
On Entropy-Compressed Text Indexing

in External Memory�

Wing-Kai Hon1, Rahul Shah2, Sharma V. Thankachan2,
and Jeffrey Scott Vitter3

1 Department of Computer Science, National Tsing Hua University, Taiwan
wkhon@cs.nthu.edu.tw

2 Department of Computer Science, Louisiana State University, LA, US
{rahul,svt}@csc.lsu.edu

3 Department of Computer Science, Texas A & M University, TX, USA
jsv@tamu.edu

Abstract. A new trend in the field of pattern matching is to design
indexing data structures which take space very close to that required
by the indexed text (in entropy-compressed form) and also simultane-
ously achieve good query performance. Two popular indexes, namely
the FM-index [Ferragina and Manzini, 2005] and the CSA [Grossi and
Vitter 2005], achieve this goal by exploiting the Burrows-Wheeler trans-
form (BWT) [Burrows and Wheeler, 1994]. However, due to the intricate
permutation structure of BWT, no locality of reference can be guaran-
teed when we perform pattern matching with these indexes. Chien et
al. [2008] gave an alternative text index which is based on sparsifying
the traditional suffix tree and maintaining an auxiliary 2-D range query
structure. Given a text T of length n drawn from a σ-sized alphabet set,
they achieved O(n log σ)-bit index for T and showed that this index can
preserve locality in pattern matching and hence is amenable to be used
in external-memory settings. We improve upon this index and show how
to apply entropy compression to reduce index space. Our index takes
O(n(Hk + 1)) + o(n log σ) bits of space where Hk is the kth-order em-
pirical entropy of the text. This is achieved by creating variable length
blocks of text using arithmetic coding.

1 Introduction

Given a text T and a pattern P , finding all occurrences of P in T is the most
fundamental problem in the field of pattern matching. In the data-structural
sense, an index is built over T , and later some pattern P comes as a query; our
target is to solve the above problem more quickly with the help of the index.
Suffix trees [20,16] and suffix arrays [15] are the most popular indexes which can
answer the query in O(p + occ) time and O(p + log n + occ) time respectively,
where n = |T |, p = |P |, and occ is the number of places where P occurs in T .

� This work is supported in part by Taiwan NSC Grant 96-2221-E-007-082-MY3 (W.
Hon) and US NSF Grant CCF–0621457 (R. Shah and J. S. Vitter).

J. Karlgren, J. Tarhio, and H. Hyyrö (Eds.): SPIRE 2009, LNCS 5721, pp. 75–89, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

76 W.-K. Hon et al.

Historically, these two data structures are considered to consume “linear” space.
However, the notion of space measure here was in terms of memory words. When
measured in terms of bits, these indexes take O(n log n) bits which is asymp-
totically higher than the n�logσ� bits required to store the text in plain form;
here, σ denotes the size of the common alphabet set Σ from which characters of
T and P are drawn. Practically when we are indexing DNA texts (with σ = 4),
these indexes are reported to take 15 to 50 times more space than the original
data. Furthermore, the text T can often be compressed into nHk bits by entropy-
compression methods like gzip or bzip, where Hk ≤ log σ denotes the kth-order
empirical entropy of the text. Thus, the actual gap between the indexing space
and the storage space is even larger.

A longstanding open question was to develop a text index which takes “truly”
linear space. Grossi and Vitter [10] presented the first text index taking O(n log σ)
bits. Simultaneously, Ferragina and Manzini [6] presented an index based on
Burrows-Wheeler transform (BWT) [3] which took O(nHk) bits. Both indexing
schemes were further refined [18,9,7] to take nHk + o(n log σ) bits, and various
space-time trade-offs are also obtained (see [17] for an excellent survey). One of
the main approach in designing all these indexes is to permute the text according
to the BWT. However, a short-coming of this approach is that BWT permuta-
tion completely shatters the locality of text characters. Each next character of
the pattern being matched can occur at a random location in the BWT. Hence,
no efficient external memory results were possible with such an approach. Chien
et al. [4] took a different approach of sparsifying the suffix tree to achieve space
reduction. The main idea was to combine a few contiguous characters from the
text to create a block, where each block in turn is treated like a new alphabet
symbol (or a meta-character). The index structures then includes the suffix tree
of this blocked text as a component, which is effectively a miniature of the suf-
fix tree of the original text but with fewer suffixes. This leads to an alternative
O(n log σ)-bit index when we set each block to contain roughly d = 0.5 logσ n
characters.

In this paper, we show the first entropy-compressed index in external memory
which can effectively exploit locality in pattern matching. Our technique is to
improve the blocking technique of Chien et al. [4]. We first introduce a variable-
length blocking technique which is combined with arithmetic coding scheme.
Using this we improve the space from O(n log σ) bits to O(nHk) + o(n log σ)
bits when k = o(logσ n) and σ = O(n1−ε) for any fixed ε > 0. We first
present an index that works efficiently in the RAM model. Then, we show
how to convert it to work in the external-memory model, and show that by
maintaining an O(nε)-bit table in RAM, pattern matching queries can be an-
swered in O((p log n)/B + log3 n/(log σ log B) + occ logB n) I/Os; here, B de-
notes I/O block size in terms of memory words. This result is further improved
to O(p/(B logσ n) + log4 n/ log log n + occ logB n) I/Os by using O(n)-bit extra
space.

On a related note, there were several attempts at designing compressed in-
dexes in secondary memory based on LZ-indexes. In [2], Arroyuelo and Navarro

On Entropy-Compressed Text Indexing in External Memory 77

proposed an index whose space is O(nHk) + o(n log σ), but the I/O bounds
for pattern searching were not given. Their work is practical in nature and
claims to answer pattern matching queries in about 20–60 disk accesses. In [8],
González and Navarro provided an index which achieves O(p + occ/B) I/Os for
answering pattern matching query. However, their space usage is O((n log n) ×
Hk log(1/Hk)) bits, which is an O(log n) factor more in terms of the optimal
space complexity. Our techniques of blocking text and encoding blocks (meta-
characters) using arithmetic coding are similar to the ones used in the above
LZ-index line of work [2,8]. The key difference is in the way how the size of the
blocks is controlled to achieve the desired theoretical bounds.

2 Preliminaries

This section introduces a few existing data structures for text indexing and
orthogonal range searching which form the building blocks of our compressed
text indexes. We will briefly explain their roles in our indexes, while a more
detailed description is deferred in later sections. We also give a brief summary
of the external-memory model of [1].

Throughout the paper, we use T to denote the text to be indexed, and n = |T |
to denote its length. We use P to denote the pattern which comes as an online
pattern matching query, and p = |P | to denote its length. Further, we assume
the characters of T and P are both drawn from the same alphabet set Σ whose
size is σ.

2.1 Suffix Trees, Suffix Arrays, and Burrows-Wheeler Transform

Suffix trees [20,16] and suffix arrays [15] are two well-known and popular text
indexes that support online pattern matching queries in optimal (or nearly opti-
mal) time. For text T [1...n] to be indexed, each substring T [i..n], with i ∈ [1, n],
is called a suffix of T . The suffix tree for T is a lexicographic arrangement of
all these n suffixes in a compact trie structure, where the ith leftmost leaf rep-
resents the ith lexicographically smallest suffix. Each edge e in the suffix tree
is labeled by a series of characters, such that if we examine each root-to-leaf
path, the concatenation of the edge labels along the path is exactly equal to the
corresponding suffix represented by the leaf.

Suffix array SA[1...n] is an array of length n, where SA[i] is the starting
position (in T) of the ith lexicographically smallest suffix of T . An important
property of SA is that the starting positions of all suffixes with the same prefix
are always stored in a contiguous region in SA. Based on this property, we define
the suffix range of a pattern P in SA to be the maximal range [�, r] such that for
all j ∈ [�, r], SA[j] is the starting point of a suffix of T with P as a prefix. Note
that SA can be obtained by traversing the leaves of suffix tree in a left-to-right
order, and outputting the starting position of each leaf (i.e., a suffix of T) along
this traversal. In particular, we have the following technical lemma about suffix
trees, suffix arrays, and suffix ranges.

78 W.-K. Hon et al.

Lemma 1. Given a text T of length n, we can index T using suffix tree and
suffix array in Θ(n log n) bits such that the suffix range of any input pattern P
can be obtained in O(p) time.

Suffix trees or suffix arrays maintain relevant information of all n suffixes of T
such that on given any input pattern P , we can easily search for the occurrences
of P simultaneously in each position of T . However, a major drawback is the
blowup in space requirement, from the original Θ(n log σ) bits of storing the
text in plain form to the Θ(n log n) bits of maintaining the indexes. In our
compressed text indexes, we apply a natural and very simple idea to achieve space
reduction, as suggested in [4] by maintaining only a fraction of these suffixes.
The consequence is that we can no longer search all positions of T in a single
pass. Instead, we need multiple passes, thus causing some inefficiency in the
query time. On the other hand, we gain much space reduction by storing fewer
suffixes.

The Burrows-Wheeler transform of a text T is an array BWT of characters
such that BWT [i] is the character preceding the ith lexicographically smallest
suffix of T . That is, BWT [i] = T [SA[i]− 1].

2.2 External-Memory Model

The external-memory model [1] or I/O model was introduced by Aggarwal and
Vitter in 1988. In this model, the CPU is connected directly to an internal
memory of size M , which is then connected to a much larger and slower disk.
The disk is divided into blocks of B words (i.e., B log n bits). The CPU can only
operate on data inside the internal memory. So, we need to transfer data between
internal memory and disk through I/O operations, where each I/O may transfer
a block from the disk to the memory (or vice versa). Since internal memory
(RAM) is much faster, operations on data inside this memory are considered
free. Performance of an algorithm in the external-memory model is measured by
the number of I/O operations used.

2.3 String B-Tree

String B-tree (SBT) [5] is an index for a text T that supports efficient online
pattern matching queries in the external-memory setting. Basically, it is a B-
tree over the suffix array SA of T but with extra information stored in each
B-tree node to facilitate the matching. The performance of SBT is summarized
as follows.

Lemma 2. Given a text T of length n characters , we can index T using a string
B-tree in Θ(n/B) blocks or Θ(n log n) bits such that the suffix range of any input
pattern P of length p can be obtained in O(p/(B logσ n) + logB n) I/Os. ��
In our compressed text index for the external-memory setting, we again achieve
space reduction by maintaining fewer suffixes. Thus, our index includes a spar-
sified version of the SBT as the main component.

On Entropy-Compressed Text Indexing in External Memory 79

2.4 Orthogonal Range Searching in 2D Grid Using Wavelet Tree

In our compressed text index, in addition to the suffix trees or SBT, another key
component is a data structure to represent some integer array A[1...m], with each
integer drawn from [1, n], which can efficiently support online 4-sided queries of
the following form:

Input: A position range [�, r] and a value bound [y, y′]
Output: All those z’s in [�, r] such that y ≤ A[z] ≤ y′

The above problem can easily be modeled as a geometric problem as follows.
First, for each i ∈ [1, m], generate a point (i, A[i]) in the 2-dimensional grid
[1, m]× [1, n]. This forms the representation of the array A. Then, for any input
query with position range [�, r] and value bound [y, y′], the desired output corre-
sponds to all points in the grid that are lying inside the rectangle [�, r]× [y, y′].

Such a query is called an orthogonal range query in the literature, and many
indexing schemes are devised that have different tradeoffs between index space
and query time. In our compressed text indexes, we will require an index for A
which takes O(m log n) bits of space, so we select the wavelet tree [14,12,21] as
our choice, whose results are summarized in the following lemma.

Lemma 3. Given an integer array A of length m with values drawn from [1, n], we
can index A in O(m log n) bits such that the 4-sided query of any position range [�, r]
and any value bound [y, y′] can be answered in O((occ + 1) logn/ log log n) time in
the RAM model and O((occ + 1) logB n) I/Os in the external-memory model. ��

3 The Framework of Our Indexing Scheme

This section first describes the general framework of our index design, which
consists of a combination of the building block data structures mentioned in
Section 2. Afterwards, we will look at the general approach to perform pattern
matching based on our index. The following two sections details with the design
and the analysis of the index performance.

3.1 The Framework of the Index Design

To obtain our compressed index, we perform the following three key steps:

Step 1: Given a text T , we first transform T into an equivalent text T ′ such that
T ′ consists of at most O((nHk + o(n log σ))/ log n) meta-characters, where each
meta-character represents at most d consecutive characters in the original text
for some threshold d. In addition, we also require that each meta-character can
be described in O(log n) bits, so that T ′ can be described in O(nHk)+o(n logσ)
bits.

Step 2: We maintain the suffix tree or String B-Tree for T ′, where we consider
each meta-character of T ′ as a single character from a new alphabet.

80 W.-K. Hon et al.

Step 3: We perform the Burrows-Wheeler transform on T ′ to obtain an array
A. Then we maintain the wavelet tree for A.

3.2 The Framework of the Pattern Matching Algorithm

The suffix tree or SBT in our index will maintain only the suffixes of T ′, which
correspond to only a fraction of the original suffixes. Then, when a pattern P
occurs in T , it will in general match the corresponding meta-characters of T ′ in
the following way:

The first part of P , say P [1..i], matches the suffix of a meta-character
T ′[j] and the remainder of P , say P [i + 1..p], matches the prefix
of T ′[j + 1..|T ′|]. We shall call such an occurrence of P an offset-i
occurrence of P in T .

Our pattern matching algorithm is to find the offset-i occurrences of P sepa-
rately for each relevant i. In our design, each meta-character of T ′ represents at
most d original characters of T . It is therefore sufficient to consider only those
i in [0, d − 1]. This leads to the following pattern matching algorithm, which
consists of two major steps:

Step 1: Compute the suffix range of P [i + 1..n] in the suffix array SA′ of T ′ for
each i ∈ [0, d− 1] using the suffix tree (ST ′) or String B-Tree (SBT ′) of T ′.

Step 2: For each i ∈ [0, d−1], use the suffix range of P [i+1..n] to issue a 4-sided
query in the wavelet tree of A to find all offset-i occurrences of P . (Details of
how to issue the corresponding 4-sided query are given in the next section.)

4 Index for Internal Memory Model

In this section, we show a simple index based on variable length meta-character
blocking and sparse suffix tree in the internal memory model. Later, in section 5,
we shall show how to extend our results to the external memory model.

4.1 Index Design

In the index given by Chien et al. [4], the given text T is converted to an
equivalent text T ′ by blocking every d = 0.5 logσ n characters. Each block, called
a meta-character, contains fixed number of characters. The transformed text
T ′ consists of O(n/ logσ n) meta-characters. Hence, the suffix tree of T ′ takes
O(n log σ) bits space.1 The new index we propose in this paper improves the
space complexity to O(nHk)+o(n logσ) bits. Here, instead of having each meta-
character contain a fixed number of characters, we allow a variable number
of characters. Each meta-character is encoded in such a way that, its first k
characters are written explicitly (using fixed length encoding) and the rest using
kth-order arithmetic coding. The number of characters within a meta-character
is restricted by the following two conditions.
1 Assuming each integer and each pointer is at most log n bits long.

On Entropy-Compressed Text Indexing in External Memory 81

– The number of characters should not exceed a threshold d = log2 n/ log σ.
– After encoding, the total length should not exceed 0.5 logn bits.2

In our new index, the transformation of T into T ′ can be performed as follows.
Start encoding T from T [1] and get its longest prefix T [1...j], which satisfies the
conditions of a meta-character. Hence, T [1...j] in its encoded form is our first
meta-character. After that the remainder of T is encoded recursively. (Note that
the strings corresponding to distinct meta-characters are not required to be
prefix-free.) The starting position of each meta-character is stored in an array
M such that M [i] corresponds to the starting position of ith meta-character in
T . In other words, the substring T [M(i)...(M [i + 1]− 1)] corresponds to the ith
meta-character. For instance, M [1] = 1 and M [2] = j + 1. By concatenating all
these meta-characters (in the order in which the corresponding block appears in
T), we obtain the desired string T ′.

Since each meta-character corresponds to a maximal substring of T without
violating the two conditions, a meta-character corresponds either to (i) exactly
d characters of T , or (ii) its encoding is just below 0.5 logn in which case the
encoding is of Θ(log n) bits and corresponds to Θ(logσ n) characters of T .3 Note
that in both cases each meta-character corresponds to Ω(logσ n) characters.

Direct entropy compression of T would have resulted in nHk + o(n log σ)-
bit space for T ′. But in our scheme, the first k characters are written explic-
itly in each block. This results in an overhead of O((n/ logσ n) × k log σ) =
o(n log σ) bits to encode T ′, assuming k = o(logσ n).4 Thus, the number of
meta-characters from (i) cannot exceed n/d = o(n log σ/ log n), while the num-
ber of meta-characters from (ii) is bounded by O((nHk + o(n log σ))/ log n).
In summary, the length of T ′ = nHk + o(n log σ) bits, and there is a total of
O((nHk + o(n log σ))/ log n) meta-characters in T ′.

By considering each meta-character as a single character from the new alpha-
bet set, we construct the suffix tree ST ′ of T ′. As the length of T ′ is given by
O((nHk + o(n log σ))/ log n), so is the number of nodes in ST ′. Thus, ST ′ takes
O((nHk + o(n log σ))/ log n× log n) = O(nHk) + o(n log σ) bits of space.

Lemma 4. The total number of distinct meta-characters is O(
√

n).

Proof. Each meta-character has an encoding between 1 and 0.5 logn bits. Thus,
the number of distinct meta-character is at most

∑0.5 log n
r=1 2r = O(

√
n). ��

2 Without loss of generality, we assume here that σ < n1/4. The parameters can be
appropriately adjusted for the more general case when σ = O(n1−ε) for any fixed
ε > 0.

3 Here, we make a slight modification that one extra bit is spent for each meta-
character, such that if our kth-order encoding of the next o(logσ n) characters already
exceeds 0.5 log n, we shall instead encode the next 0.5 logσ n characters (i.e., more
characters) in its plain form. The extra bit is used to indicate whether we use the
plain encoding or the kth-order encoding.

4 As mentioned, there is also an extra bit overhead per meta-character; however, we
will soon see that the number of meta-characters = O((nHk + o(n log σ))/ log n) so
that this overhead is negligible.

82 W.-K. Hon et al.

We also construct an auxiliary trie-structure Π which can be used to rank each of
the meta-characters among all the meta-characters that are constructed from the
text. Let B be a block in T which corresponds to a meta-character C in T ′, and
let←−B denote the string obtained by reversing the characters of B. We maintain a
string L which is the concatenation of all distinct←−B ’s in the uncompressed form
and we construct a compact trie Π storing all distinct ←−B ’s. The edges of Π are
represented using two pointers, which are the starting and ending points of the
corresponding substring in L. String L takes O(

√
n × (log2 n/ logσ) × log σ) =

o(n) bits and Π takes O(
√

n× log n) = o(n) bits of space.
Let Π(i) represent the ith leftmost leaf of Π . Now we shall show how to

obtain an array A from which we construct the wavelet tree. For this, we first
compute BWT of T ′. Let BWT [i] = C, where C is a meta-character and B is
its corresponding character block. Now, search for←−B in Π and reach a leaf node
Π(j); then we set A[i] = j. That is, A[i] is the leaf-rank of ←−B in Π . Finally,
we maintain a wavelet tree of A based on Lemmas 3 and 4, whose space takes
O((nHk +o(n log σ))/ log n)× log(O(

√
n)) = O(nHk)+o(n logσ) bits. The total

space requirement for our index is O(nHk) + o(n log σ) bits.

4.2 Pattern Matching Algorithm

The suffix tree ST ′ maintains only the suffixes of T ′. Therefore navigating
through ST ′ can only report those occurrences of the query pattern P which
start at a meta-character boundary. But in general, P can start anywhere in-
side T , where P [1...i] matches to the suffix of a meta-character T ′[j] and the
remaining of P , P [i+1...p] matches the prefix of T ′[j +1...|T ′|]. We call such an
occurrence of P an offset-i occurrence of P in T . We need to check for all possible
offset occurrences. Since the number of characters inside a meta-character is at
most d, it is sufficient to check for those offsets i where i = 0, 1, 2, . . . , d− 1.

To find offset-i occurrences, we let Ppre represent the prefix P [1...i] and Psuf

represent the suffix P [i + 1...p] of the pattern P . We first convert Psuf into P ′
suf

by blocking this into meta-characters. Following our convention, we use ←−−Ppre to
denote the reverse of Ppre . Next, we search for ←−−Ppre in the compact trie Π to
reach a position u∗ (if exists); note that u∗ may be an internal node, or within
an edge, rather than a leaf. In any case, we use Π(ileft) and Π(iright) to denote,
the leftmost and rightmost leaves in the subtree of u∗.

We are now ready to show how to search for the desired offset-i occurrences of P :

1. Search for P ′
suf in ST ′ and obtain its suffix range SA′[�...r]. Here P ′

suf is of
length at most p logσ, hence by assuming standard word length of O(log n)
bits, this matching step can be performed in O(p/ logσ n) time. But for
matching an ending portion of a pattern, which may be smaller than the
length of a meta-character, we need to perform a “predecessor search” in
order to get the range. Therefore, in general the suffix range can be obtained
in O(p/ logσ n + log n) time.5

5 More precisely, we maintain the SBT data structure for short patterns as suggested
by Hon et al. [11] to accomplish the task. We defer the details in the full paper.

On Entropy-Compressed Text Indexing in External Memory 83

2. We need to find out those text positions in SA′[�...r], such that Ppre occurs
before those positions. This is equivalent to finding all z’s in [�, r], such that
ileft ≤ A[z] ≤ iright .

3. Now the search for offset-i occurrences is reduced to an orthogonal range
searching problem in 2D grid. We use the wavelet tree structure of A to solve
this query. According to Lemma 3, this will take O((occ(i)+1) log n/ log log n)
time, where occ(i) represents the number of offset-i occurrences.

Lemma 5. Based on ST ′ and the wavelet tree of A, all the offset-i occurrences
of a pattern P in T , which cross at least one meta-character boundary, can be
reported in O(p/ logσ n + log n + occ(i) log n/ log log n) time, where occ(i) is the
number of offset-i occurrences of P in T . ��

The above steps need to be performed for all possible offsets i, where i =
0, 1, . . . , d − 1. For each offset i we need to convert Psuf into P ′

suf . Assum-
ing the conversion is done independently for each offset, it will in total take
O(p log n + d log n) time. This gives the following lemma.

Lemma 6. A given text T can be indexed in O(nHk)+ o(n log σ) bits such that
all the occurrences of a pattern P in T , which crosses at least one meta-character
boundary in T , can be reported in O(p log n + log3 n/ logσ + occ log n/ log log n)
time. ��

4.3 Index for Short Patterns

The methods described before will work only for those occurrences of a pattern
that cross a meta-character boundary. To find those short patterns which start
and end inside the same meta-character, we rely on an auxiliary data struc-
ture which is a generalized suffix tree Δ of all the distinct meta-characters that
appear. Considering Lemma 4, the space for Δ can easily be bounded by o(n).

The search begins by matching the pattern P in Δ to obtain the list L of all
the distinct meta-characters in which P occurs (along with the relative positions
of pattern occurrences inside a given meta-character. Now, on top of this, for
each distinct meta-character C appearing in the text, we maintain the list HC

of all the positions in T ′ where the meta-character C occurs. These lists overall
take log n bits per meta-character and hence the total space for the H structure
is bounded by O(nHk)+o(n log σ) bits. Once the list L of meta-characters (along
with the internal positions) is obtained from Δ we use H as the de-referencing
structure to obtain the final set of positions.

Lemma 7. A given text T can be indexed in O(nHk)+ o(n log σ) bits such that
all the occurrences of pattern P in T , which starts and ends inside the same
meta-character in T , can be reported in O(p + occ) time. ��
The following theorem concludes our result.

Theorem 1. A text T can be indexed in O(nHk) + o(n log σ) bits space, such
that all the occurrences of a pattern P in T can be reported in O(p log n +
log3 n/ logσ + occ log n/ log log n) time. ��

84 W.-K. Hon et al.

5 Extension to External Memory Model

In this section, we extend our results in the RAM model to the external memory
model.6 For this, we replace each data structure in internal memory model with
its external memory counterpart. The sparse suffix tree ST ′ will be replaced by
a sparse string B-tree SBT ′ of T ′. The wavelet tree of array A will be replaced
with its external memory version [12,14]. By performing a similar analysis, and
setting the threshold d to be log2 n/ logσ, the searching for a pattern P in
T will take

∑d−1
i=0 O(p/(B logσ n) + logB n + occ(i) logB n) = O((p log n)/B +

(logB n)(log2 n/ logσ) + occ logB n) I/Os, where occ(i) represents the number
of offset-i occurrences that cross at least one meta-character boundary and occ
represents the total number of such occurrences. The generalized suffix tree for
short patterns will be replaced by string B-tree, which can perform pattern
matching in O(p/B + logB n + occ) I/Os. Immediately, we have the following
theorem.

Theorem 2. A text T can be indexed in O(nHk)+o(n log σ) bits in the external
memory, such that all occurrences of pattern P can be reported in O((p log n)/B+
log3 n/(log σ log B) + occ logB n) I/Os.

Indeed, we can reduce the O((p log n)/B) term to O(p/(B logσ n)), if we allow
slightly more index space. This is done by combining our index with Sadakane’s
Compressed Suffix Tree (CST) [19]. Our goal is to avoid repeated pattern match-
ing for various offsets, which is done by using the “suffix link” functionality pro-
vided by CST. The main idea is that if some part of the pattern is matched
during the offset-k search then we avoid re-matching it for offset-(k + 1) search
and onwards; instead we rely on the suffix link to provide information for the
subsequent search.

In the remainder of this section, we sketch how the pattern matching algorithm
can be sped up by storing the CST. Firstly, for any internal node u inside the
suffix tree, let path(u) denote the string obtained by concatenation of edge labels
from root to u. The suffix link of u is defined to be the (unique) internal node v
such that the removal of the first character of path(u) is exactly the same as
path(v). However, suffix link with respect to the original suffix tree may not
exist in the sparse suffix tree or the sparse string B-tree (simply because some
suffixes are missing).

In our algorithm, the full (non-sparse) suffix tree on T must be used, so that
we can follow the original suffix links. To stay within our space bounds of O(nHk)
we cannot afford to use the regular suffix tree. This explains why we choose the
CST of [19], which provides all suffix tree functionalities in compressed space.

6 Recall that the block size parameter B is measured in terms of memory words while
the pattern length p is measured in terms of characters. Here, we further assume that
the decoding table for arithmetic coding fits in the internal memory. By choosing
appropriate parameters and with the condition that k = o(logσ n), we can ensure
that the decoding table size is O(nε) bits.

On Entropy-Compressed Text Indexing in External Memory 85

5.1 Compressed Suffix Tree

Let us assume we have stored Compressed Suffix Tree CST of the text T . In
addition, all the nodes in CST which are also in the sparse suffix tree ST ′ are
marked. For this marking, a bit-vector is maintained in addition to CST. The
nodes in CST are considered in pre-order fashion and whenever a marked node is
visited we write “1” or else we write “0”. Thus, this bit-vector B stores marking
information on the top of CST .

We shall need the following functionalities provided by the recent CST of [19]
together with our bit-vector B:

Suffix link: Given a node u (by its pre-order rank) in CST, return the suffix
link node v (by its pre-order rank). This function can be done in O(log σ)
I/Os.

Highest marked descendant: Given a node u in CST, its highest marked
descendant is defined to be the node v such that v is in the subtree of u,
v is marked, and no nodes between u and v is marked. Such a node v (if
exists) is unique. This is due to the fact that the least common ancestor of
two marked nodes (i.e., the least common ancestor of two sparse suffix tree
nodes) is also marked. Note that this functionality is not directly provided
by CST of [19] but can easily be implemented in O(1) I/Os by storing a
rank/select data structure over the bit-vector B along with the parentheses
encoding of CST.

Lowest marked ancestor: Given a node u in CST, report its lowest marked
ancestor (if exists). This can be done in O(1) I/Os based on B and its the
rank/select data structure.

Leftmost leaf: Given a node u in CST, locate its leftmost (rightmost) leaf
node in its subtree. This can be done in O(1) I/Os.

String-depth: Given a node u, report the length of path(u). This can be done
in O(log2 n/ log log n) I/Os.

Weighted level ancestor: Given a leaf � and string-depth w, report the
(unique) node u such that u is the first node on the path from root to � with
string-depth ≥ w. This node u must be a lowest common ancestor between
� and some other leaf �′, so that we can find u if �′ is determined. Such �′

can be found by binary searching all leaves to the right of �, and examine
the string-depth of lowest common ancestor of � and the leaf. The process
can be done in O(log3 n/ log log n) I/Os.

5.2 Sparse String B-Tree

Our explanation below shall refer to both the sparse suffix tree and the sparse
string B-tree. However, the sparse suffix tree is never stored and is just for
the sake of notation and the identification of nodes. Firstly, the following two
functionalities of the sparse string-B tree SBT ′ will be used. The I/O complexity
for both functions follows directly from the searching strategy of SBT in the
original paper [5].

86 W.-K. Hon et al.

1. Given a pattern P , let lcp(P, ST ′) be the length of the longest common prefix
of P with any suffix stored in SBT ′: we can use O(lcp(P, ST ′)/B + logB n)
I/Os to find the node u (by its pre-order ranking in the suffix tree ST ′)
such that u is the node with smallest string-depth in ST ′ and lcp(P, ST ′) =
lcp(P, path(u)).

2. If we are given a node u in ST ′ such that the pattern P is guaranteed to
match up to some length x on path(u), then the above lcp search can be
done in O((lcp(P, ST ′)− x)/B + logB n) I/Os.

5.3 Pattern Matching Algorithm

Now, we are ready to show how we match a pattern P in this combination of
sparse string B-tree and CST. First we start with finding offset-0 occurrences,
then we find offset-1 occurrences, then offset-2 occurrences and so on. Let Pi

denote the pattern P with the first i characters deleted. Thus we have to match
P0, P1, P2, . . . , Pd−1 in the string B-tree. Corresponding to each offset i we find
the range [�i, ri] in the sparse string B-tree.

We start matching the pattern P = P0 in SBT ′; this allows us to find the node
u in ST ′, such that u is the closest node from root such that lcp(path(u), P) =
lcp(P, ST ′). If the pattern is matched entirely, then we call this offset a success
and output its range. In this case we set lcp = p, and also obtain the range
[�0, r0]. If not, we set lcp = lcp(P, ST ′) and follow the “suffix link”. Let’s first
define the notion of suffix link in the sparse suffix tree ST ′ (or SBT ′).

Definition 1. Given the pair (u, lcp), let pair (v, lcp′) be such that (1) lcp ′ =
lcp − t, (2) path(u)[t + 1..lcp] = path(v)[1..lcp ′] and (3) t is the smallest integer
≥ 1 for which such a node v exists in ST ′. If more than one v exists in ST ′, we
set v to be the highest node among them. Then (v, lcp′) as is called t-suffix link
of (u, lcp).

Now, we show how to compute t-suffix link for pair (u, lcp) in O(t log3 n/ log log n)
I/Os. This is done by using the suffix link functionality provided by CST . First, we
use the pre-order rank of u to find the corresponding node in CST . Then, inside
CST , we can find u’s ancestor y such that string-depth of y is just more than
lcp. This can be done by the weighted level ancestor query in O(log3 n/ log log n)
I/Os. The node y represents the location where P stops in the CST if P were
matched with the CST instead. To proceed for the next offset, we follow the
suffix link from y and reach node w (and increment t by 1). Now, we first find
the lowest marked ancestor m of w in O(1) I/Os and check if its string-depth
is at least lcp − t. If so, we come back to its corresponding node v in ST ′ and
set lcp′ = lcp − t. Note that (v, lcp ′) is the desired t-suffix link of (u, lcp), so
that we can proceed with the pattern matching in SBT ′.7 Otherwise, if m does
not exist or its string-depth is too small, we find in the subtree of w and try
the highest marked descendant m′ of w in O(1) I/Os. If m′ exists, we come
7 Note that when we switch back to a node in SBT ′, we choose the top-most node in

SBT ′ corresponding to the node v.

On Entropy-Compressed Text Indexing in External Memory 87

back to its corresponding node v′ in ST ′ and set lcp′ = lcp − t, while it follows
that (v′, lcp′) is the desired t-suffix link of (u, lcp) so that we can again proceed
with the pattern matching in SBT ′. If there is no such marked descendant m′,
we follow further the suffix link from w (and increment t), and keep following
suffix links until we reach either a node m or m′ using the above procedure. In
this case, we can be sure that none of the offsets between 1 and t − 1 would
produce any results. Consequently the corresponding (v, lcp′) or (v′, lcp′) will
be the desired t-suffix link and we can directly jump to offset-t match. This
procedure gives us all the ranges [�i, ri] for all the possible offsets (up to at most
d of them).

5.4 Analysis

The space taken by both CST and string B-tree is O(nHk + n)+ o(n log σ) bits.
For matching the pattern P , there are d phases. In each phase, we match some
distinct part of P and then spend O(log3 n/ log log n) I/Os in CST plus an extra
O(logB n) I/Os (apart from matching characters of P) in SBT ′. Thus, in total,
we spend O(d log3 n/ log log n) in addition to the I/O in which the pattern is
matched with the actual text inside the SBT ′. On the other hand, since the
characters of P are accessed once and are accessed sequentially, the total I/Os
for matching characters of P can be bounded by O(p/(B logσ n)+d logB n). For
the conversion of the characters in P into the corresponding meta-characters,
we assume that it is done in RAM so that it does not incur additional I/Os.
Overall, this gives us O(p/(B logσ n)+d log3 n/ log log n) I/Os for finding out all
the ranges [�0, r0], [�1, r1], ..., [�d−1, rd−1].

Once these ranges are ready, we can use the external memory wavelet tree to
find out the actual occurrences (which cross a meta-character boundary). The
short patterns are handled as before using the generalized suffix tree approach
(except we are using a SBT instead). Since the space of CST is O(nHk +n) bits
which is the bottleneck, we may reduce the blocking factor to be d = 0.5 logn
(thus having the effect of more meta-characters in T ′ but faster query) without
affecting the space. The following theorem captures our new result.

Theorem 3. A text T can be indexed in O(nHk + n) + o(n log σ) bits in exter-
nal memory, such that all occurrences of a pattern P in T can be reported in
O(p/(B logσ n) + log4 n/ log log n + occ logB n) I/Os.

6 Conclusion

We show the first entropy compressed text index in external memory. Our index
is based on the paradigm of using sampled suffixes [13], and achieves locality
while matching pattern which was lacking in other BWT based indexes. The
main idea here is to partition the text into variable length block according to
their compressibility and then compress each block using arithmetic coding. We
show how this idea can be combined with the notion of suffix links by using CST
of Sadakane[19].

88 W.-K. Hon et al.

We achieve optimal query I/O performance with respect to the length p of
the input query pattern, taking O(p/(B logσ n)) I/Os. As noted by Chien et
al. [4], the lower bounds in range searching data structures suggest that the last
term O(occ logB n) cannot be improved to O(occ/B). But, it may be possible to
improve the middle term of polylog(n). Another possible improvement could be
in reducing space term from O(nHk) to strictly nHk.

Acknowledgments

We would like to thank the anonymous reviewers for their careful reading and
constructive comments, and for pointing out a potential flaw in the paper. We
would also like to express our gratitude to Kunihiko Sadakane for clarifying the
functionalities of the CST in his recent paper [19].

References

1. Aggarwal, A., Vitter, J.S.: The Input/Output Complexity of Sorting and Related
Problems. Communications of the ACM 31(9), 1116–1127 (1998)

2. Arroyuelo, D., Navarro, G.: A Lempel-Ziv Text Index on Secondary Storage. In:
Proceedings of Symposium on Combinatorial Pattern Matching, pp. 83–94 (2007)

3. Burrows, M., Wheeler, D.J.: A Block-sorting Lossless Data Compression Algo-
rithm. Technical Report 124, Digital Equipment Corporation, Paolo Alto, CA,
USA (1994)

4. Chien, Y.-F., Hon, W.-K., Shah, R., Vitter, J.S.: Geometric Burrows-Wheeler
Transform: Linking Range Searching and Text Indexing. In: Proceedings of Data
Compression Conference, pp. 252–261 (2008)

5. Ferragina, P., Grossi, R.: The String B-tree: A New Data Structure for String
Searching in External Memory and Its Application. Journal of the ACM 46(2),
236–280 (1999)

6. Ferragina, P., Manzini, G.: Indexing Compressed Text. Journal of the ACM 52(4),
552–581 (2005); A preliminary version appears in FOCS 2000

7. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed Representations
of Sequences and Full-Text Indexes. ACM Transactions on Algorithms 3(2) (2007)

8. González, R., Navarro, G.: A Compressed Text Index on Secondary Memory. In:
Proceedings of IWOCA, pp. 80–91 (2007)

9. Grossi, R., Gupta, A., Vitter, J.S.: High-Order Entropy-Compressed Text Indexes.
In: Proceedings of Symposium on Discrete Algorithms, pp. 841–850 (2003)

10. Grossi, R., Vitter, J.S.: Compressed Suffix Arrays and Suffix Trees with Applica-
tions to Text Indexing and String Matching. SIAM Journal on Computing 35(2),
378–407 (2005); A preliminary version appears in STOC 2000

11. Hon, W.-K., Lam, T.-W., Shah, R., Tam, S.-L., Vitter, J.S.: Compressed Index for
Dictionary Matching. In: Proceedings of Data Compression Conference, pp. 23–32
(2008)

12. Hon, W.K., Shah, R., Vitter, J.S.: Ordered Pattern Matching: Towards Full-Text
Retrieval. Technical Report TR-06-008, Department of CS, Purdue University
(2006)

13. Kärkkäinen, J., Ukkonen, E.: Sparse Suffix Trees. In: Cai, J.-Y., Wong, C.K. (eds.)
COCOON 1996. LNCS, vol. 1090, pp. 219–230. Springer, Heidelberg (1996)

On Entropy-Compressed Text Indexing in External Memory 89

14. Mäkinen, V., Navarro, G.: Position-Restricted Substring Searching. In: Correa,
J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 703–714.
Springer, Heidelberg (2006)

15. Manber, U., Myers, G.: Suffix Arrays: A New Method for On-Line String Searches.
SIAM Journal on Computing 22(5), 935–948 (1993)

16. McCreight, E.M.: A Space-economical Suffix Tree Construction Algorithm. Journal
of the ACM 23(2), 262–272 (1976)

17. Navarro, G., Mäkinen, V.: Compressed Full-Text Indexes. ACM Computing Sur-
veys 39(1) (2007)

18. Sadakane, K.: New text indexing functionalities of the compressed suffix arrays.
Journal of Algorithms 48(2), 294–313 (2003); A preliminary version appears in
ISAAC 2000

19. Sadakane, K.: Compressed Suffix Trees with Full Functionality. Theory of Com-
puting Systems, 589–607 (2007)

20. Weiner, P.: Linear Pattern Matching Algorithms. In: Proceedings of Symposium
on Switching and Automata Theory, pp. 1–11 (1973)

21. Yu, C.C., Hon, W.K., Wang, B.F.: Efficient Data Structures for Orthogonal Range
Successor Problem. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp.
97–106. Springer, Heidelberg (2009)

	On Entropy-Compressed Text Indexing in External Memory
	Introduction
	Preliminaries
	Suffix Trees, Suffix Arrays, and Burrows-Wheeler Transform
	External-Memory Model
	String B-Tree
	Orthogonal Range Searching in 2D Grid Using Wavelet Tree

	The Framework of Our Indexing Scheme
	The Framework of the Index Design
	The Framework of the Pattern Matching Algorithm

	Index for Internal Memory Model
	Index Design
	Pattern Matching Algorithm
	Index for Short Patterns

	Extension to External Memory Model
	Compressed Suffix Tree
	Sparse String B-Tree
	Pattern Matching Algorithm
	Analysis

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

