
Compressed SuÆx Arrays and SuÆx Trees

with Applications to Text Indexing and String Matching�

Roberto Grossi y

Dipartimento di Informatica

Universit�a di Pisa

56125 Pisa, Italy

grossi@di.unipi.it

Je�rey Scott Vitter z

Department of Computer Science

Duke University

Durham, N. C. 27708{0129

jsv@cs.duke.edu

Abstract

The proliferation of online text, such as on the World Wide Web and in databases, motivates
the need for space-eÆcient text indexing methods that support fast string searching. In this
scenario, consider a text T that is made up of n symbols drawn from a �xed alphabet � and
that is represented in n log j�j bits by encoding each symbol with log j�j bits. The goal is to
support quick search queries of any string pattern P of m symbols, with T being fully scanned
only once, namely, when the index is created.

Text indexing schemes published in the literature are greedy of space and require additional

(n logn) bits in the worst case. For example, suÆx trees and suÆx arrays need
(n) memory
words of
(logn) bits in the standard unit cost RAM. These indexes are larger than the text
itself by a factor of
(log

j�j n), which is signi�cant when � is of constant size, such as ascii
or unicode. On the other hand, they support fast searching either in O(m log j�j) time or in
O(m + logn) time, plus an output-sensitive cost O(occ) for listing the pattern occurrences.

We present a new text index that is based upon new compressed representations of suÆx
arrays and suÆx trees. It achieves O(m= log

j�j n + log�
j�j n) search time in the worst case, for

any constant 0 < � � 1, with at most
�
��1 + O(1)

�
n log j�j bits of storage; that is, the index

size is comparable to the text size in the worst case. The above bounds improve both time and
space of previous indexing schemes. Listing the pattern occurrences introduces a sublogarithmic
slowdown factor in the output-sensitive cost, giving O(occ log�

j�j n) time as a result. When the
patterns are suÆciently long, we can use auxiliary data structures in O(n log j�j) bits to obtain
a total search bound of O(m= log

j�j n+ occ) time, which is optimal.

�A preliminary and shortened version of the results has been presented in the Thirty-Second Annual ACM Sym-

posium on the Theory of Computing [GV00].
yWork supported in part by the United Nations Educational, Scienti�c and Cultural Organization (UNESCO)

under contract UVO-ROSTE 875.631.9 and by the Italian Ministry of Research and Education (MURST).
zPart of this work was done while the author was on sabbatical at I.N.R.I.A. in Sophia Antipolis, France. It was

supported in part by Army Research OÆce MURI grant DAAH04{96{1{0013 and grant DAAD19{01{1{0725 and by

National Science Foundation research grant CCR{9877133.

1 Introduction

A great deal of textual information is available in electronic form in databases and on the World
Wide Web, and therefore devising eÆcient text indexing methods to support fast string searching
is an important research topic. A basic search operation involves string matching [KMP77], in
which one is interested in looking for the occurrences of a pattern string P of length m in a longer
text string T of length n, both strings having their symbols drawn from a �xed alphabet � of
size j�j � n. An occurrence of the pattern at position i identi�es substring T [i; i +m � 1] equal
to P , where T [i; j] denotes the concatenation of the symbols in T at positions i, i+1, . . . , j. In this
paper, we consider three types of queries: existential, counting, and enumerative. An existential
query returns a boolean value that says if P is contained in T . A counting query computes the
number occ of occurrences of P in T , where occ � n. An enumerative query outputs the list of occ
positions where P occurs in T . EÆcient string matching algorithms, such as [KMP77], can answer
each individual query in O(m+ n) time by an eÆcient text scan.

The large mass of presently existing text documents makes it infeasible to scan through all
the documents for every query, because n is typically much larger than the pattern length m and
the number of occurrences occ. In this scenario, text indexes are preferable, as they are especially
eÆcient when several string searches are to be performed on the same set of text documents. The
text T needs to be entirely scanned only once, namely, when the indexes are created. After that,
searching is output-sensitive, that is, the time complexity of each search query is proportional to
either O(m log j�j+ occ) or O(m+ log n+ occ), instead of O(m+ n).1

The most popular indexes currently in use are inverted lists and signature �les [Knu98]. Inverted
lists are theoretically and practically superior to signature �les [ZMR98]. Their versatility allows
for several kinds of queries (exact, boolean, ranked, and so on) whose answers have a variety of
output formats. They are eÆcient indexes for texts that are structured as long sequences of terms
or keywords obtained by partitioning T into non-overlapping substrings T [ik; jk] (the terms), where
1 � ik � jk < ik+1 � n. We refer to the set of terms as the vocabulary. For each distinct term
in the vocabulary, the index maintains the (inverted or position) list fikg of the occurrences of
that term in T . As a result, search queries must be limited to terms or portions of them; it is not
eÆcient to search for arbitrary substrings of the text as in the string matching problem. For this
reason, inverted �les are sometimes referred to as term-level or word-level text indexes.

Searching unstructured text to answer string matching queries adds a new diÆculty to text
indexing. This case arises with DNA sequences and in some Eastern languages (Burmese, Chinese,
Taiwanese, Tibetan, etc.), which do not have a well-de�ned notion of terms. Here, the set of success-
ful search keys is possibly much larger than the set of terms in structured texts, because it consists
of all feasible substrings of T ; that is, we can have

�
n
2

�
= �(n2) distinct substrings in the worst

case, while the number of distinct terms is at most n (considered as nonoverlapping substrings).
SuÆx arrays [MM93, GBS92], suÆx trees [McC76, Wei73] and similar tries or automata [CR94] are
among the prominent data structures widely used for unstructured texts. Since they can handle
all the search keys in O(n) memory words, they are sometimes referred to as full-text indexes.

The suÆx tree for text T = T [1; n] is a compact trie whose leaves store the text suÆxes T [1; n],
T [2; n], . . . , T [n; n] represented with their positions 1, 2, . . . , n, and whose internal nodes each
have at least two children. The suÆx array stores a permutation of the positions 1, 2, . . . , n,
so that a sequential scan of the array corresponds to listing the suÆxes in lexicographic order.
Associated with the array of positions is another array storing the lengths of the longest common
pre�xes of a subset of the suÆxes to speed up the search [MM93]. SuÆx trees and suÆx arrays

1In this paper, we use the notation logc
b
n = (log n= log b)c to denote the cth power of the base-b logarithm of n.

If no base is speci�ed, the implied base is 2.

1

organize the suÆxes so as to support the eÆcient search of their pre�xes. In order to �nd an
occurrence T [i; i+m� 1] = P , they exploit the property that P must be the pre�x of suÆx T [i; n],
and this guarantees that the occurrence is found. In general, existential and counting queries take
O(m log j�j) time using automata or suÆx trees and their variations, and O(m+ logn) time using
suÆx arrays along with longest common pre�xes. Enumerative queries take an additive output-
sensitive cost O(occ). In this paper, we use the term \suÆx array" to denote the array containing
the permutation of positions 1, 2, . . . , n, but without the longest common pre�x information
mentioned above. To see why full-text indexes such as suÆx arrays are more powerful than term-
level inverted lists, we can restrict the suÆx arrays to store only the suÆxes T [ik; n] that correspond
to the occurrences of the terms. In this way, an eÆcient full-text index can also implement inverted
lists eÆciently.

The growing importance of suÆx arrays and suÆx trees is witnessed by numerous references to a
great variety of applications besides string searching, such as in molecular biology, data compression,
data mining, and text retrieval, to name a few [Apo85, Gus97, MM93]. More and more applications
are based upon these powerful data structures that are no longer con�ned to the string matching
community. However, the amount of data is continuously increasing, and space occupancy has
become a critical issue. A major criticism that limits the applicability of indexes based upon suÆx
arrays and suÆx trees is that they occupy signi�cantly more space than do inverted lists.

SuÆx arrays store the positions of the suÆxes of T as a permutation of 1, 2, . . . , n by using
n logn bits (kept in n words of log n bits each in the unit cost RAM), while suÆx trees require
between 4n log n and 5n log n bits (kept in 4n{5n words of the RAM) [MM93]. In contrast, inverted
lists require approximately 10% of the text size [MZ96], and so suÆx arrays and suÆx trees require
signi�cantly more bits. (However, as previously mentioned, inverted lists have less functionality,
especially on unstructured texts.) Here, we are assuming that each symbol is encoded by log j�j
bits, so that a text T of n symbols occupies a total n log j�j bits. From a theoretical point of view,
with large alphabets having log j�j = �(log n), suÆx arrays require roughly the same number of
bits as the text. Nevertheless, the alphabet � is typically of constant size in electronic documents
(in ascii or unicode). In this case, suÆx arrays and suÆx trees are larger than the text by an
O(logj�j n) = O(log n) factor. For example, a DNA sequence of n symbols (with j�j = 4) can be
stored with 2n bits in a computer. The suÆx array for the sequence requires instead at least n
words of 4 bytes each, or 32n bits, which is 16 times larger than the text itself. On the other hand,
we cannot resort to inverted �les since they are not eÆcient on unstructured sequences.

In this paper, we investigate whether it is possible to design a full-text index of o(n log n) bits
that supports eÆcient searching. This problem is of both theoretical and practical interest. By
assuming that each text is in one-to-one correspondence with a suÆx array, we can derive a simple
information-theoretic argument based upon the fact that there are j�jn di�erent text strings of
length n over the alphabet �. Hence, there are so many di�erent suÆx arrays, and each of them
must require
(n log j�j) bits to be distinguishable. It is an interesting problem to see if there is
an eÆcient representation of suÆx arrays that takes n log j�j+O(n) bits in the worst case.

In order to have an idea of the computational diÆculty of the question, let us follow a simple
approach that saves space. Let us consider binary alphabets. We bunch every logn bits together
into a word (in e�ect, constructing a large alphabet) and create a text of length n= log n and a
pattern of length m= log n. The suÆx array on the new text requires O(n) bits. Searching for a
pattern of length m must also consider situations where the pattern is not aligned at the precise
word boundaries. What is the searching cost? It appears that we have to handle log n situations,
with a slowdown factor of log n in the time complexity of the search. However, this is not really
so; we actually have to pay a much larger slowdown factor of
(n) in the search cost, which
makes querying the text index more expensive than running the O(m + n)-time algorithms such

2

as [KMP77] from scratch. To see why, let us examine the situation in which the pattern occurs k
positions to the right of a word boundary in the text. In order to query the index, we have to align
the pattern to the boundary by padding k bits to the left of the pattern. Since we do not know a
priori the correct k bits to prepend, we must try all 2k possible ways to pad k binary symbols to
the left of the pattern. When k � log n, we have to query the index 2k =
(n) times in the worst
case (see the sparse suÆx trees [KU96b] cited in Section 1.2 to alleviate partially this drawback).

The above example shows that a small reduction in the index size can make querying the index
useless in the worst case, as it can cost at least as much as performing a full scan of the text from
scratch. In Section 1.2, we describe previous results motivated by the need to �nd an eÆcient
solution to the problem of designing a full-text index that saves space and time in the worst case.
No data structures with the functionality of suÆx trees and suÆx arrays that have appeared to
date in the literature use �(n log j�j) + o(n log n) bits and support fast queries in o(m log j�j) or
o(m + log n) worst-case time. Our goal in this paper is to simultaneously reduce both the space
bound and the query time bound.

1.1 Our results

In this paper, we assume for simplicity that the alphabet � is of bounded size (i.e., ascii or uni-
code/utf8). We recall that the suÆx array SA for text T stores the suÆxes of T in lexicographic
order, and refer the reader to Section 2 for some examples of suÆx arrays. We represent SA in the
form of a permutation of the starting positions 1, 2, . . . , n in T of the suÆxes. For all 1 � i < j � n,
we have T

�
SA[i]; n

�
< T

�
SA[j]; n

�
in lexicographic order. We call suÆx pointers the entries in SA.

In order to remedy the space problem, we introduce compressed suÆx arrays, which are abstract
data structures supporting two basic operations:

1. compress : Given a suÆx array SA, compress it to obtain its succinct representation.

2. lookup(i): Given the compressed representation mentioned above, return SA[i], which is the
suÆx pointer in T of the ith suÆx T

�
SA[i]; n

�
in lexicographic order.

The primary measures of performance are the query time to do lookup, the amount of space occupied
by the compressed suÆx array, and the preprocessing time taken by compress .

In this paper, we exploit the \structure" of the suÆx pointers stored in SA by observing that
the permutation of positions is not arbitrary. For any �xed value of 0 < � � 1, we show how to
implement operation compress in (1+��1)n log j�j+o(n log j�j) bits and O(n log j�j) preprocessing
time, so that each call to lookup takes sublogarithmic worst-case time, that is, O(log�j�j n) time.
We can also achieve (1 + 1

2
log logj�j n)n log j�j+O(n) bits and O(n log j�j) preprocessing time, so

that calls to lookup can be done in O(log logj�j n) time. Our �ndings have several implications:

� We break the space barrier of
(n log n) bits for a suÆx array while retaining o(log n) lookup
time in the worst case. We refer the reader to the literature described in Section 1.2.

� We can implement compressed suÆx trees in 2n log j�j+O(n) bits by using compressed suÆx
arrays (with � = 1) and the techniques for compact representation of Patricia tries presented
in [MRS01]. They occupy asymptotically the same space as that of the text string being
indexed.

� Our compressed suÆx arrays and compressed suÆx trees are provably as good as inverted lists
in terms of space usage, at least theoretically. In the worst case, they require asymptotically
the same number of bits.

3

� We can build a full-text index on T in at most
�
��1 + O(1)

�
n log j�j bits by a suitable

combination of our compressed suÆx trees and previous techniques [CD96, KS98, MRS01,
Mor68]. We can answer existential and counting queries of any pattern string of length m

in O(m= logj�j n + log�j�j n) search time in the worst case, which is o
�
minfm log j�j;m +

log ng
�
. For enumerative queries, we introduce a sublogarithmic slowdown factor in the

output-sensitive cost, givingO(occ log�j�j n) time as a result. When the patterns are suÆciently
long, namely, for m =

�
(log2+� n)(logj�j logn)

�
, we can use auxiliary data structures in

O(n log j�j) bits to obtain a total search bound of O(m= logj�j n+occ) time, which is optimal.

The bounds claimed in the last point need further elaboration. Speci�cally, searching takes O(1)
time for m = o(log n), and O(m= logj�j n + log�j�j n) = o(m log j�j) time otherwise. That is, we
achieve optimal O(m= logj�j n) search time for suÆciently large m =
(log1+�

j�j
n). For enumerative

queries, retrieving all occ occurrences has cost O(m= logj�j n + occ log�j�j n) when both conditions

m 2
�
� log n; o(log1+� n)

�
and occ = o(n�) hold, and cost O

�
m= logj�j n+ occ + (log1+� n)(log j�j+

log logn)
�
otherwise.

The results described in this paper are theoretical, but they also have practical value. An
implementation of our compressed suÆx arrays, with the extensions described by Sadakane [Sad00],
is able to index an ascii text without the need to keep the text. Indeed, Sadakane showed that
compressed suÆx arrays are enough powerful to retrieve and to search any text substring without
accessing the text itself. They require only ��1nH0 +O(n) bits, where H0 � log j�j is the order-0
entropy of the text T . In this way, we have the new notion of self-indexing text. Given a text T of n
symbols, we have seen that we can search T in O(n) time with string matching algorithms [KMP77].
A self-indexing string S is a shorter representation of T that allows o(n) time searching (see our
o(m) search bound for constant size alphabets). Hence, if we replace T with S, we do not only save
space but we also get faster searching time. We have some preliminary experimental results on
self-indexing texts showing that a 100-megabyte �le of Associated Press news and its suÆx array
can be represented in a total of 30{40 megabytes. The less powerful inverted �les would require
roughly 110 megabytes as they must keep the text uncompressed. The (uncompressed) suÆx array
with the text would require 500 megabytes.

1.2 Related Work

The seminal paper by Knuth, Morris, and Pratt [KMP77] presented the �rst string matching
solution taking O(m + n) time and O(m) words to scan the text. The space complexity was
remarkably lowered to O(1) words in [GS83, CP91]. A relevant paper by Weiner [Wei73] introduced
a variant of the suÆx tree for solving the text indexing problem in string matching. This paper
pointed out the importance of text indexing as a tool to avoid a full scan of the text at each
pattern search. This method takes O(m log j�j) search time plus the output-sensitive cost O(occ)
to report the occurrences. Since then, a plethora of papers have studied the text indexing problem
in several contexts, sometimes using di�erent terminology [BBH+85, BBH+87, Cro86, FG99, Irv95,
McC76, MM93, Ukk95]; for more references see [Apo85, CR94, Gus97]. Although very eÆcient, the
resulting index data structures are greedy in terms of space, using at least n words or
(n logn)
bits.

Numerous papers faced the problem of saving space in these data structures, both in practice
and in theory. Many of the papers were aimed at improving the lower-order terms, as well as the
constants in the higher-order term, or at achieving tradeo� between space requirements and search
time complexity. Some authors improved the multiplicative constants in the O(n log n)-bit practical
implementations. For the analysis of constants, we refer the reader to [AN95, Cla96, GKS99, K�ar95,
Kur99, M�ak00, MM93]. Other authors devised several variations of sparse suÆx trees to store a

4

subset of the suÆxes [ALS99, GBS92, KU96b, KU96a, MW94, Mor68]. Some of them wanted
queries to be eÆcient when the occurrences are aligned with the boundaries of the indexed suÆxes.
Sparsity saves much space but makes the search for arbitrary substrings diÆcult and, in the worst
case, as expensive as scanning the whole text in O(m + n) time. Another interesting index, the
Lempel-Ziv index of K�arkk�ainen and Sutinen [KS98], occupies O(n) bits and takes O(m) time to
search patterns shorter than log n; for longer patterns, it may occupy
(n log n) bits. An eÆcient
and practical compressed index is discussed in [SNZ97], but its searches are at word-level and not
full-text (i.e., with arbitrary substrings).

A recent line of research has been built upon Jacobson's succinct representation of trees in
2n bits, with navigational operations [Jac89a]. That representation was extended in [CM96] to
represent a suÆx tree in n logn bits plus an extra O(n log log n) expected number of bits. A solution
requiring n logn+O(n) bits and O(m+ log log n) search time was described in [CD96]. Munro et
al. [MRS01] used it along with an improved succinct representation of balanced parentheses [MR97]
in order to get O(m log j�j) search time with only n logn+ o(n) bits. They also show in [MRS01]
how to get O(m) time and O(n logn= log logn) bits for existential queries in binary patterns.

The results described in this paper and its preliminary form [GV00] stimulated further work,
and a number of interesting results appeared recently. A �rst question raised is about lower bounds.
Assuming that the text is read-only, Demaine and L�opez Ortiz [DO01] have shown that any text
index with alphabet size j�j = 2 that supports fast queries by probing O(m) bits in the text must
use
(n) bits of storage space in the worst case under a stronger version of the bit-probe model.
Thus, our index is space optimal in this sense. A second question is about compressible text.
Ferragina and Manzini [FM00, FM01] have devised an index based upon the Burrows-Wheeler
transform that asymptotically achieves the order-k empirical entropy of the text and allows them
to obtain self-indexing texts. Their index appears to be theoretically more space eÆcient than
compressed suÆx arrays, whereas their
(m) search time is slower than compressed suÆx trees.
As previously mentioned, Sadakane [Sad00] has shown that compressed suÆx arrays can be used
for self-indexing texts. He bounds the space taken by compressed suÆx arrays in terms of the
order-0 entropy. He also uses Lemma 2 in Section 3.1 to show how to store the skip values of
the suÆx tree in O(n) bits [Sad02]. These interesting results represent a recent new trend in text
indexing, making space eÆciency no longer a major obstacle to the large-scale application of index
data structures [ZSNBY00]. Ideally we'd like to �nd an index that uses as few as bits as possible
and that supports enumerative queries for each query pattern in sublinear time in the worst case
(plus the output-sensitive cost).

1.3 Outline of the paper

In Section 2 we describe the ideas behind our new data structure for compressed suÆx arrays.
Details of our compressed suÆx array construction are given in Section 3. In Section 4 we show
how to use compressed suÆx arrays to construct compressed suÆx trees and a general space-eÆcient
indexing mechanism to speed up text search. We give �nal comments in Section 5. We adopt the
standard unit cost RAM for the analysis of our algorithms, as does the previous work that we
compare with. We use standard arithmetic and boolean operations on words of O(logn) bits, each
operation taking constant time and each word read or written in constant time.

5

2 Compressed SuÆx Arrays

The compression of suÆx arrays falls into the general framework presented by Jacobson [Jac89b]
for the abstract optimization of data structures. We start from the speci�cation of our data
structure as an abstract data type with its supported operations. We take the time complexity
of the \natural" (and less space eÆcient) implementation of the data structure. Then we de�ne
the class Cn of all distinct data structures storing n elements. A simple combinatorial argument
implies that each such data structure can be canonically identi�ed by log jCnj bits. We try to give
a succinct implementation of the same data structure in O

�
log jCnj

�
bits, while supporting the

operations within time complexity comparable with that of the natural implementation. However,
the combinatorial argument does not guarantee that the operations can be supported eÆciently.

We de�ne the suÆx array SA for a binary string T as an abstract data type that supports the
two operations compress and lookup described in the introduction. We will adopt the convention
that T is a binary string of length n� 1 over the alphabet � = fa; bg, and it is terminated in the
nth position by a special end-of-string symbol #, such that a < # < b.2 We will discuss the case of
alphabets of size j�j > 2 at the end of the section.

The suÆx array SA is a permutation of f1, 2, . . . , ng that corresponds to the lexicographic
ordering of the suÆxes in T ; that is, SA[i] is the starting position in T of the ith suÆx in lexico-
graphic order. In the example below are the suÆx arrays corresponding to the 16 binary strings of
length 4:

a a a a # a a a b # a a b a # a a b b # a b a a # a b a b # a b b a # a b b b #

1 2 3 4 5 1 2 3 5 4 1 4 2 5 3 1 2 5 4 3 3 4 1 5 2 1 3 5 2 4 4 1 5 3 2 1 5 4 3 2

b a a a # b a a b # b a b a # b a b b # b b a a # b b a b # b b b a # b b b b #

2 3 4 5 1 2 3 5 1 4 4 2 5 3 1 2 5 1 4 3 3 4 5 2 1 3 5 2 4 1 4 5 3 2 1 5 4 3 2 1

The natural explicit implementation of suÆx arrays requires O(n logn) bits and supports the
lookup operation in constant time. The abstract optimization discussed above suggests that there
is a canonical way to represent suÆx arrays in O(n) bits. This observation follows from the fact
that the class Cn of suÆx arrays has no more than 2n�1 distinct members, as there are 2n�1 binary
strings of length n� 1. That is, not all the n! permutations are necessarily suÆx arrays.

We use the intuitive correspondence between suÆx arrays of length n and binary strings of
length n� 1. According to the correspondence, given a suÆx array SA, we can infer its associated
binary string T and vice versa. To see how, let x be the entry in SA corresponding to the last
suÆx # in lexicographic order. Then T must have the symbol a in each of the positions pointed
to by SA[1], SA[2], . . . , SA[x� 1], and it must have the symbol b in each of the positions pointed
to by SA[x + 1], SA[x + 2], . . . , SA[n]. For example, in the suÆx array h45321i (the 15th of the
16 examples above), the suÆx # corresponds to the second entry 5. The preceding entry is 4, and
thus the string T has a in position 4. The subsequent entries are 3, 2, 1, and thus T must have bs
in positions 3, 2, 1. The resulting string T , therefore, must be bbba#.

The abstract optimization does not say anything regarding the eÆciency of the supported op-
erations. By the correspondence above, we can de�ne a trivial compress operation that transforms
SA into a sequence of n � 1 bits plus #, namely, string T itself. The drawback, however, is the
una�ordable cost of lookup . It takes
(n) time to decompress a single suÆx pointer in SA as it
must build the whole suÆx array on T from scratch. In other words, the trivial method proposed
so far does not support eÆcient lookup operations.

2Usually an end-of-symbol character is not explicitly stored in T , but rather is implicitly represented by a blank

symbol , with the ordering < a < b. However, our use of # is convenient for showing the explicit correspondence

between suÆx arrays and binary strings.

6

In this section we describe an eÆcient method to represent suÆx arrays in O(n) bits with fast
lookup operations. Our idea is to distinguish among the permutations of f1; 2; : : : ; ng by relating
them to the suÆxes of the corresponding strings, instead of studying them alone. We mimic a
simple divide-and-conquer \de-construction" of the suÆx arrays to de�ne the permutation for an
arbitrary (e.g., random) string T recursively in terms of shorter permutations. For some examples
of divide-and-conquer construction of suÆx arrays and suÆx trees, see [AIL+88, FC97, FCFM00,
FCM96, MM93, SV94]. We reverse the construction process to discover a recursive structure of the
permutations that makes their compression possible.

Our decomposition scheme is by a simple recursion mechanism. Let SA be the suÆx array for
binary string T . In the base case, we denote SA by SA0, and let n0 = n be the number of its
entries. For simplicity in exposition, we assume that n is a power of 2.

In the inductive phase k � 0, we start with suÆx array SAk, which is available by induction.
It has nk = n=2k entries and stores a permutation of f1; 2; : : : ; nkg. We run four main steps to
transform SAk into an equivalent but more succinct representation:

Step 1. Produce a bit vector Bk of nk bits, such that Bk[i] = 1 if SAk[i] is even and Bk[i] = 0 if
SAk[i] is odd.

Step 2. Map each 0 in Bk onto its companion 1. (We say that a certain 0 is the companion of a
certain 1 if the odd entry in SA associated with the 0 is 1 less than the even entry in SA associated
with the 1.) We can denote this correspondence by a partial function 	k, where 	k(i) = j if and
only if SAk[i] is odd and SAk[j] = SAk[i] + 1. When de�ned, 	k(i) = j implies that Bk[i] = 0 and
Bk[j] = 1. It is convenient to make 	k a total function by setting 	k(i) = i when SAk[i] is even
(i.e., when Bk[i] = 1). In summary, for 1 � i � nk, we have

	k(i) =

�
j if SAk[i] is odd and SAk[j] = SAk[i] + 1;
i otherwise.

Step 3. Compute the number of 1s for each pre�x of Bk. We use function rankk for this purpose;
that is, rankk(j) counts how many 1s there are in the �rst j bits of Bk.

Step 4. Pack together the even values from SAk and divide each of them by 2. The resulting
values form a permutation of f1; 2, . . . , nk+1g, where nk+1 = nk=2 = n=2k+1. Store them into a
new suÆx array SAk+1 of nk+1 entries, and remove the old suÆx array SAk.

The following example illustrates the e�ect of a single application of Steps 1{4. Here, 	0(25) =
16 as SA0[25] = 29 and SA0[16] = 30. The new suÆx array SA1 explicitly stores the suÆx pointers
(divided by 2) for the suÆxes that start at even positions in the original text T . For example,
SA1[3] = 5 means that the third lexicographically smallest suÆx that starts at an even position
in T is the one starting at position 2� 5 = 10, namely, abbabaa. . . #.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T : a b b a b b a b b a b b a b a a a b a b a b b a b b b a b b a #

SA0: 15 16 31 13 17 19 28 10 7 4 1 21 24 32 14 30 12 18 27 9 6 3 20 23 29 11 26 8 5 2 22 25
B0: 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0

rank0: 0 1 1 1 1 1 2 3 3 4 4 4 5 6 7 8 9 10 10 10 11 11 12 12 12 12 13 14 14 15 16 16
	0: 2 2 14 15 18 23 7 8 28 10 30 31 13 14 15 16 17 18 7 8 21 10 23 13 16 17 27 28 21 30 31 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SA1: 8 14 5 2 12 16 7 15 6 9 3 10 13 4 1 11

7

procedure rlookup(i; k):

if k = ` then

return SA`[i]
else

return 2� rlookup
�
rankk(k(i)); k + 1

�
+ (Bk[i]� 1).

Figure 1: Recursive lookup of entry SAk[i] in a compressed suÆx array.

The next lemma shows that these steps preserve the information originally kept in suÆx ar-
ray SAk:

Lemma 1 Given suÆx array SAk, let Bk, 	k, rankk and SAk+1 be the result of the transformation

performed by Steps 1{4 of phase k. We can reconstruct SAk from SAk+1 by the following formula,

for 1 � i � nk,

SAk[i] = 2 � SAk+1

�
rankk

�
	k(i)

��
+ (Bk[i]� 1):

Proof : Suppose Bk[i] = 1. By Step 3, there are rankk(i) 1s among Bk[1], Bk[2], . . . , Bk[i]. By
Step 1, SAk[i] is even, and by Step 4, SAk[i]=2 is stored in the rankk(i)th entry of SAk+1. In other
words, SAk[i] = 2 � SAk+1

�
rankk(i)

�
. As 	k(i) = i by Step 2, and Bk[i] � 1 = 0, we obtain the

claimed formula.

Next, suppose that Bk[i] = 0 and let j = 	k(i). By Step 2, we have SAk[i] = SAk[j] � 1 and
Bk[j] = 1. Consequently, we can apply the previous case of our analysis to index j, and we get
SAk[j] = 2 �SAk+1

�
rankk(j)

�
. The claimed formula follows by replacing j with 	k(i) and by noting

that Bk[i]� 1 = �1.

In the previous example, SA0[25] = 2 � SA1[rank 0(16)] � 1 = 2 � 15 � 1 = 29. We now give the
main ideas to perform the compression of suÆx array SA and support the lookup operations on its
compressed representation.

Procedure compress. We represent SA succinctly by executing Steps 1{4 of phases k = 0, 1,
. . . , `�1, where the exact value of ` = �(log logn) will be determined in Section 3. As a result, we
have ` + 1 levels of information, numbered 0, 1, . . . , `, which form the compressed representation

of suÆx array SA:

� Level k, for each 0 � k < `, stores Bk, 	k, and rankk. We do not store SAk, but we refer
to it for the sake of discussion. The arrays 	k and rankk are not stored explicitly, but are
stored in a specially compressed form described in Section 3.

� The last level k = ` stores SA` explicitly because it is suÆciently small to �t in O(n) bits.
The `th level functionality of structures B`, 	`, and rank ` are not needed as a result.

Procedure lookup(i). We de�ne lookup(i) = rlookup(i; 0), where procedure rlookup(i; k) is de-
scribed recursively in Figure 1. If k is the last level `, then it performs a direct lookup in SA`[i].
Otherwise, it exploits Lemma 1 and the inductive hypothesis so that rlookup(i; k) returns the value
of 2 � SAk+1

�
rankk

�
	k(i)

��
+ (Bk[i]� 1) in SAk[i].

Further details on how to represent rankk and 	k in compressed form and how to implement
compress and lookup(i) will be given in Section 3. Our main theorem below gives the resulting
time and space complexity that we are able to achieve.

8

Theorem 1 (Binary alphabets) Consider the suÆx array SA built upon a binary string of

length n� 1.

i. We can implement compress in 1

2
n log log n+6n+O(n= log log n) bits and O(n) preprocessing

time, so that each call lookup(i) takes O(log log n) time.

ii. We can implement compress in (1+��1)n+O(n= log logn) bits and O(n) preprocessing time,

so that each call lookup(i) takes O(log� n) time, for any �xed value of 0 < � � 1.

The coeÆcients on the second-order terms can be tweaked theoretically by a more elaborate
encoding. We also state the above results in terms of alphabets with j�j > 2.

Theorem 2 (General alphabets) Consider the suÆx array SA built upon a string of length n�1
over the alphabet � with size j�j > 2.

i. We can implement compress in (1 + 1

2
log logj�j n)n log j�j + 5n + O(n= log log n) = (1 +

1

2
log logj�j n)n log j�j + O(n) bits and O(n log j�j) preprocessing time, so that each call

lookup(i) takes O(log logj�j n) time.

ii. We can implement compress in (1+��1)n log j�j+2n+O(n= log log n) = (1+��1)n log j�j+
o(n log j�j) bits and O(n log j�j) preprocessing time, so that each call lookup(i) takes

O(log�j�j n) time, for any �xed value of 0 < � � 1. For j�j = O(1), the space bound re-

duces to (1 + ��1)n log j�j+O(n= log logn) = (1 + ��1)n log j�j+ o(n) bits.

Sadakane [Sad00] has shown that the space complexity in Theorem 1.ii and Theorem 2.ii can be
restated in terms of the order-0 entropy H0 � log j�j of the string, giving as a result ��1H0 n+O(n)
bits.

The lookup process can be sped up when we need to report several contiguous entries, as in
enumerative string matching queries. Let lcp(i; j) denote the length of the longest common pre�x
between the suÆxes pointed to by SA[i] and SA[j], with the convention that lcp(i; j) = �1 when
i < 1 or j > n. We say that a sequence i, i+1, . . . , j of indices in SA is maximal if both lcp(i�1; j)
and lcp(i; j + 1) are strictly smaller than lcp(i; j), as in enumerative queries.

Theorem 3 (Batch of lookups) In each of the cases stated in Theorem 1 and Theorem 2, we

can use additional space of O(n log j�j) bits and batch together j � i + 1 procedure calls lookup(i),
lookup(i+ 1), . . . , lookup(j), for a maximal sequence i, i+ 1, . . . , j, so that the total cost is

� O
�
j� i+(logn)1+�(log j�j+log logn)

�
time when lcp(i; j) =
(log1+� n), namely, the suÆxes

pointed to by SA[i] and SA[j] have the same �rst
(log1+� n) symbols in common, or

� O(j�i+n�) time, for any constant 0 < � < 1, when lcp(i; j) =
(logn), namely, the suÆxes

pointed to by SA[i] and SA[j] have the same �rst
(log n) symbols.

3 Algorithms for Compressed SuÆx Arrays

In this section we constructively prove Theorems 1{3 by showing two ways to implement the
recursive decomposition of suÆx arrays discussed in Lemma 1 of Section 2. In particular, in
Section 3.1 we address Theorem 1.i, and in Section 3.2 we prove Theorem 1.ii. Section 3.3 shows
how to extend Theorem 1 to deal with alphabets of size j�j > 2, thus proving Theorem 2. In
Section 3.4 we prove Theorem 3 on how to batch together the lookup of several contiguous entries
in suÆx arrays, which arises in enumerative string matching queries.

9

3.1 Compressed SuÆx Arrays in 1

2
n log logn+ O(n) Bits and O(log logn) Ac-

cess Time

In this section we describe the method referenced in Theorem 1.i for binary strings and show that it
achieves O(log log n) lookup time with a total space usage of O(n log logn) bits. Before giving the
algorithmic details of the method, let's continue the recursive decomposition of Steps 1{4 described
in Section 2, for 0 � k � ` � 1, where ` = dlog log ne. The decomposition below shows the result
on the example of Section 2:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SA1: 8 14 5 2 12 16 7 15 6 9 3 10 13 4 1 11
B1: 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 0

rank 1: 1 2 2 3 4 5 5 5 6 6 6 7 7 8 8 8
	1: 1 2 9 4 5 6 1 6 9 12 14 12 2 14 4 5

1 2 3 4 5 6 7 8

SA2: 4 7 1 6 8 3 5 2
B2: 1 0 0 1 1 0 0 1

rank 2: 1 1 1 2 3 3 3 4
	2: 1 5 8 4 5 1 4 9

1 2 3 4

SA3: 2 3 4 1

The resulting suÆx array SA` on level ` contains at most n= log n entries and can thus be stored
explicitly in at most n bits. We store the bit vectors B0, B1, . . . , B`�1 in explicit form, using less
than 2n bits, as well as implicit representations of rank 0, rank 1, . . . , rank `�1 and 	0, 	1, . . . , 	`�1.
If the implicit representations of rankk and 	k can be accessed in constant time, the procedure
described in Lemma 1 shows how to achieve the desired lookup in constant time per level, for a
total of O(log logn) time.

All that remains, for 0 � k � `�1, is to investigate how to represent rankk and 	k in O(n) bits
and support constant-time access. Given the bit vector Bk of nk = n=2k bits, Jacobson [Jac89a]
shows how to support constant-time access to rankk using only O

�
nk(log lognk)= log nk

�
extra bits,

with preprocessing time O(nk).

We show next how to represent 	k implicitly. First we explain the representation by an example
and then we describe it formally. In Lemma 3 we show that the space used to represent 	k is
n(1=2 + 3=2k+1) +O(n=2k log log n) bits.

For each 1 � i � nk=2, let j be the index of the ith 1 in Bk. Consider the 2
k symbols in positions

2k � (SAk[j] � 1), . . . , 2k � SAk[j]� 1 of T ; these 2k symbols immediately precede the
�
2k � SAk[j]

�
th

suÆx in T , as the suÆx pointer in SAk[j] was 2
k times larger before the compression. For each

bit pattern of 2k symbols that appears, we keep an ordered list of the indices j 2 [1; n=2k] that
correspond to it, and we record the number of items in each list. Continuing the example above,
we get the following lists for level 0:

a list: h2; 14; 15; 18; 23; 28; 30; 31i; ja listj = 8
b list: h7; 8; 10; 13; 16; 17; 21; 27i; jb listj = 8

Level 1:
aa list: ;; jaa listj = 0
ab list: h9i; jab listj = 1
ba list: h1; 6; 12; 14i; jba listj = 4
bb list: h2; 4; 5i; jbb listj = 3

10

Level 2:

aaaa list: ;; jaaaa listj = 0 baaa list: ;; jbaaa listj = 0
aaab list: ;; jaaab listj = 0 baab list: ;; jbaab listj = 0
aaba list: ;; jaaba listj = 0 baba list: h1i; jbaba listj = 1
aabb list: ;; jaabb listj = 0 babb list: h4i; jbabb listj = 1
abaa list: ;; jabaa listj = 0 bbaa list: ;; jbbaa listj = 0
abab list: ;; jabab listj = 0 bbab list: ;; jbbab listj = 0
abba list: h5; 8i; jabba listj = 2 bbba list: ;; jbbba listj = 0
abbb list: ;; jabbb listj = 0 bbbb list: ;; jbbbb listj = 0

Suppose we want to compute 	k(i). If Bk[i] = 1, we trivially have 	k(i) = i; therefore, let's
consider the harder case in which Bk[i] = 0, which means that SAk[i] is odd. We have to determine
the index j such that SAk[j] = SAk[i]+1. We can determine the number h of 0s in Bk up to index i
by computing i� rankk(i), i.e., by subtracting the number of 1s in the �rst i bits of Bk. Consider
the 22

k

lists concatenated together in lexicographic order of the 2k-bit pre�xes. We denote by Lk

the resulting concatenated list, which has jLkj = nk=2 = n=2k+1 total items. What we need to �nd
now is the hth entry in Lk. For example, to determine 	0(25) in the example above, we �nd that
there are h = 13 0s in the �rst 25 slots of B0. There are eight entries in the a list and eight entries
in the b list; hence, the 13th entry in L0 is the �fth entry in the b list, namely, index 16. Hence,
we have 	0(25) = 16 as desired; note that SA0[25] = 29 and SA0[16] = 30 are consecutive values.

Continuing the example, consider the next level of the recursive processing of rlookup, in which
we need to determine 	1(8). (The previously computed value 	0(25) = 16 has a rank 0 value of 8,
i.e., rank 0(16) = 8, so the rlookup procedure needs to determine SA1[8], which it does by �rst
calculating 	1(8).) There are h = 3 0s in the �rst eight entries of B1. The third entry in the
concatenated list L1 for aa, ab, ba, and bb is the second entry in the ba list, namely, 6. Hence, we
have 	1(8) = 6 as desired; note that SA1[8] = 15 and SA1[6] = 16 are consecutive values.

We now describe formally how to preprocess the input text T in order to form the concatenated
list Lk on level k used for 	k with the desired space and constant-time query performance. We
�rst consider a variant of the \inventories" introduced by Elias [Eli74] to get average bit eÆciency
in storing sorted multisets. We show how to get worst-case eÆciency.

Lemma 2 (Constant-time access to compressed sorted integers) Given s integers in sorted

order, each containing w bits, where s < 2w, we can store them with at most s(2 + w � blog sc) +
O(s= log log s) bits, so that retrieving the hth integer takes constant time.

Proof : We take the �rst z = blog sc bits of each integer in the sorted sequence. Let q1; : : : ; qs be
the integers so obtained, called quotients, where 0 � qh � qh+1 < s for 1 � h < s. (Note that
multiple values are allowed.) Let r1; : : : ; rs be the remainders, obtained by deleting the �rst z bits
from each integer in the sorted sequence.

We store q1; : : : ; qs in a table Q described below, requiring 2s + O(s= log log s) bits. We store
r1; : : : ; rs in a table R taking s(w � z) bits. Table R is the simple concatenation of the bits
representing r1; : : : ; rs.

As for Q, we use the unary representation 0i1 (i.e., i copies of 0 followed by 1) to represent
integer i � 0. Then we take the concatenation of the unary representation of q1, q2�q1, . . . , qs�qs�1.
In other words, we take the �rst entry encoded in unary, and then the unary di�erence between the
other consecutive entries, which are in nondecreasing order. Table Q is made up of the binary string
obtained by the above concatenation S, augmented with the auxiliary data structure supporting
select operations to locate the position of the hth 1 in constant time [Cla96, Jac89a, Mun96].

11

Since S requires s+ 2z � 2s bits, the total space required by Q is 2s+O(s= log log s) bits; the
big-oh term is due to the auxiliary data structure that implements select . In order to retrieve qh,
we �nd the position j of the hth 1 in S by calling select(h), and then compute the number of 0s
in the �rst j bits of S by returning j � h. As we can see, this number of 0s gives qh. The time
complexity is constant.

In order to obtain the hth integer in the original sorted sequence, we �nd qh by querying Q as
described above, and we �nd ri by looking up the hth entry in R. We then output qh � 2w�z + rh
as the requested integer, by simply returning the concatenation of the bit representations of qh
and rh.

We now proceed to the implementation of 	k.

Lemma 3 We can store the concatenated list Lk used for 	k in n(1=2+3=2k+1)+O(n=2k log logn)
bits, so that accessing the hth entry in Lk takes constant time. Preprocessing time is O(n=2k+22

k

).

Proof : There are d = 22
k

lists, some of which may be empty. We number the lists composing Lk

from 0 to 22
k � 1. Each integer x in list i, where 1 � x � nk, is transformed into an integer x0

of w = 2k + log nk bits, by prepending the binary representation of i to that of x � 1. Given
any such x0, we can obtain the corresponding x in constant time. As a result, Lk contains s =
nk=2 = n=2k+1 integers in increasing order, each integer of w bits. By Lemma 2, we can store Lk

in s(2 + w � log s) + O(s= log log s) bits, so that retrieving the hth integer takes constant time.
Substituting the values for s and w, we get the space bound (nk=2)

�
2 + 2k + log nk � log(nk=2)

�
+

O(nk= log lognk) = (n=2k+1)(2k +3)+O(n=2k log logn) = n(1=2+ 3=2k+1) +O(n=2k log logn).

A good way to appreciate the utility of the data structure for 	k is to consider the naive
alternative. Imagine that the information is stored naively in the form of an unsorted array of
s = nk=2 entries, where each entry speci�es the particular list that the entry belongs to. Since
there are d = 22

k

lists, the total number of bits to store the array in this naive manner is s log d =
(nk=2)2

k = n=2, which is eÆcient in terms of space. Let us de�ne the natural ordering � on the
array entries, in which we say that i � j either if i < j or if i = j and the position of i in the array
precedes the position of j. The naive representation does not allow us to eÆciently lookup the
hth �-ordered entry in the array, which is equivalent to �nding the hth entry in the concatenated
list Lk. It also doesn't allow us to search quickly for the gth occurrence of the entry i, which is
equivalent to �nding the gth item in list i. In contrast, the data structure described in Lemma 3
supports both of these query operations in linear space and constant time:

Corollary 1 Given an unsorted array of s entries, each in the range [0; d � 1], we can represent

the array in a total of s log d + O(s) bits so that, given h, we can �nd the hth entry (in � order)

in the array in constant time. We can also represent the array in O(s log d) bits so that, given g

and i, we can �nd the gth occurrence of i in the array in constant time. The latter operation can

be viewed as a generalization of the select operation to arbitrary input patterns.

Proof : The �rst type of query is identical to �nding the hth item in the concatenated list Lk, and
the bound on space follows from the construction in Lemma 3. The corresponding values of s and w
in the proof of Lemma 3 are s and log d+ log s, respectively.

The second type of query is identical to �nding the gth entry in list i. It can be turned into
the �rst type of query if we can compute the value of h that corresponds to g and i; that is, we
need to �nd the global position h (with respect to �) of the gth entry in list i. If d � s, then we

12

can explicitly store a table that gives for each 0 � i < d the �rst location h0 in the concatenated
list Lk that corresponds to an entry in list i. We then set h = h0 + g � 1 and do the �rst type
of query. (If list i has fewer than g entries, which can be detected after the query is done, the
value returned by the �rst query must be nulli�ed.) The total space used is d log s, which by the
assumption d � s is at most s log d. If instead d > s, then we can use the same approach as above,
except that we substitute a perfect hash function to compute the value h0. The space for the hash
table is O(s log s) = O(s log d).

Putting it all together. At this point, we have all the pieces needed to �nish the proof of
Theorem 1.i. Given text T and its suÆx array, we proceed in ` = dlog logne levels of decomposition
as discussed in procedure compress in Section 2. The last level ` stores explicitly a reduced suÆx
array in (n=2`) log n � n bits. The other levels 0 � k � `� 1 store three data structures each, with
constant time access:

� Bit vector Bk of size nk = n=2k, with O(nk) preprocessing time.

� Function rankk in O
�
nk(log lognk)= log nk

�
bits, with O(nk) preprocessing time.

� Function 	k in n(1=2+3=2k+1)+O(n=2k log log n) bits, with O(nk+22
k

) preprocessing time
(see Lemma 3).

By summing over the levels, substituting the values ` = dlog log ne and nk = n=2k, we get the
following bound on the total space:

n log n

2`
+

`�1X
k=0

n

�
1

2k
+O

�
1

2k
log log(n=2k)

log(n=2k)

�
+
1

2
+

3

2k+1
+O

�
1

2k log log n

��

<
n log n

2`
+ n

�
2 +O

�
log logn

logn

�
+
1

2
`+ 3 +O

�
1

log log n

��

=
n log n

2`
+
1

2
`n+ 5n+O

�
n

log logn

�
: (1)

It's easy to show that (n log n)=2` + 1

2
`n � 1

2
n log logn+ n, which combined with (1) gives us the

desired space bound 1

2
n log logn+ 6n+O(n= log log n) in Theorem 1.i.

The total preprocessing time of compress is
P`�1

k=0O(nk + 22
k

) = O(n). A call to lookup goes
through the `+1 levels, in constant time per level, with a total cost of O(log logn). This completes
the proof of Theorem 1.i.

3.2 Compressed SuÆx Arrays in ��1n+ O(n) Bits and O(log� n) Access Time

In this section we give the proof of Theorem 1.ii. Each of the dlog logne levels of the data structure
discussed in the previous Section 3.1 uses O(n) bits, so one way to reduce the space complexity is
to store only a constant number of levels, at the cost of increased access time. For example, we
can keep a total of three levels: level 0, level `0, and level `, where `0 = d1

2
log logne and as before

` = dlog log ne. In the previous example of n = 32, the three levels chosen are levels 0, 2, and 3.
The trick is to determine how to reconstruct SA0 from SA`0 and how to reconstruct SA`0 from SA`.

We store the n`0 indices from SA0 that correspond to the entries of SA`0 in a new dictionary D0,
and similarly we store the n` indices from SA`0 that correspond to the entries of SA` in a new
dictionary D`0 . By using the eÆcient static dictionary representation in [BM99, Pag01], we need
less than O

�
log

�
n
n
`0

��
= O(n`0`

0) bits for D0 and O
�
log

�
n
`0

n`

��
= O(n``) bits for D`0 . A dictionary

13

lookup requires constant time, as does a rank query to know how many smaller or equal indices
are stored in the dictionary [Pag01].

We also have a data structure for k = 0 and k = `0 to support the function 	0
k, which is

similar to 	k, except that it maps 1s to the next corresponding 0. We denote by �k the resulting
composition of 	k and 	0

k, for 1 � i � nk:

�k(i) =

�
j if SAk[i] 6= nk and SAk[j] = SAk[i] + 1;
i otherwise.

