
An Algorithmic Framework for Compression and Text Indexing ∗

Roberto Grossi† Ankur Gupta‡ Jeffrey Scott Vitter§

Abstract

We present a unified algorithmic framework to obtain nearly optimal space bounds for text
compression and compressed text indexing, apart from lower-order terms. For a text T of n
symbols drawn from an alphabet Σ, our bounds are stated in terms of the hth-order empirical
entropy of the text, Hh. In particular, we provide a tight analysis of the Burrows-Wheeler
transform (bwt) establishing a bound of nHh + M(T,Σ, h) bits, where M(T,Σ, h) denotes the
asymptotical number of bits required to store the empirical statistical model for contexts of
order h appearing in T . Using the same framework, we also obtain an implementation of the
compressed suffix array (csa) which achieves nHh + M(T,Σ, h) + O(n lg lg n/ lg|Σ| n) bits of
space while still retaining competitive full-text indexing functionality.

The novelty of the proposed framework lies in its use of the finite set model instead of the
empirical probability model (as in previous work), giving us new insight into the design and
analysis of our algorithms. For example, we show that our analysis gives improved bounds
since M(T,Σ, h) ≤ min{g′

h
lg(n/g′

h
+ 1),H∗

h
n + lg n + g′′

h
}, where g′

h
= O(|Σ|h+1) and g′′

h
=

O(|Σ|h+1 lg |Σ|h+1) do not depend on the text length n, while H∗
h
≥ Hh is the modified hth-

order empirical entropy of T . Moreover, we show a strong relationship between a compressed
full-text index and the succinct dictionary problem. We also examine the importance of lower-
order terms, as these can dwarf any savings achieved by high-order entropy. We report further
results and tradeoffs on high-order entropy-compressed text indexes in the paper.

1 Introduction

The world is drowning in data. Classic algorithms are greedy in terms of their space usage and often
cannot perform computations on all of the data. This trend has not gone unnoticed by researchers,
as evidenced by the recent issues in data streaming [Mut03] and sublinear algorithms [Cha04].
Unlike these cases, many problems require the entire dataset to be stored in compressed format but
still need it to be queried quickly. In fact, compression may have a more far-reaching impact than
simply storing data succinctly: “That which we can compress we can understand, and that which
we can understand we can predict,” as observed in [Aar05]. Much of what we call “insight” or
“intelligence” can be thought of as simply finding succinct representations of sensory data [Bau04].
For instance, we are far from fully understanding the intrinsic structure of biological sequences,
and in fact, we cannot compress them well either.

∗The results on text indexing were presented in preliminary form at the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms [GGV03].

†Dipartimento di Informatica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa (grossi@di.unipi.it).
Support was provided in part by Italian Ministry of Education, University and Research (MIUR).

‡Center for Geometric and Biological Computing, Department of Computer Science, Duke University, Durham,
NC 27708–0129 (agupta@cs.duke.edu). Support was provided in part by the Army Research Office (ARO) through
grant DAAD20–03–1–0321 and by the National Science Foundation through research grant ISS–0415097.

§Department of Computer Science, Purdue University, West Lafayette, IN 47097–2066 (jsv@purdue.edu). Support
was provided in part by Army Research Office MURI grants DAAH04–96–1–0013 and DAAD19–01–1–0725 and by
National Science Foundation research grant CCR–9877133.

1

Researchers have considered these issues in several algorithmic contexts, such as the design of
efficient algorithms for managing highly-compressible data structures. They have carefully stud-
ied the exact resources needed to represent trees [BDMR99, GRR04, MRS01a, MRS01b, MR02],
graphs [Jac89a, BBK03], sets and dictionaries [BB04, BM99, Pag01, RR03, RRR02], permutations
and functions [MRRR03, MR04], and text indexing structures [FM05, GV05, GGV04, FGGV04,
Sad02, Sad03]. The goal is to design algorithms with tight space complexity s(n). The Kolmogorov
complexity for representing this data provides a lower bound on the value of s(n) for each repre-
sentation studied. (Kolmogorov complexity essentially defines compression in terms of the size of
the smallest program that can generate the input provided [LV97].) However, Kolmogorov com-
plexity is undecidable for arbitrary data, so any compression method is known to be sub-optimal
in this sense.1 The hope is to achieve s(n) + o(s(n)) bits, with nearly-optimal asymptotic time
bounds, i.e. O(t(n)) time, while remaining competitive with state-of-the-art (uncompressed) data
structures [Jac89a].

Providing the exact analysis of space occupancy (up to lower-order terms) is motivated by the
above theoretical issues as well as the following technological issues. Space savings can translate
into faster processing (since packing data can reduce disk accesses), which results in shorter seek
times or allows data storage on faster levels of the cache. A recent line of research uses the I/O
computation model to take into account some of these issues, such as cache-oblivious algorithms and
data structures [AV88, BDFC05]. Some algorithms exploit data compression to achieve provably
better time bounds [RC93, KV98, VK96]. From an economical standpoint, compressed data would
require less media to store (such as RAM chips in search engines or portable computing devices)
or less time to transmit over regulated bandwidth models (such as transmissions by cell phones).

Similar goals are difficult to achieve when analyzing time bounds due to the complexity of mod-
ern machines, unless some simple computation model (such as one reminiscent of the comparison
model) is used. Some sources of imprecision include cache hits/misses, dynamic re-ordering of
instructions to maximize instruction parallelism, disk scheduling issues, and latency of disk head
movements. Space bounds, on the other hand, are more easily predicted and can often be val-
idated experimentally. This concrete verification is an important component of research due to
technological advances which may affect an otherwise good bound: 64-bit CPUs are on the market
(increasing the pointer size), Unicode text is becoming more commonplace (requiring more than 8
bits per symbol as in ASCII text), and XML databases are encoding more data as well (adding a
non-trivial amount of formatting data to the “real” information). We need to squeeze all this data
and provide fast access to its compressed format. For a variety of data structures, therefore, the
question remains: Can we achieve a near-optimum compression and support asymptotically fast
queries?

1.1 Entropy, Text Compression, and Compressed Text Indexing

In this paper, we focus on text data, which are used to encode a wide variety of raw text, literary
works, digital databases, product catalogues, genomic databases, etc. In this context, the tight
space complexity s(n) is better expressed in terms of the entropy of the particular text at hand.
(See [Sha48] for the definition of entropy and [CT91] for the relation between entropy and Kol-
mogorov complexity.) We want to develop tight space bounds for text compression, i.e. storing a
text in a compressed binary format. We additionally want to design compressed text indexes to
decode any small portion of the text or search for any pattern as a substring of the text, without
decompressing the binary format entirely. In particular, we study how to obtain a compressed
representation of the text that is a self-index, namely, we obtain a compressed binary format that
is also an index for the text itself.

1Extrapolating from [Aar05, Bau04], the undecidability of Kolmogorov complexity implies that there is a compu-
tational limit on finding succinct representations for our sensory data.

2

We consider the text T as a sequence of n symbols, where each symbol is drawn from the
alphabet Σ. For ease of exposition, we “number” the symbols in alphabet Σ from 1 to σ = |Σ|, such
that the renumbered symbol y is also the yth lexicographically ordered symbol in Σ = {1, 2, . . . , σ}.
Without loss of generality, we can assume that σ ≤ n, since we only need to consider those symbols
that actually occur in T . We also denote a substring T [i]T [i+1] · · ·T [j] of contiguous text symbols
by T [i, j]. Since the raw text T occupies n lg σ bits of storage, T is compressible if it can be
represented in fewer than n lg σ bits.2 We trivially know that no encoding of T can take fewer bits
than the entropy of T , which measures how much randomness is in T . (Here, entropy is related to
the size of the smallest program which generates T , according to the Kolmogorov complexity.) So,
we expect that the entropy of T is a lower bound to the space complexity s(n) for compressed data
structures that store T .

Ideally, we would like to achieve the entropy bound, but all we can quantitatively analyze is an
approximation of it, namely,

(1) nHh + M(T, Σ, h)

bits of space. In formula (1), Hh ≤ lg σ is the hth-order empirical entropy of T , which captures
the dependence of symbols on their context, made up of the h adjacent symbols in the text T .
As n increases, M(T, Σ, h) denotes the asymptotical number of bits used to store the empirical
probabilities for the corresponding statistical model in T : informally, M(T, Σ, h) represents the
number of bits required to store the number of occurrences of yx as a substring of the text T , for
each context x of length h and each symbol y ∈ Σ. (These quantities are discussed formally in
Sections 2 and 3.) As h increases, nHh is non-increasing and M(T, Σ, h) is non-decreasing. Thus,
carefully tuning the context length h gives the best choice for minimizing space. An interesting
problem is how to obtain nearly optimal space bounds where s(n) is approximated by formula (1)
for the best choice of h. In practice, English text is often compressible by a factor of 3 or 4, and
the best choice for h is usually about 4 or 5. Lempel and Ziv have provided an encoding such that
h ≤ α lg n + O(1) (where 0 < α < 1) is sufficiently good for approximating the entropy; Luczak
and Szpankowski prove a sufficient approximation for ergodic sources when h = O(lg n) in [LS97].

1.2 Our Results

In this paper, we introduce a unified algorithmic framework for achieving the first nearly optimal
space bounds for both text compression and compressed text indexing. We provide a new tight
analysis of text compression [BW94] based on the Burrows-Wheeler transform (bwt). We also
provide a new implementation of compressed text indexing [FM05, GV05, Sad03] based on the
compressed suffix array (csa). A key point of our unified approach is the use of the finite set model
instead of the empirical probability model adopted in previous work, giving us new insight into the
analysis. As we show in the paper, we capture the empirical probabilities encoded in M(T, Σ, h) bits
(see formula (1)) by employing a two-dimensional conceptual organization which groups contexts x
from the text by their predicted symbols y. This scheme can be seen as an alternative way to model
an arbitrary partition of the bwt. We then restructure each context accordingly, encoding each
group with an algorithm that stores t items out of a universe of size n in the information theoretic
minimum space ⌈lg

(

n
t

)

⌉ bits (since there are
(

n
t

)

subsets of t items out of n). In Sections 1.3–1.4, we
detail our results for text compression and text indexing, which reach nearly optimal space bounds
for both areas.

2In this paper, we use the notation lgc
b a = (lgb a)c = (lg a/ lg b)c to denote the cth power of the base-b logarithm

of a. If no base is specified, the implied base is 2.

3

1.3 Text Compression

In this section, we discuss our results for text compression, which are based on the Burrows-Wheeler
transform (bwt). Simply put, the bwt rearranges the text T so that it is easily compressed by
other methods. In practice, the compressed version of this transformed text is quite competitive
with other methods [Fen96, Fen02, FTL03]. The bwt is at the heart of compressors based on
block-sorting (such as bzip2) that outperform Lempel-Ziv-based compressors (such as gzip). We
provide a method for representing the bwt in compressed format using well-known results from
combinatorial enumeration [Knu05, Rus05] in an unusual way, exploiting the functionality of rank-
ing and unranking t-subsets for compressing and decompressing the t items thus stored.3 We collect
and store this information in our new wavelet tree, a novel data structure that we use to represent
the LF mapping (from the bwt and used in the fm-index [FM05]) and the neighbor function Φ (at
the heart of the csa [GV05]). Our framework-based analysis gives a bound of nHh + M(T, Σ, h)
bits for any given h as input, thus matching formula (1). The best value of h can be found using the
optimal partitioning of the bwt as given in [FGMS05], so that our bound holds for any h (simply
because formula (1) cannot be smaller for the other values of h). For comparison purposes, we give
an upper bound on the number of bits needed to encode the statistical model,

(2) M(T, Σ, h) ≤ min
{

g′h lg(n/g′h + 1), H∗
hn + lg n + g′′h

}

,

where g′h = O(σh+1) and g′′h = O(σh+1 lg σh+1) do not depend on the text length n.
In formula (2), H∗

h ≥ Hh is the modified hth-order empirical entropy (see Section 2) introduced
in [Man01] to show that the bwt can be represented in at most (5 + ǫ)nH∗

h + lg n + gh bits, where
ǫ ≈ 10−2 and gh = O(σh+1 lg σ). The latter bound is important for low-entropy texts, since the
compression ratio scales with high-order entropy; this bound cannot be attained when replacing
H∗

h by Hh. We refer the reader to [Man01] for previous literature on the subject. In contrast, the
compression ratio of Lempel-Ziv algorithm [ZL77] does not scale for low-entropy texts: although its
output is bounded by nHh + O(n lg lg n/ lg n) bits, it cannot be smaller than 2.5nH0 bits for some
strings [KM99]. Note that the bwt is a booster for 0th-order compressors as shown in [FGMS05],
where a close connection of the optimal partition of the bwt with the suffix tree [McC76] attains
the best known space bounds for the analysis of the bwt, namely, 2.5nH∗

h + lg n + gh bits and
nHh + n + lg n + gh bits. The related compression methods do not require the knowledge of the
order h and take O(n lg σ) time for general alphabets.

Using (2), we can compare our analysis with the best bounds from previous work. When com-
pared to the additive term of O(n lg lg n/ lg n) in the analysis of the Lempel-Ziv method in [KM99],
we obtain an O(log n) additive term for σ = O(1) and h = O(1), giving strong evidence why the
bwt is better than the Lempel-Ziv method. Indeed, since M(T, Σ, h) ≤ g′h lg(n/g′h +1), our bound
in (1) becomes nHh + O(lg n) when h = O(1) and σ = O(1), thus exponentially reducing the
additive term of n of the Hh-based analysis in [FGMS05]. In this case, our bound closes the gap
in the analysis of bwt, since it matches the lower bound of nHh + Ω(lg lg n), up to lower-order
terms. The latter comes from the lower bound of nH∗

0 + Ω(lg lg n) bits, holding for a large family
of compressors (not necessarily related to bwt), as shown in [FGMS05]; the only (reasonable) re-
quirement is that any such compressor must produce a codeword for the text length n when it is
fed with an input text consisting of the same symbol repeated n times. Since Hh ≤ H∗

0 , we easily
derive the lower bound of nHh +Ω(lg lg n) bits, but a lower bound of nHh +Ω(lg n) probably exists
since nH∗

0 ≥ lg n while nHh can be zero.
As for the modified hth-order empirical entropy, we show that our analysis in (1) can be upper

bounded by n(Hh + H∗
h) + lg n + g′′h bits using (2). Since Hh ≤ H∗

h, our bound in (1) is strictly

3We use the term t-subset instead of the more usual k-subset terminology, because we use k to denote the levels
of our compressed suffix array (described later). A similar observation holds for entropy Hh, which is often referred
to as Hk in the literature.

4

smaller than 2.5nH∗
h + lg n + gh bits in [FGMS05], apart from the lower-order terms. Actually, our

bound is definitively smaller in some cases. For example, while a bound of the form nH∗
h +lg n+gh

bits is not always possible [Man01], there are an infinite number of texts for which nHh = 0 while
nH∗

h 6= 0. In these cases, our bound from (1) is nH∗
h + lg n + g′′h bits.

1.4 Compressed Text Indexing

In this section, we discuss our analysis with respect to text indexing based on the compressed
suffix array (csa). Text indexing data structures preprocess a text T of n symbols drawn from an
alphabet Σ such that any query pattern P of m symbols can be answered quickly without requiring
an entire scan of the text itself. Depending on the type of query, we may want to know if P occurs
in T (occurrence or search query), how many times P occurs in T (counting query), or the locations
where P occurs in T (enumerative query). An occurrence of pattern P at position i identifies a
substring T [i, i + m− 1] equal to P . Because a text index is a preprocessed structure, a reasonable
query time should have no more than a polylg(n) cost plus an output sensitive cost O(occ), where
occ is the number of occurrences retrieved (which is crucial for large-scale processing).

Until recently, these data structures were greedy of space and also required a separate (original)
copy of the text to be stored. Suffix trees [McC76, Ukk95, Wei73] and suffix arrays [GBS92, MM93]
are prominent examples. The suffix tree is a compact trie whose leaves store each of the n suffixes
contained in the text T , namely, T [1, n], T [2, n], . . . , T [n, n], where suffix T [i, n] is uniquely identified
by its starting position i. Suffix trees [McC76, MM93] allow fast queries of substrings (or patterns)
in T in O(m lg σ + occ) time, but require at least 4n lg n bits of space, in addition to keeping the
text. The suffix array SA is another popular index structure. It maintains the permuted order of
1, 2, . . . , n that corresponds to the locations of the suffixes of the text in lexicographically sorted
order, T

[

SA[1], n
]

, T
[

SA[2], n
]

, . . . , T
[

SA[n], n
]

. Suffix arrays [GBS92, MM93] (that store the
length of the longest common prefix) are nearly as good at searching as are suffix trees. Their time
for finding occurrences is O(m + lg n + occ) time, but the space cost is at least n lg n bits, plus the
cost of keeping the text.

A new trend in the design of modern indexes for full-text searching is addressed by the csa [GV05,
Rao02, Sad03, Sad02] and the opportunistic fm-index [FM05], the latter making the very strong in-
tuitive connection between the power of the bwt and suffix arrays. They support the functionalities
of suffix arrays and overcome the aforementioned space limitations. In our framework, we implement
the csa by replacing the basic t-subset encoding with succinct dictionaries supporting constant-time
rank and select queries. The rank query returns the number of entries in the dictionary that are
less than or equal to the input entry; the select query returns the ith entry in the dictionary for the
input i. Succinct dictionaries store t keys over a bounded universe n in the information theoretically
minimum space ⌈lg

(

n
t

)

⌉ bits, plus lower-order terms O(n lg lg n/ lg n) = o(n) [RRR02]. We show
a close relationship between compressing a full-text index with high-order entropy to the succinct
dictionary problem. Prior to this paper, the best space bound was 5nHh +O

(

nσ+lg lg n
lg n +nǫσ2σ lg σ

)

bits for the fm-index, supporting a new backward search algorithm in O(m + occ × lg1+ǫ n) time
for any ǫ > 0 [FM05]. We refer the reader to the survey in [NM05] for a discussion of more recent
work in this area.

