10.3 CMOS Logic Gate Circuits

Reading Assignment: pp. 963-974
Q: Can't we build a more complex digital device than a simple digital inverter?

A:

HO: CMOS Device Structure

Q:

A: HO: Synthesis of CMOS Gates

HO: Examples of CMOS Logic Gates

Example: CMOS Logic Gate Synthesis

Example: Another CMOS Logic Gate Synthesis

CMOS Device Structure

For every CMOS device, there are essentially two separate circuits:

1) The Pull-Up Network
2) The Pull-Down Network

The basic CMOS structure is:

A CMOS logic gate must be in one of two states!

State 1: PUN is open and PDN is conducting.

State 2: PUN is conducting and PDN is open.

In this state, the output is HIGH (i.e., $Y=1$).

Thus, the PUN and the PDN essentially act as switches, connecting the output to either $V_{D D}$ or to ground:

* Note that the key to proper operation is that one switch must be closed, while the other must be open.
* Both switches closed or both switches open would cause an ambiguous digital output!
* To prevent this from occurring, the PDN and PUN must be complementary circuits.

For example, consider the CMOS inverter:

For more complex digital CMOS gates (e.g., a 4-input OR gate), we find:

1) The PUN will consist of multiple inputs, therefore requires a circuit with multiple PMOS transistors.
2) The PDN will consist of multiple inputs, therefore requires a circuit with multiple NMOS transistors.

Synthesis of CMOS Gates

Let's consider the design synthesis of CMOS gates by considering the design synthesis of PUN and PDN separately.

PDN Design Synthesis

1. If the PDN is conducting, then the output will be low.

Thus, we must find a Boolean expression for the complemented output \bar{Y}.

In turn, the PDN can only be conducting if one or more of the NMOS devices are conducting-and NMOS devices will be conducting (i.e., triode mode) when the inputs are high ($V_{G S N}$ $=V_{D O}$.

Thus, we must express \bar{Y} in terms of un-complemented inputs A, B, C, etc (i.e., $\bar{y}=f(A, B, C)$).

$$
\text { e.g., } \rightarrow \bar{y}=A+B C
$$

This step may test our Boolean algebraic skills!
2. Then, we realize AND operations in $\bar{Y}=f(A, B, C)$ with series NMOS devices. E.G.:

3. Likewise, we realize OR operations with parallel NMOS devices. E.G.:

Note that $y=0$ if either
$A=V_{D D} O R B=V_{D D}$.
$\therefore \bar{y}=A+B$

PUN Design Synthesis

1. If the PUN is conducting, then the output will be high.

Thus, we must find a Boolean expression for the uncomplemented output Y.

In turn, the PUN can only be conducting if one or more of the PMOS devices are conducting-and PMOS devices will be conducting (i.e., triode mode) when the inputs are low ($V_{G S P}=$ - $V_{D O}$).

Thus, we must express Y in terms of complemented inputs $\bar{A}, \bar{B}, \bar{C}$, etc (i.e., $Y=f(\bar{A}, \bar{B}, \bar{C})$).

$$
\text { e.g., } \rightarrow Y=\bar{A}+\bar{B} \bar{C}
$$

This step may test our Boolean algebraic skills!
2. Then, we realize AND operations with series PMOS devices. E.G.:

Note that $Y=V_{D D}$ if both $A=0$ AND $B=0$.
$\therefore \quad Y=\bar{A} \bar{B}$
3. Likewise, we realize OR operations with parallel PMOS devices. E.G.:

Note that $y=V_{D D}$ if either $A=0 \quad O R \quad B=0$.

$$
\therefore \quad Y=\bar{A}+\bar{B}
$$

Examples of CMOS

 Logic GatesSee if you can determine the Boolean expression that describes these pull-down networks:

See now if you can determine the Boolean algebraic expression for these pull-up networks:

Now, we will make a simplifying change of symbols:

Effectively, these symbols represent the fact that we are now considering MOSFETs as switches, which can be placed either in an open state or a conducting state.

Note there are two kinds of "switches"-the ones that conduct when the input is high (i.e., NMOS) and ones that conduct when the input is low (i.e., PMOS).