We implement �k by merging the concatenated lists Lk of 	k with the concatenated lists L0
k of 	

0
k.

For example, in level k = 0 shown in Section 3.1, we merge the a list of Lk with the a list of L0
k,

and so on (we need also the singleton list for #). This is better than storing Lk and L0
k separately.

Computing �k(i) amounts to taking the ith entry in its concatenated list, and we do not need
anymore the bitvector Bk.

Lemma 4 We can store the concatenated lists used for �k in n + O(n= log log n) bits for k = 0,
and n(1 + 1=2k�1) +O(n=2k log logn) bits for k > 0, so that accessing the hth entry takes constant

time. Preprocessing time is O(n=2k + 22
k

).

Proof : For k > 0, the proof is identical to that of Lemma 3, except that s = nk instead of s = nk=2.
For k = 0, we have only the a list and the b list to store, with the singleton # list handled a bit
di�erently. Speci�cally, we encode a and # by 0 and b by 1. Then, we create a bitvector of n bits,
where the bit in position f is 0 if the list for �0 contains either a or # in position f , and it is 1
if it contains b in position f . We use auxiliary information to access the ith 1 of the bitvector in
constant time by using select(i) or the ith 0 by using select0(i). We also keep a counter c0 to know
the total number of 0's in the bitvector (note that the single occurrence of 0 corresponding to # in
the bitvector is the c0th 0 in the bitvector as we assumed a < # < b ; it is not diÆcult to treat the
more common case # < a < b). The additional space is O(n= log logn) due to the implementation
of select and select0. Suppose now that we want to recover the hth entry in the list for �0. If
h = c0, then we must recover the position of # by returning select0(c0). If h < c0, then we must
recover the hth 0 (i.e., a) in the bitvector, by returning select0(h). Otherwise, we call select(h� c0)
to get the position in the bitvector of the (h� c0)th 1 (i.e., b). In any case, with n+O(n= log logn)
bits to implement �0, we can execute �0(h) in constant time.

In order to determine SA[i] = SA0[i], we use function �0 to walk along indices i0, i00, . . . , such
that SA0[i] + 1 = SA0[i

0], SA0[i
0] + 1 = SA0[i

00], and so on, until we reach an index stored in
dictionary D0. Let s be the number of steps in the walk, and r be the rank of the index thus
found in D0. We switch to level `0, and reconstruct the rth entry at level `0 from the explicit
representation of SA` at level ` by a similar walk until we �nd an index stored in D`0 . Let s

0 be the
number of steps in the latter walk, and r0 be the rank of the index thus found in D`0 . We return
(SA`[r

0] � 2` + s0 � 2`0 + s � 20) as this is the value of SA0[i]. We defer details for reasons of brevity.
The maximum length of each walk is maxfs; s0g � 2`

0

< 2
p
log n, and thus the lookup procedure

requires O(
p
logn) time.

To get the more general result stated in Theorem 1.ii, we need to keep a total of ��1+1 levels,
for constant 0 < � � 1. More formally, let us assume that �` is an integer. We maintain the ��1+1
levels 0, �`, 2�`, . . . , `. The maximum length of each walk is 2�` < 2 log� n, and thus the lookup
procedure requires O(log� n) time.

By an analysis similar to the one we used at the end of Section 3.1, the total space bound is
given by (n=2`) log n � n plus a sum over the ��1 indices k 2 f0; �`; 2�`; 3�`; : : : ; (1� �)`g. We split

14

the sum into two parts, one for k = 0 and the other for the remaining ��1 � 1 values of k > 0, and
apply Lemma 4:

n log n

2`
+ n+O

�
n

log log n

�
+

X
k=i�`

1�i<��1

n

�
1 +

1

2k�1
+O

�
1

2k log log n

��

� (1 + ��1)n+O

�
n

log logn

�
+O

�
n

log� n

�

= (1 + ��1)n+O

�
n

log logn

�
: (2)

We have to add the contribution of the space
P

k jDkj = O(n�` `) = O(n(log logn)= log� n) taken
by the dictionaries at the ��1 levels, but this bound is hidden by the O(n= log logn) term in the
above formula. The �nal bound is (1 + ��1)n+O(n= log log n), as stated in Theorem 1.ii.

3.3 Extension to Alphabets of Size j�j > 2

We now discuss the case of alphabets with more than two symbols. In this case, we encode each
symbol by log j�j bits, so that the text T can be seen as an array of n entries, each of log j�j bits,
or equivalently as a binary string that occupies n log j�j bits. We describe how to extend the ideas
presented in Sections 3.1{3.2. We rede�ne ` to be dlog logj�j ne. The de�nitions of suÆx arrays SA
and SAk, bit vector Bk, and functions rankk and 	k are the same as before. Their representation
does not change, with the notable exception of 	k, as noted below in Lemma 5 (the analogue of
Lemma 3):

Lemma 5 When j�j > 2, we can store the concatenated list Lk used for 	k in n
�
(1=2) log j�j +

3=2k+1
�
+O(n=2k log log n) bits, so that accessing the hth entry in Lk takes constant time. Prepro-

cessing time is O(n=2k + 22
k

).

Proof : The extension of Lk with j�j > 2 is straightforward. For each of d = j�j2k = 22
k
log j�j

patterns of 2k symbols preceding the
�
2k � SAk[j]

�
th suÆx in T , we keep an ordered list like the

a list and b list described in Section 3.1. Some of these lists may be empty and the concatenation
of non-empty lists forms Lk. We number these lists from 0 to 22

k
log j�j � 1. Note that the number

of entries in Lk remains unchanged, namely, s = nk=2 = n=2k+1. Each integer x in list i, where
1 � x � nk, is transformed into an integer x

0 of w = 2k log j�j+lognk bits, by prepending the binary
representation of i to that of x�1. By Lemma 2, we can store Lk in s(2+w� log s)+O(s= log log s)
bits, so that retrieving the hth integer takes constant time. Substituting the values for s and w, we
get the space bound (nk=2)

�
2+2k log j�j+log nk�log(nk=2)

�
+O(nk= log log nk) = n

�
(1=2) log j�j+

3=2k+1
�
+O(n=2k log log n).

By replacing the space complexity of 	k in formula (1) at the end of Section 3.1, we obtain

n logn

2`
+

`�1X
k=0

n

�
1

2k
+O

�
1

2k
log log(n=2k)

log(n=2k)

�
+
log j�j
2

+
3

2k+1
+O

�
1

2k log log n

��

<

�
1 +

1

2
log logj�j n

�
n log j�j+ 5n+O

�
n

log logn

�
;

as (n logn)=2` + 1

2
`n � (1 + 1

2
log logj�j n)n log j�j, thus proving Theorem 2.i.

To prove Theorem 2.ii, we follow the approach of Section 3.2. We need dictionaries Dk and
functions �k, for k 2 f0; �`; 2�`; 3�`; : : : ; (1 � �)`g. Their de�nitions and representations do not
change, except for the representation of �k, for which we need Lemma 6 (the analogue of Lemma 4):

15

Lemma 6 We can store the concatenated lists used for �k in n(log j�j+1=2k�1)+O(n=2k log logn)
bits, so that accessing the hth entry takes constant time. Preprocessing time is O(n=2k+22

k

). When

j�j = O(1) and k = 0, we can store �k in n log j�j+O(j�jn= log logn) = n log j�j+ o(n) bits.

Proof : The proof is identical to that of Lemma 5, except that s = nk instead of s = nk=2. When
j�j = O(1), we can use a better approach for k = 0 like in the proof of Lemma 4. We associate
log j�j bits to each character in � according to its lexicographic order. Then we use a bitvector
of n log j�j bits to represent �0, in which the fth group of log j�j bits encoding a character c 2 �
represents the fact that the list for �0 has c in position f . We then implement j�j = O(1) versions
of select , one version per character of �. The version for c 2 � is in charge of selecting the ith
occurrence of c encoded in binary in the bitvector. To this end, it treats each occurrence of the
log j�j bits for c in the bitvector as a single 1 and the occurrences of the rest of the characters
as single 0's. As it should be clear, the implementation of each version of select can be done in
O(n= log log n) bits. To execute �0(h) in constant time, we proceed as in Lemma 4, generalized to
more than two characters.

By an analysis similar to the one we used in formula (2) at the end of Section 3.2, we obtain

n logn

2`
+

X
k=i�`

0�i<��1

n

�
log j�j+ 1

2k�1
+O

�
1

2k log logn

��

� (1 + ��1)n log j�j+ 2n+O

�
n

log logn

�
:

When j�j = O(1), we can split the above sum for k = 0 and apply Lemma 6 to get (1+��1)n log j�j+
O(n= log log n) bits, thus proving Theorem 2.ii.

3.4 Output-Sensitive Reporting of Multiple Occurrences

In this section we prove Theorem 3 by showing how to output a contiguous set SA0[i], . . . , SA0[j]
of entries from the compressed suÆx array under the hypothesis that the sequence i, i+ 1, . . . , j
is maximal (according to the de�nition given before Theorem 3) and the corresponding suÆxes
share at least a certain number of initial symbols. This requires adding further O(n log j�j) bits of
space to the compressed suÆx array. One way to output the j � i+ 1 entries is via a reduction to
two-dimensional orthogonal range search [KU96a]. Let D be a two-dimensional orthogonal range
query data structure on q points in the grid space [1 : : : U]� [1 : : : U], where 1 � q � U . Let P (q) be
its preprocessing time, S(q) the number of occupied words of O(logU) bits each, and T (q) +O(k)
be the cost of searching and retrieving the k points satisfying a given range query in D.

Lemma 7 Fix U = n in the range query data structure D, and let n0 � 1 be the largest integer

such that S(n0) = O(n= log n). If such n0 exists, we can report SA[i], . . . , SA[j] in O
�
log1+�

j�j
n +

(n=n0)(T (n0) + log j�j) + j � i
�
time when the sequence i, i+ 1, . . . , j is maximal and the suÆxes

pointed to by SA[i], . . . SA[j] have the same �rst
(n=n0) symbols in common. Preprocessing time

is P (n0) + O(n log j�j) and space is O(n log j�j) bits in addition to that of the compressed version

of SA.

Proof : Suppose by hypothesis that the suÆxes pointed to by SA[i], . . . , SA[j] have in common at
least l = dn=n0e symbols. (This requirement can be further reduced to l = �(n=n0).) We denote
these symbols by b0, b1, . . . , bl�1, from left to right.

16

In order to de�ne the two-dimensional points in D, we need to build the compressed version of
the suÆx array SAR for the reversal of the text, denoted TR. Then we obtain the points to keep
in D by processing the suÆx pointers in SA that are multiples of l (i.e., they refer to the suÆxes
in T starting at positions l, 2l, 3l, . . .). Speci�cally, the point corresponding to pointer p = SA[s],
where 1 � s � n and p is a multiple of l, has �rst coordinate s. Its second coordinate is given by
the position r of (T [1; p � 1])R in the sorted order induced by SAR. In other words, s is the rank
of T [p; n] among the suÆxes of T in lexicographic order, and r is the rank of (T [1; p� 1])R among
the suÆxes of TR (or, equivalently, the reversed pre�xes of T). Point hs; ri corresponding to p has
label p to keep track of this correspondence.

Since there are q � n0 such points stored in D and we build the compressed suÆx array of TR

according to Theorem 2.ii, space is S(n0) � O(log n) + (��1 + O(1))n log j�j = O(n log j�j) bits.
Preprocessing time is P (n0) +O(n log j�j).