We obtain several tradeoffs between time and space as shown in Tables 1 and 2. For example,
Theorem 10 gives a self-index requiring nHh+O(n lg lg n/ lgσ n) bits of space (where h+1 ≤ α lgσ n
for an arbitrary positive constant α < 1) that allows searching for patterns of length m in O(m lg σ+
occ × polylg(n)) time. Thus, using our new analysis of the bwt, our implementation provides the
first self-index reaching the high-order empirical entropy nHh of the text with a multiplicative
constant of 1; moreover, we conjecture that g′h lg(n/g′h + 1) additional bits are not achievable for
text indexing. If true, this claim would imply that adding self-indexing capabilities to a compressed
text requires more space than M(T, Σ, h), the number of bits encoding the empirical statistical

5

bits of space lookup & lookup−1 substring notes

Thm.6 nHh lg lgσ n + o(n lg σ) + O
(

σh(nβ + σ)
)

O(lg lgσ n) O(c/ lgσ n + lg lgσ n) any 0 < β < 1

Thm.7 ǫ−1nHh + O
(

n lg lg n/ lgǫ
σ n + σh(nβ + σ)

)

O
(

(lgσ n)ǫ/1−ǫ lg σ
)

O
(

c/ lgσ n + (lgσ n)ǫ/1−ǫ lg σ
)

any 0 < β < 1, 0 < ǫ ≤ 1/2

Cor.3 ǫ−1nHh + O(n) + O
(

σh(nβ + σ)
)

O
(

(lgσ n)ǫ/1−ǫ
)

O
(

c/ lgσ n + (lgσ n)ǫ/1−ǫ
)

n = o(n lg σ) for σ = ω(1)

Thm.8 nHh + O
(

n lg lg n/ lgσ n + σh+1 lg(1 + n/σh+1)
)

O(lg2 n/ lg lg n) O(c lg σ + lg2 n/ lg lg n) any 0 < β < 1

Table 1: Trade-offs between time and space for the implementation of csa and its supported operations. (See Definition 2.) The lower-order
terms in the space complexity are all o(n lg σ) bits except σh(nβ + σ) (because of M(T, Σ, h)), which is o(n lg σ) when h + 1 ≤ α lgσ n for any
arbitrary positive constant α < 1 (we fix β such that α + β < 1). In all cases, compress requires O(n lg σ + σh(nβ + σ)) time.

bits of space search/count time enumerative time (per item) notes

Thm.9 ǫ−1nHh + O(n lg lg n/ lgǫ
σ n) O

(

m/ lgσ n + (lg n)(1+ǫ)/(1−ǫ)(lg σ)(1−3ǫ)/(1−ǫ)
)

O
(

(lg n)(1+ǫ)/(1−ǫ)(lg σ)(1−3ǫ)/(1−ǫ)
)

any 0 < ǫ ≤ 1/2

Thm.10 nHh + O(n lg lg n/ lgσ n) O(m lg σ + lg4 n/(lg2 lg n lg σ)) O(lg4 n/(lg2 lg n lg σ)) 1 > ω ≥ 2ǫ/(1 − ǫ)
Thm.11 ǫ−1nHh + O(n lg lg n/ lgǫ

σ n) O(m/ lgσ n + lgω n lg1−ǫ σ) O(lgω n lg1−ǫ σ) 0 < ǫ ≤ 1/3

Table 2: Trade-offs between time and space for the compressed text indexing based on the csa, under the assumption that h + 1 ≤ α lgσ n for
any arbitrary positive constant α < 1. The lower-order terms in the space complexity are all o(n lg σ) bits. In all cases, the construction takes
O(n lg σ) time and uses a temporary area of O(n lg n) bits of space.

6

model for the bwt. Actually, we also conjecture that the O(n lg lg n/ lgσ n) term is the minimum
additional cost for obtaining the O(m lg σ)-time search bound. Bro Miltersen [Mil05] proved a lower
bound of Ω(n lg lg n/ lg n) bits for constant-time rank and select queries on an explicit bitvector
(i.e. σ = 2). (Other tradeoffs for the lower bounds on size are reported in [Mil05, DLO03, GM03].)
While this result does not directly imply a lower bound for text indexing, it remains as strong
evidence of the difficulty of improving the lower-order terms in our framework since it is heavily
based on rank and select queries.

As another example, let us consider Theorem 11, where we develop an hybrid implementation
of the csa, occupying ǫ−1nHh + O(n lg lg n/ lgǫ

σ n) bits (0 < ǫ ≤ 1/3), so that searching is very fast
and takes O(m/ lgσ n+occ× lgω n lg1−ǫ σ) time (1 > ω > 2ǫ/(1−ǫ) > 0). For low-entropy text over
an alphabet of size σ = O(1), we obtain the first self-index that simultaneously exhibits sublinear
size o(n) in bits and sublinear search and counting query time o(m); reporting the occurrences
takes o(lg n) time per occurrence.

Also, due to the ambivalent nature of our wavelet tree, we can obtain an implementation of the
LF mapping for the fm-index as a byproduct of our method. (See Section 4.3 for more details.)
We obtain an O(m lg σ) search/count time by using the backward search algorithm in [FM05] in
nHh + O(n lg lg n/ lgσ n) bits. We also get O(m) time in nHh + O(n) = nHh + o(n lg σ) bits when
σ is not a constant. This avenue has been explored in [FMMN04], showing how to get O(m) time
in nHh + O(n lg lg n/ lgσ n) bits when σ = O(polylg(n)), using a wavelet tree with a fanout of
O(lgη n) for some constant 0 < η < 1. All these results together imply that the fm-index can be
implemented with O(m) search time using nearly optimal space, nHh+O(n lg lg n/ lgσ n) bits, when
either σ = O(polylg(n)) or σ = Ω(2O(lg n/ lg lg n)). The space is still nHh + O(n) = nHh + o(n lg σ)
for the other values of σ, but we do not know if the lower-order term O(n) can be reduced.

1.5 Outline of Paper

The rest of the paper is organized as follows. In Section 2, we describe the differences between
various notions of empirical entropy and propose a new definition based on the finite set model. In
Sections 3–4, we describe our algorithmic framework, showing a tighter analysis of the bwt and
detailing our new wavelet tree. In Section 5, we use this framework to achieve high-order entropy
compression in the csa. In Section 6, we apply our csa to build self-indexing data structures that
support fast searching. In Section 7, we give some final considerations and open problems.

2 High-Order Empirical Entropy

In this section, we formulate our analysis of the space complexity in terms of the high-order empirical
entropy of a text T of n symbols drawn from alphabet Σ = {1, 2, . . . , σ}. In particular, we discuss
various notions of entropy from both an empirical probability model and a finite set model. In
Section 2.1, we consider classic notions of entropy according to the empirical probability model.
We describe a new definition based on the finite set model in Section 2.2.

2.1 Empirical Probabilistic High-Order Entropy

We provide the necessary terminology for the analysis and explore empirical probability models.
For each symbol y ∈ Σ, let ny be the number of its occurrences in text T . With symbol y, we
associate its empirical probability, Prob[y] = ny/n, of occurring in T . (Note that by definition,
n =

∑

y∈Σ ny, so the empirical probability is well defined.) Following Shannon’s definition of
entropy [Sha48], the 0th-order empirical entropy is

(3) H0 = H0(T) =
∑

y∈Σ

−Prob[y] × lg Prob[y].

7

Since nH0 ≤ n lg σ, expression (3) simply states that an efficient variable-length coding of text T
would encode each symbol y based upon its frequency in T rather than simply using lg σ bits. The
number of bits assigned for encoding an occurrence of y would be − lg Prob[y] = lg(n/ny).

We can generalize the definition to higher-order empirical entropy, so as to capture the depen-
dence of symbols upon their context, made up of the h previous symbols in the text. For a given h,
we consider all possible h-symbol sequences x that appear in the text. (They are a subset of Σh, the
set of all possible h-symbol sequences over the alphabet Σ.) We denote the number of occurrences
in the text of a particular context x by nx, with n =

∑

x∈Σh nx as before, and we let nx,y denote the
number of occurrences in the text of the concatenated sequence yx (meaning that y precedes x).4

Then, the hth-order empirical entropy is defined as

(4) Hh = Hh(T) =
∑

x∈Σh

∑

y∈Σ

−Prob[y, x] × lg Prob[y|x],

where Prob[y, x] = nx,y/n represents the empirical joint probability that the symbol y occurs in
the text immediately before the context x of h symbols and Prob[y|x] = nx,y/nx represents the
empirical conditional probability that the symbol y occurs immediately before context x, given
that x occurs in the text. (We refer the interested reader to [CT91] for more details on conditional
entropy.) Setting h = 0, we obtain H0 as defined previously. In words, expression (4) is similar
to (3), except that we partition the probability space further according to contexts of length h in
order to capture statistically significant patterns from the text.

An important observation to note is that Hh+1 ≤ Hh ≤ lg σ for any integer h ≥ 0. Hence,
expression (4) states that a better variable-length coding of text T would encode each symbol y
based upon the joint and conditional empirical frequency for any context x of y.

Manzini [Man01] gives an equivalent definition of (4) in terms of H0. For any given context x,
let wx be the concatenation of the symbols y that appear in the text immediately before context x.
We denote its length by |wx| and its 0th-order empirical entropy by H0(wx), thus defining Hh as

(5) Hh =
1

n

∑

x∈Σh

|wx|H0(wx).

One potential difficulty with the definition of Hh is that the inner terms of the summation
in (5) could equal 0 (or an arbitrarily small constant), which can be misleading when considering
the encoding length of a text T . (One relatively trivial case is when the text contains n equal
symbols, as no symbol needs to be “predicted”.) Manzini introduced modified high-order empirical
entropy H∗

h to address this point and capture the constraint that the encoding of the text must
contain at least lg n bits for coding its length n. Using a modified

(6) H∗
0 = H∗

0 (T) = max{H0, (1 + ⌊lg n⌋)/n}

to make the change, he writes

(7) Ĥh =
1

n

∑

x∈Σh

|wx|H∗
0 (wx).

Unfortunately, Ĥh+1 ≤ Ĥh does not necessarily hold in (7) as it did for Hh. To solve this
problem, let Ph be a prefix cover, namely, a set of substrings having length at most h such that

4The standard definition of conditional probability for text documents considers the symbol y immediately after
the sequence x, though it makes no meaningful difference since we could simply use this definition on the reversed
text as discussed in [FGMS05].

8

every string from Σh has a unique prefix in Ph. Manzini then defines the modified hth-order
empirical entropy as

(8) H∗
h = H∗

h(T) =
1

n
min
Ph

∑

x∈Ph

|wx|H∗
0 (wx).

so that H∗
h+1 ≤ H∗

h does hold in (8). Other immediate consequences of this encoding-motivated
entropy measure are that H∗

h ≥ Hh and nH∗
h ≥ lg n, but nHh can be a small constant. Let the

optimal prefix cover P ∗
h be the prefix cover which minimizes H∗

h in (8). Thus, (8) can be equivalently
stated as H∗

h = 1
n

∑

x∈P ∗
h
|wx|H∗

0 (wx).

The empirical probabilities that are employed in the definition of the high-order empirical
entropy can be obtained from the number of occurrences nx,y, where

∑

x∈P ∗
h

,y∈Σ nx,y = n. Indeed,
ny =

∑

x∈P ∗
h

nx,y and nx =
∑

y∈Σ nx,y. This motivates the following definition, which will guide us

through our high-order entropy analysis.

Definition 1 The empirical statistical model for a text T is composed of two parts:
i. The partition of Σh induced by the contexts of the prefix cover P ∗

h .
ii. The sequence of non-negative integers, nx,1, nx,2, . . . , nx,σ, where x = 1, 2, . . . , |P ∗

h |. (Recall
that nx,y is the number of occurrences of yx as a substring of T .)

We denote the asymptotical number of bits used to store the information in parts (i)–(ii) by
M(T, Σ, h), as n increases.

2.2 Finite Set High-Order Entropy

We provide a new definition of high-order empirical entropy H ′
h, based on the finite set model

rather than on conditional probabilities. We use this definition to avoid dealing with empirical
probabilities explicitly. We show that our new definition is H ′

h ≤ Hh ≤ H∗
h, so that we can provide

upper bounds in terms of H ′
h in our analysis. These bounds immediately translate into upper

bounds in terms of Hh and H∗
h as well.

For ease of exposition, we “number” the lexicographically ordered contexts x as 1 ≤ x ≤ σh.
Let the multinomial coefficient

(

n
m1,m2,...,mp

)

= n!
m1! m2!···mp! represent the number of partitions of

n items into p subsets of size m1, m2, . . . , mp. In this paper, we define 0! = 1. (Note again that
n = m1+m2+· · ·+mp.) When m1 = t and m2 = n−t, we get precisely the binomial coefficient

(

n
t

)

.
We define

(9) H ′
0 = H ′

0(T) =
1

n
lg

(

n

n1, n2, . . . , nσ

)

,

which simply counts the number of possible partitions of n items into σ unique buckets, i.e. the
alphabet size. We use the optimal prefix cover P ∗

h in (8) to give the definition of our alternative
high-order empirical entropy5

(10) H ′
h = H ′

h(T) =
1

n

∑

x∈P ∗
h

lg

(

nx

nx,1, nx,2, . . . , nx,σ

)

.

For example, consider the text T = mississippi#. Fixing h = 1 and taking P ∗
h = Σh, we have

that all contexts are of length 1. For context x = i occurring ni = 4 times in T , we have the
symbols y = m, p, and s appearing ni,m = ni,p = 1 and ni,s = 2 times in T . Thus, the contribution
of context x = i to nH ′

1(T) is lg
(

4
1,1,2

)

= lg 12 bits. In fact, our definitions (9) and (10) are quite
liberal, as shown below.

5Actually, it can be defined for any prefix cover Ph, including Ph = Σh.

9

Theorem 1 For any given text T and context length h ≥ 0, we have H ′
h ≤ Hh.

Proof : It suffices to show that nH ′
0 ≤ nH0 for all alphabets Σ, since then lg

(

nx

nx,1,nx,2,...,nx,σ

)

≤
|wx|H0(wx). By setting P ∗

h = Σh in (10) and applying Manzini’s definition of entropy in (5)
naturally leads to the claim.

The bound nH ′
0 ≤ nH0 trivially holds when σ = 1. We first prove this bound for an alphabet Σ

of σ = 2 symbols. Let t and n − t denote the number of occurrences of the two symbols in T . We
want to show that nH ′

0 = lg
(

n
t

)

≤ nH0 = t lg(n/t) + (n− t) lg(n/(n− t)) by (9). The claim is true
by inspection when n ≤ 4 or t = 0, 1, n − 1. Let n > 4 and 2 ≤ t ≤ n − 2. We apply Stirling’s
double inequality [Fel68] to obtain

(11)
nn

√
2πn

en− 1

12n+1

< n! <
nn

√
2πn

en− 1

12n

.

Taking logarithms and focusing on the right-hand side of (11), we see that

(12) lg n! < n lg
n

e
+

1

2
lg n +

1

12n
lg e + lg

√
2π.

Similarly to (12), we take the left-hand side of (11), and obtain

(13) lg n! > n lg
n

e
+

1

2
lg n +

1

12n + 1
lg e + lg

√
2π.

Applying (12) and (13) to lg
(

n
t

)

= lg(n!) − lg(t!) − lg((n − t)!), we have

(14) nH ′
0 = lg

(

n

t

)

< nH0 −
1

2
lg

t(n − t)

n
−

[

1

12t + 1
+

1

12(n − t) + 1
− 1

12n

]

− lg
√

2π.

Since t(n − t) ≥ n and 1/(12t + 1) + 1/(12(n − t) + 1) ≥ 1/(12n) by our assumptions on n and t,
it follows that nH ′

0 ≤ nH0, proving the result when σ = 2.
Next, we show the claimed bound for the general alphabet (σ ≥ 2 and h = 0) and by using

induction on the alphabet size (with the base case σ = 2 as detailed before). We write

(15) lg

(

n

n1, n2, . . . , nσ

)

= lg

[(

n − nσ

n1, n2, . . . , nσ−1

)

×
(

n

nσ

)]

.

We use induction for the right-hand side of (15) to get

(16) lg

(

n − nσ

n1, n2, . . . , nσ−1

)

≤
σ−1
∑

y=1

ny lg
n − nσ

ny
,

(17) lg

(

n

nσ

)

≤ nσ lg
n

nσ
+ (n − nσ) lg

n

n − nσ
.

Summing (16) and (17), we obtain
∑σ

y=1 ny lg n
ny = nH0, thus proving the claim for any alphabet

size σ.

The above discussion now justifies the use of H ′
h in our later analysis, but we continue to state

bounds in terms of Hh as it represents more standard notation. The key point to understand is that
we can derive equations in terms of multinomial coefficients without worrying about the empirical
probability of symbols appearing in the text T .

10

Original Sorted Mappings Suffix Array

Q F L i LF (i) Φ(i) SA[i]

mississippi# i ppi#missis s 1 8 7 8 ippi#

#mississippi i ssippi#mis s 2 9 10 5 issippi#

i#mississipp i ssissippi# m 3 5 11 2 ississippi#

pi#mississip i #mississip p 4 6 12 11 i#

ppi#mississi m ississippi # 5 12 3 1 mississippi#

ippi#mississ p i#mississi p 6 7 4 10 pi#

sippi#missis p pi#mississ i 7 1 6 9 ppi#

ssippi#missi s ippi#missi s 8 10 1 7 sippi#

issippi#miss s issippi#mi s 9 11 2 4 sissippi#

sissippi#mis s sippi#miss i 10 2 8 6 ssippi#

ssissippi#mi s sissippi#m i 11 3 9 3 ssissippi#

ississippi#m # mississipp i 12 4 5 12 #

Table 3: Matrix Q for the bwt containing the cyclic shifts of text T = mississippi# (column
‘Original’). Sorting of the rows of Q, in which the first (F) and last (L) symbols in each row are
separated (column ‘Sorted’). Functions LF and Φ for each row of the sorted Q (column ‘Mappings’).
Suffix array SA for T (column ‘Suffix Array ’).

3 The Unified Algorithmic Framework: Tighter Analysis for the
BWT

The characterization of the high-order empirical entropy in terms of the multinomial coefficients
given in Section 2.2 drives our analysis in a unified framework for text compression and compressed
text indexing. In this section, we begin with a simple, yet nearly optimal analysis of the Burrows-
Wheeler transform (bwt). Section 3.1 formally defines the bwt and highlights its connection to
(compressed) suffix arrays. Our key partitioning scheme is described in Section 3.2; it serves as
the critical foundation in achieving a high-order entropy analysis for the bwt. Sections 3.3–3.4
motivate and develop our multi-use wavelet tree data structure, which serves as a flexible tool in
both compression and text indexing. We finish the bwt analysis in Section 3.5.

3.1 The BWT and (Compressed) Suffix Arrays

We now give a short description of the bwt in order to explain its salient features. Consider
the text T = mississippi# in the example shown in Table 3, where i < m < p < s < # and
is an end-of-text symbol. The bwt forms a conceptual matrix Q whose rows are the cyclic
(forward) shifts of the text in sorted order and stores the last column L = ssmp#pissiii written
as a contiguous string. Note that L is an invertible permutation of the symbols in T . In particular,
LF (i) = j in Table 3 indicates for any symbol L[i], the corresponding position j in F where L[i]
appears. For instance, LF (3) = 5 since L[3] = m occurs in position 5 of F ; LF (8) = 10 since
L[8] = s occurs in position 10 of F (as the third s among the four appearing consecutively in F).
Using L and LF , we can recreate the text T in reverse order by starting at the last position n
(corresponding to #mississippi), writing its value from F , and following the LF function to
the next value of F . Continuing the example from before, we follow the pointers from LF (n):
LF (12) = 4, F [4] = i; LF (4) = 6, F [6] = p; LF (6) = 7, F [7] = p; and so on. In other words,
the LF function gives the position in F of the preceding symbol from the original text T . Thus
one could store L and recreate T , since we can obtain F by sorting L and the LF function can be
derived by inspection. Note that L is compressible using 0th-order compressors, boosting them to
attain high-order entropy [FGMS05]. In the following, we connect the bwt with L.

11

Clearly, the bwt is related to suffix sorting, since the comparison of any two circular shifts
must stop when the end marker # is encountered. The corresponding suffix array is a simple way
to store the sorted suffixes. The suffix array SA for a text T maintains the permuted order of
1, 2, . . . , n that corresponds to the locations of the suffixes of the text in lexicographically sorted
order, T

[

SA[1], n
]

, T
[

SA[2], n
]

, . . . , T
[

SA[n], n
]

. By dropping the symbols after # in the sorted
matrix Q (column ‘Sorted’ in Table 3), we obtain the sequence of sorted suffixes represented by
SA (column ‘Suffix Array ’ in Table 3). In the example above, SA[6] = 10 because the sixth largest
lexicographically ordered suffix, pi#, begins at position 10 in the original text.

We make the connection between the bwt and SA more concrete by describing the neighbor
function Φ, introduced to represent the csa in [GV05]. In particular, the Φ function indicates, for
any position i in SA, the corresponding position j in SA such that SA[j] = SA[i]+1 (a sort of suffix
link similar to that of suffix trees [McC76]). For example in Table 3, Φ(6) = 4 since SA[6] = 10
and SA[4] = 11. The Φ function can be implemented by using Σ lists as shown in [GV05]. Given a
symbol y ∈ Σ, the list y is the set of positions from the suffix array such that for any position p in
list y, T [SA[p]] is preceded by y.6 In words, it collects the positions where y occurs in the text based
upon information from the suffix array. The fundamental property of these Σ lists is that each list
is an increasing series of positions. For instance, list i from our example is 〈7, 10, 11, 12〉 since
for each entry, T [SA[p]] is preceded by an i. The concatenation of the lists y for y = 1, 2, . . . , σ
gives Φ. Going on in the example, list m is 〈3〉; list p is 〈4, 6〉; list s is 〈1, 2, 8, 9〉, and list # is 〈5〉.
Their concatenation yields the Φ function shown in Table 3. Thus, the value of Φ(i) is just the ith
nonempty entry in the concatenation of the lists, and belongs to some list y.

We can reconstruct SA and the bwt by using Φ and the position f of the last suffix SA[f] = n,
where Φ(f) is the position in SA containing the first suffix. Continuing the example from before
(where f = 12) we can recreate SA by iterating Φ as Φ(f) = 5, SA[5] = 1; Φ(5) = 3, SA[3] = 2;
Φ(3) = 11, SA[11] = 3, and so on. In general, we compute Φ(f), Φ(Φ(f)), . . . , so that the rank j
in SA for the ith suffix in T (1 ≤ i, j ≤ n) is obtained as j = Φ(i)(f) by i iterations of Φ on f .
However, this process not only recovers the values of SA, but also the corresponding lists y (which
provide the symbols for the bwt by the definition of Σ lists). In particular, symbol y occurs in the
jth position of the bwt, where j = Φ(i)(f). In the example, symbol y = # is in position Φ(f) = 5
of the bwt because the fth entry in Φ is in list #; symbol y = m is in position Φ(5) = 3 because
the fifth entry is in list m; symbol y = i is in position Φ(3) = 11, and so on.

Hence, the Φ function is also an invertible representation of the bwt. As can be seen from
Table 3, LF (Φ(i)) = Φ(LF (i)) = i for 1 ≤ i ≤ n; thus, these functions are inverses of each other.
(The Φ function can also be thought of as the FL mapping while the LF mapping can be thought
of as the encoding of inverse suffix links.) Encoding the Φ function is no harder than encoding LF .
In the following, we make use of this connection to achieve a high-order empirical entropy analysis
of the bwt.

3.2 Context-Based Partitioning of the BWT

We now show our major result for this section; we describe a nearly optimal analysis of the compress-
ibility of the Burrows-Wheeler transform with respect to high-order empirical entropy, exploiting
the relationship between the bwt and suffix arrays illustrated in Section 3.1.

Let P ∗
h be the optimal prefix cover as defined in Section 2, and let nx,y be the corresponding

values in equation (10), where x ∈ P ∗
h and y ∈ Σ (see also Definition 1). We denote by |P ∗

h | the
number of contexts in P ∗

h , where |P ∗
h | ≤ σh. The following theorem formalizes the bounds that we

anticipated in formulas (1) and (2) for our analysis.

6Specifically, y = T [SA[p] − 1] for SA[p] > 1, and y = T [n] when SA[p] = 1.

12

context x list i list m list p list s list #

i ∅ 〈3〉 〈4〉 〈1, 2〉 ∅
m ∅ ∅ ∅ ∅ 〈5〉
p 〈7〉 ∅ 〈6〉 ∅ ∅
s 〈10, 11〉 ∅ ∅ 〈8, 9〉 ∅
〈12〉 ∅ ∅ ∅ ∅

Table 4: An example of our conceptual table T , where each sublist 〈x, y〉 contain nx,y entries. The
contexts x are associated with rows and the lists y are associated with columns.

context x nx #x list i list m list p list s list #

i 4 0 ∅ 〈3〉 〈4〉 〈1, 2〉 ∅
m 1 4 ∅ ∅ ∅ ∅ 〈1〉
p 2 5 〈2〉 ∅ 〈1〉 ∅ ∅
s 4 7 〈3, 4〉 ∅ ∅ 〈1, 2〉 ∅
1 11 〈1〉 ∅ ∅ ∅ ∅

Table 5: The sublists of Table 4 in normalized form. The value of nx is defined as in equation (10)
and indicates the interval length in the row for context x. The value #x should be added to the
sublists’ entries in row x to obtain the same entries in Table 4.

Theorem 2 (Space-Optimal Burrows-Wheeler Transform) The Burrows-Wheeler transform
for a text T of n symbols drawn from an alphabet Σ can be compressed using

(1) nHh + M(T, Σ, h)

bits for the best choice of context length h and prefix cover P ∗
h , where the number of bits required

for encoding the empirical statistical model behind P ∗
h (see Definition 1) is

(2) M(T, Σ, h) ≤ min
{

g′h lg(1 + n/g′h), H∗
hn + lg n + g′′h

}

,

where g′h = O(σh+1) and g′′h = O(σh+1 lg σh+1) do not depend on the text length n.

We devote the rest of Section 3 to the proof of Theorem 2. We describe our analysis for an
arbitrary prefix cover Ph, so it also holds also for the optimal prefix cover P ∗

h as in equation (10).
Since every string in Σh has a unique prefix in Ph, we have that Ph induces a partition of the
suffixes stored in the suffix array SA (or the corresponding circular shifts of T). In particular, the
suffixes starting with a given context x ∈ Ph occupy contiguous positions in SA. In the example of
Table 3, the positions 1, . . . , 4 in SA corresponds to the suffixes starting with context x = i.

Our basic idea is to apply context partitioning to the Σ lists discussed in Section 3.1. We
implement our idea by partitioning each list y further into sublists 〈x, y〉 by contexts x ∈ Ph.
Intuitively, sublist 〈x, y〉 stores the suffixes in SA that start with x and are preceded by y. Thus,
each item p in sublist 〈x, y〉 indicates that T

[

SA[p]− 1,SA[p] + h
]

= yx. For context length h = 1,
if we continue the example in Table 3, we break the Σ lists by context (in lexicographical order i,
m, p, s, and #, and numbered from 1 up to |Ph|). The list for y = i is 〈7, 10, 11, 12〉, and is broken
into sublist 〈7〉 for context x = p, sublist 〈10, 11〉 for context x = s, and sublist 〈12〉 for x = #. We
recall that the fundamental property of Σ lists is that each list is an increasing series of positions.
Thus, each sublist 〈x, y〉 we have created is also increasing and contains nx,y entries, where nx,y is
defined as in equation (10) and Definition 1.

We build a conceptual 2-dimensional table T that follows Definition 1. (Each row x implicitly
represents the suffixes in SA that start with context x and the columns y are the symbols “predicted”

13

in each context.) The contexts x ∈ Ph correspond to the rows and the Σ lists y are stored in the
columns x. The columns of T are partitioned by row according to the contexts. For our running
example (with h = 1) see Table 4 for an instance of T . Our table T has some nice properties if we
consider its rows and columns as follows:

• We can implement the Φ function by accessing the sublists in T in column major order, as
discussed in Section 3.1.

• We have a strong relationship with the high-order empirical entropy in equation (10) and the
statistical empirical model of Definition 1, if we encode these sublists in row major order.

For any context x ∈ Ph, if we encode the sublists in row x using nearly lg
(

nx

nx,1,nx,2,...,nx,σ

)

bits,
we automatically achieve the hth-order empirical entropy when summing over all the contexts as
required in equation (10). For example, context x = i should be represented with nearly lg

(

4
1,1,2

)

bits, since two sublists contain one entry each and one sublist contains two entries. The empirical
statistical model should record the partition induced by Ph and which sublists are empty, and
should encode the lengths of the nine nonempty sublists in Table 4, using M(T, Σ, h) bits.

The crucial observation to make is that all entries in the row corresponding to a given context x
create a contiguous sequence of positions. For instance, along the first row of Table 4 for x = i,
there are four entries that are in the range 1 . . . 4. Similarly, row x = s contains the four entries
in the range 8 . . . 11; row s should be encoded with lg

(

4
2,2

)

bits. We represent this range as an
interval [1, 4] with the offset #x = 7. We call this representation a normalization, which subtracts
the value of #x from each entry p of the sublists 〈x, y〉 for y ∈ Σ. In words, we normalize the
sublists in Table 4 by renumbering each element based on its order within its context and obtain
the context information shown in Table 5. Here, nx is the number of elements in each context x,
and #x represents the partial sum of all prior entries; that is, #x =

∑

x′<x nx′
. (Note that the

values of nx and #x are easily computed from the set of sublist lengths nx,y.) For example, the
first entry in sublist 〈s, i〉, 10, is written as 3 in Table 5, since it is the third element in context s.
We can recreate entry 10 from #x by adding #s = 7 to 3. As a result, each sublist 〈x, y〉 is a
subset of the range implicitly represented by interval [1, nx] with the offset #x. We exploit this
organization to encode the bwt.

Encoding: We run the boosting algorithm from [FGMS05] on the bwt to find the optimal value
of context order h and the optimal prefix cover P ∗

h using the cost of nH ′
h + M(T, Σ, h) according

to equation (10). (Recall that H ′
h ≤ Hh by Theorem 1.) Once we know h and set Ph = P ∗

h , we
can cleanly separate the contexts and encode the Φ function as described in our table T . Thus, we
follow the two steps below, storing the following components of T :

1. We encode the empirical statistical model given in Definition 1.

2. For each context x ∈ Ph, we separately encode the sublists 〈x, y〉 for y ∈ Σ to capture high-
order entropy. Each of these sublists is a subset of the integers in the range [1, nx] with offset
#x. These sublists form a partition of the integers in the interval [1, nx].

The storage for step 1 is M(T, Σ, h), the asymptotical number of bits required for encoding the
model (see Definition 1). The storage required for step 2 should use nearly lg

(

nx

nx,1,nx,2,...,nx,σ

)

bits
per context x, and should not exceed a total of nHh bits plus lower-order terms, once we determine
P ∗

h , as stated in Theorem 2.

Decoding: We retrieve the empirical statistical model encoded in step 1 above, which allows
us to infer the number of rows and columns of our table T , and which sublists are nonempty and
their lengths. (Note that the values of n, nx and #x can be obtained from these lengths.) Next,
we retrieve the sublists encoded in step 2 since we know their lengths. At this point, we have
recovered the content of T , allowing us to implement the Φ function with the columns of T as
discussed before. Given Φ, we can decode bwt as described at the end of Section 3.1.

The rest of the section discusses how to encode the sublists and the empirical statistical model,
so as to complete the proof of Theorem 2.

14

3.3 Removing Space Redundancy of Multiple Sublists

We motivated and built a partitioning scheme that allows us to consider each context independently,
as emphasized at the end of Section 3.2. For any given context x ∈ Ph, we now focus on the problem
of encoding the sublists 〈x, y〉 for y ∈ Σ (i.e. step 2 of encoding). We recall that the latter sublists
form a partition of the integers in the range represented by the interval [1, nx] with offset #x. In
the following, we assume that #x = 0 without loss of generality, since the values of #x can be
inferred (by Definition 1).

One simple method would be to simply encode each sublist 〈x, y〉 as a subset of t = nx,y items
out of a universe of n′ = nx items. We can use t-subset encoding, requiring the information-theoretic
minimum of ⌈lg

(

n′

t

)

⌉ bits, with O(t) operations, according to [Knu05, Rus05]. All the t-subsets are
enumerated in some canonical order (e.g. lexicographic order) and the subset occupying rank r in

this order is encoded by the value of r itself, which requires ⌈lg
(

n′

t

)

⌉ bits. In this way, the t-subset
encoding can also be seen as the compressed representation of an implicit bitvector of length n′: If
the subset contains 1 ≤ s1 < s2 < · · · < st ≤ n′, the sith entry in the bitvector is 1, for 1 ≤ i ≤ t;
the remaining n′− t bits are 0s. Thus, we can use subset rank (and unrank) primitives for encoding
(and decoding) sublist 〈x, y〉 as a sequence r of ⌈lg

(

nx

nx,y

)

⌉ bits.
Unfortunately, the fact that our subset encoding is locally optimal for sublist 〈x, y〉 does not

imply that it is globally optimal for all the sublists. Indeed, summing over the contexts x shows
that the total space bound is more than the entropy term nHh. Actually, this sum adds a linear
term of O(n), which prevents us to reach a nearly optimal analysis for low-entropy texts. In order
to see why, let tx be the number of nonempty sublists contained in a given context x and, without
loss of generality, let the number of entries in the nonempty sublists be nx,1, nx,2, . . . , nx,tx , where
∑

1≤y≤tx nx,y = nx.

Lemma 1 Given context x, the following relation holds,

(18)
∑

1≤y≤tx

lg

(

nx

nx,y

)

= lg

(

nx

nx,1, nx,2, . . . , nx,tx

)

+ O(nx).

Proof : When tx = 2,
∑

1≤y≤tx lg
(

nx

nx,y

)

= lg
(

nx

nx,1,nx,2,...,nx,tx

)

and the lemma is trivially proved.
Thus, let tx > 2, so that the following holds.

∑

1≤y≤tx

lg

(

nx

nx,y

)

= lg

[

1

nx,1! nx,2! . . . nx,tx !
× (nx!)tx

(nx − nx,1)! (nx − nx,2)! . . . (nx − nx,tx)!

]

≤ lg

[

1

nx,1! nx,2! . . . nx,tx !
(nx)(n

x)

]

= lg

[

1

nx,1! nx,2! . . . nx,tx !

]

+ nx lg nx

Since lg
(

nx

nx,1,nx,2,...,nx,tx

)

= lg
[

nx!
nx,1! nx,2! ...nx,tx !

]

and lg nx! ≤ nx lg nx − nx lg e + 1/2 lg nx +

1/12n lg e+lg
√

2π by Stirling’s inequality [Fel68], the claim is proved. The additional term of O(nx)
in equation (18) is tight in several cases; for example, when tx = nx > 2 and each nx,y = 1.

The apparent paradox implied by equation (18) can be resolved by noting that each subset
encoding only represents the entries of one particular sublist; that is, there is a separate subset
encoding for each symbol y in context x. In the multinomial coefficient of equations (10) and (18),
all the sublists are encoded together as a multiset. Thus, it is more expensive to have a subset
encoding of each sublist individually rather than having a single encoding for the entire context. In

15

Lemma 1, the O(nx) additive term in the number of bits is the extra cost incurred by encoding all
positions where each of the sublists does not occur. When summed over all n entries in all sublists
and all contexts, this term gives an O(n) contribution to the total space bound.

We can remove this undesired space term by encoding each of our sublists in terms of the
locations not occupied by prior sublists within the same context. We perform a scaling of the
universe to this end. This is better explained in terms of the implicit bitvectors related to the
subset encodings. In our example of Table 5, for context x = i, the 〈x, m〉 sublist contains the
third position in the interval [1, 4] = {1, 2, 3, 4}, so the corresponding bitvector is 0010, encoded in
⌈lg

(

4
1

)

⌉ bits. When we encode the 〈x, p〉 sublist, we only encode the positions that the 〈x, p〉 sublist
occupies in terms of positions not used by the 〈x, m〉 sublist, namely, we are left with positions
{1, 2, 4} corresponding to the 0s in the bitvector. So entry 4 in the 〈x, p〉 sublist corresponds to
position 3 in {1, 2, 4} (out of three items in the scaled universe) and the resulting bitvector, 001,
is encoded in ⌈lg

(

3
1

)

⌉ bits. After that, the positions available are in {1, 2} (the two remaining 0s
in the scaled universe). When we encode later sublists, we encode only those positions not used by
the 〈x, m〉 and 〈x, p〉 sublists. In our example, the 〈x, s〉 sublist contains the remaining two positions
thus available, yielding the bitvector 11 encoded in ⌈lg

(

2
2

)

⌉ = 0 bits. The total number of bits for

context x is ⌈lg
(

4
1

)

⌉ + ⌈lg
(

3
1

)

⌉ + ⌈lg
(

2
2

)

⌉ < lg
(

4
1,1,2

)

+ 3 as required.
In general, we apply the scaling of the universe for a context x as follows. When we encode

the 〈x, y〉 sublist, we only encode the positions that the 〈x, y〉 sublist occupies in terms of positions
not used by the 〈x, y′〉 sublists for 1 ≤ y′ < y. (These positions are those corresponding to the
remaining 0s in the resulting bitvector.) In this way, we iterate the scaling to the sublists:

1. We represent sublist 〈x, 1〉 using nx,1-subset encoding in a universe of size nx, with ⌈lg
(

nx

nx,1

)

⌉
bits.

2. For y = 2, 3, . . . , tx, we represent sublist 〈x, y〉 using nx,y-subset encoding in a scaled universe

of size n′ = nx − ∑y−1
y′=1 nx,y′

, with ⌈lg
(

n′

nx,y

)

⌉ bits.

Note that the last sublist, 〈x, tx〉, is encoded using ⌈lg
(

nx,tx

nx,tx

)

⌉ = 0 bits. We introduce here the
notion of depth of a context x, which measures the maximum number of sublists in context x that
must be examined to recover the entries of any sublist of x. As we shall see, the depth is related
to decompression time; in the above scheme, the depth is tx.

Lemma 2 (Incremental Representation of Sublists) For each context x, using the incremen-
tal representation of sublists by scaling the universe, we can encode the tx nonempty sublists for
that context in fewer than lg

(

nx

nx,1,nx,2,...,nx,σ

)

+ tx bits, so that the depth is tx.

Proof : It suffices to consider the representation for a single context x. We show that in the encoding
of the sublists for x, the information theoretically minimum space required for these sublists is

⌈

lg

(

nx

nx,1

)⌉

+

⌈

lg

(

nx − nx,1

nx,2

)⌉

+

⌈

lg

(

nx − nx,1 − nx,2

nx,3

)⌉

+ · · · +
⌈

lg

(

nx,tx

nx,tx

)⌉

< lg

[(

nx

nx,1

)(

nx − nx,1

nx,2

)(

nx − nx,1 − nx,2

nx,3

)

· · ·
(

nx,tx

nx,tx

)]

+ tx

= lg

[

nx!

nx,1! nx,2! · · · nx,tx !

]

+ tx = lg

(

nx

nx,1, nx,2, . . . , nx,tx

)

+ tx.

We can replace tx by σ in the multinomial coefficient of the above formula because the empty
sublists do not contribute. The ramifications of the above approach in terms of the depth is that
the recovering of the entries of a sublist of context x would be somewhat sequential in terms of tx,
the number of nonempty sublists within x, in order to decompose the relative positions that are
stored. For instance, to recover the ith position in the 〈x, p〉 sublist, we have to find the position j
of the ith non-position in the 〈x, m〉 sublist (i.e. the position j of the ith 0 in its corresponding

16

⋃

s1, . . . , s16hhhhhhhhhh

((((((((((
⋃

s1, . . . , s8XXXXX
»»»»»

⋃

s1, . . . , s4
HHH

©©©
s1

⋃

s2

ee%%
s1 s2

s3
⋃

s4

ee%%
s3 s4

⋃

s5, . . . , s8
HHH

©©©
s5

⋃

s6

ee%%
s5 s6

s7
⋃

s8

ee%%
s7 s8

⋃

s9, . . . , s16XXXXXX
»»»»»»

⋃

s9, . . . , s12
HHH

©©©
s9

⋃

s10

@@¡¡
s9 s10

s11
⋃

s12

@@¡¡
s11 s12

⋃

s13, . . . , s16
HHH

©©©
s13

⋃

s14

@@¡¡
s13 s14

s15
⋃

s16

@@¡¡
s15 s16

Figure 1: A wavelet tree

bitvector). Then we have to find the position of the jth non-position in the 〈x, i〉 sublist, and so
on. Thus, the depth is tx, since we potentially have to backtrack through each nonempty sublist
to recover the entries of the last sublist in the context.

3.4 The Wavelet Tree

As we saw in Section 3.3, the main difficulty with the approach of Lemma 2 is the linear depth,
which gives an overhead associated with backtracking through all the sublists of a given context.
We present instead the wavelet tree data structure, which is of independent interest, to reduce the
depth to nearly lg tx ≤ lg σ, while still encoding in the desired space.

We can consider the scheme discussed in Section 3.3 as a sequential representation of the sublists
for context x. In particular, scaling the universe can be seen as an associative operation on these
sublists, and the sequential representation can be thought of as one of the possible associations.
Others are clearly possible, such as the hierarchical representation. Our idea is that of applying
subset encoding to groups of sublists, instead of individual sublists. Going on in our example,
we could group sublists 〈x, m〉 and 〈x, p〉 together, thus obtaining positions 〈3, 4〉 for them. At
this point, the corresponding bitvector would be 0011, represented with ⌈lg

(

4
2

)

⌉ bits. Then, the

〈x, s〉 list would be represented as before, with ⌈lg
(

2
2

)

⌉ bits. We need a further subset encoding to
distinguish between 〈x, m〉 and 〈x, p〉, but on a scaled universe with bitvectors 10 and 1, respectively,
using ⌈lg

(

2
1

)

⌉ and ⌈lg
(

1
1

)

⌉ bits. Note that total space is still bounded as before, namely, ⌈lg
(

4
2

)

⌉ +

⌈lg
(

2
2

)

⌉+⌈lg
(

2
1

)

⌉+⌈lg
(

1
1

)

⌉ < lg
(

4
1,1,2

)

+3, since the terms of the form ⌈lg
(

k
k

)

⌉ = 0 do not contribute.

We can generalize this approach to any wavelet tree of binary degree, including the balanced
wavelet tree in Figure 1, which is of interest in this paper as its tree shape can be kept implicitly. In
order to explain its salient features, it suffices to consider the representation for a single context x.
For ease of presentation, let sy denote the 〈x, y〉 sublist of nx,y entries. We do not actually store
the tx leaves, but they are drawn for clarity. Each leaf represents a sublist as shown in Figure 1.
We implicitly consider each left branch to be associated with a 0 and each right branch to be
associated with a 1. Each internal node is the subset encoding with the elements in its left subtree
stored as 0, and the elements in its right subtree stored as 1. For instance, the root node of the
tree in Figure 1 represents each of the positions of s1, . . . , s8 as a 0, and each of the positions of
s9, . . . , s16 as a 1. Any grouping of sublists is possible, not necessarily involving those associated
with consecutive leaves.

The major point here is that each of the tx −1 internal nodes represents elements relative to its
subtrees. Rather than the linear relative encoding of sublists we had in Section 3.3, we use a tree
structure to exploit exponential relativity, thus reducing the depth significantly from tx to O(lg tx).
In some sense, the earlier approach corresponds to a completely skewed wavelet tree, as opposed

17

to the balanced structure now. Recovering the entries of any sublist sy proceeds exactly as in
Section 3.3, except that we start from the leaf corresponding to sy and examine only the subsets
in its ancestors. This motivates the reduction in the depth. Interestingly, any shape of the wavelet
tree gives the same upper bounds on space; what changes is the depth.

Lemma 3 (Wavelet Tree Compression) Using a wavelet tree for each context x, we can encode
the tx nonempty sublists for that context in fewer than lg

(

nx

nx,1,nx,2,...,nx,σ

)

+ tx bits, so that the depth
is O(lg tx).

Proof : We analyze the space required in terms of the contribution of each internal node’s t-
subset encoding. We prove that this cost is exactly the logarithm of the multinomial coefficient in
equation (10) for the high-order empirical entropy.7 Note that the leaves of the wavelet tree do not
contribute to the cost since they generate terms of the form ⌈lg

(

sy

sy

)

⌉ = 0 in the calculations for the
number of required bits. By induction, it is simple to verify that the space required among all the
tx − 1 internal nodes is

lg

(

nx,1 + nx,2

nx,2

)

+ lg

(

nx,3 + nx,4

nx,4

)

+ · · · + lg

(

nx,tx−1 + nx,tx

nx,tx

)

+ lg

(

nx,1 + · · · + nx,4

nx,3 + nx,4

)

+ lg

(

nx,5 + · · · + nx,8

nx,7 + nx,8

)

+ · · · + lg

(

nx,tx−3 + · · · + nx,tx

nx,tx−1 + nx,tx

)

...

+ lg

(

nx,1 + · · · + nx,tx

nx,1 + · · · + nx,tx/2

)

= lg

(

nx

nx,1, nx,2, . . . , nx,tx

)

= lg

(

nx

nx,1, nx,2, . . . , nx,σ

)

.

Hence, each wavelet tree encodes a particular context in precisely the high-order empirical entropy,
which is what we wanted in equation (10). As in the proof of Lemma 2, the rounding due to the
ceilings adds further tx bits to the above bound.

The advantage of using the wavelet tree will be clear in the rest of the paper, where we use the
Φ function described in Section 3.1. In Section 4, we will replace the t-subset encodings with fully
indexable dictionaries [RRR02] inside the nodes of the wavelet tree. We will exploit its organization
for compressed text indexing, as we detail in Sections 5 and 6.

3.5 A Space-Optimal Burrows-Wheeler Transform

In this section, we pull together our techniques and summarize our analysis of the bwt for proving
Theorem 2. Our proof constructs a compressed version of the bwt in nHh + M(T, Σ, h) bits.
Looking at the encoding described at the end of Section 3.2, the storage required for step 1 is
M(T, Σ, h) bits, while the storage for step 2 uses fewer than lg

(

nx

nx,1,nx,2,...,nx,σ

)

+ tx bits for each

context x by Lemma 3. The overall contribution for the contexts is nH ′
h + |P ∗

h |σ ≤ nHh + σh+1

bits, by equation (10), Theorem 1, and the fact that
∑

x∈P ∗
h

tx ≤ |P ∗
h |σ ≤ σh+1. (We will soon

account for this term σh+1 in M(T, Σ, h).)

To make our analysis more concrete in comparison to previous work, we give some significant
upper bounds on M(T, Σ, h). Recall that the empirical statistical model relates to two items.
Item (i) in Definition 1 needs to encode the partition of Σh induced by the contexts of P ∗

h using

subset encoding with
⌈

lg
(

σh

|P ∗
h
|

)⌉

≤ σh bits. So, we can assume that M(T, Σ, h) ≥ σh+1 in the worst

7In some sense, we are calculating the space requirements for each sy, propagated over the entire tree. For instance,
in the example above, sy is implicitly stored in each node of its root-to-leaf path. We could analyze it this way, and
show that the two notions are the same, though we defer the argument in the interest of brevity.

18

case. Item (ii) in Definition 1 encodes the sequence of lengths of the sublists, nx,y. We devote the
rest of this section to the encoding of these lengths using Elias’ gamma and delta codes [Eli75]. 8

We recall that the gamma code for a positive integer ℓ represents ℓ in two parts: the first encodes
1 + ⌊lg ℓ⌋ in unary, followed by the value of ℓ − 2⌊lg ℓ⌋ encoded in binary, for a total of 1 + 2⌊lg ℓ⌋
bits. For example, the gamma codes for ℓ = 1, 2, 3, 4, 5, . . . are 1,010,011,00100,00101, . . .,
respectively. The delta code requires fewer bits asymptotically by encoding 1 + ⌊lg ℓ⌋ via the
gamma code rather than in unary. For example, the delta codes for ℓ = 1, 2, 3, 4, 5, . . . are
1,0100,0101,01100,01101, . . ., and require 1 + ⌊lg ℓ⌋ + 2⌊lg lg 2ℓ⌋ bits. Other choices for in-
teger encoding are possible but here we give a couple of examples leading to the bound given in
formula (2). In the first example, we obtain the following upper bound.

Lemma 4 M(T, Σ, h) = O
(

σh+1 lg(1 + n/σh+1)
)

.

Proof : In this encoding, we choose to represent the lengths using the gamma code. We ob-
tain a bitvector, Z, obtained by concatenating the gamma codes for nx,1, nx,2, . . . , nx,σ for x =
1, 2, . . . , |P ∗

h |. Note that Z contains O(
∑

x∈P ∗
h

,y∈Σ lg nx,y) bits. This quantity is maximized when

all lengths nx,y are equal to Θ(n/(|P ∗
h | × σ) + 1) by Jensen’s inequality [CT91], and thus can be

bounded by O
(

(|P ∗
h | × σ) lg

(

1 + n/(|P ∗
h | × σ)

))

= O
(

σh+1 lg(1 + n/σh+1)
)

since |P ∗
h | ≤ σh. We do

not need to encode n as it can be recovered from the sum of the sublists lengths.

In the second example, we show how to obtain an alternative upper bound in terms of the
modified entropy, H∗

h, as given in Section 2.1.

Lemma 5 M(T, Σ, h) ≤ nH∗
h + lg n + O

(

σh+1 lg σh+1
)

.

In order to prove Lemma 5, we need some technical facts.

Fact 1 For 1 ≤ t ≤ n′/2, we have lg
(

n′

t

)

>= 2t − lg t − 1.

Proof : lg
(

n′

t

)

≥ lg
(

2t
t

)

≥ lg(22t/2t) = 2t − lg t − 1.

Fact 2 For any arbitrarily fixed constant γ with 0 < γ < 1, there exist constants tγ , nγ > 0 such
that the following inequalities hold for any integers t > tγ and n′ > nγ:

i. 2 lg lg(2t) + 1 < γ lg t,

ii. lg t + 2 lg lg(2t) + 1 < γ(2t − lg t − 1),

iii.
(

n′

t

)

> (n′)γ−1

and t ≤ n′/2.

Proof : Points (i) and (ii) follow from the asymptotics as t increases. For point (iii), we have
(

n′

t

)

≥ n′(n′−1)···(n′−⌈γ−1⌉)
(⌈γ−1⌉+1)!

> (n′)γ−1

when t > ⌈γ−1⌉ for sufficiently large n′ (where t ≤ n′/2).

Fact 3 The sequence of lengths nx for x = 1, 2, . . . , |P ∗
h | can be stored using

∑

x∈P ∗
h

lg nx + lg n + O(σh+1 lg σh+1)

bits of space.

8In a certain sense, the contribution of Theorem 2 is that of restricting the analysis of the bwt to the integer
encoding problem for the lengths nx,y in the empirical statistical model.

19

Proof : With each context x with nx entries, we associate its length nx encoded in binary using
b(x) = ⌊lg nx⌋+1 bits. These b(x) bits alone do not permit a decoding of nx, as they are not prefix
codes and so we need to know the value of b(x). We describe how to fix this problem. We permute
the contexts x so that they are sorted by the b(x) values. Note that the contexts requiring the same
amount of bits for their lengths are contiguous now, and there are at most lg n+1 distinct values of
b(x) since 1 ≤ b(x) ≤ lg n + 1. A bitvector of lg n + 1 bits can record which are the distinct values
of b(x) for all contexts x. All what remains to record is when b(x′) < b(x) for any two consecutive
contexts x′ and x in the sorted order. (Recall that either b(x′) < b(x) or b(x′) = b(x) after the
sorting.) We use further |P ∗

h | bits to mark this situation. Given the permutation of the contexts
sorted by b(x), we require O(lg |P ∗

h |!) = O(σh+1 lg σh+1) bits to restore their original order.

To prove Lemma 5, we have to encode the sequence of the sublists’ lengths, nx,1, nx,2, . . . , nx,σ,
where x = 1, 2, . . . , |P ∗

h | and
∑

x∈P ∗
h

,y∈Σ nx,y = n. We do not encode the sequence as is, but we
perform the following preprocessing where we use constants γ and δ such that 0 < γ = 2δ < 1.

If context x contains just a single nonempty sublist, we use σ bits to mark that nonempty sublist
among the σ sublists for x. We also encode nx in lg nx bits by Fact 3. Since nxH∗

0 (wx) = lg nx+O(1)
in this case (see Section 2.1), we obtain a total contribution of nxH∗

0 (wx) + σ bits in Lemma 5.

If context x contains two or more nonempty sublists, we still use σ bits to mark the nonempty
sublists among the σ sublists for x. However, we need a more careful analysis to prove our claimed
bound for an equivalent representation of the sequence nx,1, nx,2, . . . , nx,σ that we describe next.
For ease of analysis, recall from Section 3.3 that we can alternatively obtain the logarithm of the
multinomial coefficient in formula (10) by using ⌈lg

(

n′

nx,y

)

⌉ bits for the sublist 〈x, y〉, in a scaled

universe of size n′ = nx − ∑y−1
y′=1 nx,y′

. (We use these bounds just for the purpose of bounding the
cost of the encoding, as we do not require to follow the approach of Section 3.3.)

• We use σ bits for context x, one bit per sublist. The bit for the sublist 〈x, y〉 is 1 if and only
if nx,y > n′/2 and, in this case, we set t = n′ − nx,y. Otherwise, we set the bit to 0 and
t = nx,y. Now, t ≤ n′/2 in both cases (so as we verify the hypothesis of Facts 1 and 2(iii)).
Note that given n′, t and the corresponding bit, we can recover the value of nx,y, as expected.

• We just use the delta code of t, since the value of n′ can be inferred recursively from the
previous sublists. Note that we also need to encode nx in this scheme, to be able to start
with the decoding of nx,1. This motivates the use of Fact 3.

• The delta codes for the sublists yielding t ≤ tγ contribute O(lg tγ) = O(1) bits each, totalizing
O(σ lg tγ) = O(σ) bits for context x. An analogous argument holds for nx when nx ≤ nγ .

• For the sublists yielding t > tγ (recall that t ≤ n′/2), we apply first Fact 2(ii) to show that
the delta code of t requires less than γ(2t − lg t − 1) bits, and then Fact 1 to show that the

latter quantity is upper bounded by γ lg
(

n′

t

)

.

Hence, the delta code of t ≥ 1 requires less than δ lg
(

n′

nx,y

)

bits (recall that γ < δ). This implies

that the sum of these delta codes for context x can be upper bounded by δ lg
(

nx

nx,1,nx,2,...,nx,σ

)

+ tx.

However, we need the value of nx to be able to decode nx,1 from t, as previously mentioned.
Hence, we are left with the evaluation of the term lg nx coming from Fact 3, as it is now required
in our scheme. This is a subtle point as it can increase significantly the final cost if not analyzed
properly. We need to slightly change the scheme discussed above.

• Instead of encoding nx,1 as first value in the sequence for context x, we use σ bits to indicate
that we encode nx,y as a first value, such that t = min{nx,y, nx − nx,y} satisfies the condition
(

n′

t

)

> (n′)γ−1

(see Fact 2(iii), where n′ = nx, and t ≤ n′/2). While the overall cost for the
sum of the logarithms do not change and give the logarithm of the multinomial coefficient, as
observed in Section 3.3, we obtain the further property that lg nx = lg n′ < γ lg

(

n′

t

)

, the same
upper bound on the amount of bits required by the delta code of t. Hence, the code for both
nx and nx,y takes overall 2γ lg

(

n′

t

)

= δ lg
(

n′

t

)

bits. The rest of the encoding is unchanged.

20

• If no such nx,y exists, this means that each t ≤ tγ = O(1) by Fact 2(iii) and so its encoding
takes O(lg tγ) = O(1) bits. The overall cost for the sublists’ lengths of the statistical model is
O(σ lg tγ) = O(σ) bits. Further, the lg nx bits for encoding nx by Fact 3 can be bounded as
nxH∗

0 (wx) since nxH∗
0 (wx) ≥ lg nx in this case. Hence, the total contribution is nxH∗

0 (wx) +
O(σ) bits in Lemma 5.

In summary, for each context x, the encoding of the sublists lengths requires O(σ) bits plus
either δ lg

(

nx

nx,1,nx,2,...,nx,σ

)

+ tx or nxH∗
0 (wx) bits. The former term is simply upper bounded by

δnxH∗
0 (wx) + tx by Theorem 1. We must add further O(σ(lg tγ + lg nγ)) = O(σ) bits for the

bitvectors and the small lengths as discussed before. The sum of the bits required by all contexts
x ∈ P ∗

h is therefore upper bounded by nH∗
h + lg n + O(σh+1 lg σh+1). Note that we can infer the

value of n by using the lengths encoded as given in Fact 3. This completes the proof of Lemma 5.

A final word is on the encoding and decoding time. Subset encoding in lg
(

n′

t

)

bits requires O(t)

operations on integers [Knu05, Rus05]. We can upper bound this cost by O
(

t(lg
(

n′

t

)

/ lg n+1)
)

time.

Hence, the cost of encoding the sublists is upper bounded by O
(
∑

x∈P ∗
h

nx
(

lg
(

nx

nx,1,nx,2,...,nx,σ

)

/ lg n+

1
))

= O
(

n(nHh/ lg n + 1)
)

. The latter term can be O(n2) in the worst case but it can be O(n) for
low-entropy texts. We also have to add a cost of O(g′′h) for setting up the rest of the encoding (e.g.
the empirical statistical model). Decoding has a similar cost.

4 Random Access Compressed Representation of LF and Φ

In Section 3, we have described the importance of the LF mapping and the Φ function for com-
pressing the bwt. As we shall see, these functions are also essential to performing compressed text
indexing. However, we need more functionality since we need random access to their compressed
values with a small cost for decoding. With the techniques discussed so far, computing the ith
value of LF or Φ, for 1 ≤ i ≤ n, has two major drawbacks:

• We need to decompress all the information, even if we need a single value of LF or Φ.

• The decompression is sequentially performed even though the required access is random.

We circumvent the two drawbacks above by using succinct dictionaries and compressed direc-
tories for speeding up the access and avoiding to decompress all the data while keeping the space
occupancy entropy-bound. The main contribution of this section is to show how to store LF and Φ
in compressed format so that each call decompresses just a small portion of their format:

• Each call takes O(lg σ) time using further O(n lg lg n/ lgσ n) = o(n lg σ) bits of space for
storing the compressed auxiliary data structures.

• Each call takes O(1) time using further O(n) bits for the compressed auxiliary data structures
(i.e. o(n lg σ) bits when σ is not a constant).

We proceed in the rest of the section as follows. In Section 4.1, we describe how to extend the
functionalities of the wavelet trees to succinct dictionaries. We then show how to use wavelet trees
and some auxiliary data structures to get the random access to the compressed representation of Φ
in Section 4.2 and to that of LF in Section 4.3.

4.1 Wavelet Trees as Succinct Dictionaries

Our compressed directories hinge on constant-time rank and select data structures [Jac89b, Mun96,
Pag01, RRR02]. For a bitvector B of size n, the function rank1(B, i) returns the number of 1s in B
up to (and including) position i. The function select1(B, i) returns the position of the ith 1 in B. We
can also define rank0 and select0 in terms of the 0s in B. As previously mentioned in Section 3.3,
subset encoding can implicitly represent B as a subset of the elements from 1 . . . n, associating

21

each 1, say in position j in B, with element j in the subset.9 Letting t be the number of elements thus
implicitly represented (the number of 1s in the bitvector), we can replace bitvector B supporting
rank1 and select1 with the constant-time indexable dictionaries developed by Raman, Raman, and
Rao [RRR02], requiring

⌈

lg
(

n
t

)⌉

+ O(t lg lg t/ lg t) + O(lg lg n) bits. As can be seen, the bound of
subset encoding,

⌈

lg
(

n
t

)⌉

, has an additional term for the fast-access directories, O(t lg lg t/ lg t) +
O(lg lg n). Moreover, rank1(B, i) = −1 if B[i] 6= 1 in indexable dictionaries. If we wish to support
the full functionalities of rank1, select1, rank0, and select0, we need to use the fully-indexable
version of their structure, called an fid.

Theorem 3 (Raman, Raman, and Rao [RRR02]) An fid storing t items out of a universe
of n items, requires

⌈

lg

(

n

t

)⌉

+ O

(

n lg lg n

lg n

)

bits of space. Each call to rank1, select1, rank0, and select0 takes O(1) time.

Note that the additional term of O(n lg lg n/ lg n) in Theorem 3 is related to the universe size n,
instead of the subset size t. Analogously to what done with subset encoding, since lg

(

n
t

)

≤ n, we
will use fids as space-efficient replacements of bitvectors of length n with t 1s (alternatively, with
n − t 0s) supporting rank and select on both 0s and 1s. 10 In this way, we can successfully reuse
part of the analysis given in Section 3.

Let us now consider the wavelet trees as defined in Section 3.4. What we obtain by replacing
the subset encodings in the nodes with fids, is a generalization of rank and select operations from
binary to σ-ary vectors as discussed next. Let us adopt the notation introduced in Section 3.4,
so that sy denotes the 〈x, y〉 sublist of nx,y entries, where 1 ≤ y ≤ tx (recall that tx ≤ σ is the
number of nonempty sublists for context x and that the symbols from Σ for these sublists are
renumbered from 1 to tx without loss of generality). Recall that the wavelet tree for context x
stores the symbols belonging to the contiguous portion of the bwt corresponding to context x and
we denote this portion by wx = wx[1 . . . nx]. To make the discussion a bit more general, we define
two primitives, where 1 ≤ y ≤ tx and 1 ≤ i ≤ nx:

• For each symbol y, function rank ′
y(wx, i) returns the number of occurrences of y in wx up to

(and including) position i.
• For each symbol y, function select ′y(wx, i) returns the position of the ith occurrence of y in wx.

As can be seen, when wx = B and y ∈ {0,1}, we obtain the classical rank and select operations
on bitvectors B. We show how wavelet trees can support rank ′ and select ′ efficiently using fids.

Lemma 6 Using a wavelet tree for context x, we can encode the tx nonempty sublists for that
context in fewer than

lg

(

nx

nx,1, nx,2, . . . , nx,σ

)

+ O

(

tx + nx lg lg nx

lgtx nx

)

bits, so that rank ′ and select ′ take O(lg tx) time.

To begin with, we augment our wavelet tree by replacing the t-subset encoding of [Knu05, Rus05]
with the fid structure from [RRR02]. To resolve query select ′y(wx, i) on our new wavelet tree for wx,
we follow these steps.

⊲ select ′y(wx, i):
1. Set s = sy.
2. If s is the left child, search for the ith 0 in s’s parent dictionary: set i = select0(i).

9Note that ranking/unranking a subset refers to the lexicographic generation of subsets mentioned in Section 3.3,
not to be confused with the rank function defined here.

10In this paper, we write rank(i) or select(i) to denote the appropriate function on 1s when there is no confusion.

22

3. If s is the right child, search for the ith 1 in s’s parent dictionary: set i = select1(i).
4. Set s = parent(s).
5. Recurse to step 2, unless s = root .
6. Return i as the answer to the query select ′ in sublist sy.

This query trivially requires O(lg tx) time since select takes constant time and the depth of the
wavelet tree is O(lg tx) as shown in Lemma 3. The other query can be performed analogously.

⊲ rank ′
y(wx, i):

1. Set s = root .
2. If sy is a descendent of the left child, set i = rank0(i) in s’s dictionary.
3. If sy is a descendent of the right child, set i = rank1(i) in s’s dictionary.
4. Set s = the child of s that is ancestor of leaf sy.
5. Recurse to step 2, unless s = sy.
6. Return i as the answer to the query rank ′ in sublist sy.

This query also requires O(lg tx) time. The space analysis of the new wavelet tree is similar to that
of the unaugmented wavelet tree in Lemma 3, except that we must sum the costs of the lower-order
terms for the fids. Specifically, there are O(lg tx) levels in the wavelet tree and, for each such level,
there are universe sizes u1, u2, . . . , ur, such that r < tx and

∑r
j=1 uj ≤ nx. Each fid gives an extra

contribution of at most cuj lg lg uj/ lg uj bits to the analysis in Lemma 3, for a constant c > 0. For
a given level in the wavelet tree, we claim that the additional number of bits is

(19)
r

∑

j=1

cuj lg lg uj/ lg uj = O(nx lg lg nx/ lg nx).

Hence, we get a total of O(nx lg lg nx/ lgtx nx) bits of space for all the levels. In order to prove our
claim (19), first note that there exists a constant κ0 > 1 such that the function f(κ) = κ lg lg κ/ lg κ
is concave for any κ > κ0. We then split the sum in equation (19) in two parts. The first part
involves the terms such that uj ≤ κ0, giving a total contribution of O(r), since κ0 is constant
with respect to nx and r, the number of nonempty sublists in the given level of the wavelet tree.
The second part involves only the terms such that uj > κ0, for which the concavity of f(κ) holds.
Multiplying by r/r and applying Jensen’s inequality [CT91], we obtain

r

r
×

r
∑

j=1

c
uj lg lg uj

lg uj
= O

(

r ×
(
∑r

j=1
uj

r) lg lg(
∑r

j=1
uj

r)

lg(
∑r

j=1
uj

r)

)

= O

(

nx lg lg nx

r

lg nx

r

)

.

Note the sum over the r values on all levels of the wavelet tree is tx − 1 (i.e. the number of internal
nodes), so that the total is O(tx + nx lg lg nx/ lgtx nx) additional bits, thus completing the proof of
Lemma 6. This term seems difficult to improve due to strong evidence from Miltersen [Mil05]. In
the following, when we invoke the rank and select operations, we specify the dictionary they refer
to unless this is clear from the context.

4.2 Getting Random Access to the Compressed Representation of Φ

We now describe how to store, in compressed format, the Φ function described in Section 3.1, so
as we can quickly compute any value Φ(i), for 1 ≤ i ≤ n, by decompressing a small portion of the
format. We employ the conceptual table T described in Section 3.2, and adopt T ’s encoding for
the bwt given at the end of Section 3.2, except that the wavelet trees are now augmented with
fids as discussed in Section 4.1 (cf. Theorem 3). Recall that in order to support a query for Φ(i),
we need to decompress the ith nonempty entry in the concatenation in column major order of the
sublists in T . (We refer to Table 5 for an example.) We need the following basic information: the

23

list y containing entry Φ(i); the context x such that the 〈x, y〉 sublist contains Φ(i); the element z
stored explicitly in the normalized 〈x, y〉 sublist (see Table 5); the number of elements #x in all
contexts prior to x. In the example for Φ(2) = 10, we have y = i, x = s, #x = 7, and z = 3. The
value for Φ(i) is then #x + z because of the normalization of the sublists described in Section 3.2.
We execute five main steps to answer a query.

⊲ Query Φ(i):
1. Consult a directory G to determine Φ(i)’s list y and the number of elements in all prior lists,

#y. (We now know that Φ(i) is the (i − #y)th element in list y.) In the example above, we
consult G to find y = i and #y = 0.

2. Consult a list Ly to determine the context x of the (i−#y)th element in list y. For example,
we consult Li to determine x = s. We identify the 〈x, y〉 sublist and #p, the number of
entries in previous sublists 〈x, y′〉 with y′ < y.

3. Look up the appropriate entry in 〈x, y〉 to find z. This entry occupies position i − #y − #p
inside 〈x, y〉; hence, z = select ′y(i − #y − #p) for context x. In the example, we look for the
first entry in the 〈s, i〉 sublist and determine z = 3.

4. Consult a directory F to determine #x, the number of elements in all prior contexts. In the
example, after looking at F , we determine #x = 7.

5. Return #x + z as the solution to Φ(i). The example would then return Φ(i) = #x + z =
7 + 3 = 10.

We now detail some of the steps given above, describing the set of auxiliary data structures.

4.2.1 Directories G and F

We describe the details of the directory G (and the analogous structure F), which determines
Φ(i)’s list y and the number of elements in all prior lists #y. We can think of G conceptually as
a bitvector of length n. For each nonempty list y (considered in lexicographical order) containing
ny =

∑

x∈P ∗
h

nx,y elements (where P ∗
h is the optimal prefix cover defined in Section 2), we write

a 1, followed by (ny − 1) 0s. Intuitively, each 1 represents the first element of a list. Since there
are as many 1s in G as nonempty lists, G cannot have more than l = σ 1s. To retrieve the desired
information in constant time, we compute y = rank(G, i) and #y = select(G, y) − 1. The F
directory is similar, where each 1 denotes the start of a context x (considered in lexicographical
order), rather than the start of a list, followed by (nx−1) 0s. Since there are at most c = |P ∗

h | ≤ σh

possible contexts, we have at most that many 1s. We use fids to store these directories.

Lemma 7 We can store G using

⌈

lg

(

n

l

)⌉

+ O

(

n lg lg n

lg n

)

= O

(

σ lg
(

1 +
n

σ

)

+
n lg lg n

lg n

)

bits of space, and F using space

⌈

lg

(

n

c

)⌉

+ O

(

n lg lg n

lg n

)

= O

(

|P ∗
h | lg

(

1 +
n

|P ∗
h |

)

+
n lg lg n

lg n

)

.

4.2.2 List-Specific Directory L
y

Once we know which list y our query Φ(i) is in, we must find its context x. We create a directory Ly

for each list y, exploiting the fact that the entries are grouped into 〈x, y〉 sublists as follows. We
can think of Ly conceptually as a bitvector of length ny, the number of items indexed in list y.
For each nonempty 〈x, y〉 sublist (in lexicographical order by x) containing nx,y elements, we write
a 1, followed by (nx,y − 1) 0s. Intuitively, each 1 represents the first element of a sublist. Since

24

there are as many 1s in Ly as nonempty sublists in list y, that directory cannot have more than
min{|P ∗

h |, ny} 1s. Directory Ly is made up of two distinct components:
The first component is a fid that produces a nonempty context number p > 0. In the example,

the same context x = p has p = 1 in list i while has p = 2 in list p. It also produces the number
#p of items in all prior sublists. In the example, context x = p has #p = 0 in list i, and #p = 1 in
list p. To retrieve the desired information in constant time, we compute p = rank(Ly, i − #y) and
#p = select(Ly, p) − 1.

In order to save space, we actually store a single directory shared by all lists y. For each list y,
we can retrieve the list’s p and #p values. Conceptually, we represent this global directory L as a
simple concatenation (in lexicographical order by y) of the list-specific bitvectors described above.
The only additional information we need is the starting position of each of the above bitvectors,
which is easily obtained by computing start = #y. We compute p = rank(i) − rank(start) and
#p = select(p + rank(start))− start − 1 = select(rank(i))− start − 1. We implement L by a single
fid storing s entries in a universe of size n, where s =

∑

x∈P ∗
h

tx is the number of nonempty sublists.

Lemma 8 We can compute p and #p in constant time, and the space used (in bits) is

⌈

lg

(

n

s

)⌉

+ O

(

n lg lg n

lg n

)

= O

(

s lg
(

1 +
n

s

)

+
n lg lg n

lg n

)

.

The second component maps p, the local context number for list y, into the global one x. Since
there are at most |P ∗

h | different contexts x for nonempty sublists 〈x, y〉 and at most σ nonempty
lists y, we use the concatenation of σ bitvectors of |P ∗

h | bits each, where bitvector by corresponds
to list y and its 1s correspond to the nonempty sublists of list y. We represent the concatenation
of bitvectors by (in lexicographical order by y) using a single fid. Mapping a value p to a context x
for a particular list y is equivalent to identifying the position of the pth 1 in by. This can be done
by a constant number of rank and select queries.

Lemma 9 We can map p to x in constant time, and the space used (in bits) is

⌈

lg

(|P ∗
h |σ
s

)⌉

+ O

(

(|P ∗
h |σ) lg lg(|P ∗

h |σ)

lg(|P ∗
h |σ)

)

= o
(

σh+1
)

.

4.2.3 Time and Space Complexity

Theorem 4 The Φ function can be represented in compressed format for a text of n symbol over
the alphabet Σ using nHh + O(n lg lg n/ lgσ n) + g′h lg(1 + n/g′h) bits of space, where g′h = O(σh+1),
so that each call to Φ takes O(lg σ) time.

Proof : The space occupancy is that indicated by Theorem 2, except that Lemma 3 should be
replaced by Lemma 6 plus the additional terms indicated in Lemma 7, Lemma 8 and Lemma 9,
where s =

∑

x∈P ∗
h

tx is bounded by g′h. The time cost is constant except for the wavelet tree, as

stated in Lemma 6, where tx ≤ σ.

Theorem 5 The Φ function can be represented in compressed format using nHh +O(n)+g′h lg(1+
n/g′h) bits of space, so that each call to Φ takes O(1) time.

Proof : The proof is analogous to that of Theorem 4, except that for each context x, the wavelet tree
is replaced by a set of tx indexable dictionaries [RRR02] representing sublists 〈x, y〉 for 1 ≤ y ≤ tx

with ⌈lg
(

nx

nx,y

)

⌉+O(nx,y lg lg nx,y/ lg nx,y) bits (since we only need select operations on them, there
is no need to use an fid). When we need to perform select ′y for context x, we just run the select
operation on the indexable dictionary for 〈x, y〉. By Lemma 1, using indexable dictionaries adds a

25

term that sums up to O(n) in the bound of Theorem 4, but it requires to perform only a number of
O(1) constant-time queries to a single dictionary, totalizing O(1) time. This scheme may pay when
σ is not a constant, since it requires additional O(n) = o(n lg σ) bits of space for the auxiliary data
structures.

4.3 Getting Random Access to the Compressed Representation of LF

The machinery for the compressed representation of Φ can be reused also for the LF mapping.
In [FM05], it is shown that LF (i) = C[L[i]] + Occ(i, L[i]) for any 1 ≤ i ≤ n. Here, for any
y ∈ Σ, vector C[y] counts the number of occurrences of symbols y′ < y appearing in the text T ,
and Occ(i, y) is the number of occurrences of y appearing in the first i positions of the bwt

(here it is identified with L). It turns out that, given i, we can compute the context x and the
list y = L[i] as described for Query Φ(i) in Section 4.2. Then, we can obtain Occ(i, y) as the value
of rank ′

y(i − #y − #p) + #y for context x. The following are corollaries of Theorems 4 and 5.

Corollary 1 The LF function can be represented in compressed format for a text of n symbol over
the alphabet Σ using nHh + O(n lg lg n/ lgσ n) + g′h lg(1 + n/g′h) bits of space, where g′h = O(σh+1),
so that each call to LF takes O(lg σ) time.

In particular, we note that in Corollary 2, we can use the indexable dictionaries since we invoke
rank(i) for a suitable sublist 〈x, y〉, such that y = L[i], the ith symbol in the bwt. This corresponds
to the weak form of rank supported by indexable dictionaries.

Corollary 2 The LF function can be represented in compressed format using nHh+O(n)+g′h lg(1+
n/g′h) bits of space, so that each call to LF takes O(1) time.

5 Using the Framework for Compressed Suffix Arrays

In this section, we use the machinery developed so far to achieve text indexing, showcasing the
insights we obtained in our prior investigation. In the remainder of this paper, we will detail the
results of our csa, though analogous methods hold for the fm-index implemented with the wavelet
tree. In fact, there are a whole host of methods now that use Φ or the LF mapping (see the survey
in [NM05]).

5.1 Compressed Suffix Arrays (CSAs)

To recap, a standard suffix array [GBS92, MM93] is an array containing the position of each of
the n suffixes of text T in lexicographical order. In particular, SA[i] is the starting position in T
of the ith suffix in lexicographical order, T

[

SA[i], n
]

. The size of a suffix array is Θ(n lg n) bits, as
each of the positions stored uses lg n bits. A suffix array allows constant time lookup to SA[i] for
any i. In order to achieve self-indexing, we also use the notion of the inverse suffix array SA−1,
such that SA−1[j] = i if and only if SA[i] = j. In other words, SA−1[j] gives the rank in the
lexicographic order of suffix T [j, n] among the suffixes of T .

The csa contains the same information as a standard (inverse) suffix array, though it operates
only on a compressed format. For the rest of the paper, we assume that the csa supports the
following set of operations as given in [GV05, Sad03, Sad02].

Definition 2 Given a text T of length n, a compressed suffix array (csa) for T supports the
following operations without requiring explicit storage of T or its (inverse) suffix arrays, SA, SA−1:

• compress(T) produces a compressed representation, Z, that encodes (i) text T , (ii) its suffix
array SA, and (iii) its inverse suffix array SA−1;

26

• lookupZ(i) returns the value of SA[i], the position of the ith suffix in lexicographical order,
for 1 ≤ i ≤ n;

• lookup−1
Z (j) returns the value of SA−1[j], the rank of the jth suffix in T , for 1 ≤ j ≤ n;

• substringZ(i, c) decompresses the first c symbols (a prefix) of the suffix T
[

SA[i], n
]

, for 1 ≤
i ≤ n and 1 ≤ c ≤ n − SA[i] + 1.

We drop some of the parameters from the operations listed in Definition 2 whenever their usage
is clear from the context. For example, if we wish to decompress the c = 6 symbols belonging
to the text substring T [18, 25], we indicate the corresponding operations as follows. First we find
the lexicographic position, lookup−1(18) = 16, of its corresponding suffix and then we execute
substring(16, c).

The structure of a csa is recursive in nature, where each of the ℓ = lg lgσ n levels indexes half
the elements of the previous level. Hence, the kth level indexes nk = n/2k elements. We review
and use this recursive decomposition given below:11

1. Start with SA0 = SA, the suffix array for text T .
2. For each 0 ≤ k < ℓ, transform SAk into a more succinct representation through the use

of a bitvector Bk, function rank(Bk, i), neighbor function Φk, and SAk+1 (representing the
recursion).

3. The final level, ℓ = lg lgσ n is written explicitly.

SAk is not explicitly stored (except at the last level ℓ), but we refer to it for the sake of
explanation. Bk is a bitvector such that Bk[i] = 1 if and only if SAk[i] is even. Even-positioned
suffixes are represented in SAk+1 with their positions divided by 2. In order to retrieve odd-
positioned suffixes, we employ the neighbor function Φk, which maps a position i in SAk containing
the value p into the position j in SAk containing the value p + 1. In words, Φk is the Φ function
described in Section 3.1 applied to SAk instead of SA. Hence, we can equivalently describe Φk by
the following formula (also handling the case when SAk[i] = n):

Φk(i) =
{

j such that SAk[j] = (SAk[i] mod n) + 1
}

.

A lookup for SAk[i] can be answered in the following way:

SAk[i] =

{

2 · SAk+1

[

rank(Bk, i)
]

if Bk[i] = 1
SAk

[

Φk(i)
]

− 1 if Bk[i] = 0.

An example of the recursion for a text T is given below, where a < b < # and # is a special
end-of-text symbol. (The text T is borrowed from [GV05], but note that the Φk function is used
instead.) No further levels are needed, since the four suffix array pointers at level 3 are stored
explicitly.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
T : a b b a b b a b b a b b a b a a a b a b a b b a b b b a b b a #

SA0: 15 16 13 17 19 10 7 4 1 21 28 24 31 14 12 18 9 6 3 20 27 23 30 11 8 5 2 26 22 29 25 32
B0: 0 1 0 0 0 1 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1

rank(B0, i): 0 1 1 1 1 2 2 3 3 3 4 5 5 6 7 8 8 9 9 10 10 10 11 11 12 12 13 14 15 15 15 16
Φ0: 2 4 14 16 20 24 25 26 27 29 30 31 32 1 3 5 6 7 8 10 11 12 13 15 17 18 19 21 22 23 28 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SA1: 8 5 2 14 12 7 6 9 3 10 15 4 1 13 11 16
B1: 1 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1

rank(B1, i): 1 1 2 3 4 4 5 5 5 6 6 7 7 7 7 8
Φ1: 8 7 9 11 14 1 6 10 12 15 16 2 3 4 5 13

11We use the neighbor function Φk to emphasize its importance to our methods; for the full level approach, Grossi
and Vitter use the partial function Ψk in their exposition.

27

1 2 3 4 5 6 7 8
SA2: 4 1 7 6 3 5 2 8
B2: 1 0 0 1 0 0 1 1

rank(B2, i): 1 1 1 2 2 2 3 4
Φ2: 6 7 8 3 1 4 5 2

1 2 3 4
SA3: 2 3 1 4

Here, Φ0(4) = 16, since SA0[4] = 17 and SA0[16] = 17 + 1 = 18. For this example, suppose
we already know SA1. To retrieve SA0[16], since B0[16] = 1, we compute 2 · SA1[rank(B0, 16)] =
2·SA1[8] = 2·9 = 18. To retrieve SA0[4], since B0[4] = 0, we compute SA0[Φ0(4)]−1 = SA0[16]−1 =
18 − 1 = 17.

The csa has two incarnations which show some inherent tradeoffs of space versus time. The
first (time-efficient) version reduces the space requirement to O(n lg σ lg lgσ n) bits, while lookup
takes only O(lg lgσ n) time. This version explicitly uses the recursive structure explained above.
The second (space-efficient) version skips all but a constant fraction ǫ of these levels, for some
0 < ǫ ≤ 1, relying on a succinct dictionary Dk to perform the task of Bk, but instead mapping
elements several levels away. This scheme reduces the space requirement to O(ǫ−1n lg σ), however
lookup now takes O(lgǫ

σ n) time. In practice, the second scheme is much better, as the slowdown
in searching is reasonable. We remark that Sadakane [Sad03] has shown that the space complexity
can be restated in terms of the order-0 entropy H0 ≤ lg σ, giving as a result O(ǫ−1H0 n) bits.

In order to compress SA−1 along with SA, it suffices to keep SA−1
ℓ in the last level ℓ, as the

rest of the machinery for compressing SA and SA−1 is identical [Sad03, Sad02]. Hence the cost of
lookup−1 is the same as that for lookup, and it suffices to discuss the latter only. Moreover, it is not
difficult to extend the substring operation using Φk for any value of k, such that each application
of Φk decompresses Θ(2k) symbols at a time, for a total cost of O(c/2k) time plus the cost of a
lookup. We use the inverse suffix array and this extended version of substring in Section 6.

5.2 High-Order Entropy-Compressed Suffix Arrays

We consider the task of attaining entropy bounds for the usage of space in the csa by using our
unified algorithmic framework for Φk at each level k, which contributes the bulk of the space that
the csa uses. In the rest of this section, we prove the tradeoffs shown in Table 1 for the space and
time complexity of a csa and its supported operations as given in Definition 2.

Theorem 6 (Time-Efficient Entropy-Compressed Suffix Arrays) Implementing a csa uses
nHh lg lgσ n+O

(

n
(

lg lg lgσ n/ lg lgσ n+lg lg n/ lgσ n+lg σ/ lgσ n
)

+σh(nβ +σ)
)

bits and O
(

n lg σ+
σh(nβ + σ)

)

preprocessing time for compress, for any arbitrarily small constant 0 < β < 1. (The
space increases to O(n) = o(n lg σ) when σ is non-constant.) Each lookup takes O(lg lgσ n) time
and each substring call for c symbols takes the cost of lookup plus O(c/ lgσ n) time.

It is worth noting that the space bound in Theorem 6 is nHh lg lgσ n + o(n lg σ) bits when
h + 1 ≤ α lgσ n for any arbitrary positive constant α < 1 (we fix β such that α + β < 1). 12 When
lg σ = Θ(lg n), the space bound reduces to O(nHh) + o(n lg σ) bits and lookup time is O(1). A
better space usage can be obtained with the following tradeoff.

Theorem 7 (Space-Efficient Entropy-Compressed Suffix Arrays) Implementing a csa uses
ǫ−1nHh + O

(

n lg lg n/ lgǫ
σ n + σh(nβ + σ)

)

bits and O
(

n lg σ + σh(nβ + σ)
)

preprocessing time
for compress, for any arbitrarily small constants 0 < β < 1 and 0 < ǫ ≤ 1/2. Each lookup
takes O

(

(lgσ n)ǫ/1−ǫ lg σ
)

time and each substring call for c symbols takes the cost of lookup plus
O(c/ lgσ n) time.

12The assumption on h + 1 ≤ α lgσ n is reasonable since Luczak and Szpankowski [LS97] show that the average
phrase length of the Lempel-Ziv encoding for ergodic sources is O(lg n) bits.

28

For an alphabet of non-constant size, it can be useful to use a corollary of Theorem 7:

Corollary 3 (Space-Efficient Entropy-Compressed Suffix Arrays) Implementing a csa uses
ǫ−1nHh + O(n + σh(nβ + σ)

)

bits and O
(

n lg σ + σh(nβ + σ)
)

preprocessing time for compress, for
any arbitrarily small constants 0 < β < 1 and 0 < ǫ ≤ 1/2. Each lookup takes O

(

(lgσ n)ǫ/1−ǫ
)

time
and each substring call for c symbols takes the cost of lookup plus O(c/ lgσ n) time.

Again, note that the space bound in Theorem 7 and Corollary 3 is ǫ−1nHh + o(n lg σ) when
h+1 ≤ α lgσ n for σ = ω(1) and any arbitrary positive constant α < 1 (we fix β such that α+β < 1).
A special case gives the best space bound in this paper:

Theorem 8 (Nearly Space-Optimal Entropy-Compressed Suffix Arrays) Implementing a
csa uses nHh + O

(

n lg lg n/ lgσ n + σh(nβ + σ)
)

bits and O(n lg σ + σh(nβ + σ)) preprocessing time
for compress, for any arbitrarily small constant 0 < β < 1. Each lookup takes O(lg2 n/ lg lg n) time
and each substring call for c symbols takes the cost of lookup plus O(c lg σ) time.

The csa in Theorem 8 is a nearly space-optimal self-index in that it uses the same space as
the compressed text—nHh bits—plus the lower-order terms for the text indexing directories. For
example, we get nHh + O(n lg lg n/ lg n) bits when σ = O(1) and h + 1 ≤ α lgσ n for any arbitrary
constant α < 1 (we fix β such that α+β < 1). All space bounds mentioned above include implicitly
the cost M(T, Σ, h) of the statistical model, which is dominated by the other lower-order terms.

5.2.1 Compressed Representation of the Neighbor Function Φk

We now show how to obtain entropy bounds for implementing Φk at each level k of a csa. We
refer to the machinery discussed for the implementation of Φ in Section 4.2. Since Φ = Φ0 and
n = n0, we can use either of Theorems 4 and 5 for level k = 0. Hence we restrict our focus on
level k > 0, for which we are interested in extending the bounds of Theorem 5. We introduce some
useful notation to this end. We denote the number of elements at level k by nk = n/2k, and the
number of elements at level k that are in context x by nx

k. Similarly, we define ny
k as the number of

elements at level k in list y; and nx,y
k as the number of elements at level k that are in both context x

and list y, that is, the size of sublist 〈x, y〉. Note that nk =
∑

x nx
k =

∑

y ny
k =

∑

x,y nx,y
k .

Lemma 10 For any level k, the Φk function can be represented in compressed format using nHh +
O(nk + σ2k+h) bits of space, so that each call to Φk takes O(1) time.

Proof : We conceptually partition the symbols of the text T into n/2k non-overlapping segments of
2k symbols each, assuming without loss of generality that n is a multiple of 2k. We refer to each
segment as a “meta-symbol” and we can regard the text T as a new text Tk consisting of n/2k

meta-symbols over the alphabet Σ′ = Σk. (These meta-symbols are precisely those corresponding
to the Σ′ lists at level k. We still draw contexts of length h from the original text T .) Note that SAk

is the suffix array for Tk and Φk is the corresponding Φ function at level k. Consequently, we can
implement Φk along the lines described in Section 4.2. However, a direct application of Theorem 5
to Tk for the analysis of the space usage requires some observations to obtain the claimed bounds.

First, we need to refine the analysis by reviewing the space complexity of the auxiliary data
structures in Section 4.2, indexing them by k to denote their use at level k. Directories Gk and
Fk require O(nk) bits of space by Lemma 7 (where l = lk, n = nk), using the fact that lg

(

a
b

)

≤ a.

Directories Ly
k, for all lists y at level k, occupy a total of O(nk + σ2k+h) bits by Lemma 8 and

Lemma 9 (where n = nk and s ≤ nk is an upper bound on the number of sublists at level k).
Second, we need to relate the high-order entropy of Tk with Hh in our analysis. The current Tk

is built on all of the even text positions of Tk−1. Similarly, there is also text built on odd positions.

29

Let T e
k = Tk and T o

k denote the two different ways of merging every two symbols of Tk−1. When
reflected to T , note that T o

k and T e
k overlap in T except for O(2k) initial or final symbols in T .

Hence, they essentially encode the same information. We bound the entropy of T o
k and T e

k together,
showing that their total entropy is no more than nH ′

h+nH ′
h+1 bits, which can be bounded by 2nHh

by Theorem 1. Hence, representing any of the two requires at most nHh + O(2k lg σ) bits, proving
the lemma (since we need that bound for T e

k). For the sake of clarity, let nx,yz
o denote the number of

occurrences in T o
k of the concatenated sequence yzx, where y, z ∈ σ2k

and x ∈ P ∗
h (where nx,yz

o = 0
when x is not aligned to a position of T o

k reflected in T). We similarly define nx,yz
e for T e

k . Then,
their entropy is

(20)

nH ′
h(T o

k) + nH ′
h(T e

k) =
∑

x∈P ∗
h

lg

(

nx
o

nx,11
o , nx,12

o , . . . , nx,σ2k
σ2k

o

)

+
∑

x∈P ∗
h

lg

(

nx
e

nx,11
e , nx,12

e , . . . , nx,σ2k
σ2k

e

)

Using equation (15), we separate the terms in (20) fully into a product of binomial coefficients

with σ2k+1

total terms. Then, since
(

a
b

)(

c
d

)

≤
(

a+c
b+d

)

for all positive a ≥ b, c ≥ d, we simplify by
combining the respective terms in (20) to get

∑

x∈P ∗
h

lg

(

nx

nx,11, nx,12, . . . , nx,σ2k
σ2k

)

=
∑

x∈P ∗
h

lg

(

nx!
∏

y,z∈σ2k nx,yz!

)

=
∑

x∈P ∗
h

lg

(

nx!
∏

y,z∈σ2k nx,yz!

)(

∏

z∈σ2k nx,z!
∏

z∈σ2k nx,z!

)

=
∑

x∈P ∗
h

lg

(

nx!
∏

z∈σ2k nx,z!

)(

∏

z∈σ2k nzx!
∏

y,z∈σ2k nzx,y!

)

= nH ′
h + nH ′

h+1

by the definition of high-order empirical entropy H ′
h from equation (10) and multinomial coeffi-

cients.

5.2.2 Bounds for the Entropy-Compressed Suffix Array

We have almost all of the pieces we need to prove Theorems 6–8 for csa. We begin with the proof
of Theorem 6. We define ℓ = lg lgσ n to be the last level in the csa, as given in Section 5.1. We
introduce a special level ℓ′ = ℓ−O(1), such that σ2ℓ′

= O(nβ) for any arbitrary constant 0 < β < 1.
Our choice of ℓ′ implies that 2ℓ′ = Θ(lgσ n) and 2ℓ−ℓ′ = O(1).

Instead of storing all levels as discussed in Section 5.1, we only store the levels k = 0, lg ℓ′, lg ℓ′+
1, lg ℓ′ + 2, . . . , ℓ′ − 1, ℓ′ of the recursion in the csa. (Notice the gap between 0 and lg ℓ′, and the
gap between ℓ′ and ℓ.) For each of these levels up to ℓ′, we store a bitvector Bk and a neighbor
function Φk as described in Section 5.1, with their space detailed in the points below:

1. Bitvector B0 stores nlg ℓ′ entries out of a universe of size n, implemented as an indexable
dictionary [RRR02] using O(nlg ℓ′ lg(n/nlg ℓ′)) = O(n lg lg lgσ n/ lg lgσ n) bits. For lg ℓ′ ≤ k ≤
ℓ′−1, bitvector Bk stores nk/2 entries out of a universe of size nk, implemented as an indexable
dictionary requiring O(nk) bits. Hence, the total contribution is O(n lg lg lgσ n/ lg lgσ n) bits.

2. Neighbor function Φk is implemented as described in Section 5.2.1. The space bounds are
stated in Theorems 4–5 when k = 0, namely, either nHh +O(n lg lg n/ lgσ n)+g′h lg(1+n/g′h)
or nHh + O(n) + g′h lg(1 + n/g′h) bits of space, where g′h = O(σh+1). For k > 0, we use

Lemma 10, which gives
∑ℓ′

k=lg ℓ′(nHh +O(nk +σ2k+h)) < nHh(lg lgσ n−1)+O(nlg ℓ′ +σ2ℓ′+h)

bits, where the second term can be bounded as O(nlg ℓ′ + σ2ℓ′+h) = O(n/ lg lgσ n + σhnβ).

30

3. Level k = ℓ should explicitly store the suffix array SAℓ and the inverted suffix array SA−1
ℓ ,

according to what we described in Section 5.1. To significantly reduce the space usage,
we now store the arrays at level ℓ + lg t(n) where we fix t(n) = lg lgσ n. Hence we store
SAℓ+lg t(n), SA−1

ℓ+lg t(n), along with an array LCP ℓ+lg t(n) for the longest common prefix in-
formation [MM93] to allow fast searching in SAℓ+lg t(n), with a total space contribution of
O(n lg σ/ lg lgσ n) bits for level ℓ + lg t(n).

Summing up the bounds in points 1–3, we obtain nHh lg lgσ n + O
(

n
(

lg lg lgσ n/ lg lgσ n +
lg lg n/ lgσ n + lg σ/ lgσ n

)

+ σh(nβ + σ)
)

bits of space required for the csa, for any arbitrarily
small constant 0 < β < 1. Note that the latter bound is nHh lg lgσ n + o(n lg σ) + O(σh(nβ + σ)).
The space has an additional term O(n) = o(n lg σ) when σ is non-constant, since we use Theorem 5
for level k = 0.

Building the above data structures is a variation of what was done in [GV05]; thus it takes
O

(

n lg σ + σh(nβ + σ)
)

time to compress (as given in Definition 2). The lookup operation requires

O(2lg ℓ′ + ℓ′ + 2ℓ+lg t(n)−ℓ′) = O(lg lgσ n) time because accessing any of the data structures in any
level requires constant time. (Note that, for level k = 0, we use Theorem 4 if σ = O(1) or
Theorem 5 otherwise). A substring query for c symbols requires O(c/ lgσ n + lg lgσ n) time since
Φℓ′ decompresses 2ℓ′ = Θ(lgσ n) symbols at a time, as we remarked in Section 5.1. This completes
the proof of Theorem 6.

We now discuss the complexity of csa that leads to Theorem 7. We keep a constant number 1/ǫ
of the levels as in [GV05], where 0 < ǫ ≤ 1/2. In particular, we store level 0, level ℓ′, and then one
level every other λℓ′ levels; in sum, 1 + 1/λ = 1/ǫ levels, where λ = ǫ/(1− ǫ) with 0 < λ < 1. Each
such level k ≤ ℓ′ stores the following data structures:

• A directory Dk (in place of Bk in point 1 above) storing the nk+λℓ′ (or nℓ when k = ℓ′) entries
of the next sampled level. Note that D0, which stores nλℓ′ entries out of a universe of size n,
requires just O(nλℓ′ℓ

′) = O(n lg lgσ n/ lgλ
σ n) bits by using an indexable dictionary [RRR02].

Each of the other Dk’s add a geometrically decreasing contribution upper bounded by the
cost of D0.

• A neighbor function Φk implemented as given in point 2 above. For all levels k = λℓ′, 2λℓ′, . . .,
neighbor function Φk contributes a (geometrically decreasing) total of O(nλℓ′) = O(n/ lgλ

σ n)
bits, in addition to the term of O(σ2ℓ′+h) = O(σhnβ) as before. Note that the analysis for Φ0

is as given in point 2 above. The total required space is therefore (where λ > ǫ)

(21) ǫ−1nHh + O

(

n lg lgσ n

lgλ
σ n

+
n lg lg n

lgσ n
+ σhnβ

)

= ǫ−1nHh + O

(

n lg lg n

lgǫ
σ n

+ σhnβ

)

.

• The arrays mentioned in point 3 above, except that we now fix t(n) = lgλ
σ n lg σ. Thus, we

obtain a total space contribution of O(n lg σ/t(n)) = O(n/ lgλ
σ n) bits.

In sum, we obtain a total space complexity that is bounded by equation (21). Thus, we are able
to save space at a small cost to lookup, namely, O(2λℓ′ lg σ+(1/ǫ−1)2λℓ′ +2ℓ+lg t(n)−ℓ′) time, where
the lg σ factor in the first term is due to the implementation of Φ0 with the bounds of Theorem 4.
Simplifying, we obtain O(lgλ

σ n lg σ + t(n)) = O(lgλ
σ n lg σ) = O((lgσ n)ǫ/1−ǫ lg σ). The substring

operation for c symbols requires an additional O(c/ lgσ n) time. We can drop the lg σ factor to
O(1) in Corollary 3 by using Theorem 5 for the analysis of Φ0. Building the above data structures
is again a variation of what was done for Theorem 6, so compress requires O(n lg σ + σhnβ) time,
thus proving Theorem 7.

Finally, we prove Theorem 8, which is an interesting special case by a simple modification of
the scheme described above. Here we just keep levels 0 and ℓ + lg t(n) where t(n) = lg n/ lg lg n.
We store the following data structures:

• Dictionary D0 stores nℓ+lg t(n) entries over a universe of size n, requiring O(nℓ+lg t(n)(ℓ +
lg t(n))) = O(n(lg lgσ n + lg t(n))/(t(n) lgσ n)) bits using an indexable dictionary [RRR02].

31

• The neighbor function Φ0 as given in point 2 above, with the bounds of Theorem 4.
• The three arrays as given in point 3 above, using O(n lg σ/t(n)) bits.

Thus, the total space is nHh + O(n(lg lgσ n + lg t(n))/(t(n) lgσ n) + n lg lg n/ lgσ n + n lg σ/t(n)) =
nHh + O(n lg lg n/ lgσ n) bits. We also have to add O

(

σh+1 lg(1 + n/σh+1)
)

bits for the statistical

model. The lookup cost is bounded by O(2ℓ+lg t(n) lg σ) = O(t(n) lgσ n lg σ) = O(lg2 n/ lg lg n),
where the lg σ factor comes from the cost of a call to Φ0 (with the bounds of Theorem 4). Similarly,
decompressing each symbol in substring has a O(lg σ) cost.

6 Applications to Text Indexing

We use the csa as an integral component of an efficient text indexing structure that attains the
hth-order entropy for a text T of n symbols over alphabet Σ. Throughout this section, we assume
that h+1 ≤ α lgσ n for any arbitrary constant α < 1 to guarantee that the encoding of the empirical
statistical model requires o(n) bits. 13 Our high-order entropy-compressed text indexes support fast
searching of a pattern P of length m in O(m + polylg(n)) time with only nHh + o(n) bits, where
nHh is the information-theoretic upper bound on the number of bits required to encode the text T
of length n (cf. Section 2). We also describe a text index that takes o(m) search time and uses
o(n) bits on highly compressible texts with a small-sized alphabet Σ. The full list of tradeoffs for
the space and time complexity of compressed text indexing is shown in Table 2.

6.1 High-Order Entropy-Compressed Text Indexing

We now present our search of a pattern P of length m in the csa for T . We need the following
pattern matching tool to search for P in a sequence of contiguous suffixes stored in the csa, in
compressed form, where the proof of Lemma 11 is given in Section 6.2.

Lemma 11 (Pattern matching tool) Given a sequence of r consecutive suffixes stored in the
csa, we can search for the leftmost and the rightmost of these suffixes having P as a prefix, in
O(m + r) symbol comparisons plus O(r) lookup and substring operations.

We show how to search P using the csa and the tool in Lemma 11. We first perform a binary
search of P in SAℓ+lg t(n), which is stored explicitly along with LCP ℓ+lg t(n), the longest common
prefix information required in [MM93]. (The term t(n) depends on the implementation of the csa

as described in Section 5.2.2.) Because we have the longest common prefix information, the binary
search requires only O(m) symbol comparisons plus O(lg n) lookup and substring operations. At
that point, we locate r = 2ℓ+lg t(n) = O(t(n) lgσ n) contiguous suffixes stored, in compressed form,
in the csa. We run the pattern matching tool in Lemma 11 on these r suffixes, at the cost of
O(m+ t(n) lgσ n) symbol comparisons and O(t(n) lgσ n) calls to lookup and substring , which is also
the asymptotic cost of the whole search. The following results show several tradeoffs that we obtain
with the simple search scheme described so far.

Theorem 9 Given a text T of n symbols over an alphabet Σ, we can replace T by a csa occupy-
ing ǫ−1nHh + O(n lg lg n/ lgǫ

σ n) bits, so that searching a pattern of length m takes O(m/ lgσ n +
(lg n)(1+ǫ)/(1−ǫ)(lg σ)(1−3ǫ)/(1−ǫ)) time, for any fixed value of 0 < ǫ ≤ 1/2. Reporting each occurrence
of the pattern takes O((lg n)(1+ǫ)/(1−ǫ)(lg σ)(1−3ǫ)/(1−ǫ)) time.

Proof : Using Theorem 7, we have t(n) = lgλ
σ n lg σ, where λ = ǫ/(1 − ǫ). The O(m + t(n) lgσ n)

symbol comparisons give a contribution of O((m + lg1+λ
σ n lg σ)/ lgσ n) = O(m/ lgσ n + lgλ

σ n lg σ),

13This condition is not satisfied if keeping the suffix array uncompressed for the text T requires nearly the same
space as encoding the hth-order empirical statistics of T . Hence T is not a low-entropy text.

32

since we can decompress and compare Θ(lgσ n) adjacent symbols with O(1) RAM operations. The
O(t(n) lgσ n) = O(lg1+λ

σ n lg σ) calls to lookup and substring (see Lemma 11) give a contribution of
O(lg1+2λ

σ n lg2 σ) = O((lg n)(1+ǫ)/(1−ǫ)(lg σ)(1−3ǫ)/(1−ǫ)).

For example, fixing ǫ = 1/2 in Theorem 9 when σ = O(1), we obtain a search time of O(m/ lg n+
occ × lg3 n) with a self-index occupying 2nHh + O(n lg lg n/

√
lg n) bits, where occ is the number

of occurrences reported. We can reduce the space to nHh bits plus a lower-order term, obtaining
the first nearly space-optimal self-index with polylg(n) reporting time.

Theorem 10 Given a text of n symbols over an alphabet Σ, we can replace it by a csa occupying
nearly optimal space, i.e., nHh + O(n lg lg n/ lgσ n) bits, so that searching a pattern of length m
takes O(m lg σ + lg4 n/(lg2 lg n lg σ)) time. Reporting each pattern occurrence takes O(m lg σ +
lg4 n/(lg2 lg n lg σ)) time.

Proof : Using Theorem 8, we have t(n) = lg n/ lg lg n. The O(m + t(n) lgσ n) symbol comparisons
contribute O(m lg σ + lg2 n/ lg lg n), while the O(t(n) lgσ n) = O(lg2 n/(lg lg n lg σ)) calls to lookup
and substring give a contribution of O(lg4 n/(lg2 lg n lg σ)).

If we augment the csa to obtain the hybrid multi-level data structure in [GV05], we can improve
the lower-order terms in the search time of Theorem 9, where t(n) = lgλ

σ n lg σ and λ = ǫ/(1−ǫ) > ǫ.
We use a sparse suffix tree storing every other (t(n) lg n)th suffix using O(n/t(n)) = O(n/ lgǫ

σ n)
bits to locate a portion of the (compressed) suffix array storing O(t(n) lg n) suffixes. However, we
do not immediately run our pattern matching tool from Lemma 11; instead, we employ a nested
sequence of space-efficient Patricia tries [MRS98] of size lgω−λ n until we are left with segments of
r = lgλ

σ n adjacent suffixes in the csa, for any fixed value of 1 > ω ≥ 2λ > 0. This scheme adds
O(n/r) = O(n/ lgǫ

σ n) bits to the self-index, allowing us to restrict the search of pattern P to a
segment of r consecutive suffixes in the csa. At this point, we run our pattern matching tool from
Lemma 11 on these r suffixes to identify the leftmost occurrence of the pattern.

Theorem 11 Given a text of n symbols over an alphabet Σ, we can replace it by a hybrid csa oc-
cupying ǫ−1nHh+O(n lg lg n/ lgǫ

σ n) bits, so that searching a pattern of length m takes O(m/ lgσ n+
lgω n lg1−ǫ σ) time, for any fixed value of 1 > ω ≥ 2ǫ/(1 − ǫ) > 0 and 0 < ǫ ≤ 1/3.

Proof : Searching in the sparse suffix tree takes O(m/ lgσ n+lgλ
σ n lg σ) time as in [GV05], where the

second term is our lookup cost in Theorem 7 with λ = ǫ/(1 − ǫ). Then, the search goes through a
constant number of space-efficient Patricia tries with O(lgω−λ n) calls to lookup and substring , each
of O(lgλ

σ n lg σ) time, requiring a total of O(lgω n lg1−ǫ σ) time by Theorem 7. Finally, the pattern
matching tool is run on a segment of r = O(lgλ

σ n) suffixes, in O(lg2λ
σ n lg σ) = O(lgω n lg1−ǫ σ) time.

The cost of comparing Θ(lgσ n) symbols at a time and decompressing them sums to O(m/ lgσ n),
where the additional cost of substring is accounted for above.

We provide the first self-index with small alphabets that is sublinear both in space and in search
time.

Corollary 4 For any low-entropy text over an alphabet of size σ = O(1), the self-index in The-
orem 11 occupies just o(n) bits and requires o(m) search time. Reporting each occurrence takes
o(lg n) time.

33

6.2 A Pattern Matching Tool

In this section, we prove Lemma 11 by describing the implementation of the following pattern
matching tool. Given a list of r sequences S1 ≤ · · · ≤ Sr in lexicographical order, the pattern
matching tool identifies the least sequence Si having P as a prefix in O(m + r) time. (Identifying
the greatest such sequence is analogous.) We first assume that these r suffixes are explicitly given.
Next, we show how to adapt the tool when these suffixes are stored, in compressed form, in the
csa.

Our search tool is reminiscent of the Patricia search [Mor68], the Hirschberg’s sequential
search [Hir78], and the Bit-Tree search [Fer92], as we only need one full comparison of P against a
suffix. Our tool examines the sequences S1, . . . , Sr in left-to-right order. We start out by comparing
the symbols of P against the symbols of S1 consecutively until there is a mismatch. We then find
the first match in S2 starting with the symbol that caused the mismatch with S1. We repeat this
process starting at S2. We stop when we have examined all the sequences unsuccessfully (declaring
that there is no occurrence of P), or we succeed in matching the symbols of P at sequence Si. The
steps are detailed below, where we denote the kth symbol of a sequence S by S[k]:

1. Set i = 1 and k = 1.
2. Increment k until either k > m or Si[k] 6= P [k]. If k > m, go to step 4; otherwise, find the

smallest j > i such that Sj [k] = P [k].
3. If such j does not exist, declare that P is not the prefix of any sequence and quit with a

failure. Otherwise, assign the value of j to i.
4. If k ≤ m, go to step 2. Otherwise, check whether Si has P as a prefix, returning Si as the

least sequence in case of success; declare a failure otherwise.

Denoting the positions assigned to i in step 3 with i1 < i2 < · · · < ik, we observe that we do not
access the first k− 1 symbols of Sik−1+1, . . . , Sik , which could be potential mismatches. In general,
we compare only a total of O(ik +k) symbols of Si1 , . . . , Sik against those in P , where ik ≤ r. Only
when we have reached the end of the pattern P (i.e. k > m) do we set i = im and perform a full
comparison of P against Si in order to determine if there is really a match. This results in a correct
method notwithstanding potential mismatches.

Lemma 12 Given a list of r sequences S1, . . . , Sr in lexicographical order, let Si be the sequence
identified by our search tool. If P is a prefix of Si, then Si is the least sequence with this property.
Otherwise, no sequence in S1, . . . , Sr has P as a prefix. The cost of the search is O(m + r) time,
where m is the length of P .

Proof : Suppose P is a prefix of Si, where Si was identified by our search tool. We first show that
P is not a prefix of S1, . . . , Si−1. Suppose by contradiction that a sequence Sf has P as a prefix,
where f < i. Suppose that we are matching the kth symbol of P at the time we examine Sf . Since
P is a prefix of Sf , we have a match and our search tool scans the (k + 1)st symbol in P , the
(k+2)nd symbol in P and so on, matching all of them with Sf . Hence, our search tool identifies Sf

with f 6= i, giving a contradiction. This logic proves the first part of the lemma; namely that Si is
the least sequence having P as a prefix, because we consider the sequences Si in lexicographical
order.

To prove the second part, we know that our search tool fails to match P . To see why no sequence
in S1, . . . , Sr has P as a prefix, note that S1, . . . , Si−1 cannot have P as a prefix as shown in the
previous paragraph. We also have to show this property for the remaining sequences Si, . . . , Sr.
Suppose by contradiction that a sequence Sj , with j ≥ i, has P as a prefix. Let k be the position
of the rightmost symbol in P that we compare to Sj . Our method implies that the kth symbol in
Sj is different from that of P . Hence, P cannot be a prefix of Sj , giving the contradiction.

Finally, the time required is O(m+r), as each comparison in our method contributes to at most
2m matches and at most r mismatches.

34

We now evaluate how the time complexity is affected if S1, . . . , Sr are implicitly stored in the
csa, say, at consecutive positions q + 1, . . . , q + r for a suitable value of q. To use our search tool,
we need to decompress starting from the kth symbol of a suffix Si by knowing its position q + i
in the csa. (Recall that SA[q + i] contains the starting position of Si in the text.) To this end,
it suffices to decompress the first symbols in the suffix at position SA−1

[

SA[q + i] + k − 1
]

in the
csa, where SA and SA−1 denote the suffix array and its inverse (as mentioned in Definition 2).
Equivalently, the latter suffix Sj can be obtained by removing the first k− 1 symbols from Si since
j = SA[q+i]+k−1. This scheme only requires a constant number of lookup operations and a single
substring operation, with a cost that is independent of the value of k, thus proving Lemma 11.

7 Conclusions

We have presented a unified algorithmic framework to obtain new results in the area of compression
and text indexing. We described two techniques—a context-sensitive partitioning scheme and the
wavelet tree—to provide the first optimal space bounds for the Burrows-Wheeler transform aside
from lower-order terms. We then used this critical framework to develop a text indexing structure
based on a high-order entropy-compressed suffix array that exhibit several tradeoffs between occu-
pied space and search/decompression time. We described how to implement them as a self-index
requiring nHh + O(n lg lg n/ lgσ n) bits of space and allowing searches of patterns of length m in
O(m lg σ + polylg(n)) time. Our scheme provides the first self-index that asymptotically realizes
the high-order entropy Hh per symbol of the text. We also proved how to achieve the first self-
index with sublinear size o(n) in bits and sublinear query time o(m) for low-entropy texts over an
alphabet of constant size.

The most immediate goal is to address whether a compressed full-text index with nHh +
O(polylg(n)) bits and O(m + polylg(n)) query time exists. If not, it would separate indexing from
compression for low-entropy strings. Beyond that, we would like to achieve nHh+O(n lg lg n/ lgσ n)
bits with an optimal O(m/ lgσ n + occ) search time. A compelling problem is to improve the time
for lookup so that each call takes constant time. Another interesting challenge would be to support
approximate matches (those that match patterns with some threshold of error).

Acknowledgments

We would like to thank Rajeev Raman, Venkatesh Raman, S. Srinivasa Rao, and Kunihiko Sadakane
for sending us a copy of the full journal version of their papers, and Rajeev Raman and S. Srinivasa
Rao for clarifying some details on succinct data structures. We would also like to thank Paolo
Ferragina, Raffaele Giancarlo, and Giovanni Manzini for fruitful discussions, and Frank Ruskey for
sending us a chapter of [Rus05].

References

[Aar05] Scott Aaronson. NP-complete problems and physical reality. SIGACT News, 36(1):30, 2005.

[AV88] A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related problems. Commu-
nications of the ACM, 31(9):1116–1127, 1988.

[Bau04] Eric Baum. What is Thought? MIT Press, 2004.

[BB04] Daniel K. Blandford and Guy E. Blelloch. Compact representations of ordered sets. In SODA ’04:
Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, pages 11–19. Society
for Industrial and Applied Mathematics, 2004.

[BBK03] Daniel K. Blandford, Guy E. Blelloch, and Ian A. Kash. Compact representations of separable graphs. In
SODA ’03: Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages
679–688. Society for Industrial and Applied Mathematics, 2003.

35

[BDFC05] Michael A. Bender, Erik D. Demaine, and Martin Farach-Colton. Cache-oblivious B-trees. SIAM J.
Comput., 2005. (Also in IEEE FOCS 2000.).

[BDMR99] David Benoit, Erik D. Demaine, J. Ian Munro, and Venkatesh Raman. Representing trees of higher
degree. In Proceedings of the 6th International Workshop on Algorithms and Data Structures, WADS’99
(Vancouver, Canada, August 11-14, 1999), volume 1663 of LNCS, pages 169–180. Springer-Verlag, 1999.

[BM99] Andrej Brodnik and J. Ian Munro. Membership in constant time and almost-minimum space. SIAM
Journal on Computing, 28(5):1627–1640, October 1999.

[BW94] M. Burrows and D.J. Wheeler. A block sorting data compression algorithm. Technical report, Digital
Systems Research Center, 1994.

[Cha04] B. Chazelle. Who says you have to look at the input? The brave new world of sublinear computing,
2004. Plenary talk at at the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004).

[CT91] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience, New York, 1991.

[DLO03] Erik D. Demaine and Alejandro López-Ortiz. A linear lower bound on index size for text retrieval. J.
Algorithms, 48(1):2–15, 2003.

[Eli75] Peter Elias. Universal codeword sets and representations of the integers. IEEE Transactions on Infor-
mation Theory, IT-21:194–203, 1975.

[Fel68] W. Feller. An Introduction to Probability Theory and its Applications, volume 1. John Wiley & Sons,
New York, 3rd edition, 1968.

[Fen96] P. Fenwick. Punctured elias codes for variable-length coding of the integers. 1996. The University of
Auckland, NZ. TR 137. ISSN 1173-3500.

[Fen02] P. Fenwick. Burrows-Wheeler compression with variable-length integer codes. In Software–Practice and
Experience, volume 32, pages 1307–1316, 2002.

[Fer92] David E. Ferguson. Bit-Tree: a data structure for fast file processing. Communications of the ACM,
35(6):114–120, June 1992.

[FGGV04] L. Foschini, R. Grossi, A. Gupta, and J. S. Vitter. Fast compression with a static model in high-order
entropy. In Proceedings of the IEEE Data Compression Conference, Snowbird, UT, March 2004.

[FGMS05] Paolo Ferragina, Raffaele Giancarlo, Giovanni Manzini, and Gabriella Sciortino. Boosting textual com-
pression in optimal linear time. Journal of the ACM, 52(4):688–713, 2005. (Also in CPM 2003, ACM-
SIAM SODA 2004.).

[FM05] Paolo Ferragina and Giovanni Manzini. On compressing and indexing data. Journal of the ACM,
52(4):552–581, 2005. (Also in IEEE FOCS 2000.).

[FMMN04] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. Succinct representation of
sequences. Technical Report DCC-2004-5, Departamento de Ciencias de la Computación, Universidad
de Chile, August 2004. (Also in SPIRE 2004.).

[FTL03] P. Fenwick, M. Titchener, and M. Lorenz. Burrows Wheeler – alternatives to move to front. Data
Compression Conference (DCC), 2003.

[GBS92] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. New indices for text: PAT trees and PAT
arrays. In Information Retrieval: Data Structures And Algorithms, chapter 5, pages 66–82. Prentice-Hall,
1992.

[GGV03] Roberto Grossi, Ankur Gupta, and Jeffrey S. Vitter. High-order entropy-compressed text indexes. In
Proceedings of the Thitheenth Annual ACM-SIAM Symposium on Discrete Algorithms. ACM/SIAM,
January 2003.

[GGV04] Roberto Grossi, Ankur Gupta, and Jeffrey S. Vitter. When indexing equals compression: Experiments
with compressing suffix arrays and applications. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, January 2004.

[GM03] Anna Gál and Peter Bro Miltersen. The cell probe complexity of succinct data structures. In Automata,
Languages and Programming, 30th International Colloquium (ICALP 2003), volume 2719 of Lecture
Notes in Computer Science, pages 332–344. Springer-Verlag, 2003.

[GRR04] Richard F. Geary, Rajeev Raman, and Venkatesh Raman. Succinct ordinal trees with level-ancestor
queries. In SODA ’04: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 1–10. Society for Industrial and Applied Mathematics, 2004.

[GV05] Roberto Grossi and Jeffrey S. Vitter. Compressed suffix arrays and suffix trees with applications to text
indexing and string matching. SIAM J. Comput., 2005. (Also in ACM STOC 2000.).

36

[Hir78] D. S. Hirschberg. A lower worst-case complexity for searching a dictionary. In Proc. 16th Annual Allerton
Conference on Communication, Contr ol, and Computing, pages 50–53, 1978.

[Jac89a] Guy Jacobson. Space-efficient static trees and graphs. In Proceedings of the 30th Annual IEEE Symposium
on Foundations of Computer Science, pages 549–554, 1989.

[Jac89b] Guy Jacobson. Succinct static data structures. Technical Report CMU-CS-89-112, Dept. of Computer
Science, Carnegie-Mellon University, January 1989.

[KM99] S. Rao Kosaraju and Giovanni Manzini. Compression of low entropy strings with lempel-ziv algorithms.
SIAM J. Comput., 29(3):893–911, 1999.

[Knu05] Donald E. Knuth. Combinatorial Algorithms, volume 4 of The Art of Computer Programming. Addison-
Wesley, Reading, MA, USA, 2005. In preparation.

[KV98] P. Krishnan and J. S. Vitter. Optimal prediction for prefetching in the worst case. SIAM Journal on
Computing, 27(6):1617–1636, December 1998.

[LS97] T. Luczak and W. Szpankowski. A suboptimal lossy data compression based in approximate pattern
matching. IEEE Trans. Information Theory, 43:1439–1451, 1997.

[LV97] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications. Springer Verlag,
1997.

[Man01] Giovanni Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM, 48(3):407–430,
May 2001.

[McC76] Eduard M. McCreight. A space-economical suffix tree construction algorithm. Journal of the ACM,
23(2):262–272, 1976.

[Mil05] Peter Bro Miltersen. Lower bounds on the size of selection and rank indexes. In Proc. the Sixteenth
ACM-SIAM symposium on Discrete Algorithms (SODA05), pages 11–12, Philadelphia, PA, USA, 2005.

[MM93] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches. SIAM Journal on
Computing, 22(5):935–948, 1993.

[Mor68] Donald R. Morrison. PATRICIA - Practical Algorithm To Retrieve Information Coded In Alphanumeric.
Journal of the ACM, 15(4):514–534, October 1968.

[MR02] J. Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses and static trees.
SIAM Journal on Computing, 31(3):762–776, June 2002.

[MR04] J. Ian Munro and S. Srinivasa Rao. Succinct representations of functions. In Annual International Col-
loquium on Automata, Languages and Programming (CALP), volume 3142 of Lecture Notes in Computer
Science, pages 1006–1015. Springer-Verlag, 2004.

[MRRR03] J. Ian Munro, Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct representations of
permutations. In Annual International Colloquium on Automata, Languages and Programming (CALP),
volume 2719 of Lecture Notes in Computer Science, pages 345–356. Springer-Verlag, 2003.

[MRS98] J. Ian Munro, Venkatesh Raman, and S. Srinivasa Rao. Space efficient suffix trees. In Proceedings of
Foundations of Software Technology and Theoretical Computer Science, volume 1530 of Lecture Notes in
Computer Science, pages 186–195. Springer-Verlag, 1998.

[MRS01a] J. Ian Munro, Venkatesh Raman, and S. Srinivasa Rao. Space efficient suffix trees. Journal of Algorithms,
39:205–222, 2001.

[MRS01b] J. Ian Munro, Venkatesh Raman, and Adam J. Storm. Representing dynamic binary trees succinctly.
In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-01), pages
529–536, New York, January 7–9 2001. ACM Press.

[Mun96] J. Ian Munro. Tables. FSTTCS: Foundations of Software Technology and Theoretical Computer Science,
16:37–42, 1996.

[Mut03] S. Muthukrishnan. Data streams: Algorithms and applications, 2003. Plenary talk at the 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2003).

[NM05] Gonzalo Navarro and Veli Mäkinen. Compressed full-text indexes. Technical Report DCC-2005-7, De-
partamento de Ciencias de la Computación, Universidad de Chile, June 2005.

[Pag01] Rasmus Pagh. Low redundancy in static dictionaries with constant query time. SIAM Journal on
Computing, 31:353–363, 2001.

[Rao02] S. Srinivasa Rao. Time-space trade-offs for compressed suffix arrays. IPL, 82(6):307–311, 2002.

[RC93] J. H. Reif and S. Chen. Using difficulty of prediction to decrease computation: Fast sort, priority queue
and convex hull on entropy bounded inputs. In Proceedings of the IEEE Symposium on Foundations of
Computer Science, volume 34, Palo Alto, 1993.

37

[RR03] Rajeev Raman and S. Srinivasa Rao. Succinct dynamic dictionaries and trees. In Annual Interna-
tional Colloquium on Automata, Languages and Programming (CALP), volume 2719 of Lecture Notes in
Computer Science, pages 357–368. Springer-Verlag, 2003.

[RRR02] Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In ACM-SIAM Symposium on Discrete Algorithms, pages 233–242,
2002.

[Rus05] Frank Ruskey. Combinatorial Generation. 2005. In preparation.

[Sad02] Kunihiko Sadakane. Succinct representations of lcp information and improvements in the compressed
suffix arrays. In Proceedings of the Thitheenth Annual ACM-SIAM Symposium on Discrete Algorithms.
ACM/SIAM, 2002.

[Sad03] Kunihiko Sadakane. New text indexing functionalities of the compressed suffix arrays. J. Algorithms,
48(2):294–313, 2003. (Also in ISAAC 2000.).

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379–423,
July 1948.

[Ukk95] Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, September 1995.

[VK96] J. S. Vitter and P. Krishnan. Optimal prefetching via data compression. Journal of the ACM, 43(5),
September 1996.

[Wei73] Peter Weiner. Linear pattern matching algorithm. Proc. 14th Annual IEEE Symposium on Switching
and Automata Theory, pages 1–11, 1973.

[ZL77] J. Ziv and A. Lempel. A universal algorithm for sequential data compression. IEEE Transactions on
Information Theory, 23(3):337–343, 1977.

38

