Compression, Indexing, and Retrieval
for Massive String Data *

Wing-Kai Hon', Rahul Shah?, and Jeffrey Scott Vitter?

! National Tsing Hua University, Taiwan, wkhon@cs.nthu.edu.tw
2 Louisiana State University, USA, rahul@csc.lsu.edu
3 Texas A&M University, USA, jsv@tamu.edu

Abstract. The field of compressed data structures seeks to achieve fast
search time, but using a compressed representation, ideally requiring less
space than that occupied by the original input data. The challenge is to
construct a compressed representation that provides the same function-
ality and speed as traditional data structures. In this invited presenta-
tion, we discuss some breakthroughs in compressed data structures over
the course of the last decade that have significantly reduced the space
requirements for fast text and document indexing. One interesting con-
sequence is that, for the first time, we can construct data structures for
text indexing that are competitive in time and space with the well-known
technique of inverted indexes, but that provide more general search ca-
pabilities. Several challenges remain, and we focus in this presentation
on two in particular: building I/O-efficient search structures when the
input data are so massive that external memory must be used, and in-
corporating notions of relevance in the reporting of query answers.

1 Introduction

The world is drowning in data! Massive data sets are being produced at un-
precedented rates from sources like the World-Wide Web, genome sequencing,
scientific experiments, business records, image processing, and satellite imagery.
The proliferation of data at massive scales poses serious challenges in terms of
storing, managing, retrieving, and mining information from the data.

Pattern matching — in which a pattern is matched against a massively sized
text or sequence of data — is a traditional field of computer science that forms
the basis for biological databases and search engines. Previous work has con-
centrated for the most part on the internal memory RAM model. However, we
are increasingly having to deal with massive data sets that do not easily fit into
internal memory and thus must be stored on secondary storage, such as disk
drives, or in a distributed fashion in a network.

Suffix trees and suffix arrays, which are the traditional data structures used
for pattern matching and a variety of other string processing tasks, are often

* Supported in part by Taiwan NSC grant 96-2221-E-007-082-MY3 (W. Hon) and
USA National Science Foundation grant CCF-0621457 (R. Shah and J. S. Vitter).

2 Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter

“bloated” in that they require much more space than that occupied by the un-
compressed input data. Moreover, the input data are typically highly compress-
ible, often by a factor of 5-10. When compared with the size of the input data
in compressed form, the size of suffix trees and suffix arrays can be prohibitively
large, often 20-150 times larger than the compressed data size. This extra space
blowup results in increased memory resources and energy usage, slower data ac-
cess (because the bloated data must reside in the slower levels of the memory
hierarchy), and reduced bandwidth.

1.1 Key Themes in this Presentation

In this presentation we focus on some emerging themes in the area of pattern
matching for massive data. One theme deals with the exciting new field called
compressed data structures, which addresses the bloat exhibited by suffix trees
and suffix arrays. There are two simultaneous goals: space-efficient compression
and fast indexing. The last decade has seen much progress, both in theory and in
practice. A practical consequence is that, for the first time, we have space-efficient
indexing methods for pattern matching and other tasks that can compete in
terms of space and time with the well-known technique of inverted indexes [73,
52,74] used in search engines, while offering more general search capabilities.
Some compressed data structures are in addition self-indexing [61, 19,20, 28],
and thus the original data can be discarded, making them especially space-
efficient. The two main techniques we discuss — compressed suffix array (CSA)
and FM-index — are self-indexing techniques that require space roughly equal
to the space occupied by the input data in compressed format.

A second theme deals with external memory access in massive data applica-
tions [1,71,70], in which we measure performance in terms of number of I/Os.
A key disadvantage of CSAs and the FM-index is that they do not exhibit lo-
cality of reference and thus do not perform well in terms of number of I/Os. If
the input data are so massive that the CSA and FM-index do not fit in inter-
nal memory, their performance is slowed significantly. There is much interesting
work on compressed data structures in external memory (e.g., [2,4,27,17, 16, 38,
48, 55]), but major challenges remain.

The technique of sparsification allows us to reduce space usage but at the
same time exploit locality for good I/O performance and multicore utilization.
We discuss sparsification in two settings: One involves a new transform called
the geometric Burrows-Wheeler transform (GBWT) [9, 34] that provides a link
between text indexing and the field of range searching, which has been studied
extensively in the external memory setting. In this case, a sparse subset of suffix
array pointers are used to reduce space, and multiple offsets in the pattern must
be searched, which can be done especially fast on multicore processors. The other
setting introduces the notion of relevance in queries so that only the most relevant
(or top-k) matches [53, 6,64, 69, 36] are reported. The technique of sparsification
provides approximate answers quickly in a small amount of space [36].

Besides the external memory scenario, other related models of interest worth
exploring include the cache-oblivious model [25], data streams model [54], and
practical programming paradigms such as multicore [65] and MapReduce [11].

Compression, Indexing, and Retrieval for Massive String Data 3

2 Background

2.1 Text Indexing for Pattern Matching

We use T[1..n] to denote an input string or text of n characters, where the
characters are drawn from an alphabet 3 of size . The fundamental task of text
indexing is to build an index for T so that, for any query pattern P (consisting of
p characters), we can efficiently determine if P occurs in T'. Depending upon the
application, we may want to report all the occ locations of where P occurs in T,
or perhaps we may merely want to report the number occ of such occurrences.

The string T has n suffixes, starting at each of the n locations in the text.
The ith suffix, which starts at position ¢, is denoted by T[i..n]. The suffix
array [26,49] SA[1..n] of T is an array of n integers that gives the sorted order
of the suffixes of T'. That is, SA[{] = j if T'[j .. n] is the ith smallest suffix of T in
lexicographical order. Similarly, the inverse suffix array is defined by SA™*[j] = .
The suffiz tree ST is a compact trie on all the suffixes of the text [51,72, 68].
Suffix trees are often augmented with suffix links. The suffix tree can list all occ
occurrences of P in O(p + occ) time in the RAM model. Suffix arrays can also
be used for pattern matching. If P appears in T, there exist indices ¢ and r such
that SA[(], SA[¢+1],...,SA[r] store all the starting positions in text 7" where P
occurs. We can use the longest common prefix array to improve the query time
from O(plogn + occ) to O(p + logn + occ) time.

Suffix trees and suffix arrays use O(n) words of storage, which translates
to O(nlogn) bits. This size can be much larger than that of the text, which
is nlog o bits, and substantially larger than the size of the text in compressed
format, which we approximate by nHy(T'), where Hy(T) represents the kth-order
empirical entropy of the text T.

2.2 String B-trees

Ferragina and Grossi introduced the string B-tree (SBT) [16], an elegant and
efficient index in the external memory model. The string B-tree acts conceptually
as a B-tree over the suffix array; each internal node does B-way branching. Each
internal node is represented as a “blind trie” with B leaves; each leaf is a pointer
to one of the B child nodes. The blind trie is formed as the compact trie on the B
leaves, except that all but the first character on each edge label is removed. When
searching within a node in order to determine the proper leaf (and therefore child
node) to go to next, the search may go awry since only the first character on each
edge is available for comparison. The search will always end up at the right place
when the pattern correctly matches one of the leaves, but in the case where there
is no match and the search goes awry, a simple scanning of the original text can
discover the mistake and find the corrected position where the pattern belongs.
Each block of the text is never scanned more than once and thus the string
B-tree supports predecessor and range queries in O(p/B +logg n+ occ/B) 1/0s
using O(n) words (or O(n/B) blocks) of storage.

4 Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter

3 Compressed Data Structures

In the field of compressed data structures, the goal is to build data structures
whose space usage is provably close to the entropy-compressed size of the text.
A simultaneous goal is to maintain fast query performance.

3.1 Wavelet Trees

The wavelet tree, introduced by Grossi et al. [28,24], has become a key tool in
modern text indexing. It supports rank and select queries on arrays of characters
from Y. (A rank query rank(c,i) counts how many times character ¢ occurs in
the first ¢ positions of the array. A select query select(c, j) returns the location
of the jth occurrence of ¢.) In a sense, the wavelet tree generalizes the rank and
select operations from a bit array [59,57] to an arbitrary multicharacter text
array T, and it uses nHy(T) + ¢ + O(n/log, n) bits of storage, where n is the
length of the array T', and ¢ is the number of distinct characters in T

The wavelet tree is conceptually a binary tree (often a balanced tree) of
logical bit arrays. A value of 0 (resp., 1) indicates that the corresponding entry
is stored in one of the leaves of the left (resp., right) child. The collective size of
the bit arrays at any given level of the tree is bounded by n, and they can be
stored in compressed format, giving the Oth-order entropy space bound. When
o = O(polylogn), the height and traversal time of the wavelet tree can be
made O(1) by making the branching factor proportional to o€ for some € > 0 [21].

Binary wavelet trees have also been used to index an integer array A[l..n] in
linear space so as to efficiently support position-restricted queries [35,45]: given
any index range [/,] and values z and y, we want to report all entries in A[¢..r]
with values between = and y. We can traverse each level of the wavelet tree in
constant time, so that the above query can be reported in O(occlogt) time,
where occ denotes the number of the desired entries.

Wavelet tree also work in the external memory setting [35]. Instead of using
a binary wavelet tree, we can increase the branching factor and obtain a B-ary
(or v/B-ary) wavelet tree so that each query is answered in O(occlogg t) I/Os.

3.2 Compressed Text Indexes

Kérkkéinen [37] exploited Lempel-Ziv compression to develop a text index that,
in addition to the text, used extra space proportional to the size of the text (later
improved to O(nHy(T)) + o(nlog o) bits). Query time was quadratic in p plus
the time for p 2D range searches. Subsequent work focused on achieving faster
query times of the form O((p + occ) polylogn), more in line with that provided
by suffix trees and suffix arrays. In this section we focus on two parallel efforts
— compressed suflix arrays and the FM-index — that achieve the desired goal.

Compressed Suffix Array (CSA). Grossi and Vitter [30, 31] introduced the
compressed suffiz array (CSA), which settled the open problem of whether it
was possible to simultaneously achieve fast query performance and break the
(nlogn)-space barrier. In addition to the text, it used space proportional to the
text size, specifically, 2nlog o +O(n) bits, and answered queries in O(p/ log, n+
occlog, n) time. The key idea was to store a sparse representation of the full

Compression, Indexing, and Retrieval for Massive String Data 5

suffix array, namely, the values that are multiples of 27 for certain j. The neighbor
function ®(i) = SAT'[SAJi] + 1] allows suffix array values to be computed on
demand from the sparse representation in O(log, n) time.

Sadakane [61, 62] showed how to make the CSA self-indexing by adding auxil-
iary data structures so that the @ function was entire and defined for all 7, which
allowed the text values to be computed without need for storing the text 7.
Queries took O((p+ occ) logn) time. Sadakane also introduced an entropy anal-
ysis, showing that its space was bounded by nHy(T) + O(nloglog o) bits.*

Grossi et al. [28] gave the first self-index that provably achieved asymptotic
space optimality (i.e., with constant factor of 1 in the leading term). It used
nHj,(T)4o(n) bits and achieved O(plog o+ occ(log® n)/((log® log n) log o)) query
time.> For 0 < € < 1/3, there are various tradeoffs, such as 1nHy(T) + o(n)
bits of space and O(p/log, n + occ(log2€/(1_5) n)log'™“ o) query time. The &
function is encoded by representing a character in terms of the contexts of its
following k characters. For each character ¢ in the text, the suffix array indices
for the contexts following ¢ form an increasing sequence. The CSA achieves
high-order compression by encoding these increasing sequences in a context-by-
context manner, using Oth-order statistics for each context. A wavelet tree is
used to reduce redundancy in the sequence encodings.

FM-index. In parallel with the development of the CSA, Ferragina and Manzini
introduced the elegant FM-index [19, 20], based upon the Burrows- Wheeler trans-
form (BWT) [7,50] data compressor. The FM-index was the first self-index
shown to have both fast performance and space usage within a constant factor
of the desired entropy bound for constant-sized alphabets. It used 5nHy(T') +
O(n¢a°t +no/logn) + o(n) bits and handled queries in O(p + occlog® n) time.
The BWT of T is a permutation of T' denoted by Thwt, where Thyi[i] is the
character in the text immediately preceding the ith lexicographically smallest
suffix of T'. That is, Thwt[i] = T[SA[] —1]. Intuitively, the sequence Thwt[7] is easy
to compress because adjacent entries often share the same higher-order context.
The “last to first” function LF is used to walk backwards through the text;
LF(i) = j if the ith lexicographically smallest suffix, when prepended with its
preceding character, becomes the jth lexicographically smallest suffix.

The FM-index and the CSA are closely related: The LF function and the
CSA neighbor function @ are inverses. That is, SA[LF(¢)] = SA[i] — 1; equiv-
alently LF(i) = SA™[SA[i] — 1] = &~'(i). A partition-based implementation
and analysis of the FM-index, similar to the context-based CSA space anal-
ysis described above [28], reduced the constant factor in the FM-index space
bound to 1, achieving nHy(T) + o(n) bits and various query times, such as
O(p + occlog'™“n) [21,29]. Intuitively, the BWT T (and the CSA lists) can
be partitioned into contiguous segments, where in each segment the context of
subsequent text characters is the same. The context length may be fixed (say, k)

4 We assume for convenience in this presentation that the alphabet size satisfies o =
O(polylogn) so that the auxiliary data structures are negligible in size.

5 We assume that k < alog, n — 1 for any constant 0 < o < 1, so that the kth-order
model complexity is relatively small.

6 Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter

or variable. We can code each segment of Thyt (or CSA lists) using the statistics
of character occurrences for that particular context. A particularly useful tool
for encoding each segment is the wavelet tree, which reduces the coding problem
from encoding vectors of characters to encoding bit vectors. Since each individ-
ual partition (context) is encoded by a separate wavelet tree using Oth-order
compression, the net result is higher-order compression. This idea is behind the
notion of “compression boosting” of Ferragina et al. [14].

Simpler implementations for the FM-index and CSA achieve higher-order
compression without explicit partitioning into separate contexts. In fact, the
original BWT was typically implemented by encoding Ti¢ using the move-to-
front heuristic [19,20]. Grossi et al. [24] proposed using a single wavelet tree
to encode the entire Ti¢ and CSA lists rather than a separate wavelet tree
for each partition or context. Each wavelet tree node is encoded using run-
length encoding, such as Elias’s v or ¢ codes [12]. (The v code represents ¢ > 0
with 2|logi| 4+ 1 bits, and the ¢ code uses |logi| + 2[log(logi + 1)| + 1 bits.)
Most analyses of this simpler approach showed higher-order compression up to a
constant factor [50, 24,44, 13]. The intuition is that encoding a run of length ¢ by
O(log 1) bits automatically tunes itself to the statistics of the particular context.

Miékinen and Navarro [46] showed how to use a single wavelet tree and achieve
a space bound with a constant factor of 1, namely, nHy(T') 4+ o(n) bits. They
used a compressed block-based bit representation [59,57] to encode each bit
array within the single wavelet tree. A similar bound can be derived if we instead
encode each bit array using § coding, enhanced with rank and select capabilities,
as done by Sadakane [61,62]; however, the resulting space bound contains an
additional additive term of O(nlog Hi(T')) = O(nloglogo) bits, which arises
from the 2loglog term in § encoding. This additive term increases the constant
factor in the linear space term nHy(T) when the entropy or alphabet size is
bounded by a constant, and under our assumptions on ¢ and k, it is bigger than
the secondary o(n) term. Mékinen and Navarro [46] also apply their boosting
technique to achieve high-order compression for dynamic text indexes [8,47].

Extensions. In recent years, compressed data structures has been a thriving
field of research. The CSA and FM-index can be extended to support more
complex queries, including dictionary matching [8], approximate matching [40],
genome processing [22,41], XML subpath queries [18], multilabeled trees [3],
and general suffix trees [63,60,23]. Puglisi et al. [58] showed that compressed
text indexes provide faster searching than inverted indexes. However, they also
showed that if the number of occurrences (matching locations) are too many,
then inverted indexes perform better in terms of document retrieval. The survey
by Navarro and Méikinen [55] also discusses index construction time and other
developments, and Ferragina et al. [15] report experimental comparisons.

4 Geometric Burrows-Wheeler Transform (GBWT)

Range search is a useful tool in text indexing (see references in [9]). Chien et
al. [9] propose two transformations that convert a set .S of points (z1,y1), (22, y2),
ooy (@, ypn) into text T, and vice-versa. These transformations show a two-way

Compression, Indexing, and Retrieval for Massive String Data 7

T'= acg tac gtg cgt

pos | sorted suffix i [SA[i] | ¢

1 acg tac gtg cgt 11

4 cgt 2|4 gtg

3 gtg cgt 3|3 cat

2 tac gtg cgt 412 gca
1 2 3 4

sorted suffix of T' GBWT of T' 2D representation
of GBWT
(@ (b) (©

Fig. 1. Example of the GBWT for text T" = acgtacgtgcgt. The text of metacharacters
is T" = acg tac gtg cgt. (a) The suffixes of T” sorted into lexicographical order.
(b) The suffix array SA’ and the reverse preceding metacharacters c;; the GBWT is
the set of tuples (i, ¢;), for all i. (¢) The 2D representation of GBWT.

connectivity between problems in text indexing and orthogonal range search, the
latter being a well-studied problem in the external memory setting and in terms
of lower bounds. Let () be the binary encoding of seen as a string, and let (x)
be its reverse string. For each point (z;,y;) in S, the first transform constructs
a string (z;)##(y;)$. The desired text T is formed by concatenating the above
string for each point, so that T = (z1)B# (y1)$(z2) B (y2)$. . . (xn) E#(yn)$. An
orthogonal range query on S translates into O(log2 n) pattern matching queries
on T'. This transformation provides a framework for translating (pointer machine
as well as external memory) lower bounds known for range searching to the
problem of compressed text indexing. An extended version of this transform,
which maps 3D points into text, can be used to derive lower bounds for the
position-restricted pattern matching problem.

For upper bounds, Chien et al. introduced the geometric Burrows- Wheeler
transform (GBWT) to convert pattern matching problems into range queries.
Given a text T and blocking factor d, let T'[1..n/d] be the text formed by
blocking every consecutive d characters of T to form a single metacharacter, as
shown in Figure 1. Let SA’[1..n/d] be the sparse suffix array of 7. The GBWT
of T consists of the 2D points (4, ¢;), for 1 < i < n/d, where ¢; is the reverse of
the metacharacter that precedes T'[SA'[i]]. The parameter d is set to 3 log, n so
that the data structures require only O(nlogo) bits.

To perform a pattern matching query for pattern P, we find, for each possible
offset k between 0 and d—1, all occurrences of P that start k characters from the
beginning of a metacharacter. For k # 0, this process partitions P into (P, P),
where P matches a prefix of a suffix of T, and p has length k£ and matches
a suffix of the preceding metacharacter. By reversing P, both subcomponents
must match prefixes, which corresponds to a 2D range query on the set .S of 2D
points defined above. The range of indices in the sparse suffix array SA’ can be
found by a string B-tree, and the 2D search can be done using a wavelet tree or
using alternative indexes, such as kd-trees or R-trees.

8 Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter

No occ chart 3000 occ chart
30 T T ST T T T ST T
+ : +
ST+SA x 160 - ST+SA x|
FSBT % , FSBT %
25 | FSBT+SA o | a0l FSBT+SA o |
SSBT+KDtree —-m-— ' SSBT+KDtree —-—m-—
SSBT+Rtree ---¢-- ' SSBT+Rtree ---o--
SSBT+Wavelet -- -o-- - : SSBT+Wavelet -~ -o -
0 120 4
2 20 1 ‘
g eom N
. s - N .
< e wo
[2] ARS Thel N +
o 15 L e el i .
“é \\ S} 80 | a B
_ﬂé - T ' O X
S 10 TNl E 60 - w0 e 7
z - .
X 40 o} 1
+ X
5 * o 4
20 - B
0 | | | | 0 | | | |
0 5 10 15 20 0 5 10 15 20 25
Size of Index (MB) Size of Index (MB)

Fig. 2. I/Os per query. On the left, there is no output (i.e., the searches are unsuccess-
ful). On the right, there are 3,000 occurrences on average per query.

If the pattern is small and fits entirely within a metacharacter, table lookup
techniques (akin to inverted indexes) provide the desired answer using a negli-
gible amount of space. The resulting space bound for GBWT is O(nlog o) bits,
and the I/O query bound is the same as for four-sided 2D range search, namely,
O(p/B + (log, n)loggn + occloggn) or O(p/B + y/n/Blog, n + occ/B) [34].
Faster performance can often be achieved in practice using kd-trees or R-trees [10].

Hon et al. [34] introduce a variable-length sparsification so that each metachar-
acter corresponds to roughly d bits in compressed form. Assuming k = o(log, n),
this compression further reduces the space usage from linear to O(nHy(T)+n)+
o(nlog o) bits of blocked storage. The query time for reporting pattern matches
is O(p/(Blog, n) 4+ (log*n)/loglogn + occlogz n) I/Os.

4.1 Experimental Results for GBWT

In Figure 2, we compare the pattern matching performance of several indexes:

1. ST: Suffix tree (with naive blocking) and a parenthesis encoding of subtrees.

2. ST + SA: Suffix tree (with naive blocking strategy) and the suffix array.

3. FSBT: Full version of string B-tree containing all suffixes. The structure of
each blind trie uses parentheses encoding, saving ~ 1.75 bytes per trie node.

4. FSBT + SA: Full version of string B-tree and the suffix array.

5. SSBT(d) + Rtree: Sparse version of the string B-tree with the R-tree 2D
range search data structure. Metacharacter sizes are d = 2, 4, 8.

6. SSBT(d) + kd-tree: Sparse version of the string B-tree with the kd-tree
range search data structure. Metacharacter sizes are d = 2, 4, 8.

7. SSBT(d) + Wavelet: Sparse version of the string B-tree with the wavelet
tree used for 2D queries. Metacharacter sizes are d = 2, 4, 8.

Compression, Indexing, and Retrieval for Massive String Data 9

10000 ~Z00M 100000 760
-=-SOAP2 .\ -=-SOAP2
\ ~-BOWTIE -a 10000 --BOWTIE -a
ﬁ 1000 —PSI-RA(4) k] ~+PSI-RA(4)
2
g ——PSI-RA(8) 8 ~—PSI-RA(8)
K ——PSI-RA (12) ~ 1000 ——PSIRA(12)
g 100 é ~. .
T N |{ =
2 N 2 —
2 8
= g
T 10 8 _\
10
1 N
n O n O nuw O N O N O O O O 9
el s s e e~ g RS 25 30 35 40 45
Length of the reads Length of the reads

Fig. 3. Finding all exact matches of 1 million short read patterns P with the human
genome. The left graph uses short read patterns sampled from the target genome; the
right graph uses short read patterns obtained from the SRR001115 experiment [56].

The first four indexes are not compressed data structures and exhibit significant
space bloat; however, they achieve relatively good I/O performance. The latter
three use sparsification, which slows query performance but requires less space.

4.2 Parallel Sparse Index for Genome Read Alignments
In this section, we consider the special case in the internal memory setting in
which P is a “short read” that we seek to align with a genome sequence, such as
the human genome. The human genome consists of about 3 billion bases (A, T,
C, or G) and occupies roughly 800MB of raw space. In some applications, the
read sequence P may be on the order of 30 bases, while with newer equipment,
the length of P may be more than 100. We can simplify our GBWT approach
by explicitly checking, for each match of P, whether P also matches. We use
some auxiliary data structures to quickly search the sparse suffix array SA" and
employ a backtracking mechanism to find approximate matches. The reliability
of each base in P typically degrades toward the end of P, and so our algorithm
prioritizes mismatches toward the end of the sequence.

Figure 3 gives timings of short read aligners for a typical instance of the prob-
lem, in which all exact matches between each P and the genome are reported:

1. SOAP2 [42]: Index size is 6.1 GB, based on 2way-BWT, run with parameters
-r1-M 0 -v 0 (exact search).

2. BOWTIE [41]: Index size 2.9 GB, based upon BWT, run with -a option.

3. ZOOM [43]: No index, based on a multiple-spaced seed filtering technique, run
with -mm 0 (exact search).

4. ¥-RA(4): Index size 3.4 GB, uses sparse suffix array with sparsification factor
of d = 4 bases, finds all occurrences of the input patterns.

5. ¥-RA(8): Index size 2.0 GB, uses sparse suffix array with sparsification factor
of d = 8 bases, finds all occurrences of the input patterns.

6. ¥-RA(12): Index size 1.6 GB, uses sparse suffix array with sparsification
factor of d = 12 bases, finds all occurrences of the input patterns.

10 Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter

The size listed for each index includes the space for the original sequence data.
Our simplified parallel sparse index read aligner (a.k.a. U-RA) [39] achieves rel-
atively high throughput compared with other methods. The experiments were
performed on an Intel i7 with eight cores and 8GB memory. The W-RA method
can take advantage of multicore processors, since each of the d offset searches
can be trivially parallelized. However, for fairness in comparisons, the timings
used a single-threaded implementation and did not utilize multiple cores.

5 Top-k Queries for Relevance

Inverted indexes have several advantages over compressed data structures that
need to be considered: (1) Inverted indexes are highly space-efficient, and they
naturally provide the demarcation between RAM storage (dictionary of words)
and disk storage (document lists for the words). (2) They are easy to con-
struct in external memory. (3) They can be dynamically updated and also allow
distributed operations [74]. (4) They can be easily tuned (by using frequency-
ordered or PageRank-ordered lists) to retrieve top-k most relevant answers to
the query, which is often required in search engines like Google.

Top-k query processing is an emerging field in databases [53,6, 64,69, 36].
When there are too many query results, certain notions of relevance may make
some answers preferable to others. Database users typically want to see those
answers first. In the problem of top-k document retrieval, the input data consist
of D documents {di, da, ..., dp} of total length n. Given a query pattern P,
the goal is to list which documents contain P; there is no need to report where
in a document the matches occur. If a relevance measure is supplied (such as
frequency of matches, proximity of matches, or PageRank), the goal is to out-
put only the most relevant matching documents. The problem could specify an
absolute threshold K on the relevance, in which case all matching documents
are reported whose relevance value is > K; alternatively, given parameter k, the
top-k most relevant documents are reported.

Early approaches to the problem did not consider relevance and instead re-
ported all matches [53, 64, 69]. They used a generalized suffix tree, and for each
leaf, they record which document it belongs to. On top of this basic data struc-
ture, early approaches employed either a chaining method to link together entries
from the same document or else a wavelet tree built over the document array. As
a result, these data structures exhibit significant bloat in terms of space usage.

Hon et al. [36] employ a more space-conscious approach. They use a suffix
tree, and every node of the suffix tree is augmented with additional arrays.
A relevance queries can be seen as a (2,1,1)-query in 3D, where the two z-
constraints come from specifying the subtree that matches the pattern P, the
one-sided y-constraint is for preventing redundant output of the same document,
and the one-sided z-constraint is to get the highest relevance scores. This (2,1, 1)-
query in 3D can be converted to at most p (2,1)-queries in 2D, which in turn
can be answered quickly using range-maximum query structures, thus achieving
space-time optimal results. The result was the first O(n)-word index that takes
O(p + klog k) time to answer top-k queries.

Compression, Indexing, and Retrieval for Massive String Data 11

Preliminary experimental results show that for 2MB of input data, the in-
dex size is 30MB and can answer top-k queries in about 4 x 10~# seconds (for
k = 10). This implementation represents a major improvement because previous
solutions, such as an adaptation of [53], take about 500MB of index size and are
not as query-efficient. Further improvements are being explored.

Many challenging problems remain. One is to make the data structures com-
pressed. The space usage is {2(n) nodes, and thus §2(n logn) bits, which is larger
than the input data. To reduce the space usage to that of a compressed rep-
resentation, Hon et al. [36] employ sparsification to selectively augment only
O(n/log?n) carefully chosen nodes of the suffix tree with additional informa-
tion, achieving high-order compression, at the expense of slower search times.
Other challenges include improved bounds and allowing approximate matching
and approximate relevance. Thankachan et al. [67] develop top-k data structures
for searching two patterns using O(n) words of space with times related to 2D
range search; the approach can be generalized for multipattern queries.

6 Conclusions

We discussed recent trends in compressed data structures for text and document
indexing, with the goal of achieving the time and space efficiency of inverted
indexes, but with greater functionality. We focused on two important challenging
issues: I/O efficiency in external memory settings and building relevance into the
query mechanism. Sparsification can help address both questions, and it can also
be applied to the dual problem of dictionary matching, where the set of patterns
is given and the query is the text [32,33,66,5]. Much work remains to be done,
including addressing issues of parallel multicore optimization, dynamic updates,
online data streaming, and approximate matching.

References

1. A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116-1127, 1988.

2. D. Arroyuelo and G. Navarro. A Lempel-Ziv text index on secondary storage. In
Proc. Symp. on Combinatorial Pattern Matching, volume 4580 of Lecture Notes in
Computer Science, pages 83—94. Springer, 2007.

3. J. Barbay, M. He, J. . Munro, and S. S. Rao. Succinct indexes for strings, bi-
nary relations and multi-labeled trees. In Proc. ACM-SIAM Symp. on Discrete
Algorithms, pages 680-689, 2007.

4. R. Bayer and K. Unterauer. Prefix B-trees. ACM Transactions on Database Sys-
tems, 2(1):11-26, March 1977.

5. D. Belazzougui. Succinct dictionary matching with no slowdown. In Proc. Symp.
on Combinatorial Pattern Matching, June 2010.

6. Bialynicka-Birula and R. Grossi. Rank-sensitive data structures. In Proc. Intl.
Symp. on String Processing Information Retrieval, volume 12 of LNCS, 2005.

7. M. Burrows and D. Wheeler. A block sorting data compression algorithm. Tech-
nical report, Digital Systems Research Center, 1994.

8. H. L. Chan, W. K. Hon, T. W. Lam, and K. Sadakane. Compressed indexes for
dynamic text collections. ACM Transactions on Algorithms, 3(2), 2007.

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter

Y.-F. Chien, W.-K. Hon, R. Shah, and J. S. Vitter. Geometric Burrows-Wheeler
transform: Linking range searching and text indexing. In Proc. IEEE Data Com-
pression Conf., pages 252—261, 2008.

S.-Y. Chiu, W.-K. Hon, R. Shah, and J. S. Vitter. I/o-efficient compressed text
indexes: From theory to practice. In Proc. IEEE Data Compression Conf., pages
426-434, 2010.

J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clus-
ters. In Proc. Symp. on Operating Systems Design and Implementation, pages
137-150. USENIX, December 2004.

P. Elias. Universal codeword sets and representations of the integers. IEEE Trans-
actions on Information Theory, 1T-21:194-203, 1975.

P. Ferragina, R. Giancarlo, and G. Manzini. The myriad virtues of wavelet trees.
Information and Computation, 207(8):849-866, 2009.

P. Ferragina, R. Giancarlo, G. Manzini, and M. Sciortino. Boosting textual com-
pression in optimal linear time. Journal of the ACM, 52(4):688-713, July 2005.
P. Ferragina, R. Gonzélez, G. Navarro, and R. Venturini. Compressed text indexes:
From theory to practice. ACM Journal of Experimental Algorithmics, 13:arti-
cle 1.12, 2008.

P. Ferragina and R. Grossi. The String B-tree: A new data structure for string
search in external memory and its applications. Journal of the ACM, 46(2):236—
280, March 1999.

P. Ferragina, R. Grossi, A. Gupta, R. Shah, and J. S. Vitter. On searching com-
pressed string collections cache-obliviously. In Proc. ACM Conf. on Principles of
Database Systems, pages 181-190, Vancouver, June 2008.

P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Structuring labeled
trees for optimal succinctness, and beyond. In Proc. IEEE Symp. on Foundations
of Computer Science, pages 184—-196, 2005.

P. Ferragina and G. Manzini. Opportunistic data structures with applications. In
Proc. IEEE Symp. on Foundations of Computer Science, volume 41, pages 390-398,
November 2000.

P. Ferragina and G. Manzini. Indexing compressed texts. Journal of the ACM,
52(4):552-581, 2005.

P. Ferragina, G. Mangzini, V. Mékinen, and G. Navarro. Compressed representa-
tions of sequences and full-text indexes. ACM Transactions on Algorithms, 3(2),
May 2007. Conference version in SPIRE 200/.

P. Ferragina and R. Venturini. Compressed permuterm index. In Proc. ACM
SIGIR Conf. on Res. and Dev. in Information Retrieval, pages 535-542, 2007.

J. Fischer, V. Méakinen, and G. Navarro. Faster entropy-bounded compressed suffix
trees. Theoretical Computer Science, 410(51):5354-5364, 2009.

L. Foschini, R. Grossi, A. Gupta, and J. S. Vitter. When indexing equals compres-
sion: Experiments on suffix arrays and trees. ACM Transactions on Algorithms,
2(4):611-639, 2006. Conference versions in SODA 2004 and DCC 200.

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In Proc. IEEE Symp. on Foundations of Computer Science, volume 40,
pages 285—298, 1999.

G. H. Gonnet, R. A. Baeza-Yates, and T. Snider. New indices for text: PAT
trees and PAT arrays. In Information Retrieval: Data Structures And Algorithms,
chapter 5, pages 66-82. Prentice-Hall, 1992.

R. Gonzélez and G. Navarro. A compressed text index on secondary memory. In
Proc. Intl. Work. Combinatorial Algorithms, pages 80-91, Newcastle, Australia,
2007. College Publications.

R. Grossi, A. Gupta, and J. S. Vitter. High-order entropy-compressed text indexes.
In Proc. ACM-SIAM Symp. on Discrete Algorithms, January 2003.

R. Grossi, A. Gupta, and J. S. Vitter. Nearly tight bounds on the encoding length
of the Burrows-Wheeler transform. In Proc. Work. on Analytical Algorithmics and
Combinatorics, January 2008.

30

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

Compression, Indexing, and Retrieval for Massive String Data 13

R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with appli-
cations to text indexing and string matching. In Proc. ACM Symp. on Theory of
Computing, volume 32, pages 397-406, May 2000.

R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with ap-
plications to text indexing and string matching. SIAM Journal on Computing,
35(32):378-407, 2005.

W.-K. Hon, T.-W. Lam, R. Shah, S.-L.. Tam, and J. S. Vitter. Compressed index
for dictionary matching. In Proc. IEEE Data Compression Conf., pages 23-32,
2008.

W.-K. Hon, T.-W. Lam, R. Shah, S.-L. Tam, and J. S. Vitter. Succinct index for
dynamic dictionary matching. In Proc. Intl. Symp. on Algorithms and Computa-
tion, LNCS. Springer, December 2009.

W.-K. Hon, R. Shah, S. V. Thankachan, and J. S. Vitter. On entropy-compressed
text indexing in external memory. In Proc. Intl. Symp. on String Processing In-
formation Retrieval, volume 5721 of LNCS. Springer, August 2009.

W.-K. Hon, R. Shah, and J. S. Vitter. Ordered pattern matching: Towards full-text
retrieval. In Purdue University Tech Rept, 2006.

W.-K. Hon, R. Shah, and J. S. Vitter. Space-efficient framework for top-k string
retrieval problems. In Proc. IEEE Symp. on Foundations of Computer Science,
Atlanta, October 2009.

J. Karkkéainen. Repetition-Based Text Indexes. Ph.d., University of Helsinki, 1999.
J. Karkkéinen and S. S. Rao. Full-text indexes in external memory. In U. Meyer,
P. Sanders, and J. Sibeyn, editors, Algorithms for Memory Hierarchies, chapter 7,
pages 149-170. Springer, Berlin, Germany, 2003.

M. O. Kiilekci, W.-K. Hon, R. Shah, J. S. Vitter, and B. Xu. A parallel sparse
index for read alignment on genomes, 2010.

T.-W. Lam, W.-K. Sung, and S.-S. Wong. Improved approximate string matching
using compressed suffix data structures. Algorithmica, 51(3):298-314, 2008.

B. Langmead, C. Trapnell, M. Pop, and S. Salzberg. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome Biology,
10(3):article R25, 2009.

R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and J. Wang. SOAP2:
An improved ultrafast tool for short read alignment. Bioinformatics, 25(15):1966—
1967, 2009.

H. Lin, Z. Zhang, M. Q. Zhang, B. Ma, and M. Li. ZOOM: Zillions of oligos
mapped. Bioinformatics, 24(21):2431-2437, 2008.

V. Mikinen and G. Navarro. Succinct suffix arrays based on run-length encoding.
Nordic Journal of Computing, 12(1):40-66, 2005.

V. Makinen and G. Navarro. Position-restricted substring searching. In Proc. Latin
American Theoretical Informatics Symp., pages 703714, 2006.

V. Makinen and G. Navarro. Implicit compression boosting with applications to
self-indexing. In Proc. Intl. Symp. on String Processing Information Retrieval,
volume 4726 of LNCS, pages 229-241. Springer, October 2007.

V. Mékinen and G. Navarro. Dynamic entropy-compressed sequences and full-text
indexes. ACM Transactions on Algorithms, 4(3):article 12, June 2008.

V. Makinen, G. Navarro, and K. Sadakane. Advantages of backward searching—
efficient secondary memory and distributed implementation of compressed suffix
arrays. In Proc. Intl. Symp. on Algorithms and Computation, volume 3341 of
LNCS, pages 681-692. Springer, 2004.

U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing, 22(5):935-948, October 1993.

G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,
48(3), 2001. Conference version in SODA 1999.

E. M. McCreight. A space-economical suffix tree construction algorithm. Journal
of the ACM, 23(2):262-272, 1976.

14

52

53.
54.
53.

56.
. M. Patrascu. Succincter. In Proc. IEEE Symp. on Foundations of Computer

58.

59.

60.

61.

62.
63.
64.

65.

66.

67.
68.
69.
70.
71.
72.

73.

74.

Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter

A. Moffat and J. Zobel. Self-indexing inverted files for fast text retrieval. ACM
Transactions on Information Systems, 14(4):349-379, October 1996.

S. Muthukrishnan. Efficient Algorithms for Document Retrieval Problems. In
Proc. ACM-SIAM Symp. on Discrete Algorithms, pages 657666, 2002.

S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and
Trends in Theoretical Computer Science. now Publishers, Hanover, MA, 2005.

G. Navarro and V. Méakinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1):article 2, 2007.

NCBI short read archive SRR001115, http://www.ncbi.nlm.nih.gov/.

Science, pages 305-313, 2008.

S. J. Puglisi, W. F. Smyth, and A. Turpin. Inverted files versus suffix arrays for
locating patterns in primary memory. In Proc. Intl. Symp. on String Processing
Information Retrieval, volume 4209 of LNCS, pages 122—-133. Springer, 2006.

R. Raman, V. Raman, and S. S. Rao. Succinct indexable dictionaries with appli-
cations to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms, 3(4):article 43, 2007.

L. Russo, G. Navarro, and A. Oliveira. Fully-compressed suffix trees. In Proc. Latin
American Theoretical Informatics Symp., volume 4957 of LNCS, pages 362-373,
2008.

K. Sadakane. Compressed text databases with efficient query algorithms based on
the compressed suffix array. In Proc. Intl. Symp. on Algorithms and Computation,
number 1969 in LNCS, pages 410-421. Springer, December 2000.

K. Sadakane. New text indexing functiionalities of the compressed suffix arrays.
Journal of Algorithms, 48(2):294-313, 2003.

K. Sadakane. Compressed suffix trees with full functionality. Theory of Computing
Systems, 41(4):589-607, 2007.

K. Sadakane. Succinct Data Structures for Flexible Text Retrieval Systems. Jour-
nal of Discrete Algorithms, 5(1):12-22, 2007.

A. C. Sodan, J. Machina, A. Deshmeh, K. Macnaughton, and B. Esbaugh. Par-
allelism via multithreaded and multicore CPUs. IEEE Computer, 43(3):24-32,
March 2010.

A. Tam, E. Wu, T. W. Lam, and S.-M. Yiu. Succinct text indexing with wildcards.
In Proc. Intl. Symp. on String Processing Information Retrieval, pages 39-50, Au-
gust 2009.

S. V. Thankachan, W.-K. Hon, R. Shah, and J. S. Vitter. String retrieval for
multi-pattern queries, 2010.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260,
September 1995.

N. Valimaki and V. Mékinen. Space-Efficient Algorithms for Document Retrieval.
In Proc. Symp. on Combinatorial Pattern Matching, pages 205-215, 2007.

J. S. Vitter. Algorithms and Data Structures for External Memory. Foundations
and Trends in Theoretical Computer Science. now Publishers, Hanover, MA, 2008.
J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory I: Two-level
memories. Algorithmica, 12(2-3):110-147, 1994.

P. Weiner. Linear pattern matching algorithm. In Proc. IEEE Symp. on Switching
and Automata Theory, volume 14, pages 1-11, Washington, DC, 1973.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and
Indezing Documents and Images. Morgan Kaufmann, Los Altos, CA, 2nd edition,
1999.

J. Zobel and A. Moffat. Inverted files for text search engines. ACM Computing
Surveys, 38(2), 2006.