We now describe how to query D and output SA[i], . . . , SA[j] in l stages, with one range query
per stage. In stage 0, we perform a range query for the points in [i : : : j]� [1 : : : n]. For these points,
we output the suÆx pointers labeling them. Then we locate the leftmost suÆx and the rightmost
suÆx in SAR starting with bl�1 � � � b1b0. For this purpose, we run a simple binary search in the
compressed version of SAR, comparing at most log n bits at a time. As a result, we determine two
positions g and h of SAR in O(l log j�j+ log1+�

j�j
n) time, such that the sequence g, g + 1, . . . , h is

maximal for SAR and the suÆxes of TR pointed to by SAR[g], . . . , SAR[h] start with bl�1 � � � b1b0.
Before going on in the next stages, we precompute some sequences of indices starting from

i, j, g and h, respectively, as done in Section 3.2. We use the function �0 in the compressed
version of SA = SA0 to walk along indices i0, i1, . . . , il�1, such that i0 = i, SA0[i0] + 1 = SA0[i1],
SA0[i1] + 1 = SA0[i2], and so on. An analogous walk applies to j0 = j, j1, . . . , jl�1. In the same
way, we use the function �0 in the compressed version of SAR to obtain g0 = g, g1, . . . , gl�1 and
h0 = h, h1, . . . , hl�1. We then run the tth stage, for 1 � t � l � 1, in which we perform a range
query for the points in [it : : : jt]� [gl�t : : : hl�t]. For each of these points, we retrieve its label p and
output p� t.

In order to see why the above method works, let us consider an arbitrary suÆx pointer in SA[i],
. . . , SA[j]. By the de�nition of the points kept in D, this suÆx pointer can be written as p � t,
where p is the nearest multiple of l and 0 � t � l � 1. We show that we output p � t correctly
in stage t. Let hs; ri be the point with label p in D. We have to show that it � s � jt and
gl�t � r � hl�t (setting border values gl = 1 and hl = n). Recall that the suÆxes pointed to by
SA[i], p� t and SA[j] are in lexicographic order by de�nition of the (compressed) suÆx array, and
moreover they share the �rst l symbols. If we remove the �rst t < l symbols from each of them, the
lexicographic order must be preserved because these symbols are equal. Consequently, SA[i]� t, p,
and SA[j] � t are still in lexicographic order, and their ranks are ih, s, and jh, respectively. This
implies it � s � jt. A similar property holds for gl�t � r � hl�t, and we can conclude that p is
retrieved in stage t giving p� t as output. Finally, the fact that both i, i+ 1, . . . , j and g, g + 1,
. . . , h are maximal sequences in their respective suÆx arrays, implies that no other suÆx pointers
besides those in SA[i], . . . , SA[j] are reported.

The cost of each stage is T (n0) plus the output-sensitive cost of the reported suÆx pointers.
Stage 0 requires an additional cost of O((n=n0) log j�j + log1+� n) to compute g and h, and a cost
of O(n=n0) to precompute the four sequences of indices, because the length of the walks is l. The
total time complexity is therefore O

�
(n=n0)(T (n0) + log j�j) + log1+� n+ j � i

�
, where O(j � i+ 1)

is the sum of the output-sensitive costs for reporting all the suÆx pointers.

We use Lemma 7 to prove Theorem 3. We employ two range query data structures for D.
The �rst one in [ABR00] takes P (q) = O(q log q) preprocessing time by using the perfect hash

17

in [HMP00], which has constant lookup time and takes O(q log q) construction time. Space is
S(q) = O(q log� q) words and query time is T (q) = O(log log q). Plugging these bounds into
Lemma 7 gives n0 = �(n= log1+� n) and hence O((log1+� n)(log j�j+log log n)+ j� i) retrieval time
for suÆx pointers sharing
(log1+� n) symbols. Preprocessing time is O(n log j�j) and additional
space is O(n log j�j) bits.

The second data structure in [BM80, Wil86] has preprocessing time P (q) = O(q log q), space
S(q) = O(q), and query time T (q) = O(q�) for any �xed value of 0 < � < 1. Consequently,
Lemma 7 gives n0 = �(n= logn) and O(n� log n+ j � i) = O(n� + j � i) retrieval time, for suÆx
pointers sharing at least
(logn) symbols (by choosing � > �). Preprocessing time is O(n log j�j)
and additional space is O(n log j�j) bits.

4 Text Indexing, String Searching, and Compressed SuÆx Trees

We now describe how to apply our compressed suÆx array to obtain a text index, called compressed

suÆx tree, which is very eÆcient in time and space complexity. We �rst show that, despite their
extra functionality, compressed suÆx trees (and compressed suÆx arrays) require the same asymp-
totic space of �(n) bits as inverted lists in the worst case. Nevertheless, inverted lists are space
eÆcient in practice [ZMR98] and can be easily maintained in a dynamic setting.

Lemma 8 In the worst case, inverted lists require �(n) bits for a binary text of length n.

Proof Sketch: Let us take a De Bruijn sequence S of length n, in which each substring of logn bits is
di�erent from the others. Now let the terms in the inverted lists be those obtained by partitioning S
into s = n=k disjoint substrings of length k = 2 log n. Any data structure that implements inverted
lists must be able to solve the static dictionary problem on the s terms, and so it requires at least
log

�
2
k

s

�
=
(n) bits by a simple information-theoretic argument. The upper bound O(n) follows

from Theorem 1 and Theorem 4 below, since we can see compressed suÆx arrays and suÆx trees
as a generalization of inverted lists.

We now describe our main result on text indexing for constant size alphabets. Here, we are
given a pattern string P of m symbols over the alphabet �, and we are interested in its occurrences
(perhaps overlapping) in a text string T of n symbols (where # is the nth symbol). We assume
that each symbol in � is encoded by log j�j bits, which is the case with ascii and unicode text
�les where two or more symbols are packed in each word.

Theorem 4 Given a text string T of length n over an alphabet � of constant size, we can build a

full text index on T in O(n log j�j) time such that the index occupies roughly
�
��1 +O(1)

�
n log j�j

bits, for any �xed value of 0 < � � 1, and supports the following queries on any pattern string P of

m symbols packed into O(m= logj�j n) words:

i. Existential and counting queries can be done in o
�
minfm log j�j;m+ log ng

�
time; in partic-

ular, they take O(1) time for m = o(log n), and O(m= logj�j n+ log�j�j n) time otherwise.

ii. An enumerative query listing the occ occurrences of P in T can be done in O(m= logj�j n +
occ log�j�j n) time. We can use auxiliary data structures in O(n log j�j) bits to reduce the search

bound to O
�
m= logj�j n+occ+(log1+� n)(log j�j+log log n)

�
time, when either m =
(log1+� n)

or occ =
(n�).

18

As a result, an enumerative query can be done in optimal �(m= logj�j n+occ) time for suÆciently

large patterns or number of occurrences, namely, when m =

�
(log2+� n) logj�j logn)

�
or occ =

(n�).

In order to prove Theorem 4, we �rst show how to speed up the search on compacted tries in
Section 4.1. Then we present the index construction in Section 4.2. Finally, we give the description
of the search algorithm in Section 4.3. Let's briey review three important data structures presented
in [KS98, Mor68, MRS01] and needed later on.

The �rst data structure is the Lempel-Ziv (LZ) index [KS98]. It is a powerful tool to search
for q-grams (substrings of length q) in T . If we �x q = � log n for any �xed positive constant � < 1,
we can build an LZ index on T in O(n) time, such that the LZ index occupies O(n) bits and any
pattern of length m � � log n can be searched in O(m + occ) time. In this special case, we can
actually obtain O(1 + occ) time by suitable table lookup. (Unfortunately, for longer patterns, the
LZ index may take
(n logn) bits.) The LZ index allows us to concentrate on patterns of length
m > � log n.

The second data structure is the Patricia trie [Mor68], another powerful tool in text indexing.
It is a binary tree that stores a set of distinct binary strings, in which each internal node has two
children and each leaf stores a string. For our purposes, we can generalize it to handle alphabets
of size j�j � 2 by using a j�j-way tree. Each internal node also keeps an integer (called skip value)
to locate the position of the branching character while descending towards a leaf. Each child arc
is implicitly labeled with one symbol of the alphabet. For space eÆciency, when there are t > 2
child arcs, we can represent the child arcs by a hash table of O(t) entries. In particular, we use a
perfect hash function (e.g., see [FKS84, HMP00]) on keys from �, which provides constant lookup
time and uses O(t) words of space and O(t log t) construction time, in the worst case.

SuÆx trees are often implemented by building a Patricia trie on the suÆxes of T as fol-
lows [GBS92]: First, text T is encoded as a binary sequence of n log j�j bits, and its n suÆxes
are encoded analogously. Second, a Patricia trie is built upon these suÆxes; the resulting suÆx
tree has still n leaves (not n log j�j). Third, searching for P takes O(m) time and retrieves only
the suÆx pointer in at most two leaves (i.e., the leaf reached by branching with the skip values,
and the leaf corresponding to an occurrence). According to our terminology, it requires only O(1)
calls to the lookup operation in the worst case.

The third data structure is the space-eÆcient incarnation of binary Patricia tries in [MRS01],
which builds upon previous work to succinctly represent binary trees and Patricia tries [CM96,
Jac89a, Mun96, MR97]. When employed to store s out of the n suÆxes of T , the regular Patricia
trie [Mor68] occupies O(s log n) bits. This amount of space usage is the result of three separate
factors [Cla96, CM96], namely, the Patricia trie topology, the skip values, and the string pointers.
Because of our compressed suÆx arrays, the string pointers are no longer a problem. For the
remaining two items, the space-eÆcient incarnation of Patricia tries in [MRS01] cleverly avoids the
overhead for the Patricia trie topology and the skip values. It is able to represent a Patricia trie
storing s suÆxes of T with only O(s) bits, provided that a suÆx array is given separately (which in
our case is a compressed suÆx array). Searching for query pattern P takes O(m log j�j) time and
accesses O(minfm log j�j; sg) = O(s) suÆx pointers in the worst case. For each traversed node,
its corresponding skip value is computed in time O(skip value) by accessing the suÆx pointers in
its leftmost and rightmost descendant leaves. In our terminology, searching requires O(s) calls to
lookup in the worst case.

19

4.1 Speeding Up Patricia Trie Search

Before we discuss how to construct the index, we �rst need to show that search in Patricia tries,
which normally proceeds one level at a time, can be improved to sublinear time by processing logn
bits of the pattern at a time (maybe less if the pattern length is not a multiple of logn).

Let us �rst consider the j�j-way Patricia trie PT outlined in Section 4 for storing s binary
strings, each of length at least log n. (For example, they could be some suÆxes of the text.)
To handle border situations, we assume that these strings are (implicitly) padded with logj�j n
symbols #. We will show how to reduce the search time for an m-symbol pattern in PT from
O(m log j�j) to O(m= logj�j n + log�j�j n). Without loss of generality, it suÆces to show how to
achieve O(m= logj�j n+

p
logj�j n) time, since this bound extends from 1=2 to any exponent � > 0.

The point is that, in the worst case, we may have to traverse �(m) nodes, so we need a tool
to skip most of these nodes. Ideally, we would like to branch downward matching log n bits (or
equivalently, logj�j n symbols) in constant time, independently of the number of traversed nodes.
For that purpose, we use a perfect hash function h (e.g., see [FKS84]) on keys each of length at
most 2 log n bits. In particular, we use the perfect hash function in [HMP00], which has constant
lookup time and takes O(k) words of space and O(k log k) construction time on k keys, in the worst
case.

First of all, we enumerate the nodes of PT in preorder starting from the root, with number 1.
Second, we build hash tables to mimic a downward traversal from a given node i, which is the
starting point for searching strings x of length less than or equal to logj�j n symbols. Suppose that,
in this traversal, we successfully match all the symbols in x and we reach node j (a descendent
of i). In general, there can be further symbols to be added to equal the skip value in j; let b � 0 be
this number of symbols. We represent the successful traversal in a single entry of the hash table.
Namely, we store pair hj; bi at position h(i; x), where the two arguments i and x can be seen as a
single key of at most 2 log n bits. Formally, the relation between these parameters must satisfy two
conditions in case of successful search of x from node i:

1. Node j is the node identi�ed by starting out from node i and traversing downward PT

according to the symbols in x;

2. b is the unique nonnegative integer such that the string corresponding to the path from i to j
has pre�x x and length jxj+ b; this condition does not hold for any proper ancestor of j.

The rationale behind conditions 1{2 is that of de�ning shortcut links from certain nodes i to their
descendents j, so that each successful branching takes constant time, matches jxj symbols (with b

further symbols to check) and skips no more than jxj nodes downward. If the search is unsuccessful,
we do not hash any pair.

The key mechanism that makes the above scheme eÆcient is that we adaptively follow the trie
topology of Patricia, so that the strings that we hash are not all possible substrings of logj�j n
(or

p
logj�j n) symbols, but only a subset of those that start at the distinct nodes in the Patricia

trie. Using an uncompacted trie would make this method ineÆcient. To see why, let us examine a
Patricia edge corresponding to a substring of length l. We hash only its �rst logj�j n (or

p
logj�j n)

symbols because the rest of the symbols are uniquely identi�ed (and we can skip them). Using an
uncompacted trie would force us to traverse further b = l � logj�j n (or b = l �

p
logj�j n) nodes.

In order to keep small the number of shortcut links, we set up two hash tables H1 and H2. The
�rst table stores entries

H1

�
h(i; x)

�
= hj; bi

such that all strings x consist of jxj = logj�j n symbols, and the shortcut links stored in H1 are

20

selected adaptively by a top-down traversal of PT . Namely, we create all possible shortcut links
from the root. This step links the root to a set of descendents. We recursively link each of these
nodes to its descendents in the same fashion. Note that PT is partitioned into subtries of depth at
most logj�j n.

We set up the second table H2 analogously. We examine each individual subtrie, and start
from the root of the subtrie by using strings of length jxj =

p
logj�j n symbols. Note that the total

number of entries in H1 and H2 is bounded by the number of nodes in PT , namely, O(s).

In summary, the preprocessing consists in a double traversal of PT followed by the construction
of H1 and H2, in O(s log s + n) worst-case time and O(s) words of space. In the general case,
we go on recursively and build ��1 hash tables whose total number of entries is still O(s). The
preprocessing time does not change asymptotically.

We are now ready to describe the search of a pattern (encoded in binary) in the Patricia trie PT
thus augmented. It suÆces to show how to match its longest pre�x. We compute hash function
h(i; x) with i being the root of PT and x being the concatenation of the �rst logj�j n symbols in
the pattern. Then we branch quickly from the root by using H1

�
h(i; x)

�
. If the hash lookup in H1

succeeds and gives pair hj; bi, we skip the next b symbols in the pattern and recursively search in
node j with the next logj�j n symbols in the pattern. Instead, if the hash lookup fails (i.e., no pair
found or fewer than logj�j n symbols left in the pattern), we switch to H2 and take only the nextp

logj�j n symbols in the pattern to branch further in PT . Here the scheme is the same as that of
H1, except that we compare

p
logj�j n symbols at a time. Finally, when we fail branching again,

we have to match no more than
p

logj�j n symbols remaining in the pattern. We complete this
task by branching in the standard way, one symbol a time. The rest of the search is identical to
the standard procedure of Patricia tries. This completes the description of the search in PT .

Lemma 9 Given a Patricia trie PT storing s strings of at least logj�j n symbols each over the

alphabet �, we can preprocess PT in O(s log s + n) time, so that searching a pattern of length m

requires O(m= logj�j n+ log�j�j n) time.

Note that a better search bound in Lemma 9 does not improve the �nal search time obtained
in Theorem 4.

Finally, let us consider a space-eÆcient Patricia trie [MRS01]. The speedup we need while
searching is easier to obtain. We do not need to skip nodes, but just compare �(log n) bits at a
time in constant time by precomputing a suitable table. The search cost is therefore O(m= logj�j n)
plus a linear cost proportional to the number of traversed nodes.

A general property of our speedup of Patricia tries is that we do not increase the original number
of lookup calls originating from the data structures.

4.2 Index Construction

We blend the tools mentioned so far with our compressed suÆx arrays of Section 3 to design an
index data structure, called the compressed suÆx tree, which follows the multilevel scheme adopted
in [CD96, MRS01]. Because of the LZ index, it suÆces to describe how to support searching of
patterns of length m > � logn. We assume that 0 < � � 1=2 as the case 1=2 < � � 1 requires minor
modi�cations.

Given text T in input, we build its suÆx array SA in a temporary area, in O(n log j�j) time via
the suÆx tree of T . At this point, we start building the O(��1) levels of the compressed suÆx tree
in top-down order, after which we remove SA:

21

1. At the �rst level, we build a regular Patricia trie PT 1 augmented with the shortcut links as
mentioned in Lemma 9. The leaves of PT 1 store the s1 = n= logj�j n suÆxes pointed to by
SA[1], SA[1 + logj�j n], SA[1 + 2logj�j n], This implicitly splits SA into s1 subarrays of
size logj�j n, except the last one (which can be smaller).

Complexity: The size of PT 1 is O(s1 log n) = O(n log j�j) bits. It can be built in O(n log j�j)
time by a variation of the standard suÆx tree construction [KD95, KD96] and the prepro-
cessing described in Lemma 9.

2. At the second level, we process the s1 subarrays at the �rst level, and create s1 space-eÆcient
Patricia tries [MRS01], denoted PT 2

1, PT
2

2, . . . , PT
2

s1 . We associate the ith Patricia PT 2

i with
the ith subarray. Assume without loss of generality that the subarray consists of SA[h + 1],
SA[h + 2], . . . , SA[h + logj�j n] for a value of 0 � h � n � logj�j n. We build PT 2

i upon the
s2 = log

�=2

j�j
n suÆxes pointed to by SA[h+1], SA[h+1+log

1��=2

j�j
n], SA[h+1+2log

1��=2

j�j
n],

This process splits each subarray into smaller subarrays, each of size log
1��=2

j�j
n.

Complexity: The size of each PT 2

i is O(s2) bits without accounting for the suÆx array, and
its construction takes O(s2) time [MRS01]. Hence, the total size is O(s1s2) = O(n= log1��

j�j
n)

bits and the total processing time is O(n log j�j).

3. In the remaining 2��1 � 2 intermediate levels, we go on like the second level. Each new level

splits every subarray into s2 = log
�=2

j�j
n smaller subarrays and creates a set of space eÆcient

Patricia tries of size O(s2) each. We stop when we are left with small subarrays of size at
most s2. We build space eÆcient Patricia tries on all the remaining entries of these small
subarrays.

Complexity: For each new level thus created, the total size is O(n=log�j�j n) bits and the total
processing time is O(n log j�j).

4. At the last level, we execute compress on the suÆx array SA, store its compressed version in
the level, and delete SA from the temporary area.

Complexity: By Theorem 2, the total size is
�
��1 + O(1)

�
n log j�j bits; accessing a pointer

through a call to lookup takes O(log
�=2

j�j
n) time; the cost of compress is O(n log j�j) time.

(Note that we can �x the value of � arbitrarily when executing compress .)

By summing over the levels, we obtain that the compressed suÆx tree of T takes O(n log j�j) bits
and O(n log j�j) construction time.

4.3 Search Algorithm

We now have to show that searching for an arbitrary pattern P in the text T costs O(m= logj�j n+
log�j�j n) time. The search locates the leftmost occurrence and the rightmost occurrence of P as
a pre�x of the suÆxes represented in SA, without having SA stored explicitly. Consequently, a
successful search determines two positions i � j, such that the sequence i, i+ 1, . . . , j is maximal
(according to the de�nition given before Theorem 3) and SA[i], SA[i + 1], . . . , SA[j] contain the
pointers to the suÆxes that begin with P . The counting query returns j � i+1, and the existence
checks whether there are any matches at all. The enumerative query executes the j � i+ 1 queries
lookup(i), lookup(i+ 1), . . . , lookup(j) to list all the occurrences.

We restrict our discussion to how to �nd the leftmost occurrence of P ; �nding the rightmost
is analogous. We search at each level of the compressed suÆx tree in Section 4.2. We examine
the levels in a top-down manner. While searching in the levels, we execute lookup(i) whenever we
need the ith pointer of the compressed SA. We begin by searching P at the �rst level. We perform

22

the search on PT 1 in the bounds stated in Lemma 9. As a result of the �rst search, we locate a
subarray at the second level, say, the i1th subarray. We go on and search in PT 2

i1
according to the

method for space-eÆcient Patricia tries described at the end of Section 4.1. We repeat the latter
search for all the intermediate levels. We eventually identify a position at the last level, namely,
the level which contains the compressed suÆx array. This position corresponds to the leftmost
occurrence of P in SA.

The complexity of the search procedure is O(m= logj�j n + log�j�j n) time at the �rst level
by Lemma 9. The intermediate levels cost O(m= logj�j n + s2) time each, giving a total of
O(m= logj�j n + log�j�j n). We have to account for the cost of the lookup operations. These calls

originated from the several levels. In the �rst level, we call lookup O(1) times; in the 2��1 � 1

intermediate levels we call lookup O(s2) times each. Multiplying these calls by the O(log
�=2

j�j
n)

cost of lookup as given in Theorem 1 (using �=2 in place of �), we obtain O(log�j�j n) time in ad-
dition to O(m= logj�j n + log�j�j n). Finally, the cost of retrieving all the occurrences is the one
stated in Theorem 3, whose hypothesis is satis�ed because the suÆxes pointed to by SA[i] and
SA[j] are respectively the leftmost and the rightmost sharing m =
(logn) symbols. Combin-
ing this cost with the O(log�j�j n) cost for retrieving any single pointer in Theorem 1, we obtain
O(m= logj�j n+ occ log�j�j n) time when both conditions m 2

�
� log n; o(log1+� n)

�
and occ = o(n�)

hold, and in O
�
m= logj�j n + occ + (log1+� n)(log j�j + log logn)

�
time otherwise. This argument

completes the proof of Theorem 4 on the complexity of our text index.

5 Conclusions

We have presented the �rst indexing data structure for a text T of n symbols over alphabet �
that achieves, in the worst case, o

�
minfm log j�j;m + logng

�
search time and roughly

�
��1 +

O(1)
�
n log j�j bits of space. Our method is based upon notions of compressed suÆx arrays and

suÆx trees and, for any �xed constant 0 < � � 1, uses about ��1n log j�j bits to index text string T
(which requires n log j�j bits). Given any pattern P of m symbols encoded in m log j�j bits, we can
count the number of occurrences of P in T in o

�
minfm log j�j;m+log ng

�
time. Namely, searching

takes O(1) time when m = o(log n), and O(m= logj�j n + log�j�j n) time otherwise. We achieve
optimal O(m= logj�j n) search time for suÆciently largem =
(log1+�

j�j
n). For an enumerative query

retrieving all occ occurrences with suÆciently long patterns, namely, m =

�
(log2+� n) logj�j log n

�
,

we obtain a total search bound of O(m= logj�j n+ occ), which is optimal. Namely, searching takes

O(m= logj�j n + occ log�j�j n) time when both conditions m 2
�
� logn; o(log1+� n)

�
and occ = o(n�)

hold, and O
�
m= logj�j n+ occ + (log1+� n)(log j�j+ log log n)

�
time otherwise.

An interesting open problem is to improve upon our O(n)-bit compressed suÆx array so that
each call to lookup takes constant time. Such an improvement would decrease the output-sensitive
time of the enumerative queries to O(occ) also when m 2

�
� logn; o(log1+� n)

�
and occ = o(n�).

Another possibility for that is to devise a range query data structure that improves the data
structures at the end of Section 3.4. This, in turn, would improve Theorem 3 and Theorem 4.
A related question is to characterize combinatorially the permutations that correspond to suÆx
arrays. A better understanding of the correspondence may lead to more eÆcient compression
methods. Additional open problems are listed in [MRS01]. The kinds of queries examined in this
paper are very basic and involve exact occurrences of the pattern strings. They are often used
as preliminary �lters so that more sophisticated queries can be performed on a smaller amount of
text. An interesting extension would be to support some sophisticated queries directly, such as
those that tolerate a small number of errors in the pattern match [AKL+00, BG96, GBS92, YY97].

23

References

[ABR00] Stephen Alstrup, Gerth S. Brodal, and Theis Rauhe. New data structures for orthogonal range
searching. In Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer

Science, pages 198{207, 2000.

[AIL+88] Alberto Apostolico, Costas Iliopoulos, Gadi M. Landau, Baruch Schieber, and Uzi Vishkin.
Parallel construction of a suÆx tree with applications. Algorithmica, 3:347{365, 1988.

[AKL+00] Amihood Amir, Dmitry Keselman, Gadi M. Landau, Moshe Lewenstein, Noa Lewenstein, and
Michael Rodeh. Text indexing and dictionary matching with one error. J. Algorithms, 37(2):309{
325, 2000.

[ALS99] Arne Andersson, N. Jesper Larsson, and Kurt Swanson. SuÆx trees on words. Algorithmica,
23(3):246{260, 1999.

[AN95] Arne Andersson and Stefan Nilsson. EÆcient implementation of suÆx trees. Software Practice

and Experience, 25(2):129{141, February 1995.

[Apo85] Alberto Apostolico. The myriad virtues of suÆx trees. In A. Apostolico and Z. Galil, editors,
Combinatorial Algorithms on Words, volume 12 of NATO Advanced Science Institutes, Series

F, pages 85{96. Springer-Verlag, Berlin, 1985.

[BBH+85] Anselm Blumer, Janet Blumer, David Haussler, Andrzej Ehrenfeucht, M.T. Chen, and Joel
Seiferas. The smallest automation recognizing the subwords of a text. Theoretical Computer

Science, 40(1):31{55, September 1985.

[BBH+87] Anselm Blumer, Janet Blumer, David Haussler, Ross McConnell, and Andrzej Ehrenfeucht.
Complete inverted �les for eÆcient text retrieval and analysis. Journal of the ACM, 34(3):578{
595, July 1987.

[BG96] Gerth S. Brodal and Leszek G�asieniec. Approximate dictionary queries. In Daniel S. Hirschberg
and Eugene W. Myers, editors, Proc. 7th Annual Symp. Combinatorial Pattern Matching, CPM,
volume 1075 of Lecture Notes in Computer Science, LNCS, pages 65{74. Springer-Verlag, 10{
12 June 1996.

[BM80] Jon L. Bentley and Hermann A. Maurer. EÆcient worst-case data structures for range searching.
Acta Informatica, 13:155{168, 1980.

[BM99] Andrej Brodnik and J. Ian Munro. Membership in constant time and almost-minimum space.
SIAM Journal on Computing, 28(5):1627{1640, October 1999.

[CD96] Livio Colussi and Alessia De Col. A time and space eÆcient data structure for string searching
on large texts. Information Processing Letters, 58(5):217{222, October 1996.

[Cla96] David Clark. Compact Pat trees. PhD Thesis, Department of Computer Science, University of
Waterloo, 1996.

[CM96] David R. Clark and J. Ian Munro. EÆcient suÆx trees on secondary storage (extended abstract).
In Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pages
383{391, Atlanta, Georgia, 28{30 January 1996.

[CP91] Maxime Crochemore and Dominique Perrin. Two{way string matching. Journal of the ACM,
38:651{675, 1991.

[CR94] Maxime Crochemore and Wojciech Rytter. Text Algorithms. Oxford University Press, 1994.

[Cro86] Maxime Crochemore. Transducers and repetitions. Theoretical Computer Science, 45(1):63{86,
1986.

[DO01] Erik D. Demaine and Alejandro L�opez Ortiz. A linear lower bound on index size for text
retrieval. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 289{294. ACM/SIAM, 2001.

24

[Eli74] Peter Elias. EÆcient storage and retrieval by content and address of static �les. Journal of the
ACM, 21(2):246{260, April 1974.

[FC97] Martin Farach-Colton. Optimal suÆx tree construction with large alphabets. In Proceedings of

the 38th Annual IEEE Symposium on Foundations of Computer Science, pages 137{143, Miami
Beach, Florida, 20{22 October 1997.

[FCFM00] Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the sorting-complexity of
suÆx tree construction. Journal of the ACM, 47(6):987{1011, 2000.

[FCM96] Martin Farach-Colton and S. Muthukrishnan. Optimal logarithmic time randomized suÆx tree
construction. In Friedhelm Meyer auf der Heide and Burkhard Monien, editors, Automata,

Languages and Programming, 23rd International Colloquium, volume 1099 of Lecture Notes in

Computer Science, pages 550{561, Paderborn, Germany, 8{12 July 1996. Springer-Verlag.

[FG99] Paolo Ferragina and Roberto Grossi. The String B-tree: a new data structure for string search
in external memory and its applications. Journal of the ACM, 46(2):236{280, March 1999.

[FKS84] Michael L. Fredman, J�anos Koml�os, and Endre Szemer�edi. Storing a sparse table with O(1)
worst case access time. Journal of the ACM, 31(3):538{544, July 1984.

[FM00] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
Proceedings of the 41st Annual IEEE Symposium on Foundations of Computer Science, pages
390{398, 2000.

[FM01] Paolo Ferragina and Giovanni Manzini. An experimental study of an opportunistic index. In
Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 269{
278. ACM/SIAM, 2001.

[GBS92] Gaston H. Gonnet, Ricardo A. Baeza-Yates, and Tim Snider. New indices for text: PAT trees
and PAT arrays. In Information Retrieval: Data Structures And Algorithms, chapter 5, pages
66{82. Prentice-Hall, 1992.

[GKS99] Robert Giegerich, Stefan Kurtz, and Jens Stoye. EÆcient implementation of lazy suÆx trees.
In J. S. Vitter and C. D. Zaroliagis, editors, Proceedings of the 3rd Workshop on Algorithm

Engineering, number 1668 in Lecture Notes in Computer Science, pages 30{42, London, UK,
1999. Springer-Verlag, Berlin.

[GS83] Zvi Galil and Joel Seiferas. Time-space-optimal string matching. Journal of Computer and

System Sciences, 26:280{294, 1983.

[Gus97] Dan Gus�eld. Algorithms on Strings, Trees and Sequences: Computer Science and Computa-

tional Biology. Cambridge University Press, 1997.

[GV00] Roberto Grossi and Je�rey S. Vitter. Compressed suÆx arrays and suÆx trees with applications
to text indexing and string matching (extended abstract). In Proceedings of the Thirdy-Second

Annual ACM Symposium on the Theory of Computing, pages 397{406, Portland, OR, 2000.

[HMP00] Torben Hagerup, Peter Bro Miltersen, and Rasmus Pagh. Deterministic dictionaries. Submitted
manuscript (http://www.daimi.au.dk/~bromille/Papers/det-jour.pdf), 2000.

[Irv95] Robert W. Irving. SuÆx binary search trees. Technical Report TR-1995-7, Computing Science
Department, University of Glasgow, 1995.

[Jac89a] Guy Jacobson. Space-eÆcient static trees and graphs. In Proceedings of the 30th Annual IEEE

Symposium on Foundations of Computer Science, pages 549{554, 1989.

[Jac89b] Guy Jacobson. Succinct static data structures. Technical Report CMU-CS-89-112, Dept. of
Computer Science, Carnegie-Mellon University, January 1989.

[K�ar95] Juha K�arkk�ainen. SuÆx cactus: A cross between suÆx tree and suÆx array. In Combinatorial

Pattern Matching, volume 937 of Lecture Notes in Computer Science, pages 191{204. Springer,
1995.

25

[KD95] S. Rao Kosaraju and Arthur L. Delcher. Large-scale assembly of DNA strings and space-eÆcient
construction of suÆx trees. In Proceedings of the Twenty-Seventh Annual ACM Symposium on

the Theory of Computing, pages 169{177, Las Vegas, Nevada, 29 May{1 June 1995.

[KD96] S. Rao Kosaraju and Arthur L. Delcher. Correction: Large-scale assembly of DNA strings and
space-eÆcient construction of suÆx trees. In Proceedings of the Twenty-Eighth Annual ACM

Symposium on the Theory of Computing, page 659, Philadelphia, Pennsylvania, 22{24 May
1996.

[KMP77] Donald E. Knuth, J. H. Morris, and Vaughan R. Pratt. Fast pattern matching in strings. SIAM
Journal on Computing, 6:323{350, 1977.

[Knu98] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming.
Addison-Wesley, Reading, MA, USA, second edition, 1998.

[KS98] Juha K�arkk�ainen and Erkki Sutinen. Lempel-Ziv index for q-grams. Algorithmica, 21(1):137{
154, 1998.

[KU96a] Juha K�arkk�ainen and Esko Ukkonen. Lempel-Ziv parsing and sublinear-size index structures
for string matching. In N. Ziviani, R. Baeza-Yates, and K. Guimar~aes, editors, Proceedings of
the 3rd South American Workshop on String Processing, pages 141{155, Recife, Brazil, 1996.
Carleton University Press.

[KU96b] Juha K�arkk�ainen and Esko Ukkonen. Sparse suÆx trees. Lecture Notes in Computer Science,
1090:219{230, 1996.

[Kur99] Stefan Kurtz. Reducing the Space Requirement of SuÆx Trees. Software { Practice and Expe-

rience, 29(13):1149{1171, 1999.

[M�ak00] Veli M�akinen. Compact suÆx array. In Combinatorial Pattern Matching, volume 1848 of Lecture
Notes in Computer Science, pages 305{319. Springer, 2000.

[McC76] Eduard M. McCreight. A space-economical suÆx tree construction algorithm. Journal of the

ACM, 23(2):262{272, 1976.

[MM93] Udi Manber and Gene Myers. SuÆx arrays: a new method for on-line string searches. SIAM

Journal on Computing, 22(5):935{948, 1993.

[Mor68] Donald R. Morrison. PATRICIA - Practical Algorithm To Retrieve Information Coded In
Alphanumeric. Journal of the ACM, 15(4):514{534, October 1968.

[MR97] J. Ian Munro and Venkatesh Raman. Succinct representation of balanced parentheses, static
trees and planar graphs. In 38th Annual Symposium on Foundations of Computer Science, pages
118{126, 1997.

[MRS01] J. Ian Munro, Venkatesh Raman, and S. Srinivasa Rao. Space eÆcient suÆx trees. Journal of
Algorithms, 39:205{222, 2001.

[Mun96] J. Ian Munro. Tables. FSTTCS: Foundations of Software Technology and Theoretical Computer

Science, 16:37{42, 1996.

[MW94] Udi Manber and Sun Wu. GLIMPSE: A tool to search through entire �le systems. In Proceedings
of the USENIX Winter 1994 Technical Conference, pages 23{32, 1994.

[MZ96] Alistair Mo�at and Justin Zobel. Self-indexing inverted �les for fast text retrieval. ACM

Transactions on Information Systems, 14(4):349{379, October 1996.

[Pag01] Rasmus Pagh. Low redundancy in static dictionaries with constant query time. SIAM Journal

on Computing, 31:353{363, 2001.

[Sad00] Kunihiko Sadakane. Compressed Text Databases with EÆcient Query Algorithms based on the
Compressed SuÆx Array. In Proceedings of ISAAC'00, number 1969 in LNCS, pages 410{421,
2000.

26

[Sad02] Kunihiko Sadakane. Succinct representations of lcp information and improvements in the com-
pressed suÆx arrays. In Proceedings of the Thitheenth Annual ACM-SIAM Symposium on

Discrete Algorithms. ACM/SIAM, to appear, 2002.

[SNZ97] Edleno Silva de Moura, Gonzalo Navarro, and Nivio Ziviani. Indexing compressed text. In
Proc. of the South American Workshop on String Processing, pages 95{111. Carleton University
Press, 1997.

[SV94] Suleyman Cenk Sahinalp and Uzi Vishkin. Symmetry breaking for suÆx tree construction. In
Proceedings of the 26th Annual Symposium on the Theory of Computing, pages 300{309, New
York, May 1994. ACM Press.

[Ukk95] Esko Ukkonen. On-line construction of suÆx trees. Algorithmica, 14(3):249{260, September
1995.

[Wei73] Peter Weiner. Linear pattern matching algorithm. Proc. 14th Annual IEEE Symposium on

Switching and Automata Theory, pages 1{11, 1973.

[Wil86] Dan E. Willard. On the application of sheared retrieval to orthogonal range queries. In Pro-

ceedings of the Second Annual Symposium on Computational Geometry, pages 80{89, 1986.

[YY97] Andrew C. Yao and Frances F. Yao. Dictionary look-up with one error. Journal of Algorithms,
25(1):194{202, October 1997.

[ZMR98] Justin Zobel, Alistair Mo�at, and Kotagiri Ramamohanarao. Inverted �les versus signature �les
for text indexing. ACM Transactions on Database Systems, 23(4):453{490, December 1998.

[ZSNBY00] Nivio Ziviani, Edleno Silva de Moura, Gonzalo Navarro, and Ricardo Baeza-Yates. Compression:
A key for next-generation text retrieval systems. IEEE Computer, 33(11):37{44, November 2000.

27

