , and \overline{C} :

$$\mathbf{Y} = \left(\overline{\mathbf{A}} + \overline{\mathbf{B}}\right)\mathbf{C}$$

Note we can again solve this problem by using the same substitution of variable C:

$$C' = \overline{C}$$

 $\overline{C'} = C$

Therefore:

$$\mathbf{Y} = \left(\overline{\mathbf{A}} + \overline{\mathbf{B}}\right)\overline{\mathbf{C}'}$$
$$= \left(\overline{\mathbf{A}} + \overline{\mathbf{B}}\right)\mathbf{C}$$

This expression "says" that:

"The output will be high if, either A OR B are low, AND C' is low"

Which is equivalent to saying:

"The output will be high if, either A OR B are low, AND C is high"

The CMOS digital logic device is therefore:

