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Abstract. We consider the practical problem of constructing binary space partitions (BSPs)
for a set S of n orthogonal, nonintersecting, two-dimensional rectangles in R

3 such that the aspect

ratio of each rectangle in S is at most α, for some constant α ≥ 1. We present an n2O(
√
logn)-time

algorithm to build a binary space partition of size n2O(
√
logn) for S. We also show that if m of the n

rectangles in S have aspect ratios greater than α, we can construct a BSP of size n
√
m2O(

√
logn) for

S in n
√
m2O(

√
logn) time. The constants of proportionality in the big-oh terms are linear in log α.

We extend these results to cases in which the input contains nonorthogonal or intersecting objects.
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1. Introduction. Rendering a set of opaque or partially transparent objects
in R

3 quickly and in a visually realistic way is a fundamental problem in computer
graphics [15]. A central component of this problem is hidden-surface removal : given
a set of objects, a viewpoint, and an image plane, compute the scene visible from the
viewpoint as projected onto the image plane. Because of its importance, the hidden-
surface removal problem has been studied extensively in both the computer graphics
and the computational geometry communities [14, 15, 28]. One of the conceptually
simplest solutions to this problem is the z-buffer algorithm [8, 15]. This algorithm
sequentially processes the objects; for each object, it updates the pixels of the image
plane covered by the object, based on the distance information stored in the z-buffer.
A very fast hidden-surface removal algorithm can be obtained by implementing the z-
buffer in hardware. However, only special-purpose and costly graphics engines contain
fast z-buffers, and z-buffers implemented in software are generally inefficient. Even

∗Received by the editors May 2, 1997; accepted for publication (in revised form) March 30,
1999; published electronically March 15, 2000. A preliminary version of this paper appeared in the
Proceedings of the 37th Annual Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Los Alamitos, CA, 1996.

http://www.siam.org/journals/sicomp/29-5/32057.html
†Box 90129, Department of Computer Science, Duke University, Durham, NC 27708–0129

(pankaj@cs.duke.edu). Support of this author was provided by National Science Foundation research
grant CCR–93–01259, Army Research Office MURI grant DAAH04–96–1–0013, a Sloan fellowship,
a National Science Foundation NYI award with matching funds from the Xerox Corporation, and a
grant from the U.S.–Israeli Binational Science Foundation.

‡946 Tamarack Lane #13, Sunnyvale, CA 94086 (efg@cs.duke.edu). Support of this author was
provided by Army Research Office grant DAAH04–93–G–0076. This work was partially done when
the author was at Duke University.

§Computer Science Department, Stanford University, Gates 133, 353 Serra Mall, Stanford, CA
94305 (murali@cs.stanford.edu). Support of this author was provided in part by National Science
Foundation research grant CCR–9522047 and by Army Research Office MURI grant DAAH04–96–
1–0013. This author performed this research when he was affiliated with Brown University and was
a visiting scholar at Duke University.

¶Box 90129, Department of Computer Science, Duke University, Durham, NC 27708–0129
(jsv@cs.duke.edu). Support of this author was provided in part by National Science Foundation
research grant CCR–9522047, by Army Research Office grant DAAH04–93–G–0076, and by Army
Research Office MURI grant DAAH04–96–1–0013.

1422



BPSs FOR FAT RECTANGLES 1423

when fast hardware z-buffers are present, they are not fast enough to handle the huge
models (containing hundreds of millions of polygons) that often have to be displayed
in real time. As a result, other methods have to be developed either to “cull away” a
large subset of invisible polygons so as to decrease the rendering load on the graphics
pipeline (when models are large; see, e.g., [29]) or to completely solve the hidden-
surface removal problem (when there are very slow or no z-buffers).

One technique to handle both of these problems is the binary space partition
(BSP), a data structure introduced by Fuchs, Kedem, and Naylor [16] that is based on
work by Schumacker et al. [27]. Fuchs, Kedem, and Naylor use the BSP to implement
the so-called “painter’s algorithm” for hidden-surface removal; the painter’s algorithm
draws the objects to be displayed on the screen in a back-to-front order (in which no
object is occluded by any object earlier in the order). In general, it is not possible
to find a back-to-front order from a given viewpoint for an arbitrary set of objects.
By fragmenting the objects, the BSP ensures that a back-to-front order from any
viewpoint can be determined for the fragments [16].

The BSPs have subsequently proven to be versatile, with applications in many
other problems—global illumination [6], shadow generation [10, 11], visibility prob-
lems [4, 29], solid modeling [22, 24, 30], geometric data repair [19], ray tracing [21],
robotics [5], approximation algorithms for network design [17], and surface simplifi-
cation [3]. Algorithms have also been developed to construct BSPs for moving ob-
jects [1, 2, 12, 23, 31].

Informally, a BSP B for a set of (d−1)-dimensional objects in R
d is a binary tree.

Each node v of B is associated with a convex region Rv. The regions associated with
the children of v are obtained by splitting Rv with a hyperplane. If v is a leaf of B,
then the interior of Rv does not intersect any object. The regions associated with the
leaves of the tree form a convex decomposition of R

d. The (d−1)-dimensional faces of
the cells of this decomposition intersect the objects and divide them into fragments;
these fragments are stored at appropriate nodes of the BSP.

The efficiency of most algorithms that use BSPs depends on the number of nodes
in the BSP. As a result, there has been a lot of effort to construct BSPs of small
size. Although several simple heuristics have been developed for constructing BSPs of
reasonable sizes [4, 7, 16, 20, 29, 30], provable bounds were first obtained by Paterson
and Yao. They show that a BSP of size O(n log n) can be constructed for n disjoint
segments in R

2; they also show that a BSP of size O(n2) can be constructed for n dis-
joint triangles in R

3, which is optimal in the worst case [25]. But in graphics-related
applications, many common environments like buildings are composed largely of or-
thogonal rectangles, and nonorthogonal objects are approximated by their orthogonal
bounding boxes [15]. Paterson and Yao [26] prove that a BSP of size O(n) exists for
n nonintersecting, orthogonal segments in R

2, and a BSP of size O(n
√
n) exists for n

nonintersecting, orthogonal rectangles in R
3. These bounds are optimal in the worst

case.

In all known lower bound examples of orthogonal rectangles in R
3 requiring BSPs

of size Ω(n
√
n), most of the rectangles are “thin.” For example, the lower bound proof

presented by Paterson and Yao uses a configuration of Θ(n) orthogonal rectangles,
arranged in a

√
n×√

n×√
n grid, for which any BSP has size Ω(n

√
n) (see Fig-

ure 1.1).All rectangles in their construction have aspect ratio Ω(
√
n). Such configura-

tions of thin rectangles rarely occur in practice. Many real databases consist mainly of
“fat” rectangles; i.e., the aspect ratios of these rectangles are bounded by a constant.

It is natural to ask whether BSPs of near-linear size can be constructed if most
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(a)

(b)

Fig. 1.1. (a) Lower bound for orthogonal rectangles. (b) Model of a building—85% of the
rectangles have aspect ratio at most 25.

of the rectangles are “fat.” We call a rectangle fat if its aspect ratio (the ratio of the
longer side to the shorter side) is bounded by a fixed constant; for specificity, we use
α ≥ 1 to denote this constant. A rectangle is said to be thin if its aspect ratio is
greater than α. In this paper, we consider the following problem:

Given a set S of n nonintersecting, orthogonal, two-dimensional rectangles
in R

3, of which m are thin and the remaining n−m are fat, construct a BSP
for S.

We first show how to construct a BSP of size n2O(
√

logn ) for n fat rectangles in
R

3 (i.e., when m = 0). We then show that if m > 0, a BSP of size n
√
m2O(

√
logn )

can be built. We also prove a lower bound of Ω(n
√
m) on the size of such a BSP.

We finally prove two important extensions to these results. If p of the n input
objects are nonorthogonal, we show that an np2O(

√
logn )-size BSP exists. Unlike in

the case of orthogonal objects, fatness does not help in reducing the worst-case size
of BSPs for nonorthogonal objects. In particular, we prove that there exists a set
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of n fat triangles in R
3 for which any BSP has Ω(n2) size. However, nonorthogonal

objects can be approximated by orthogonal bounding boxes. The resulting bounding
boxes might intersect each other. Motivated by this observation, we also consider the
problem in which n fat rectangles contain k intersecting pairs of rectangles, and we
show that we can construct a BSP of size (n+ k)

√
k2O(

√
logn ).

In all cases, the constant of proportionality in the big-oh terms is linear in logα,
where α is the maximum aspect ratio of the fat rectangles. Our algorithms to construct
these BSPs run in time proportional to the size of the BSPs they build. Experiments
demonstrate that our algorithms work well in practice and construct BSPs of near-
linear size when most of the rectangles are fat, and perform better than most known
algorithms for constructing BSPs for orthogonal rectangles [18].

As far as we are aware, ours is the first work to consider BSPs for the practical and
common case of (two-dimensional) fat polygons in R

3. De Berg considers a weaker
model, the case of (three-dimensional) fat polyhedra in R

3 (a polyhedron is said to
be fat if its volume is at least a constant fraction of the volume of the smallest sphere
enclosing it), although his results extend to higher dimensions [13].

One of the main ingredients of our algorithm is the construction of an O(n log n)-
size BSP for a set of n fat rectangles that are “long” with respect to a box B; i.e.,
none of the vertices of the rectangles lie in the interior of B. To prove this result,
we crucially use the fatness of the rectangles. We then develop an algorithm to
construct a BSP of size n2O(

√
logn ) for n fat rectangles by simultaneously simulating

the algorithm for long rectangles and partitioning the vertices of rectangles in S in a
clever manner.

The rest of the paper is organized as follows: section 2 gives some preliminary
definitions. In section 3, we show how to build an O(n log n)-size BSP for n long
rectangles. Sections 4 and 5 present and analyze our algorithm to construct a BSP of
size n2O(

√
logn ) for n fat rectangles. We extend this result in section 6 to construct

BSPs for cases in which some objects in the input are thin or nonorthogonal. We
conclude in section 7 with some open problems.

2. Geometric preliminaries. A binary space partition B for a set S of pairwise-
disjoint, (d− 1)-dimensional, polyhedral objects in R

d is a tree defined as follows:
Each node v in B represents a convex polytope Rv and a set of objects Sv =
{s ∩ Rv | s ∈ S} that intersect Rv. The region associated with the root is R

d it-
self. If Sv is empty, then node v is a leaf of B. Otherwise, we partition Rv into two
convex polytopes by a cutting hyperplane Hv. At v, we store the equation of Hv

and {s | s ∈ Sv, s ⊆ Hv}, the subset of objects in Sv that lie in Hv. If we let H+
v be

the positive halfspace and H−
v the negative halfspace bounded by Hv, the polytopes

associated with the left and right children of v are Rv ∩H−
v and Rv ∩H+

v , respec-
tively. The left subtree of v is a BSP for the set of objects S−v = {s ∩H−

v | s ∈ Sv}
and the right subtree of v is a BSP for the set of objects S+

v = {s ∩H+
v | s ∈ Sv}.

The size of B is the sum of the number of nodes in B and the total number of faces
of all dimensions of the objects stored at all the nodes in B.

In our case, S is a set of orthogonal rectangles in R
3. In our algorithms, we will

use orthogonal cutting planes. Therefore, the region Rv associated with each node
v in B is a box (rectangular parallelepiped). We say that a rectangle r is long with
respect to a box B if none of the vertices of r lie in the interior of B. Otherwise, r is
said to be short (see Figure 2.1). A long rectangle is free if none of its edges lies in
the interior of B; otherwise it is nonfree. A free cut is a cutting plane that does not
cross any rectangle in S and that either divides S into two nonempty sets or contains
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s

(a) (b)

Fig. 2.1. (a) Long and (b) short rectangles. Heavy dots indicate the vertices of these rectangles
that lie on the boundary of the box. Rectangle s is a free rectangle.

x-axis

y-axis

z-axis

Front face

Right face

Top face

Fig. 2.2. Different classes of rectangles.

a rectangle in S. Note that the plane containing a free rectangle is a free cut. Free
cuts play a critical role in preventing excessive fragmentation of the rectangles in S.

We will often focus on a box B and construct a BSP for the rectangles intersecting
it. Given a set of rectangles R, let

RB = {s ∩B | s ∈ R}
be the set of rectangles obtained by clipping the rectangles in R within B. For a set
of points P , let PB be the subset of P lying in the interior of B.

A box B has six faces: top, bottom, front, back, right, and left, as shown in
Figure 2.2. We assume, without loss of generality, that the back, bottom, left corner
of B is the origin (i.e., the back face of B lies on the yz-plane). A rectangle s that
is long with respect to B belongs to the top class if two parallel edges of s ∩ B are
contained in the top and bottom faces of B. We similarly define the front and right
classes. A long rectangle belongs to at least one of these three classes; a nonfree
long rectangle belongs to a unique class. See Figure 2.2 for examples of rectangles
belonging to different classes.

Although a BSP is a tree, we will often discuss just how to partition the box
represented by a node into two boxes. We will not explicitly detail the associated
construction of the actual tree itself, since the construction is straightforward once
we specify the cutting plane. Sometimes we will abuse notation and use B to refer to
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face g

(a) (b)

Fig. 2.3. (a) Long rectangles in the top class. (b) Projections of the rectangles in (a) onto
the top face g; heavy dots indicate the vertices of these rectangles that lie in the interior of g. The
dashed line is the cut satisfying (2.1).

the corresponding node in the BSP as well.
In the rest of the paper, we assume that the vertices of the rectangles in S are

sorted by x-, y-, and z-coordinates, and that for each axis, the rectangles perpendicular
to that axis are sorted by intercept. The cost of this sort will not affect the asymptotic
running times of our algorithms.

We now state two preliminary lemmas that we will use in our algorithms. The
first lemma characterizes a set of rectangles that are long with respect to a box and
belong to one class. The second lemma applies to two classes of long rectangles.

Lemma 2.1. Let C be a box, P a set of points in the interior of C, R a set of
rectangles long with respect to C, and w ≥ 1 a real number. If the rectangles in RC

belong to one class, then the following two conditions hold (see Figure 2.3):
(i) There exists a face g of the box C that contains exactly one of the edges of

each rectangle in RC . Let V be the set of those vertices of the rectangles in RC that
lie in the interior of g.

(ii) We can find a plane that partitions C into two boxes C1 and C2 so that
for i = 1, 2,

|V ∩ Ci| + w|PCi | ≤
|V | + w|P |

2
.(2.1)

If the rectangles in RC and the points in P are sorted along each of the three axes,
the partitioning plane can be computed in O(|RC | + |P |) time.

Proof. (i) follows from the definition of a class. To prove part (ii) of the lemma,
let P ∗ be the set of projections of the points in P onto g. Assume g is the top face
of C. If we associate a weight of 1 with each point in V and a weight w with each
point in P ∗, the total weight of the points in V ∪P ∗ is |V |+w|P |. By sweeping g, we
can find a line l lying in g and parallel to the x-axis that contains a point in V ∪ P ∗

and divides V ∪ P ∗ into two sets, each with weight at most (|V | + w|P |)/2. We split
C into two boxes C1 and C2 using the plane containing l that is orthogonal to g. By
construction, C1 and C2 satisfy (2.1). The time bound follows easily.

Lemma 2.2. Let C be a box, P a set of points in the interior of C, R a set of
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rectangles long with respect to C, and w ≥ 1 a real number. If the rectangles in RC

belong to two classes, then one of the following two conditions holds (see Figure 2.4):
(i) We can find one free cut that partitions C into two boxes C1 and C2 so that

|RCi | + w|PCi | ≤
2 (|RC | + w|P |)

3
(2.2)

for i = 1, 2.
(ii) We can find two parallel free cuts that divide C into three boxes C1, C2,

and C3 such that all rectangles in RC2
belong to the same class and such that

|RC2 | + w|PC2 | ≥
|RC | + w|P |

3
.(2.3)

If the rectangles in RC and the points in P are sorted along each of the three axes,
these free cuts can be computed in O(|RC | + |P |) time.

Proof. We assume without loss of generality that the rectangles in RC belong to
the top and right classes. Let r̄ denote the projection of a rectangle r ∈ RC onto the
x-axis: r̄ is either a point or an interval. Similarly, let p̄ denote the projection of a
point p ∈ P onto the x-axis. Set

U =



( ⋃

r∈RC

r̄

)
∪

⋃

p∈P

p̄




.

The set U is a collection of disjoint intervals, some of which may be single points. Let
r1 (resp., r2) be a rectangle in RC belonging to the top (resp., right) class. Since the
rectangles in RC are disjoint, it is easily seen that r̄1 and r̄2 are also disjoint. Hence,
each connected component of U contains the projections of rectangles belonging to at
most one class. For any connected component I of U define

µ(I) = |{r ∈ RC | r̄ ⊆ I}| + w|{p ∈ P | p̄ ⊆ I}|.
Set W = |RC | + w|P |. If U contains a connected component I = [β, γ] with µ(I) >
W/3, then the two free cuts are x = β and x = γ. The cuts partition the box C into
three boxes C1, C2, and C3, where C2 denotes the middle box. By construction, all
rectangles in RC2 belong to at most one class. Hence, condition (ii) holds. 1

If there is no such connected component of U , then let I = [β, γ] be the leftmost
connected component of U with

∑
I′≤I µ(I ′) > W/3 (we say that I ′ ≤ I if I ′ lies

to the left of I). Since µ(I) ≤W/3 and
∑

I′<I µ(I ′) < W/3,∑
I′≤I

µ(I ′) ≤ 2W/3.

We partition C into two boxes C1 and C2 using the cut x = γ. In this case, condition
(i) holds.

If the rectangles in RC and the points in P are sorted along the x-axis, it is clear
that the components in U can be computed and sorted in O(|RC |+|P |) time. The free
cut(s) used to partition C can be found in the same time by sweeping the components
of U .

1If β = γ, i.e., I is a point, then C2 is regarded as a degenerate box. If I is the first (resp., last)
connected component of U , then C1 (resp., C3) may be a degenerate box.
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x-axis

z-axis

h

y-axis

C1

C

C2

(a)

x-axis

z-axis

y-axis

h2

h1

C

C3C1 C2

(b)

Fig. 2.4. (a) Free cut h partitions box C into two boxes C1 and C2. (b) Two parallel free cuts
h1 and h2 partition C into three boxes: C1, C2, and C3.

3. BSPs for long fat rectangles. Let S be a set of fat rectangles. Assume
that all the rectangles in S are long with respect to a box B. In this section, we show
how to build a BSP for SB , the set of rectangles clipped within B. In general, SB
can have all three classes of rectangles. We first exploit the fatness of the rectangles
to prove that whenever all three classes are present in SB , a small number of cuts
can divide B into boxes, each of which has only two classes of rectangles. Then we
describe an algorithm that constructs a BSP for rectangles belonging to only two
classes.

3.1. Reducing three classes to two classes. Assume, without loss of gener-
ality, that the longest edge of B is parallel to the x-axis. The rectangles in SB that
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b

z-axis

a

c

y-axis

x-axis

e

e′

(a)

z0

b

z1

z2

z3
y5

a

y0 y1 y2 y3 y4

e′

e

(b)

Fig. 3.1. (a) Rectangles belonging to the sets R and T . (b) The back face of B; dashed lines
are intersections of the back face with the α-cuts.

belong to the front class can be partitioned into two subsets: the set R of rectangles
that are vertical (and parallel to the right face of B) and the set T of rectangles that
are horizontal (and parallel to the top face of B); see Figure 3.1. Let e be the edge
of B that lies on the z-axis, and let e′ be the edge of B that lies on the y-axis. The
intersection of each rectangle in R with the back face of B is a segment parallel to
the z-axis. Let r̄ denote the projection of such a segment r onto the z-axis, and let
R̄ = {r̄ | r ∈ R}. Let z1 < z2 < · · · < zk−1 be the endpoints of intervals in R̄ that
lie in the interior of e but not in the interior of any interval of R̄. Note that k − 1
may be less than 2|R|, as in Figure 3.1, if some of the projected segments overlap. If
no two intervals in R̄ share an endpoint, then {z1, z2, . . . , zk−1} is the set of vertices
of the union of the intervals in R̄; otherwise, {z1, z2, . . . , zk−1} includes endpoints
common to two intervals in R̄ and not lying in the interior of any other interval in R̄.
Similarly, for each rectangle t in the set T , let t̄ be the projection of t onto the y-axis,
and let T̄ = {t̄ | t ∈ T}. Let y1 < y2 < · · · < yl−1 be the endpoints of intervals in T̄
that lie in the interior of e′ but not in the interior of any interval of T̄ .
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We divide B into kl boxes by drawing the planes z = zi for 1 ≤ i < k and the
planes y = yj for 1 ≤ j < l; see Figure 3.1. This decomposition of B into kl boxes can
easily be constructed in a treelike fashion by performing (k− 1)(l− 1) cuts. We refer
to these cuts as α-cuts. If any resulting box has a free rectangle, we divide that box
into two boxes by applying the free cut along the free rectangle. Let C be the set of
boxes into which B is partitioned in this manner. We can prove the following lemma
about the decomposition of B into C.

Lemma 3.1. The set C of boxes formed by the above process satisfies the following
properties:

(i) Each box C in C has only two classes of rectangles,
(ii) there are at most 26α2n boxes in C, and

(iii)
∑

C∈C |SC | ≤ 16αn.
Proof. Let z0 and zk, where z0 < zk, be the endpoints of e, the edge of the box B

that lies on the z-axis. Similarly, define y0 and yl, where y0 < yl, to be the endpoints
of the edge of B that lies on the y-axis.

(i) Let C be a box in C. If C does not contain a rectangle from T∪R, the claim is
obvious since the rectangles in T and R together constitute the front class. Suppose C
contains rectangles from the set R. Rectangles in R belong to the front class and are
parallel to the right face of B. We claim that C cannot have any rectangles from the
right class. Indeed, consider an edge of C parallel to the z-axis. The endpoints of
this edge have z-coordinates zi and zi+1, for some 0 ≤ i < k. Since C contains a
rectangle from R, by construction, the interval zizi+1 must be covered by projections
of rectangles in R (onto the z-axis). If C also contains a rectangle r belonging to the
right class, then let zi < z < zi+1 be the z-coordinate of a point in r ∩ C. Let r′ be
a rectangle in R whose projection on the z-axis contains z. Since both r and r′ are
long with respect to C, the interiors of r and r′ intersect, which contradicts the fact
that the rectangles in S are nonintersecting. A similar proof shows that if C contains
rectangles from T , then C does not contain any rectangle in the top class.

(ii) We first show that both k and l are at most 2�α� + 3. Let a (resp., b, c)
denote the length of the edges of B parallel to the z-axis (resp., y-axis, x-axis). By
assumption, a, b ≤ c. Let r ∈ R be a rectangle with dimensions β and γ, where β ≤
γ. Consider r̄, the projection of r onto the z-axis. Suppose that r̄ ⊆ zizi+1, for
some 0 < i < k − 1, i.e., r̄ lies in the interior of the edge e of B lying on the z-axis.
Since r is a rectangle in the front class and is parallel to the right face of B, we
have β ≤ a ≤ c = γ. If r̂, the rectangle supporting r in the set S, has dimensions β̂

and γ̂, where β̂ ≤ γ̂ ≤ αβ̂, we have β = β̂ (since r̄ ⊆ int(e)) and γ ≤ γ̂. (If i is 0 or

k − 1, we cannot claim that β = β̂; in these cases, it is possible that β � β̂.) See
Figure 3.2. Thus, we obtain

a ≤ c = γ ≤ γ̂ ≤ αβ̂ = αβ.

It follows that the length of the interval r̄, and hence the length of zizi+1, is at least
a/α. Since every alternate interval zizi+1, 0 < i < k − 1 contains the projection of
at least one rectangle of R, we have k ≤ 2�α� + 3. In a similar manner, l ≤ 2�α� + 3.
Hence, the planes z = zi, 1 ≤ i ≤ k − 1 and the planes y = yj , 1 ≤ j ≤ l − 1 parti-
tion B into at most kl ≤ (2�α� + 3)2 boxes. Each such box C can contain at most
n rectangles. Hence, at most n free cuts can be made inside C. The free cuts can
divide C into at most n+ 1 boxes. This implies that the set C has at most kl(n+ 1)≤
26α2n boxes.

(iii) Each rectangle r in SB is cut into at most kl pieces. The edges of these pieces
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γ = c

a

γ̂

β = β̂r

r̂

Fig. 3.2. Projections of r̂ (the dashed rectangle), r = r̂ ∩B (the shaded rectangle), and the
right face of B onto the zx-plane.

form an arrangement on r. Each face of the arrangement is one of the at most kl
rectangles that r is partitioned into. Only 2(k + l− 2) faces of the arrangement have
an edge on the boundary of r. All other faces can be used as free cuts. Hence, after all
possible free cuts are made in the boxes into which B is divided by the (k− 1)(l− 1)
cuts, only 2(k + l − 2) pieces of each rectangle in SB survive. This proves that∑

C∈C |SC | ≤ 16αn.

Remark. The only place in the whole algorithm where we use the fatness of the
rectangles in S is in the proof of Lemma 3.1. If the rectangles in S are thin, then
Lemma 3.1(ii) is not true; both k and l can be Ω(n).

If SB contains a short rectangle, the α-cuts partition the short rectangle into a
constant number of pieces. Hence, Lemma 3.1(ii) and 3.1(iii) hold even when SB
contains short rectangles.

3.2. BSPs for two classes of long rectangles. Let C be one of the boxes into
which B is partitioned by the α-cuts. We now present an algorithm for constructing
a BSP for the set of clipped rectangles SC , which has only two classes of long rectan-
gles. We recursively apply the following steps to each of the boxes produced by the
algorithm until no box contains a rectangle.

1. If SC has a free rectangle, we use the free cut containing that rectangle to
split C into two boxes.

2. If SC has two classes of rectangles, we use Lemma 2.2 (with R = S and P = ∅)
to split C into at most three boxes, using at most two parallel free cuts.

3. If SC has only one class of rectangles, we split C into two by a plane, using
Lemma 2.1 (with R = S and P = ∅).

In steps 2 and 3, since P = ∅, we can use any value of w in Lemmas 2.2 and 2.1.

We first analyze the algorithm for two classes of long rectangles. The BSP pro-
duced has the following structure: If step 3 is executed at a node v, then step 2 is not
invoked at any descendant of v. Note that the cutting planes used in steps 1 and 2 do
not intersect any rectangle of SC , so only the cuts made in step 3 increase the number
of rectangles. Hence, repeated execution of steps 1 or 2 on SC constructs a top sub-
tree TC of the BSP with O(|SC |) nodes such that each leaf in TC has only one class
of rectangles and the total number of rectangles in all the leaves is at most |SC |. The
operations at a box D in TC involve determining the cuts to be made at D, partition-
ing D according to these cuts, identifying the resulting free rectangles and applying
free cuts containing them, and partitioning the rectangles in SD into the new boxes.
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Since we assume that we have sorted the vertices of the rectangles in S at the very
beginning, Lemmas 2.1 and 2.2 imply that the cuts to be made at B can be deter-
mined in O(|SD|) time. The free cuts resulting after partitioning D according to these
cuts are parallel to each other. Hence, all free cuts can be applied in O(|SD|) time.
Further, the number of rectangles at each child of D is at most 2|SD|/3. Hence, TC
can be constructed in O(|SC | log |SC |) time. At each leaf v of the tree TC , recursive
invocations of steps 1 and 3 build a BSP of size O(|Sv| log |Sv|) in O(|Sv| log |Sv|) time
(see [25] for details). Since

∑
v Sv ≤ |SC |, where the sum is taken over all leaves v of

TC , the total size of the BSP constructed inside C is O(|SC | log |SC |). It also follows
that the BSP inside C can be constructed in O(|SC | log |SC |) time.

We now analyze the overall algorithm for long rectangles. The algorithm first
applies the α-cuts to the rectangles in SB , as described in section 3.1. Consider the
set of boxes C produced by the α-cuts. Each of the boxes in C contains only two
classes of rectangles (by Lemma 3.1(i)). In view of the above discussion, for each box
C ∈ C, we can construct a BSP for SC of size O(|SC | log |SC |) in time O(|SC | log |SC |).
Lemma 3.1(ii) and (iii) imply that the total size of the BSP is

O(n)+
∑
C∈C
O(|SC | log |SC |) = O(n log n).

The time spent in building the BSP is also O(n log n). We can now state the following
theorem.

Theorem 3.2. Let S be a set of n fat rectangles and B a box so that all rectangles
in S are long with respect to B. An O(n log n)-size BSP for the clipped rectangles SB
can be constructed in O(n log n) time. The constants of proportionality in the big-oh
terms are linear in α2, where α is the maximum aspect ratio of the rectangles in S.

Remark. We can show that the height of the BSP constructed by the above
algorithm is O(log n). We can also modify our algorithm to construct a BSP of size
O(n) for n long rectangles as follows: If a box C has two classes of long rectangles,
we apply step 1 or 2 of the previous algorithm. If the rectangles in C belong to one
class, we use the algorithm of Paterson and Yao for constructing BSPs for orthogonal
segments in the plane [26] to construct a BSP of linear size for SC . However, the
height of the BSP can now be Ω(n) in the worst case.

4. BSPs for fat rectangles. We now describe our main algorithm for construct-
ing a BSP for a set S of n fat nonintersecting rectangles, in which we simultaneously
simulate the algorithm for long fat rectangles presented in section 3 and partition
the vertices of the rectangles in S. The algorithm proceeds in rounds. Each round
simulates a few steps of the algorithm for long rectangles and partitions the vertices
of the rectangles in S into a small number of sets of approximately equal size. At the
beginning of the ith round, for i > 0, the algorithm has a top subtree Bi of the BSP
for S. Let Qi be the set of boxes associated with the leaves of Bi containing at least
one rectangle. The initial tree B1 consists of one node and Q1 consists of one box
that contains all the input rectangles. Our algorithm maintains the invariant that for
each box B ∈ Qi, all long rectangles in SB are nonfree. If Qi is empty, we are done.
Otherwise, in the ith round, for each box B ∈ Qi, we construct a top subtree TB of
the BSP for the set SB and attach it to the corresponding leaf of Bi. This gives us
the new top subtree Bi+1. Thus, it suffices to describe how to build the tree TB on a
box B during a round.

Let F ⊆ SB be the set of rectangles that are long with respect to B. Set f = |F|,
and let k be the number of vertices of rectangles in SB that lie in the interior of B
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(note that each such vertex is a vertex of an original rectangle in the input set S). By
assumption, all rectangles in F are nonfree. We choose a parameter a, which remains
fixed throughout the round. We pick

a = 2
√

log(f+k)

to optimize the size of the BSP that the algorithm creates. We now describe the ith
round in detail. See Figure 4.1 for an outline of B’s structure.

C

Bi

Bi+1

Separating

Dividing

Stage C︷ ︸︸ ︷

B1

B

TB
Stage

Qi︷ ︸︸ ︷

Fig. 4.1. Overall structure of B.

If k = 0 (i.e., if all rectangles in SB are long), we use Theorem 3.2 to construct
a BSP for SB . Otherwise, we perform a sequence of cuts in two stages that partition
B as follows:
Separating stage. We apply the α-cuts, as described in section 3.1. We make these

cuts with respect to the rectangles in F, i.e., we consider only those rectangles
of SB that are long with respect to B. Let C be the set of boxes into which
B is partitioned by the α-cuts.

Dividing stage. We refine each box C in C by applying cuts similar to the ones made
in section 3.2, as described below. Let kC denote the number of vertices
of rectangles in SC that lie in the interior of C. Recall that FC is the set
of rectangles in F that are clipped within C. We recursively invoke the
dividing stage until |FC | + 2akC ≤ (f + ak)/a and SC does not contain any
free rectangles.

1. If C has any free rectangle, we use the free cut containing that rectangle
to split C into two boxes.

2. If the rectangles in FC belong to two classes, let PC denote the set of
vertices of the rectangles in SC that lie in the interior of C. We apply at
most two parallel free cuts that satisfy Lemma 2.2, with R = F, P = PC ,
and w = 2a.

3. If the rectangles in FC belong to just one class, we apply one cut using
Lemma 2.1, with R = F, P = PC , and w = 2a.

The cuts introduced during the dividing stage can be made in a treelike fashion.
At the end of the dividing stage, we have a set of boxes so that for each box D in
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this set, SD does not contain any free rectangle and |FD| + akD ≤ (f + ak)/a. Notice
that as we apply cuts in C and in the resulting boxes, rectangles that are short with
respect to C may become long with respect to the new boxes. We ignore these new
long rectangles until the next round, unless they induce a free cut.

5. Analysis of the algorithm. We now analyze the size of the BSP constructed
by the algorithm and the time complexity of the algorithm. In a round, the algorithm
constructs a top subtree TB of the BSP for the set of clipped rectangles SB . Recall
that F is the set of rectangles that are long with respect to B, f = |F|, and k is the
number of vertices of rectangles in SB that lie in the interior of B. For a node C
in TB , recall that kC denotes the number of vertices of rectangles in SC that lie in
the interior of C.

We now define some more notation that we need for the analysis. For a node C
in TB , let TC be the subtree of TB rooted at C, LC be the set of leaves in TC , φC
be the number of long rectangles in FC (recall that FC is the set of rectangles in F
that intersect C and are clipped within C), and νC be the number of long rectangles
in SC \ FC (recall that a rectangle in SC \ FC is a portion of a rectangle in SB that
is short with respect to B). For a box D corresponding to a leaf of TB , let fD
be the number of long rectangles in SD. Note that fD counts both the “old” long
rectangles in FD (pieces of rectangles that were long with respect to B) and the “new”
long rectangles in SD \ FD (pieces of rectangles that were short with respect to B, but
became long with respect to D due to the cuts made during the round); fD = φD+νD.

In a round, the separating stage first splits B into a set of boxes C. For each
box C ∈ C, FC has only two classes of long rectangles. The algorithm then executes
the dividing stage on each such box C. As in the case of the algorithm for long
rectangles (see section 3), the subtree constructed in C has the following property: if
step 4 is executed at a node v, then step 4 is not executed at any descendent of v.
In Lemma 5.1, we prove a bound on the total number of long rectangles at each leaf
of TB . For a box C ∈ C, we bound the number of long rectangles at the leaves of TC
in Lemmas 5.2 and 5.3. In Lemma 5.4, we prove a bound on the size of the tree TB .
Finally, we use these lemmas to establish bounds on the size of the BSP constructed
by our algorithm and the running time of our algorithm (see Theorem 5.5).

Lemma 5.1. For a box D associated with a leaf of TB,

fD + 2akD ≤ f + 2ak

a
.

Proof. We know that νD is at most k (since a rectangle in SD \ FD must be a piece
of a rectangle short with respect to B, and there are at most k short rectangles in B).
Since fD + 2akD ≤ φD + 2akD + νD and φD + 2akD ≤ (f + ak)/a (by construction),
the lemma follows.

Lemma 5.2. Let C be a box associated with a node in TB. If all rectangles in FC
belong to one class, then

∑
D∈LC

fD ≤ 2φC + 2νC max

{
2 (φC + akC)

µ
, 1

}
+ 4kC

(
φC + akC
µ

)
,

where µ = (f + ak)/a.
Proof. Assume, without loss of generality, that all rectangles in FC belong to the

top class, and let g be the top face of C. By Lemma 2.1(i), g contains an edge of
every rectangle in FC . Let ρC be the number of vertices of the nonfree long rectangles
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in FC that lie in the interior of g; obviously, φC ≤ ρC ≤ 2φC . Set

Φ(ρC , νC , kC) = max
∑

D∈LC

fD,

where the maximum is taken over all boxes C and over all sets S of rectangles with
ρC vertices of rectangles in FC lying in the interior of the top face of C, νC long
rectangles in SC \ FC , and kC vertices in the interior of C. We claim that

Φ (ρC , νC , kC) ≤ ρC + 2νC max

{
ρC + 2akC

µ
, 1

}
+ 2kC

(
ρC + 2akC

µ

)
,(5.1)

which implies the lemma, because ρC ≤ 2φC .
Note that if SC contains m ≥ 1 free rectangles, we apply the free cuts containing

these rectangles to partition C (by repeatedly invoking step 4 of the dividing stage)
until the resulting boxes do not contain any free rectangle. The free cuts partition C
into a set E of m+ 1 boxes. Since we have created the boxes in E using free cuts,

ρE + 2akE ≤ ρC + 2akC , for any box E in E ,(5.2) ∑
E∈E
νE ≤ νC ,

∑
E∈E
kE ≤ kC ,

∑
E∈E
ρE ≤ ρC .(5.3)

These inequalities imply that if (5.1) holds for each box in E , then (5.1) holds
for C as well. Therefore, we prove (5.1) for all boxes C such that FC contains only
one class of rectangles and SC does not contain any free rectangle. We proceed by
induction on ρC + 2akC .

Base case. 0 ≤ ρC + 2akC ≤ µ. Since 0 ≤ ρC + 2akC ≤ µ and SC does not con-
tain any free rectangle, C is a leaf of TB , i.e., LC = {C}. We have

Φ (ρC , νC , kC) =
∑

D∈LC

fD = fC = φC + νC ≤ ρC + νC ,(5.4)

which implies (5.1).
Induction step. ρC + 2akC > µ. In this case, C is split into two subboxes C1

and C2 by a cutting plane h. Since
∑

D∈LC
fD =

∑
D∈LC1

fD +
∑

D∈LC2
fD,

Φ (ρC , νC , kC) = Φ (ρC1
, νC1

, kC1
) + Φ (ρC2

, νC2
, kC2

) ,

where kC1 + kC2 ≤ kC and ρC1 + ρC2 ≤ ρC .
Note that h does not contain a free rectangle. For i = 1, 2, each long rectangle

in SCi \ FCi is contained either in a long rectangle in SC \ FC or in a short rectangle
in SC . Since h intersects each rectangle in SC at most once and a short rectangle
intersected by h is divided into one short and one long rectangle,

νC1 + νC2 ≤ 2νC + kC .(5.5)

By Lemma 2.1(ii), we have

ρCi
+ 2akCi

≤ ρC + 2akC
2

, for i = 1, 2.(5.6)

Let E1 (resp., E2) be the set of boxes obtained by applying all the free cuts in SC1

(resp., SC2) in step 4 of the dividing stage. Clearly,

Φ(ρC , νC , kC) =
∑
E∈E1

Φ(ρE , νE , kE) +
∑
E∈E2

Φ(ρE , νE , kE).
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We consider two cases.
Case (i). µ < ρC + 2akC ≤ 2µ. For each i = 1, 2

ρCi + 2akCi ≤
ρC + 2akC

2
≤ µ.

As a result, all boxes in E1 and E2 are leaves of TB . Using (5.3) and (5.4), we obtain

Φ(ρC , νC , kC) ≤
∑
E∈E1

fE +
∑
E∈E2

fE ≤
∑
E∈E1

(ρE + νE) +
∑
E∈E2

(ρE + νE)

≤ ρC1 + νC1 + ρC2 + νC2 .

It now follows from (5.5) that

Φ(ρC , νC , kC) ≤ ρC + 2νC + kC ,(5.7)

which implies (5.1), because ρC + 2akC > µ.
Case (ii). ρC + 2akC > 2µ. For any box E in E1 ∪ E2, by (5.2) and (5.6),

max

{
ρE + 2akE

µ
, 1

}
≤ max

{
ρC + 2akC

2µ
, 1

}
=
ρC + 2akC

2µ
.

By (5.2) and the induction hypothesis,

Φ(ρC , νC , kC) ≤
∑
E∈E1

(
ρE + 2νE

(
ρC + 2akC

2µ

)
+ 2kE

(
ρC + 2akC

2µ

))

+
∑
E∈E2

(
ρE + 2νE

(
ρC + 2akC

2µ

)
+ 2kE

(
ρC + 2akC

2µ

))

≤ (ρC1
+ ρC2

) + 2 (νC1
+ νC2

)

(
ρC + 2akC

2µ

)

+ 2 (kC1 + kC2)

(
ρC + 2akC

2µ

)
.

Using (5.5), we obtain

Φ(ρC , νC , kC) ≤ ρC + 2 (2νC + kC)

(
ρC + 2akC

2µ

)
+ 2kC

(
ρC + 2akC

2µ

)

= ρC + 2νC

(
ρC + 2akC

µ

)
+ 2kC

(
ρC + 2akC

µ

)
,

which implies (5.1).
Lemma 5.3. Let C be a box associated with a node in TB. If all rectangles in FC

belong to two classes, then

∑
D∈LC

fD ≤ O
(
φC + (νC + kC)

(
φC + 2akC

µ

)3
)
,

where µ = (f + ak)/a.
Proof. Similar to the proof of Lemma 5.2. See the Appendix for details.
Lemma 5.4. The tree TB constructed on box B in a round has the following

properties:
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D

B

Separating Stage

Dividing Stage

C︷ ︸︸ ︷

︸ ︷︷ ︸
LC︸ ︷︷ ︸
LB

C

Fig. 5.1. The tree TB constructed in a round.

(i)
∑

D∈LB

kD ≤ k,

(ii)
∑

D∈LB

fD = O(f + a3k), and

(iii) |TB | = O((f + a3k) log a).
Proof. The bound on

∑
D∈LB

kD is obvious, since each vertex in the interior of
SB lies in the interior of at most one box of LB . Next, we use Lemma 5.3 to prove a
bound on

∑
D∈LB

fD.
Let C be the set of boxes into which B is partitioned by the separating stage;

see Figure 5.1. Obviously,
∑

D∈LB
fD =

∑
C∈C

∑
D∈LC

fD. For each box C ∈ C,
Lemma 3.1(i) implies that all rectangles in FC belong to at most two classes. Hence,
by Lemma 5.3,

∑
D∈LB

fD ≤
∑
C∈C
O

(
φC + (νC + kC)

(
φC + 2akC

µ

)3
)
.

Arguing as in the proof of Lemma 3.1(3), we can show that
∑

C∈C φC = O(f) and that∑
C∈C νC = O(k). We also know that

∑
C∈C kC ≤ k and µ = (f + ak)/a. Therefore,

∑
D∈LB

fD = O

(
f + k

(
f + 2ak

µ

)3
)

= O
(
f + a3k

)
.

We now sketch the proof that |TB | = O((f + a3k) log a). Following the same
argument as in the proof of Lemma 3.1(2), we can show that the separating stage
creates a tree with O(f + k) nodes. We now count the number of nodes in TB that
are created by the dividing stage. Let D ∈ TB be such a node. If D is partitioned
by a cut containing a free rectangle (i.e., step 4 of the dividing stage is invoked at
D), we charge D to its nearest ancestor C ∈ TB such that C is not partitioned by
a free cut (i.e., step 4 or 4 of the dividing stage is executed at C). Otherwise, we
charge a cost of 1 to D itself. Let C be a node in TB that is not partitioned by a free
cut. Since a free rectangle can be created only by partitioning a long rectangle, the
cut used to partition C creates O(φC + νC) free rectangles, which implies that C is
charged O(φC + νC + 1) times by the above argument. Hence,

|TB | = O

(∑
C

(φC + νC + 1)

)
,
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where C ranges over all nodes in TB where step 4 or 4 of the dividing stage is executed.
By following an inductive argument similar to the ones used to prove Lemmas 5.2
and 5.3, we can show that |TB | = O((f + a3k) log a). Informally, the charging scheme
compresses TB by collapsing all nodes that are split by free cuts. Lemma 2.1 and 2.2
imply that the height of the compressed tree is O(log a). We can show that

∑
C(φC +

νC + 1) is roughly the product of the height of the tree and
∑

D fD, the total number
of long rectangles intersecting the leaves of the tree.

We now present our main result regarding the performance of our algorithm.
Theorem 5.5. Given a set S of n rectangles in R

3 such that the aspect ratio of
each rectangle in S is bounded by a constant α ≥ 1, we can construct a BSP of size
n2O(

√
logn ) for S in time n2O(

√
logn ). The constants of proportionality in the big-oh

terms are linear in logα.
Proof. We first bound the size of the BSP constructed by the algorithm. Let

S(f, k) denote the maximum size of the BSP produced by the algorithm for a box B
that contains f long rectangles and k vertices in its interior. If k = 0, Theorem 3.2 im-
plies that S(f, k) = O(f log f). For k > 0, by Lemma 5.4(iii), we construct the subtree
TB on B of size O((f + a3k) log a) in one round, and recursively construct subtrees
for each box in the set of leaves LB . Therefore, there exist constants c1, c2, c3 > 0 so
that the size S(f, k) satisfies the following recurrence:

S(f, k) ≤



c1f log f for k = 0,

∑
D∈LB

S(fD, kD) + c2(f + a3k) log a for k > 0,

where

fD + 2akD ≤ f + 2ak

a

for every box D in LB (by Lemma 5.1), and∑
D

kD ≤ k,
∑
D

fD ≤ c3(f + a3k)

(by Lemma 5.4(i) and 5.4(ii). Using induction on f + 2ak, we can prove that the
solution to the above recurrence is

S(f, k) = (f + k)2O(
√

log(f+k) ),

where the constant of proportionality is linear in logα. Intuitively, the algorithm con-
structs the BSP for B in O(log a) = O(

√
log(f + k)) rounds, and the total number of

long rectangles increases roughly by a constant factor in each round. The n2O(
√

logn )

bound on the size of the BSP constructed by the algorithm follows, since f ≤ n and
k ≤ 4n at the beginning of the first round.

We now bound the running time of our algorithm. Recall that we initially sorted
the vertices of the rectangles in S by x-, y-, and z-coordinates. Suppose SB does not
contain a free rectangle. By Lemmas 2.1 and 2.2, the cuts to be made at B can be
determined in O(|SB |) time. Suppose C is a box obtained by partitioning B according
to these cuts; we can easily obtain the sorted order of the vertices of the rectangles
in SC from the sorted order in B. Let E be the set of boxes obtained by applying
C using all the free rectangles in SC . Since the free rectangles in SC are parallel to
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each other, we can partition the rectangles in SC among the boxes in E in O(|SC |)
time. Therefore, we can construct the tree representing the partition of B into the
set of boxes E in O(|SB |) time. Hence, we obtain the same n2O(

√
log n ) bound for the

running time of the algorithm.

Remark. We can modify our algorithm to prove that the height of the BSP
constructed is O(log n): if SB contains free rectangles, we assign appropriate weights
to the free rectangles, and partitionB using the weighted median of the free rectangles.
We leave the details to the reader. Paterson and Yao [25] use a similar idea to bound
the height of BSP they construct for segments in the plane.

6. Extensions. In this section, we extend the algorithm of section 4 to the
following two cases: (i) some of the input rectangles are thin and (ii) some of the
input polygons are triangles.

6.1. Fat and thin rectangles. Let us assume that the input S = F ∪ T has
n rectangles, consisting of m ≥ 1 thin rectangles in T and n−m fat rectangles in F.
We first describe our algorithm and then construct a set of rectangles for which any
BSP has size Ω(n

√
m). The algorithm we use now is very similar to the algorithm

for fat rectangles. Given a box B, let f be the number of long rectangles in FB , k the
number of vertices of rectangles in FB that lie in the interior of B, and t the number
of rectangles in TB . We fix a parameter a = 2

√
log(f+k) and perform the following

steps:

1. If SB contains a free rectangle, we use the corresponding free cut to split B
into two boxes.

2. If k = t = 0, we use the algorithm for long rectangles to construct a BSP for
the set of clipped rectangles SB .

3. If t ≥ (f + k), we use the algorithm by Paterson and Yao for orthogonal
rectangles in R

3 to construct a BSP for SB [26].
4. If (f + k) > t, we perform one round of the algorithm described in section 4,

with the difference that we also use thin rectangles to make free cuts.

This algorithm is recursively invoked on all the resulting subboxes. Let S(f, k, t)
be the maximum size of the BSP produced by this algorithm for a box B with k
vertices in its interior, f long rectangles in FB , and t thin rectangles in TB . Note that
in section 5, during the analysis of a round, we did not use the fact that the short
rectangles were fat. As a result, Lemmas 5.2 and 5.3 hold for step 6.1 above, with
νC + kC + tC replacing the term νC + kC . We can similarly extend Lemma 5.4 to
obtain the following recurrence for S(f, k, t). Here D ranges over all the boxes that
B is divided into by a round of cuts, as described above in step 6.1.

S(f, k, t) =




O(f log f), for k = t = 0,

O(t
√
t), for t ≥ f + k,

∑
D

S(fD, kD, tD) +O(f log a+ a3k + a3t), for f + k > t,

where
∑

D kD ≤ k, fD + 2akD ≤ (f + 2ak)/a,
∑

D fD = O(f + a3k), and
∑

D tD =
O(a3t).
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Fig. 6.1. Lower bound construction for thin and fat rectangles.

We can analyze this recurrence as in section 5 and show that its solution is

S(f, k, t) = (f + k)
√
t2O(

√
log(f+k) ),

where the constant of proportionality is linear in logα. The following theorem is
immediate.

Theorem 6.1. Let S be a set of n rectangles in R
3, of which m ≥ 1 are thin.

A BSP of size n
√
m2O(

√
logn ) for S can be constructed in n

√
m2O(

√
logn ) time. The

constants of proportionality in the big-oh terms are linear in logα, where α is the
maximum aspect ratio of the fat rectangles.

We can show that Theorem 6.1 is almost optimal by constructing a set of n
rectangles of whichm are thin, for which any BSP has size Ω(n

√
m). Recall that there

exists a set of m thin rectangles in R
3 for which any BSP has size Ω(m

√
m) [26]. To

complete the proof of the lower bound, we now exhibit a set S = T∪F of n rectangles,
where T is a set of m thin rectangles and F is a set of n−m fat rectangles, for which
any BSP has size Ω((n−m)

√
m). The rectangles in T are arranged in a

√
m×√

m grid;
each rectangle in T is a segment of length n−m+ 5(n−m)/(2

√
m) + 1 perpendicular

to the yz-plane. The rectangles in F are divided into (n−m)/(2
√
m) sets, each

consisting of 2
√
m squares with side length

√
m+ 2. Each set consists of

√
m squares

parallel to the xy-plane and
√
m squares parallel to the xz-plane so that the following

three conditions are satisfied (see Figure 6.1).

1. In each set, a square parallel to the xy-plane is at a distance of 2ε from any
square parallel to the xz-plane,

2. For any square, the closest square in a different set is at a distance of 1− 2ε,
and

3. For any square, the closest thin rectangle is at a distance of ε.
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We can show that there are (n−m)
√
m/2 points such that a cube of side 2ε centered

at any such point intersects a thin rectangle t of T and two squares r and s of F. For
each such cube ψ, we can show that at least one edge of r, s, or t is crossed in the
interior of ψ by a cutting plane of B, which implies that the cutting planes in B and
the edges of the rectangles in S cross at Ω((n−m)

√
m) points, thus proving the lower

bound on the size of B.

6.2. Fat rectangles and triangles. Suppose that p ≥ 1 polygons in the input S
are (nonorthogonal) triangles and that the rest are fat rectangles. To construct a BSP
for S, we use nonorthogonal cutting planes; hence, each region is a convex polytope
and the intersection of a triangle with a region is a polygon, possibly with more than
three edges. We can extend the algorithm of section 6.1 to this case as follows: In
step 6.1, we check whether we can make free cuts through the nonorthogonal polygons
too. In step 6.1, if the number of triangles at a node is greater than the number of fat
rectangles, we use the algorithm of Agarwal et al. for triangles in R

3 to construct a
BSP of size quadratic in the number of triangles in near-quadratic time [2]. Proceeding
as in the previous section, we can prove the following theorem.

Theorem 6.2. A BSP of size np2O(
√

log n ) can be constructed in np2O(
√

logn )

time for n polygons in R
3, of which p ≥ 1 are nonorthogonal and the rest are fat

rectangles. The constants of proportionality in the big-oh terms are linear in logα,
where α is the maximum aspect ratio of the fat rectangles.

Unlike the case of rectangles, the fatness assumption does not help in constructing
BSPs of small size for triangles. More specifically, we can show that there exists a
set of n fat triangles in R

3 such that any BSP for these triangles has Ω(n2) size by
modifying Chazelle’s construction for proving a quadratic lower bound on the size of
convex decompositions of polyhedra in R

3 [9].

7. Conclusions. In this paper, we have studied the problem of constructing
BSPs for orthogonal rectangles under the natural assumption that most rectangles
are fat. Our result shows that this assumption allows a smaller worst-case size of
BSPs. Our algorithm constructs a BSP for any set of orthogonal rectangles; it is only
the analysis of the algorithm that depends on the fatness of the input rectangles. We
have implemented a variant of our algorithm and compared its performance to that of
other known algorithms [18]. Our algorithm is indeed practical: it constructs a BSP
of near-linear size on real data sets. It performs better than not only Paterson and
Yao’s algorithm [26] but also most heuristics described in the literature [4, 16, 30].

We now briefly mention another extension to our algorithms. If the n fat rectan-
gles contain k ≥ 1 crossing pairs, we can construct a BSP of size (n+ k)

√
k2O(

√
logn )

for these rectangles as follows: for each crossing pair r and s, we partition one of the
rectangles (say, r) into two smaller rectangles that do not intersect s. We construct
a BSP for the resulting n + O(k) rectangles by invoking our algorithm for a set of
fat and thin triangles. We can also construct a set of n fat rectangles with k crossing
pairs for which any BSP has size Ω(n+ k

√
k).

It seems very probable that BSPs of a size smaller than n2O(
√

logn ) can be built
for n fat rectangles in R

3. The only lower bound we have is the trivial Ω(n) bound. It
would be interesting to see if simple heuristics (e.g., choose the next splitting plane to
be one that intersects the smallest number of rectangles) can be proven to construct
BSPs of (close to) optimal size. An even more challenging open problem is determining
the right assumptions that should be made about the input objects and the graphics
display hardware so that provably fast and practically efficient algorithms can be
developed for doing hidden-surface elimination of these objects.
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Appendix. Proof of Lemma 5.3.
Lemma 5.3. Let C be a box associated with a node in TB. If all rectangles in FC

belong to two classes, then

∑
D∈LC

fD ≤ O
(
φC + (νC + kC)

(
φC + 2akC

µ

)3
)
,

where µ = (f + ak)/a.
Proof. Let

Ψ(φC , νC , kC) = max
∑

D∈LC

fD,

where the maximum is taken over all boxes C and over all sets S of rectangles with φC
long rectangles in FC , νC long rectangles in SC \ FC , and kC vertices in the interior
of C. The rectangles in FC belong to at most two classes. We claim that

(A.1)

Ψ(φC , νC , kC) ≤ 2φC + 5νC max

{(
φC + 2akC

µ

)3

, 1

}
+ 6kC

(
φC + 2akC

µ

)3

,

which proves the lemma.
If SC contains m ≥ 1 free rectangles, we apply the free cuts containing these

rectangles to partition C (by repeatedly invoking step 4 of the dividing stage) until
the resulting boxes do not contain any free rectangles. Let E be the set of boxes into
which C is so partitioned. Then

φE + 2akE ≤ φC + 2akC , for any box E in E ,(A.2) ∑
E∈E
φE ≤ φC

∑
E∈E
νE ≤ νC

∑
E∈E
kE ≤ kC .(A.3)

These inequalities imply that if (A.1) holds for each box in E , then (A.1) holds for
C as well. Therefore, we prove (A.1) for all boxes C such that FC contains at most
two classes of rectangles and SC does not contain any free rectangles. We proceed by
induction on φC + 2akC .

Base case. φC + 2akC ≤ µ. Since φC + 2akC ≤ µ and SC does not contain any
free rectangles, C is a leaf of TB . We have

Ψ (φC , νC , kC) =
∑

D∈LC

fD = fC = φC + νC ,(A.4)

which implies (A.1).
Induction step. φC + 2akC > µ. The cuts made in step 4 of the dividing stage

fall into one of two categories (see Lemma 2.2). Note that none of these cuts contains
a free rectangle.

Case (i). We divide C into two boxes, C1 and C2, using a plane h that does not
cross any rectangle in FC . As a result,

φC1 + φC2 ≤ φC and kC1 + kC2 ≤ kC .
Since h intersects each rectangle in SC at most once, (5.5) holds in this case too; i.e.,

νC1
+ νC2

≤ 2νC + kC .(A.5)
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Lemma 2.2 implies that

φCi
+ 2akCi

≤ 2(φC + 2akC)

3
for i = 1, 2.(A.6)

Let E1 (resp., E2) be the set of boxes obtained by applying all the free cuts in SC1

(resp., SC2) in step 4 of the dividing stage. Clearly,

Ψ(φC , νC , kC) ≤
∑
E∈E1

Ψ(φE , νE , kE) +
∑
E∈E2

Ψ(φE , νE , kE).

We consider two cases.
(a) µ ≤ φC + 2akC ≤ 3µ/2. In this case, by (A.2) and (A.6),

φE + 2akE ≤ 2(φC + 2akC)

3
≤ µ,

for each box E in E1 and E2. Since E does not contain a free rectangle, E is a leaf of
TB . Using (A.5), (A.3), and (A.4), we obtain

Ψ(φC , νC , kC) ≤
∑
E∈E1

fE +
∑
E∈E2

fE

≤
∑
E∈E1

(φE + νE) +
∑
E∈E2

(φE + νE)

≤ φC1 + νC1 + φC2 + νC2

≤ φC + 2νC + kC ,

which implies (A.1), because φC + 2akC > µ.
(b) φC + 2akC > 3µ/2. For a box E in E1 ∪ E2, by (A.2) and (A.6), we have

max

{(
φE + 2akE

µ

)3

, 1

}
≤ max

{(
2

3

(
φC + 2akC

µ

))3

, 1

}
=

8

27

(
φC + 2akC

µ

)3

.

By the induction hypothesis, and by using (A.3) and (A.5),

Ψ(φC , νC , kC) ≤
∑
E∈E1

(
2φE + 5νE

(
8

27

(
φC + 2akC

µ

)3
)

+ 6kE

(
8

27

(
φC + 2akC

µ

)3
))

+
∑
E∈E2

(
2φE + 5νE

(
8

27

(
φC + 2akC

µ

)3
)

+ 6kE

(
8

27

(
φC + 2akC

µ

)3
))

≤ 2 (φC1 + φC2) + 5 (νC1 + νC2)

(
8

27

(
φC + 2akC

µ

)3
)

+ 6 (kC1 + kC2)

(
8

27

(
φC + 2akC

µ

)3
)

≤ 2φC + 5 · 8

27
(2νC + kC)

(
φC + 2akC

µ

)3

+ 6 · 8

27
kC

(
φC + 2akC

µ

)3

≤ 2φC + 5νC

(
φC + 2akC

µ

)3

+ 6kC

(
φC + 2akC

µ

)3

,
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which implies (A.1).
Case (ii). We find two parallel planes h1 and h2 that divide C into three boxes

C1, C2, and C3 (in this order) so that all rectangles in FC2 belong to one class.
Lemma 2.2 implies that the rectangles in FC are partitioned among C1, C2, and C3.
Moreover, h1 and h2 partition the vertices in the interior of C. Thus,

φC1 + φC2 + φC3 ≤ φC and kC1 + kC2 + kC3 ≤ kC .
The planes h1 and h2 can intersect the rectangles in SC \ FC . Each long rectangle
in SC \ FC is partitioned into at most three long rectangles. Each short rectangle in
SC is partitioned into at most three rectangles; if two of these rectangles are long,
then one of the long rectangles must be in SC2 , since C2 is sandwiched between C1

and C3 (see the proof of Lemma 2.2). In other words,

νC1 + νC3 ≤ 2νC + kC and νC2 ≤ νC + kC .(A.7)

Lemma 2.2 also implies that

(A.8)

φCi + 2akCi
≤ 2(φC + 2akC)

3
, for i = 1, 3, and φC2 + 2akC2 ≤ φC + 2akC .

Let Ei, 1 ≤ i ≤ 3 be the set of boxes obtained by applying all the free cuts in SCi in
step 4 of the dividing stage. Note that for each box E ∈ E2, FE contains only one
class of rectangles. It is clear that

Ψ(φC , νC , kC) ≤
∑
E∈E1

Ψ(φE , νE , kE) +
∑
E∈E2

Φ(2φE , νE , kE) +
∑
E∈E3

Ψ(φE , νE , kE),

where Φ( ) is as defined in the proof of Lemma 5.2. We again consider two cases.
(a) µ < φC + 2akC ≤ 3µ/2. By (A.8), each box in E1 and E3 is a leaf of TB .

Therefore, by (A.4),

Ψ(φC , νC , kC) ≤
∑
E∈E1

fE +
∑
E∈E2

Φ (2φE , νE , kE) +
∑
E∈E3

fE

≤
∑
E∈E1

(φE + νE) +
∑
E∈E3

(φE + νE) +
∑
E∈E2

Φ (2φE , νE , kE)

≤ (φC1
+ φC3

) + (νC1
+ νC3

) +
∑
E∈E2

Φ (2φE , νE , kE) .

For each box E ∈ E2, φE + 2akE ≤ 3µ/2. Hence, by (5.7), we have

Φ (2φE , νE , kE) ≤ 2φE + 2νE + kE .

As a result,

Ψ(φC , νC , kC) ≤ (φC1 + φC3) + (νC1 + νC3) +
∑
E∈E2

(2φE + 2νE + kE)

≤ (φC1
+ φC3

) + (νC1
+ νC3

) + (2φC2
+ 2νC2

+ kC2
)

≤ 2φC + 4νC + 4kC ,

where the last inequality follows from (A.7). This inequality implies (A.1).
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(b) φC + 2akC > 3µ/2. For a box E ∈ E1 ∪ E3,

max

{(
φE + 2akE

µ

)3

, 1

}
≤ max

{(
2

3

(
φC + 2akC

µ

))3

, 1

}
=

8

27

(
φC + 2akC

µ

)3

.

Similarly, for a box E ∈ E2,

max

{
2

(
φE + akE
µ

)
, 1

}
≤ 2

(
φC + 2akC

µ

)
.

By the induction hypothesis and (5.1),

Ψ(φC , νC , kC) ≤
∑
E∈E1

(
2φE + 5 · 8

27
νE

(
φC + 2akC

µ

)3

+ 6 · 8

27
kE

(
φC + 2akC

µ

)3
)

+
∑
E∈E2

(
2φE + 4νE

(
φC + 2akC

µ

)
+ 4kE

(
φC + 2akC

µ

))

+
∑
E∈E3

(
2φE + 5 · 8

27
νE

(
φC + 2akC

µ

)3

+ 6 · 8

27
kE

(
φC + 2akC

µ

)3
)
.

Since φC + 2akC > 3µ/2,

φC + 2akC
µ

≤ 4

9

(
φC + 2akC

µ

)3

.

Therefore, using (A.7), we have

Ψ(φC , νC , kC) ≤ 2 (φC1 + φC2 + φC3) + 5 · 8

27
(νC1 + νC3)

(
φC + 2akC

µ

)3

+
16

9
νC2

(
φC + 2akC

µ

)3

+ 6 · 8

27
(kC1

+ kC3
)

(
φC + 2akC

µ

)3

+
16

9
kC2

(
φC + 2akC

µ

)3

≤ 2φC + 5νC

(
φC + 2akC

µ

)3

+ 6kC

(
φC + 2akC

µ

)3

,

which implies (A.1).
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