And now consider these logic gates:

Note the PUN and the PDN for each of these circuits have equivalent Boolean expressions (make sure you see this!).

Example: CMOS Logic Gate Synthesis

Problem: Design a CMOS digital circuit that realizes the Boolean function:

$$
y=\overline{A+B}+\bar{A} \bar{C}
$$

Solution: Follow the steps of the design synthesis handout!

Step 1: Design the PDN

First, we must rewrite the Boolean function as:

$$
\bar{y}=f(A, B, C)
$$

In other words, write the complemented output in terms of un-complemented inputs.

We must first complement this equation, and then apply DeMorgan's Theorem (several times!).

$$
\begin{aligned}
y & =\overline{A+B}+\bar{A} \bar{C} \\
\bar{Y} & =\overline{\overline{A+B}+\bar{A} \bar{C}} \\
& =(\overline{\overline{A+B}})(\overline{\bar{A} \bar{C}}) \\
& =(A+B)(\overline{\bar{A}}+\overline{\bar{C}}) \\
& =(A+B)(A+C) \\
& =A A+A C+B A+B C \\
& =A(A+B+C)+B C \\
& =A+B C
\end{aligned}
$$

Logically, this result says:

We can thus realize this logic with the following NMOS PDN:

Step2: Design the PUN
First, we must rewrite the Boolean function as:

$$
y=f(\bar{A}, \bar{B}, \bar{C})
$$

In other words, write the un-complemented output in terms of complemented inputs.

Again, using DeMorgan's Theorem:

$$
\begin{aligned}
Y & =\overline{A+B}+\bar{A} \bar{C} \\
& =\bar{A} \bar{B}+\bar{A} \bar{C} \\
& =\bar{A}(\bar{B}+\bar{C})
\end{aligned}
$$

Logically, this result says:

We can thus realize this logic with the following PMOS PUN:

Thus, the entire CMOS realization is:

Example: Another CMOS

Logic Gate Synthesis

Now let's design a gate that realizes this Boolean algebraic expression:

$$
y=(\bar{A}+\bar{B}) C
$$

Step 1: Design PDN

First, let's rewrite Boolean expression as $\bar{Y}=f(A, B, C)$:

$$
\begin{aligned}
& \mathrm{Y}=(\overline{\mathrm{A}+\bar{B}) C} \\
& \overline{\mathrm{Y}}=\overline{(\overline{\mathrm{A}}+\bar{B}) C} \\
& \overline{\mathrm{Y}}=(\overline{\overline{\mathrm{A}}+\bar{B}})+\bar{C} \\
& \overline{\mathrm{Y}}=A B+\bar{C}
\end{aligned}
$$

Q: Yikes! We cannot write this expression explicitly in terms of uncomplemented inputs A, B, and C ! The input C appears as \bar{C} in the expression. What do we do now?

A: An easy problem to solve! We can essentially make a substitution of variables:

$$
C^{\prime}=\bar{C}
$$

And thus:

$$
\overline{\mathrm{y}}=A B+C^{\prime}
$$

Therefore, the inputs to this logic gate should be A, B, and C^{\prime} (i.e, A, B, and the complement of C).

Note that this Boolean expression "says" that:
"The ouput is low if either, A AND B are both high, $O R C$ ' is high"

Of course another way of "saying" this is:
"The output is low if either A AND B are both high, OR C is low"

The PDN is therefore:

Step 2: Design the PUN

Note we have as similar problem as before-the expression for Y cannot explicitly be written in terms of complemented inputs \bar{A}, \bar{B}, and \bar{C} :

$$
Y=(\bar{A}+\bar{B}) C
$$

Note we can again solve this problem by using the same substitution of variable C :

$$
\begin{aligned}
& C^{\prime}=\bar{C} \\
& \overline{C^{\prime}}=C
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
Y & =(\bar{A}+\bar{B}) \overline{C^{\prime}} \\
& =(\bar{A}+\bar{B}) C
\end{aligned}
$$

This expression "says" that:
"The output will be high if, either A OR B are low, AND C' is low"

Which is equivalent to saying:
"The output will be high if, either A OR B are low, AND C is high"

The CMOS digital logic device is therefore:

