
A

Space-Efficient Frameworks for Top-k String Retrieval

Wing-Kai Hon, National Tsing Hua University
Rahul Shah, Louisiana State University
Sharma V. Thankachan, Louisiana State University
Jeffrey Scott Vitter, The University of Kansas

The inverted index is the backbone of modern web search engines. For each word in a collection of web
documents, the index records the list of documents where this word occurs. Given a set of query words,
the job of a search engine is to output a ranked list of the most relevant documents containing the query.
However, if the query consists of an arbitrary string — which can be a partial word, multiword phrase, or
more generally any sequence of characters — then word boundaries are no longer relevant and we need a
different approach. In string retrieval settings, we are given a set D = {d1, d2, d3, . . . , dD} of D strings with
n characters in total taken from an alphabet set Σ = [σ], and the task of the search engine, for a given query
pattern P of length p, is to report the “most relevant” strings in D containing P . The query may also consist
of two or more patterns. The notion of relevance can be captured by a function score(P, dr), which indicates
how relevant document dr is to the pattern P . Some example score functions are the frequency of pattern
occurrences, proximity between pattern occurrences, or pattern-independent PageRank of the document.

The first formal framework to study such kinds of retrieval problems was given by Muthukrishnan [SODA
2002]. He considered two metrics for relevance: frequency and proximity. He took a threshold-based ap-
proach on these metrics and gave data structures that use O(n logn) words of space. We study this problem
in a somewhat more natural top-k framework. Here, k is a part of the query, and the top k most relevant
(highest-scoring) documents are to be reported in sorted order of score. We present the first linear-space
framework (i.e., using O(n) words of space) that is capable of handling arbitrary score functions with near-
optimal O(p + k log k) query time. The query time can be made optimal O(p + k) if sorted order is not
necessary. Further, we derive compact space and succinct space indexes (for some specific score functions).
This space compression comes at the cost of higher query time. At last, we extend our framework to han-
dle the case of multiple patterns. Apart from providing a robust framework, our results also improve many
earlier results in index space or query time or both.

Categories and Subject Descriptors: E.1 [Data]: Data Structures—Trees; E.4 [Data]: Coding and Informa-
tion Theory—Data Compaction and Compression; F.2.2 [Nonnumerical Algorithms and Problems]: Pat-
tern Matching; H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing—Indexing
Methods

General Terms: Algorithms, Theory

Additional Key Words and Phrases: String Matching, Document Retrieval, Top-k Queries

ACM Reference Format:
Hon, W. K., Shah, R., Thankachan, S. V., and Vitter, J. S. 2012. Space-Efficient Frameworks for Top-k String
Retrieval. J. ACM V, N, Article A (January YYYY), 34 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

This work is supported in part by Taiwan NSC Grants 99-2221-E-007-123 and 102-2221-E-007-068 (W. K.
Hon), and US NSF Grant CCF-1017623 (R. Shah and J. S. Vitter). This work builds on a preliminary version
that appeared in the Proceedings of the IEEE Foundations of Computer Science (FOCS), 2009 [Hon et al.
2009] and more recent material in [Hon et al. 2010; Hon et al. 2012; Hon et al. 2013].
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0004-5411/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 W. K. Hon et al.

1. INTRODUCTION
In string retrieval settings, we are given a collection of D string documents D =
{d1, d2, d3, . . . , dD} of total length n. Each document is a (possibly long) string whose
characters are drawn from an alphabet set Σ = [σ], and the end of each document
is marked with a unique symbol $ not appearing elsewhere in the document. We can
pre-process this collection and build a data structure on it, so as to answer queries. A
query is of the form (P, k) that consists of a pattern P of p characters and a numeric
parameter k. We are required to output k most relevant documents (with respect to the
pattern P) in sorted order of “relevance”. The measure of relevance between pattern P
and a document dr is captured by the function score(P, dr). The score depends on the
set of occurrences (given by their locations) of pattern P in document dr. For example,
score(P, dr) can simply be the term frequency TF(P, dr) (i.e., the number of occurrences
of P in dr), or it can be the term proximity TP(P, dr) (i.e., the distance between the
pair of closest occurrences of P in dr), or a pattern-independent importance score of dr
such as PageRank [Page et al. 1999]. We refer to this problem as the top-k document
retrieval problem.

Top-k document retrieval is the most fundamental task done by modern-day search
engines. To handle the task, inverted indexes are applied and form the backbone. For
each word w of the document collection, an inverted index maintains a list of docu-
ments in which that word appears, in the descending order of score(w, ·). Top-k queries
for a single word are easily answered using an inverted index. However, when querying
phrases that consist of multiple words, inverted indexes are not as efficient [Patil et al.
2011]. Also, in the cases of biological databases as well as eastern language texts where
the usual word boundary demarcation may not exist, the documents are best modeled
as strings. In this case, the query pattern can be a contiguous sequence of words, and
we are interested in those documents that contain the pattern as a substring. The
usual inverted index approach might require us to index the list of documents for each
possible substring, which can possibly take quadratic space. This approach is neither
theoretically interesting nor practically sensible. Hence, pattern matching-based data
structures need to be taken into account.

In text pattern matching, the most basic problem is to find all the locations in the
text where this pattern matches. Earlier work has focused on developing linear-time
algorithms for this problem [Knuth et al. 1977]. In a data structural sense, the text
is known in advance and the pattern queries arrive in an online fashion. The suffix
tree [McCreight 1976; Weiner 1973] is a popular data structure to handle such queries;
it takes linear-space and answers pattern matching queries in optimal O(p+occ) time,
where occ denotes the number of occurrences of the pattern in the text. Most string
databases consist of a collection of multiple text documents (or strings) rather than
just one single text. In this case, a natural problem is to retrieve all the documents in
which the query pattern occurs. This problem is known as the document listing prob-
lem, which can be seen as a particular case of the top-k document retrieval problem.
One challenge is that the number of such qualifying documents (denoted by ndoc) may
be much smaller than the actual number of occurrences of the pattern over the entire
collection. Thus, a simple suffix-tree-based search might be inefficient since it might
involve browsing through a lot more occurrences than the actual number of qualify-
ing documents. This problem was first addressed by Matias et al. [1998], where they
gave a linear-space and O(p logD + ndoc) time solution. Later, Muthukrishnan [2002]
improved the query time to optimal O(p+ ndoc).

Muthukrishnan [2002] also initiated a more formal study of document retrieval
problems with various relevance metrics. The two problems considered by Muthukr-
ishnan were K-mine and K-repeats. In the K-mine problem, the query asks for all

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Space-Efficient Frameworks for Top-k String Retrieval A:3

the documents which have at least K occurrences of the pattern P . This basically
amounts to thresholding by term frequency. In the K-repeats problem, the query
asks for all the documents in which there is at least one pair of occurrences of the
pattern P such that these occurrences are at most distance K apart. This relates
to another popular relevance measure in information retrieval called term proxim-
ity. He gave O(n log n)-word data structures for these problems that can answer the
queries in optimal O(p + output) time. Here, output represents the number of quali-
fying documents for the given threshold. These data structures work by augmenting
suffix trees with additional information. Based on Muthukrishnan’s index for K-mine
problem, Hon et al. [2010] designed an O(n log n)-word index for top-k frequent docu-
ment retrieval problem (i.e., the relevance metric is term frequency) with near-optimal
O(p + k + log n log log n) query time. The main drawback of the above indexes was the
Θ(log n) factor of space blow-up when compared with the “linear-space” suffix tree.

In modern times, even suffix trees are considered space-bloated, as its space occu-
pancy can grow to 15 – 50 times the size of the text. In the last decade, with advances
in succinct data structures, compressed alternatives of suffix trees have emerged that
use an amount of space close to the entropy of the compressed text. The design of
succinct/compressed text indexing data structures has been a field of active research
with great practical impact [Grossi and Vitter 2005; Ferragina and Manzini 2005].
Sadakane [2007b] showed how to solve the document listing problem using succinct
data structures that take space very close to that of the compressed text. He also
showed how to compute the TF-IDF scores [Witten et al. 1999] of each document with
such data structures. However, one limitation of Sadakane’s approach is that it needs
to first retrieve all the documents where the pattern (or patterns) occurs, and then find
their relevance scores. The more meaningful task from the information retrieval point
of view, however, is to get only some of the highly relevant documents. In this sense,
it is very costly to retrieve all the documents first. Nevertheless, Sadakane did show
some very useful tools and techniques for deriving succinct data structures for these
problems.

Apart from fully succinct data structures, the document listing problem has also
been considered in the compact space model, where an additional n logD bits of space
is allowed [Välimäki and Mäkinen 2007; Gagie et al. 2009; Gagie et al. 2010]. Typically,
fully succinct data structures take space that is less than or comparable to the space
taken by the original text collection; compact data structures are shown to take about 3
times the size of the original text. Both succinct and compact data structures are highly
preferable over the usual suffix-tree-based implementations, but they are typically
slower in query time.

The document listing problem has also been studied for multiple patterns. For the
case of two patterns P1 and P2 (of lengths p1 and p2, respectively), an index proposed by
Muthukrishnan’s [2002] takes Õ(n3/2) space (which is prohibitively expensive) and re-
port those ndoc documents containing both P1 and P2 in O(p1 + p2 +

√
n+ ndoc) time.1

Cohen and Porat [2010] gave a more space-efficient version taking O(n log n) words of
space while answering queries in O(p1 + p2 +

√
(ndoc + 1)× n log n log2 n) time.

In our paper, we introduce various frameworks, by which we provide improved so-
lutions for some of the known document retrieval problems, and also provide efficient
solutions for some new problems. In the remaining part of this section, we first list
our main contributions, and then briefly survey the work that happened in this line of
research after our initial conference paper [Hon et al. 2009].

1The notation Õ(·) ignores polylogarithmic factors.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 W. K. Hon et al.

1.1. Our Contributions
The following summarizes our contributions (throughout this paper ε represents any
small positive constant):

(1) We provide a framework for designing linear-space (i.e., using O(n) words) data
structures for top-k string retrieval problems, when the query consists of a single
pattern P of length p. Our framework works with any arbitrary relevance score
function which depends on the set of locations of occurrences of P in the document.
Many popular metrics like term frequency, term proximity, and importance are
covered by this model. We achieve query time of O(p+k log k) for retrieving the top
k documents in sorted order of their relevance score, and optimal O(p + k) time if
sorted order is not necessary.

(2) We reduce the space requirement of our linear-space index to achieve compact
space when the score function is term frequency. We achieve an index of size
n(log σ+2 logD)(1+o(1)) bits with O(p+ log4 log n+ k(log log n+ log k)) query time.
The space is further improved to n(log σ + logD)(1 + o(1)) bits with slightly more
query time of O(p+ log5 log n+ k((log σ log log n)1+ε + log2 log n+ log k)).

(3) We provide a framework for designing succinct/compressed data structures for the
single-pattern top-k string retrieval problems. Our main idea is based on sparsi-
fication, which allows us to achieve better space (at the cost of somewhat worse
query time). Our framework is applicable to any score function that can be calcu-
lated on-the-fly in compressed space. In the specific case when we score by term
frequency, we derive the first succinct data structure that occupies 2|CSA∗|+o(n) +
D log n

D +O(D) bits and answers queries in O(ts(p) + k × tsa log k logε n) time. When
we score by importance, the above space can be reduced to |CSA|+ o(n) +D log n

D +
O(D) bits with the same query time. Here, |CSA∗| denotes the maximum space (in
bits) to store either a compressed suffix array (CSA) of the concatenated text with
all the given documents in D, or all the CSAs of individual documents, tsa is the
time decoding a suffix array value, and ts(p) is the time for computing the suffix
range of P using CSA (We defer to Section 2.2 and Section 2.3 for the definitions of
suffix array, suffix range and compressed suffix array).

(4) We provide a framework to answer top-k queries for two or more patterns. For
two patterns P1 and P2 of lengths p1 and p2 respectively, we derive linear-space
(i.e., using O(n) words) indexes with query time O(p1 + p2 +

√
nk log n log log n) for

various score functions.

1.2. Postscript
After our initial conference paper [Hon et al. 2009], many results on top-k retrieval
have appeared with improvements in index space or query time or both (see Table I for
the summary of results). Karpinski and Nekrich [2011] derived an optimal O(p + k)-
time linear-space index for sorted top-k document retrieval problem when p = logO(1) n.
Navarro and Nekrich [2012] gave the first linear-space index achieving optimal query
time; they also showed that it is possible to maintain their index in O(n(log σ+ logD+
log log n)) bits of space. Recently, Shah et al. [2013] proposed an alternative linear-
space index that can answer the top-k queries in O(k) time, once the locus of the query
pattern is given; they also studied the problem in the external memory model [Vitter
2008; Aggarwal and Vitter 1988], and presented an I/O-optimal index occupying almost
linear-space of O(n log∗ n) words.

Let T = d1d2d3 · · · dD be the text (of n characters from an alphabet set Σ = [σ])
obtained by concatenating all the documents in D. For succinct indexes (which take
space close to the size of T in its compressed form), existing work focussed on the
case where the relevance metric is term frequency or static importance score. Most

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Space-Efficient Frameworks for Top-k String Retrieval A:5

of the succinct indexes used a key idea from an earlier paper by Sadakane [2007b],
where he showed how to compute the TF-IDF score of each document, by maintaining
a compressed suffix array CSA of T along with a compressed suffix array CSAr of each
document dr (see Section 2.3 for the definition of CSA).

Table I. Indexes for Top-k Frequent Document Retrieval
(assuming D = o(n/ logn), with logD and log(D/k) simplified to the worst-case bound of logn in the reporting time)

Source Space (in bits) Per-Document Reporting Time

Hon et al. [2010] O(n logn+ n log2D) O(1)
Ours (Theorem 3.8) O(n logn) O(log k)
Navarro and Nekrich [2012] O(n(logD + log σ)) O(1)
Shah et al. [2013] O(n logn) O(1)

Hon et al. [2009] 2|CSA∗|+ o(n) O(tsa log
3+ε n)

Gagie et al. [2010] 2|CSA∗|+ o(n) O(tsa log
3+ε n)

Belazzougui et al. [2013] 2|CSA∗|+ o(n) O(tsa log k log
1+ε n)

Ours (Theorem 5.6) 2|CSA∗|+ o(n) O(tsa log k log
ε n)

Tsur [2013] |CSA|+ o(n) O(tsa log k log
1+ε n)

Navarro and Thankachan [2013] |CSA|+ o(n) O(tsa log
2 k logε n)

Gagie et al. [2010] |CSA|+ n logD(1 + o(1)) O(log2+ε n)
Belazzougui et al. [2013] |CSA|+ n logD(1 + o(1)) O(log k log1+ε n)
Gagie et al. [2010] |CSA|+O(n logD

log logD
) O(tsa log

2+ε n)

Belazzougui et al. [2013] |CSA|+O(n logD
log logD

) O(tsa log k log
1+ε n)

Belazzougui et al. [2013] |CSA|+O(n log log logD) O(tsa log k log
1+ε n)

Ours (Theorem 4.5) n(log σ + 2 logD)(1 + o(1)) O(log logn+ log k)
Ours (Theorem 4.6) n(log σ + logD)(1 + o(1)) O(log2 logn+ (log σ log logn)1+ε + log k)

In our initial conference paper [Hon et al. 2009], we proposed the first succinct
index for top-k frequent document retrieval. The index occupies 2|CSA∗| + o(n) +
D log n

D + O(D) bits of space and answers a query in O(ts(p) + k × tsa log3+ε n) time.
While retaining the same space complexity, Gagie et al. [2010] improved the query
time to O(ts(p) + k × tsa logD log(D/k) log1+ε n), and Belazzougui et al. [2013] fur-
ther improved it to O(ts(p) + k × tsa log k log(D/k) logε n). Our result of Theorem 5.6
in this paper (initially appeared in [Hon et al. 2013]) achieves an even faster
query time of O(ts(p) + k × tsa log k logε n). An open problem of designing a space-
optimal index is positively answered by Tsur [2013], where he proposed an in-
dex of size |CSA|+ o(n) +O(D) +D log(n/D) bits with O(ts(p) + k × tsa log k log1+ε n)
query time; very recently, Navarro and Thankachan [2013] improved the query
time further to O(ts(p) + k × tsa log2 k logε n). Top-k important document retrieval
(i.e., the score function is document importance) is also a well-studied problem,
and the best known succinct index appeared in [Belazzougui et al. 2013]. This in-
dex takes |CSA|+ o(n) +O(D) +D log(n/D) bits of space, and answers a query in
O(ts(p) + k × tsa log k logε n) time.

The document array (refer to Section 2.4 for the definition) is a powerful data struc-
ture for solving string retrieval problems, and its space occupancy is ndlogDe bits.
This was first introduced in [Välimäki and Mäkinen 2007] for solving the document
listing problem. Later, Culpepper et al. [2010] showed how to efficiently handle top-k
frequent document retrieval queries using a simple data structure, which is essentially
a wavelet tree maintained over the document array. Although their query algorithm

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 W. K. Hon et al.

is only a heuristic (no worst-case bound), it works well in practice, with space occu-
pancy roughly 1 – 3 times the text size. From now onwards, an index that allows a
space term of roughly n logD bits, corresponding to the document array, will be called
a compact index. Gagie et al. [2010] proposed two compact indexes of sizes |CSA| +
n logD(1 + o(1)) bits and |CSA|+O(n logD/ log logD) bits, with query time bounds of
O(ts(p) + k × logD log(D/k) logε n) and O(ts(p) + k × tsa logD log(D/k) logε n), respec-
tively. Belazzougui et al. [2013] showed that the logD factor in the query time of
both results by Gagie et al. can be converted to log k without increasing the in-
dex space; they also showed an index of size |CSA| + O(n log log logD) bits with
O(ts(p) + k × tsa log k log1+ε n) query time. In terms of per-document reporting time,
the compact indexes proposed in our paper (results in Theorem 4.5 and Theorem 4.6)
achieve (log log n)O(1) time as opposed to the O(logO(1) n) time of the other com-
pact indexes mentioned above. Navarro and Nekrich [2012] gave an index of size
O(n(log σ + logD)) bits index with optimal O(p + k) time; however, the hidden con-
stants within the big-O notations are not small in practice [Konow and Navarro 2013].
See also [Patil et al. 2011; Culpepper et al. 2012; Navarro et al. 2011; Hsu and Ot-
taviano 2013] for some of the other results, which are mostly experimentation-based
practical indexes.

Fischer et al. [2012] introduced a new variation of two-pattern queries (known as for-
bidden pattern queries), which is defined as follows: Given input patterns P1 and P2,
report those ndoc documents containing P1, but not P2. The authors gave an O(n3/2)-
bit data structure with query time O(p1 + p2 +

√
n+ ndoc). Later, Hon et al. [2012]

improved the index space to O(n) bits, however the query time is increased to
O(p1 + p2 +

√
(ndoc + 1)× n log n log2 n).

Although most of the relevant results on the central problem is summarized in this
section, there are still many related problems which we have excluded. See the recent
surveys [Navarro 2013; Hon et al. 2013] for further reading.

1.3. Organization of the Paper
Section 2 gives the preliminaries. Next, we describe our linear-space, compact-space,
and succinct-space solutions for the top-k document retrieval problem in Section 3,
Section 4, and Section 5, respectively. Section 6 describes the data structure for multi-
pattern queries. Finally, we conclude in Section 7 with some open problems.

2. PRELIMINARIES
2.1. Generalized Suffix Tree (GST)
Let T = d1d2d3 · · · dD be the text (of n characters from an alphabet set Σ = [σ]) obtained
by concatenating all the documents in D. The last character of each document is $, a
special symbol that does not appear anywhere else in T. Each substring T[i..n], with
i ∈ [1, n], is called a suffix of T. The generalized suffix tree (GST) of D is a lexicographic
arrangement of all these n suffixes in a compact trie structure, where the ith leftmost
leaf represents the ith lexicographically smallest suffix. Each edge in GST is labeled
by a string, and path(x) of a node x is the concatenation of edge labels along the path
from the root of GST to node x. Let `i for i ∈ [1, n] represent the ith leftmost leaf in GST.
Then path(`i) represents the ith lexicographically smallest suffix of T. Corresponding
to each node, a perfect hash function [Fredman et al. 1984] is maintained such that,
given any node u and any character c ∈ Σ, we can compute the child node v of u (if it
exists) where the first character on the edge connecting u and v is c. A node x is called
the locus of a pattern P , if it is the highest node path(x) prefixed by P . The total space
consumption of GST is O(n) words and the time for computing the locus node of P

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Space-Efficient Frameworks for Top-k String Retrieval A:7

is O(p). When D contains only one document dr, the corresponding GST is commonly
known as the suffix tree of dr [Weiner 1973].

2.2. Suffix Array (SA)
The suffix array SA[1..n] is an array of length n, where SA[i] is the starting position
(in T) of the ith lexicographically smallest suffix of T [Manber and Myers 1993]. In
essence, the suffix array contains the leaf information of GST but without the tree
structure. An important property of SA is that the starting positions of all the suffixes
with the same prefix are always stored in a contiguous region of SA. Based on this
property, we define the suffix range of P in SA to be the maximal range [sp, ep] such that
for all i ∈ [sp, ep], SA[i] is the starting point of a suffix of T prefixed by P . Therefore, `sp
and `ep represents the first and last leaves in the subtree of the locus node of P in GST.

2.3. Compressed Suffix Arrays (CSA)
A compressed representation of suffix array is called a compressed suffix array
(CSA) [Grossi and Vitter 2005; Ferragina and Manzini 2005; Grossi et al. 2003]. We
denote the size (in bits) of a CSA by |CSA|, the time for computing SA[·] and SA−1[·]
values by tsa, and the time for finding the suffix range of a pattern of length p by ts(p).
There are various versions of CSA in the literature that provide different performance
tradeoffs (see [Navarro and Mäkinen 2007] for an excellent survey). For example, the
space-optimal CSA by Ferragina et al. [2007] takes nHh + o(n log σ) bits space, where
Hh ≤ log σ denotes the empirical hth-order entropy of T.2 The timings tsa and ts(p)
are O(log1+ε n log σ) and O(p(1 + log σ/ log log n)), respectively. Recently, Belazzougui
and Navarro [2011] proposed another CSA of space nHh + O(n) + o(n log σ) bits with
ts(p) = O(p) and tsa = O(log n).

2.4. Document Array (E)
The document array E[1..n] is defined as E[j] = r if the suffix T[SA[j]..n] belongs to
document dr. Moreover, the corresponding leaf node `j is said to be marked with docu-
ment dr. By maintaining E using the structure described in [Golynski et al. 2006], we
have the following result.

LEMMA 2.1. The document array E can be stored in n logD + o(n logD) bits and
support rankE, selectE and accessE operations in O(log logD) time, where

— rankE(r, i) returns the number of occurrences of r in E[1..i];
— selectE(r, j) returns the location of jth leftmost occurrence of r in E; and
— accessE(i) returns E[i].

Define a bit-vector BE[1..n] such that BE[i] = 1 if and only if T[i] = $. Then, the
suffix T[i..n] belongs to document dr if r = 1 + rankBE

(i), where rankBE
(i) represents the

number of 1s in BE[1..i]. The following is another useful result.

LEMMA 2.2. Using CSA and an additional structure of size |CSA∗| + D log n
D +

O(D) + o(n) bits, the document array E can be simulated to support rankE operation
in O(tsa log log n) time, and selectE and accessE operations in O(tsa) time.

PROOF. The document array E can be simulated using the following structures:
(i) compressed suffix array CSA of T (of size |CSA| bits), where SA[·] and SA−1[·] rep-
resent the suffix array and inverse suffix array values in CSA; (ii) compressed suf-
fix array CSAr of document dr (of size |CSAr| bits) corresponding to every dr ∈ D,

2The space bound holds for all h < α logn/ log σ, where α is any fixed constant with 0 < α < 1.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 W. K. Hon et al.

where SAr[·] and SA−1r [·] represent the suffix array and inverse suffix array values
in CSAr; and (iii) the bit-vector BE maintained in D log n

D + O(D) + o(n) bits with
constant-time rank/select supported [Raman et al. 2007]. Hence the total space is
bounded by |CSA∗|+D log n

D +O(D) + o(n) bits in addition to the |CSA| bits of CSA,
where |CSA∗| = max{|CSA|,

∑D
r=1 |CSAr|}.

The function accessE(i) = 1 + rankBE
(SA[i]) can be computed in O(tsa) time. For com-

puting selectE(r, j), we first compute the jth smallest suffix in CSAr and obtain the
position pos of this suffix within document dr, from which we can easily obtain the
position pos ′ of this suffix within T as selectBE

(r− 1) +pos, where selectBE
(x) is the posi-

tion of the xth 1 in BE. After that, we compute SA−1[pos ′] in CSA as the desired answer
for selectE(r, j). This takes O(tsa) time. The function rankE(r, i) = j can be obtained in
O(tsa log n) time using a binary search on j such that selectE(r, j) ≤ i < selectE(r, j + 1).
Belazzougui et al. [2013] showed that the time for computing rankE(r, i) can be im-
proved to O(tsa log log n) as follows: At every (log2 n)th leaf of each CSAr, we explicitly
maintain its corresponding position in CSA and a predecessor search structure over
it [Willard 1983]; the size of this additional structure is o(n) bits. Now, when we answer
the query, we can first search this predecessor structure for an approximate answer,
and the exact answer can be obtained by a binary search on a smaller range of only
log2 n leaves. ut

By choosing the CSA by Grossi and Vitter [2005] of size O(n log σ log log n) bits with
tsa = O(log logσ n), the above lemma can be restated as follows.

COROLLARY 2.3. The document array E can be encoded in O(n log σ log log n) bits
and support rankE operation in O(log2 log n) time, and selectE and accessE operations in
O(log log n) time.

LEMMA 2.4. Let E be the document array corresponding to a document collection D.
Then, for any document dr ∈ D, TF(P, dr) = rankE(r, ep)− rankE(r, sp− 1), where [sp, ep]
represents the suffix range of P .

2.5. Succinct Representation of Ordinal Trees
Any n-node ordered rooted tree can be represented in 2n + o(n) bits, such that if each
node is labeled by its preorder rank in the tree, each of the following operations can
be supported in constant time [Sadakane and Navarro 2010]: parent(u), which returns
the parent of node u; child(u, q), which returns the qth child of node u; child rank(u),
which returns the number of siblings to the left of node u; lca(u, v), which returns the
lowest common ancestor of two nodes u and v; and lmost leaf (u)/rmost leaf (u), which
returns the leftmost/rightmost leaf of node u.

2.6. Score Functions
Given a pattern P and a document dr, let S denote the set of all positions in dr where
P matches. We study a class of score functions score(P, dr) that depend only on the
set S. Popular examples in the class include: (1) term frequency TF(P, dr), which is the
cardinality of S; (2) term proximity TP(P, dr), which is the minimum distance between
any two positions in S; (3) docrank(P, dr), which is simply a static “importance” value
associated with document dr.

The functions TF(P, dr) and TP(P, dr) are directly associated with K-mine and K-
repeats problems, respectively. The importance metric captured by docrank(P, dr) can
be realized in practice by the PageRank [Page et al. 1999] of the document dr, which is
static and invariant of P .

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Space-Efficient Frameworks for Top-k String Retrieval A:9

In our paper, we focus on obtaining the top k highest-scoring documents given the
pattern P . In the design of our succinct/compressed solutions, some of the score calcula-
tion will be done on the fly. We call a score function succinctly calculable if there exists
a data structure on document dr of O(|dr| log σ) bits that can calculate score(P, dr) in
O(poly (p, log |dr|)) time; here, |dr| denotes the number of characters in dr. Note that
TF(P, dr) and docrank(P, dr) are succinctly calculable (see Lemma 2.2 and Lemma 2.4),
but it is yet unknown if TP(P, dr) is succinctly calculable.

2.7. Top-k using RMQs and Wavelet Trees
Let A be an array of length n. A range maximum query (RMQ) on A asks for the position
of the maximum between two specified array indices i and j. That is, the RMQ should
return an index k such that i ≤ k ≤ j and A[k] ≥ A[x] for all i ≤ x ≤ j. Although solving
RMQs is as old as Chazelle’s original paper on range searching [Chazelle 1988], many
simplifications [Bender and Farach-Colton 2000] and improvements have been made,
culminating in the index of size 2n + o(n) bits by Fischer and Heun [2011]. Even our
results shall extensively use RMQ as a tool to obtain the top k items in a given set of
ranges.

LEMMA 2.5. Let A[1..n] be an array of n numbers. We can preprocess A in linear
time and associate A with an RMQ data structure of size 2n+ o(n) bits, such that given
a set of z non-overlapping ranges [L1, R1], [L2, R2], . . . , [Lz, Rz], we can find (i) all those
output numbers in A[L1..R1]∪A[L2..R2]∪· · ·∪A[Lz..Rz] which are greater (or less) than
a given threshold value in O(z+output) time, or (ii) the largest (or smallest) k numbers
in A[L1..R1] ∪ A[L2..R2] ∪ · · · ∪ A[Lz..Rz] in unsorted order in O(z + k) time.

PROOF. We use the following result of Frederickson [1993]: the kth largest number
from a set of numbers maintained in a binary max-heap ∆ can be retrieved in O(k)
time by visiting O(k) nodes in ∆. In order to solve our problem, we may consider a
conceptual binary max-heap ∆ as follows: Let ∆′ denote the balanced binary subtree
with z leaves that is located at the top part of ∆ (with the same root). Each of the z− 1
internal nodes in ∆′ holds the value ∞. The ith leaf node `i in ∆′ (for i = 1, 2, . . . , z)
holds the value A[Mi], which is the maximum element in the interval A[Li..Ri]. The
values held by the nodes below `i will be defined recursively as follows: For a node `
storing the maximum element A[M] from the range A[L..R], its left child stores the
maximum element in A[L..(M − 1)] and its right child stores the maximum element
in A[(M + 1)..R]. Note that this is a conceptual heap which is built on the fly, where
the value associated with a node is computed in constant time based on the RMQ
structures only when needed.

For (i), we simply perform a preorder traversal of ∆, such that if the value (6= ∞)
associated with a node satisfies the threshold condition, we then report it and move to
the next node; otherwise, we discard it and do not check the nodes in its subtree. The
query time can be bounded by O(z + output). For (ii), we first find the (z − 1 + k)th
largest element X in this heap by visiting O(z + k) nodes (with O(z + k) RMQs) using
Frederickson’s algorithm [1993]. Then, we obtain all those numbers in ∆ that are ≥ X
in O(z + k) time by a preorder traversal of ∆, such that if the value associated with a
node is < X, we do not check the nodes in its subtree. However, if the number of values
≥ X is ω(z+k), we may end up visiting ω(z+k) nodes, resulting in ω(z+k) query time.
To avoid this pitfall, we do the following: First, we report all those nX values which
are strictly greater than X (note that nX < z+k); then, we run the algorithm a second
time to report up to z − 1 + k − nX values equal to X. ut

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 W. K. Hon et al.

While the above lemma dealt with a query range with three constraints (two from
range boundaries and one from top-k), the next lemma shows how to extend this to
one more dimension so as to obtain top-k among 4-sided rectangular ranges.3 Instead
of RMQs, here we shall use wavelet trees and use RMQs in each node of the wavelet
tree.

LEMMA 2.6. Let A[1..n] be an array of n numbers taken from an alphabet set Π = [π]
where each number A[i] is associated with a score (which may be stored separately and
can be computed in tscore time). Then, the array A can be maintained in O(n log π) bits,
such that given two ranges [x′, x′′], [y′, y′′], and a parameter k, we can search among
those entries A[i] with x′ ≤ i ≤ x′′ and y′ ≤ A[i] ≤ y′′, and report the k highest-scoring
entries in unsorted order in O((log π + k)(log π + tscore)) time.

PROOF. To answer the above query, we maintain A in the form of a wavelet
tree [Grossi et al. 2003], which is an ordered balanced binary tree of n leaves. Each
leaf is labeled with a symbol in Π, and the leaves are sorted alphabetically from left to
right. Each internal node w represents an alphabet set Πw and is associated with a bit-
vector Bw. In particular, the alphabet set of the root is Π, and the alphabet set of a leaf
is the singleton set containing its corresponding symbol. Each node partitions its al-
phabet set among the two children (almost) equally, such that all symbols represented
by the left child are lexicographically (or numerically) smaller than those represented
by the right child.

For a node w, let Aw be a subsequence of A by retaining only those symbols that
are in Πw. Then Bw is a bit-vector of length |Aw|, such that Bw[i] = 0 if Aw[i] is a
symbol represented by the left child of w, else Bw[i] = 1. Indeed, the subtree from w
itself forms a wavelet tree of Aw. To reduce the space requirement, the array A is not
stored explicitly in the wavelet tree. Instead, we only store the bit-vectors Bw, each
of which is augmented with Raman et al.’s scheme [2007] to support constant-time
rank/select operations. The total size of the bit-vectors and the augmented structures
in a particular level of the wavelet tree is n(1 + o(1)) bits. We maintain an additional
range maximum query (RMQ) [Fischer and Heun 2007; Sadakane 2007a] structure
over the scores of all elements of the sequence Aw (in O(|Aw|) bits). As there are log π
levels in the wavelet tree, the total space is O(n log π) bits. Note that the value of any
Aw[i] for any given w and i can be computed in O(log π) time by traversing log π levels
in the wavelet tree. Similarly, any range [x′, x′′] can be translated to w as [x′w, x

′′
w] in

O(log π) time, where A[x′w..x
′′
w] is a subsequence of A[x′..x′′] with only those elements

in Πw.
The desired k highest-scoring entries can be obtained as follows: First the given

range [y′, y′′] can be split into at most 2 log π disjoint subranges, such that each sub-
range is represented by Πw associated with some internal node w. All the numbers
in the subsequence Aw associated with such an internal node w will satisfy the con-
dition y′ ≤ Aw[i] ≤ y′′. And for all such (at most 2 log π) Aws, the range [x′, x′′] can be
translated into the corresponding range [x′w, x

′′
w] in O(log π) time [Gagie et al. 2012].

Then, we can apply Lemma 2.5 (where z ≤ 2 log π) to obtain the desired entries. How-
ever, retrieving a node value in the conceptual max-heap (in the proof of Lemma 2.5)
requires us to compute the score of Aw[i] for some w and i on the fly, which shall be
done by first finding the entry A[i′] that corresponds to Aw[i], and then retrieving the
score of A[i′]. This takes O(log π+ tscore) time, so that the total time will be bounded by
O(log π + (2 log π + k)(log π + tscore)) = O((log π + k)(log π + tscore)). ut

3See Lemma 7.1 in [Navarro and Nekrich 2012] for a better solution for this problem.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Space-Efficient Frameworks for Top-k String Retrieval A:11

d2 d1 d3 d5 d3 d2 d5 d4 d1 d3 d5 d5 d5 d6 d6 d1 d4 d4

 d1 , 2, (3,1)

d1

d5

d1

 d5 , 2, (12,1)

 d5 , 2, (27,19)

1

2

3
12

19

 d5 , 3, (19,1)

N-‐structure entry: doc id, score, (origin, target)

27

Fig. 1. Example of N-structure entries (without δ fields), with score assumed to be TF for illustration pur-
pose

2.8. Differentially Encoding a Sorted Array
Let A[1..m] be an array of integers such that 1 ≤ A[i] ≤ A[i + 1] ≤ n. The array A can
be encoded using a bit vector B = 10c110c210c3 · · · 10cn , where ci denotes the number of
entries A[·] = i. The length of B is m+n, and hence B can be maintained in (m+n)(1 +
o(1)) bits (along with constant-time rank/select structures [Munro et al. 2001; Clark
1996]). Then, for any given j ∈ [1,m], we can compute A[j] in constant time by first
finding the location of the jth 0 in B, and then counting the number of 1s up to that
position.

3. LINEAR SPACE STRUCTURES
In this section, we describe our linear-space data structures with near optimal
query times. Although we describe our result in terms of the frequency metric (i.e.,
score(·, ·) = TF(·, ·)), it works directly for any other score function. First, we build a
generalized suffix tree (GST) of D and augment with the following structures described
below. The number of leaves in the subtree of a node v in GST that are marked with
document dr is represented by freq(v, r). Note that freq(v, r) = TF(path(v), dr).

3.1. N-structure
At any node v of GST, we store an N-structure Nv, which is an array of 5-tuples
〈document id r, score s, pointer t, first depth δf , last depth δl〉. First, Nv for any leaf
node `i (recall that `i represents the ith leftmost leaf node in GST) will contain exactly
one entry with document id E[i] and score 1. For an internal node v, an entry with doc-
ument id r occurs in Nv if and only if at least two children of v contain leaves marked
with document dr in their subtrees. In case the entry of document dr is present in Nv
then its corresponding score value s denotes the number of leaves in the subtree of v
marked with document dr (i.e., freq(v, r)). The pointer t stores two attributes: origin
and target. The origin is set to node v, while the target is set to the lowest ancestor
of v that also has an entry of document dr. Note that such an ancestor always exists,
unless v is the root (in this case, the target of t is a dummy node which is regarded as
the parent of the root). For δf and δl, we shall give their definitions and describe their
usage later. See Figure 1 for an illustration of some N-structure entries, each showing
the first three fields of the 5-tuple.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 W. K. Hon et al.

OBSERVATION 1. Let `i and `j be two leaves belonging to the same document dr. If
v is the lowest common ancestor lca(`i, `j), then Nv contains an entry for document dr.

PROOF. Leaf `i and leaf `j must be in the subtree of different children of v (oth-
erwise, v cannot be their lowest common ancestor). Thus, at least two children of v
contain leaves marked with document dr, so that Nv contains an entry for dr. ut

OBSERVATION 2. If for two nodes u and w, both Nu and Nw contain an entry for
document dr, then the node z = lca(u,w) also has an entry for document dr in Nz.

PROOF. Nodes u and w must be in the subtree of different children of z (otherwise,
z cannot be their lowest common ancestor). Since Nu and Nw both contain an entry for
document dr, the subtree of u and the subtree of w must each contain some leaf marked
by dr. Consequently, at least two children of z contain leaves marked with dr, so that
Nz contains an entry for dr. ut

LEMMA 3.1. For any document dr which occurs at some leaf in the subtree of a
node v, there is exactly one pointer t such that (i) t corresponds to document dr, (ii)
t originates at some node in the subtree of v (including v), and (iii) t targets to some
proper ancestor of v.

PROOF. It is easy to check that at least one pointer t will simultaneously satisfy the
three properties. To show that t is unique, suppose on the contrary that two nodes u
and w in the subtree of v both contain an entry of document dr and with the corre-
sponding pointers targeting to some nodes outside the subtree of v. By Observation 2,
z = lca(u,w) also has an entry for dr. Consequently, the pointers originated from u and
w must target to some nodes in the subtree of z. On the other hand, since both u and
w are in subtree of v, z must be in the subtree of v. The above statements immediately
imply that the pointers originated from u and w are targeting to some nodes in the
subtree of v. Thus, contradiction occurs and the lemma follows. ut

LEMMA 3.2. The total number of internal nodes that have an entry for document dr
is at most |dr| − 1, where |dr| denotes the number of characters in document dr.4

PROOF. By construction, each internal node with an entry for dr has at least two
branches, where the subtree of each branch contains some leaf marked by dr. Indeed,
these internal nodes, together with all the leaves marked by dr, form an induced sub-
tree of the original GST (and is equivalent to the suffix tree for document dr); moreover,
there is no degree-1 internal node. Thus, it follows that the number of internal nodes
is bounded by |dr| − 1, since the number of leaves is |dr|. ut

3.2. I-structure
Based on the pointer field in the N-structure, we are now ready to describe another
structure Iv that is stored at every internal node v. For each pointer t in some N-
structure whose target is v, Iv contains a corresponding entry that stores information
about the origin of t. Specifically, let 〈r, s, t, ·, ·〉 be an entry in an N-structure Nw associ-
ated with a node w. If the target of t is v, then Iv stores a triplet 〈document id r, score s,
origin w〉.

The entries in the I-structure Iv are sorted, in ascending order, by the preorder ranks
of the origins. We store Iv by three separate arrays Docv, Scov, and Oriv such that the

4Here, we exclude the dummy node.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Space-Efficient Frameworks for Top-k String Retrieval A:13

jth entry of Iv is denoted by Iv[j], and has the value 〈Docv[j],Scov[j],Oriv[j]〉. Note that
some entries in Iv may have the same origin value (say w), if Nw contains more than one
entriy targeting v; in this case these entries are further ordered by the document ids
within Iv. Also, an Iv may have entries with the same document id (when these entries
have different origins). Finally, we store a Range Maximum Query (RMQ) structure on
the array Scov [Fischer and Heun 2011].

LEMMA 3.3. The total number of entries
∑
v |Iv| in all I-structures is at most 2n.

PROOF. The total number of entries in I-structures is the same as the total number
of pointers. This in turn is the total number of entries in N-structures. By Lemma 3.2,
the total number of such entries inside all internal nodes is at most

∑D
r=1(|dr|−1) ≤ n.

On the other hand, the number of such entries inside all leaves is exactly n, so that
the total number is at most 2n. ut

3.3. Answering Queries
To answer a query, we match the pattern P in GST in O(p) time and reach at locus
node vP . By the property of GST, all the leaves in the subtree of vP correspond to the
occurrences of P . Now, by Lemma 3.1, for each document dr that appears in the subtree
of vP , there will be a unique pointer, originating from some node in the subtree of vP ,
that targets to some ancestor node of vP . Note that the score value s associated with
that pointer is exactly the same as TF(P, dr). Thus, the top k documents can be reported
by first identifying such pointers, selecting those k highest-scoring ones among them,
and then reporting the corresponding document ids.

By the definition of the I-structure, we know that each of these pointers must target
to one of the ancestors of vP . For the locus vP we have just reached, let v′P be the
rightmost leaf in the subtree of vP (i.e., v′P is the highest preorder rank of any node in
the subtree of vP). Note that all the nodes in subtree of vP have contiguous preorder
ranks. Thus, nodes in the subtree of vP can be represented by the range [vP , v

′
P].

Now, for each ancestor u of vP , the entries in the I-structure Iu are sorted according
to the preorder ranks of the origins. The contiguous range in the origin array Oriu,
with values from [vP , v

′
P], will correspond to pointers originating from the nodes in

the subtree of vP (that point to u). Suppose such a range can be found in the array Iu
for each ancestor u. That is, we can find Lu and Ru such that Oriu[Lu] and Oriu[Ru],
respectively, are the first and last entries in Oriu that are at least vP and at most v′P .
Then we can examine the score array Scou[Lu..Ru] for each Iu and apply Lemma 2.5 to
return those k documents with the highest score (See Figure 2.).

The range [Lu, Ru] for each Iu can be found in O(log log n) time if we have maintained
a predecessor search structure [Willard 1983] over the array Oriu for each u. The num-
ber of ancestors of vP is at most depth(vP), where depth(vP) denotes the number of
nodes in GST from root to vP . Since depth(vP) ≤ p, this range translation takes at most
O(p log log n) time overall. The subsequent step by using Lemma 2.5 then takesO(p+k)
time. So in total, the top k frequent documents can be returned inO(p log log n+k) time.
The outputs can be obtained by score by spending another O(k log k) time.

3.4. Improvement: Reducing O(p log logn) to O(p)

To achieve optimal query time, the main bottleneck comes from querying the prede-
cessor structure for range translation, which costs us O(p log log n) time. We shall see
how we can convert the O(p log log n) term to O(p). Notice that the log log n factor comes
from the need of translating the range [vP , v

′
P] in the I-structure of each of the ancestor

of v. Next, we shall show how we can use the two fields δf and δl to directly map the
range without having to resort to the predecessor query.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 W. K. Hon et al.

 locus vp

I-‐structures

Range in each I-‐structure corresponding to
pointers originating in the subtree of vp

Fig. 2. Answering queries with I-structures

Intuitively, to speed up the range translation, we check for each N-structure entry e
whether e corresponds to a left boundary (in the I-structure of its target) in some
pattern query. If so, we store e with the locus nodes of all those corresponding patterns.
Given the locus node vP of an online pattern query, we can find all those entries e that
are stored with the locus node vP , and obtain the desired left boundaries in each of the
corresponding I-structures.

Using Figure 3 as illustration, observe that if an N-structure entry e is to be stored,
the corresponding locus nodes must form a path from the origin x of e to some ancestor
w of x. Indeed, such an ancestor w must be the highest one, such that among all entries
originating from the subtree of w with the same target y as e, e is the first entry
in preorder rank. (In other words, among all entries originating from the subtree of
w′ = parent(w), there will be an entry e′ smaller than e in preorder rank with the same
target y as e.) This motivates us to define the δf value for an entry in the N-structure
Nx of any node x as follows.

Definition 3.4. Consider an entry e in Nx whose target is y. Let w be the highest
node on the path from x to y, such that among all entries whose origins are from the
subtree of w, e is the first one whose target is y. (In other words, the corresponding I-
structure entry of e is the leftmost one in Iy, among those with origins from the subtree
of w.) Then, δf of the entry e is defined to be the value depth(w). If no such node w
exists, then δf of e is defined to be∞. We also define δl, symmetrically, with respect to
the last entry targeting y.

The δf value of an entry e can be determined in another way, as shown in the fol-
lowing lemma. This lemma will be useful in the construction algorithm in Section 3.5,
where we need to compute the δf value for each N-structure entry.

LEMMA 3.5. Let e by an N-structure entry in Nx whose target is y. Let Iy[a] be the
corresponding I-structure entry of e in Iy. Suppose that the origin of the entry Iy[a − 1]
is z, and the corresponding N-structure entry is e′. Then, δf of e is 1 + depth(lca(z, x)) if
z 6= x; else, it is∞.

PROOF. If z = x, the entry e cannot be the first one originating from the subtree of
any ancestor of x with target y (since e′ will always appear before e), so that δf is∞.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Space-Efficient Frameworks for Top-k String Retrieval A:15

y

w

x

z

e

I-‐structure Iy

Entry e is the first one in the
subtree of w whose target is y,
but not the first one in the
subtree

 f of entry e = depth(w)

Fig. 3. δf field

If z 6= x, let w′ denote the lca node lca(z, x). Since Iy entries are sorted by the preorder
ranks of the origins, z < x in the preorder rank. Let w be the child of w′ whose subtree
contains x. Then, δf ≤ depth(w) since e is the first entry in the subtree of w with
target y. However, δf > depth(w′) since e cannot be the first one originating from the
subtree of w′ with target y (since e′ will always appear before e). Because w′ is the
parent of w, depth(w′) = 1 + depth(w), so that δf must be equal to 1 + depth(w′) =
1 + depth(lca(z, x)) as claimed (See Figure 3). ut

Remark. In the above lemma, we differentiate the case of z = x from the other
cases, where we set δf = ∞. Indeed, we may as well adopt a unified approach by
setting δf = 1 + δ(lca(z, x)) for all cases. Note that there is no information loss, since
δf > depth(x) if and only if the original δf is ∞; also, no change is needed with the
query answering algorithm. Nevertheless, we shall stick to the original definition of δf
as it is more intuitive.

Let us now get back to the original problem of finding the left and right boundaries
in Iu of each ancestor u of vP . Based on the definitions of δf and δl, we have the following
lemma:

LEMMA 3.6. Consider all the pointers originating from the subtree of v (i.e., the
pointers that are in the N-structure of some descendant of v). If one such pointer satisfies
δf ≤ depth(v) (resp. δl ≤ depth(v)), then there exists an ancestor u of v such that this
pointer is the first (resp. last) among all the pointers in the I-structure Iu that originate
in the subtree of v.

Conversely, for any ancestor u of v, if a pointer t is the first (resp. last) pointer among
all the pointers in Iu that originate in the subtree of v, then t satisfies δf ≤ depth(v)
(resp. δl ≤ depth(v)).

PROOF. For the first part of the lemma, consider a pointer t originating in the sub-
tree of v that satisfies δf ≤ depth(v). Suppose that t points to I-structure Iu for some
ancestor u of v. Now assume to the contrary that t is not the first pointer originating
in subtree of v that reaches Iu. Then, there exists another pointer q originating in the
subtree of v also reaching Iu, and the preorder rank of the origin of q is just less than
that of t. In this case, δf of t must be strictly more that the depth of the lca of these
two originating nodes (Lemma 3.5). Since both nodes are in the subtree of v, the lca is
also in the subtree of v. Thus, δf of t is strictly more than depth(v). For the converse,
suppose t is the first pointer to reach Iu from the subtree of v. Then, consider a pointer
q that appears just before t in Iu. The origin of q must be outside the subtree of v. Thus,
δf of t is strictly more than the depth of the lca of the origins of q and t. Since this lca

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 W. K. Hon et al.

must be some proper ancestor of v, δf of t is at most depth(v). Similar arguments work
for the case of δl. ut

By the above lemma, if we can search for all the pointers originating in the subtree
of vP that satisfy δf ≤ depth(vP) (resp. δl ≤ depth(vP)), we can find the desired left
(resp. right) boundary in Iu for each ancestor u of vP . To facilitate the above search,
we shall visit each node of the GST in preorder, concatenate the N-structures for all
the nodes in one single array N, and construct two RMQ data structures (Lemma 2.5)
over the δf entries and δl entries, respectively. Thus, there is a contiguous range in N
corresponding to the subtree of vP . Now we find all the δf and δl values in this range
that are less than depth(vP) using Lemma 2.5, thus obtain the desired leftmost and
rightmost pointers. As there are at most 2×depth(vP) such pointers reported, the total
time is O(depth(vP)), which is O(p).

LEMMA 3.7. There exists a data structure of size O(n) words for the top-k frequent
document retrieval problem with query time O(p + k log k). If the outputs need not be
reported in sorted order, the query time can be made optimal O(p+ k). ut

Although we described our result in described in terms of the term frequency metric,
it can be easily generalized for handling arbitrary score functions, simply by replacing
the freq(·, r) values by score(path(·), dr) (We remark that only the construction algo-
rithm may be affected, which depends on how easy it is to evaluate the given score
function).

THEOREM 3.8. A given collection D of D documents with n characters in total taken
from an alphabet set Σ = [σ] can be indexed in O(n)-word space, such that whenever a
pattern P (of p characters) and an integer k come as a query, the index returns those k
documents with the highest score(P, ·) values in decreasing order of score(P, ·) in O(p+
k log k) time, where score(P, dr) of a document dr is a predefined function dependent on
the set of occurrences of P in dr. If the outputs need not be sorted, the query time can be
made optimal O(p+ k).

3.5. Construction Algorithms
Although our data structure framework is very general for arbitrary score functions,
the running time of our construction algorithm depends on how easily we can calculate
the score for a given set of positions.

In the case of term frequency as the score function, we do the following: First, we
construct a GST in O(n) time [Farach 1997]. Next, we construct the LCA data structure
of Bender and Farach-Colton [2000], also in O(n) time, so that the lca of any two nodes
in the GST can be reported in O(1) time. Then, for each document dr, we traverse all
the leaves corresponding to dr in GST and add an entry for dr in each node that is an
lca of successive leaves from document dr; this is done in a total of O(|dr|) time. In
this way, we have identified those nodes in the GST which are in the induced subtree
formed by the leaves marked by dr, and the transitive closure of their lca ’s. After that,
we construct a suffix tree for document dr in O(|dr|) time, then traverse this tree in
postorder. Note that there is a one-to-one correspondence between the nodes in this
suffix tree and the lca ’s found in the GST. Consequently, the pointer values of all en-
tries can be determined while the frequency counts can be calculated by maintaining
subtree sizes along the traversal. In total, the first three tuples of all entries in all
N-structures (i.e., document id r, frequency score s, and pointer t) can be initialized in
O(n) time.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Space-Efficient Frameworks for Top-k String Retrieval A:17

Next, we traverse the GST in preorder, and corresponding to each pointer in the N-
structure encountered, we add an entry to the I-structure of the respective node. Once
the entries in each I-structure are ready, we visit each I-structure and construct an
RMQ data structure over it. This overall takes O(n) time.

Now, it remains to show how to calculate the δf (similarly δl) values. For this, we
traverse each of the I-structures Iw sequentially and get the list of origin nodes (they
appear in preorder). Now, we take successive lca queries between consecutive origin
nodes. The δf value for a particular node v is exactly equal to 1 plus the depth of
the lca of v and its previous node in Iw, which can be computed in O(1) time (see
Lemma 3.5).5 After computing all the δf values in all entries, we traverse all the N-
structures in preorder and construct an RMQ structure over δf values. All of this can
be accomplished in O(n) time.

In the case of term proximity as the score function, we need more time to evaluate
the score function; this is the only change. Precisely, the scores are first calculated over
the suffix tree of each document dr. For this, we do a recursive computation. Say at a
node v, we have two children v1 and v2. Also assume that the following is available at
v1 (and v2): (1) mindist(v1);6 (2) a list L1 of text positions appearing in the subtree of v1
in sorted format (stored as a binary search tree). Then, we first merge the list L1 at v1
and the list L2 at v2 to obtain the list L at v, and also during this merge operation we
find out the closest pair of positions with one coming from the list at v1 and the other
from v2. Now we compare the distance of this pair with mindist(v1) and mindist(v2) and
obtain mindist(v) for v. This merging step can be done in O (|L1| log(|L2|/|L1|)) time (as-
suming that |L1| ≤ |L2|) using the merging algorithm of Brown and Tarjan’s [1979].
This follows from finger-searching for list L1’s elements in the binary search tree for
list L2. The total time is O(|dr| log |dr|) time, which can be shown by induction as fol-
lows. Without loss of generality, assume that the root of the suffix tree for dr has two
children v1 and v2 (if there are more children then we can merge them two at a time).
Let n1 be number of leaves in the subtree of v1 and n2 similarly for v2 with n1 ≤ n2.
Thus, n1 + n2 = |dr|. By induction, we can assume that computing mindist over all
nodes in subtree of v1 (resp. v2) takes O(n1 log n1) time (resp. O(n2 log n2) time). Then,
computing mindist over the whole suffix tree of dr involves merging these two lists and
obtaining the mindist value at the root, taking a total of (ignoring constant factors)
n1 log n1 + n2 log n2 + n1 log(n2/n1) ≤ |dr| log n2 ≤ |dr| log |dr| time; this completes the
argument for the induction. (See a similar analysis in Shah and Farach-Colton [2002].)

As the time to calculate mindist scores over the suffix tree of a document dr is
O(|dr| log |dr|), this implies an O(n log n)-time algorithm for calculating mindist scores
of all the N-structure entries in the GST. In general, the construction algorithm takes
linear time plus a linear number of score function calculations.

4. COMPACT SPACE STRUCTURES
This section is dedicated to our compact index for the case when the relevance metric
is term frequency. First, we describe an alternative linear-space index without δf and
δl fields, and achieve an O(p + log2 log n) term in the query time, which is still better
than the original O(p log log n) term. For this purpose, we introduce a criterion that
categorizes the I-structure entries as near and far. Each far entry will be associated
with some node, and the entries associating with the same node will be maintained
together as a combined I-structure; this in turn reduces the number of boundaries to be
searched to O(p/π+π), where π is a sampling factor. We shall use a predecessor search

5If the lca is the node itself, then we set δf to be∞.
6mindist(v1) denotes the minimum distance between the positions appearing in the subtree of v1. If we stick
to the earlier definition, this is exactly TP(path(v1), dr).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 W. K. Hon et al.

structure (instead of the δ fields) to compute the boundaries. The result is summarized
in the following lemma.

LEMMA 4.1. There exists an index of size O(n) words for the top-k frequent docu-
ment retrieval problem with query time O(p+ log2 log n+ k log log log n+ k log k).

First, we mark all those nodes in GST whose depth(·) is a multiple of π (depth of
root is 0). Thus, any unmarked node is at most π nodes away from its lowest marked
ancestor. Also, the number of marked ancestors of any node w is equal to ddepth(w)/πe.
Next, we categorize the I-structure entries as far and near as follows:

An entry 〈document id r, score s, origin v〉 in an I-structure Iw associated
with a node w in GST is near, if there exists no marked node on the path from
its origin v (inclusive) to w (exclusive); else, the entry is far.

We restructure the entries such that a far entry is maintained in a combined I-
structure (Ic-structure) associated with some marked node, as follows: Let x be the
first marked node on the path from node w to root, and if an entry e = 〈r, s, v〉 in Iw
is far, then we remove e from Iw and maintain e as e′ = 〈r, s, v, η〉 in the combined
I-structure Icx associated with x; the fourth component η < π (which we call as tar-
get depth) is given by depth(w) − depth(x). The I-structure Iw with its far entries re-
moved will be called the residue I-structure Irw of w.

The combined I-structures are maintained as follows: First, we sort the entries,
in ascending order, according to the preorder ranks of the origins. Then, each Icx is
maintained using four separate arrays Doccx, Scocx, Oricx and Depcx such that the jth
entry of Icx is denoted by Icx[j], and has the value 〈Doccx[j],Scocx[j],Oricx[j],Depcx[j]〉. We
maintain a predecessor search structure [Willard 1983] over the Oricx array, and an
RMQ structure (Lemma 2.5) over the Scocx array. We also maintain the structure de-
scribed in Lemma 2.6 over the Depcx array. Similarly, each residue I-structure Irw is
stored as three separate arrays Docrw, Scorw and Orirw such that the jth entry of Irw is
denoted by Irw[j], and has the value 〈Docrw[j],Scorw[j],Orirw[j]〉. As before, we maintain
a predecessor search structure [Willard 1983] over the Orirw array, and an RMQ struc-
ture (Lemma 2.5) over the Scorw array. The total number of entries in the combined
I-structures and the residue I-structures is exactly same as the number of I-structure
entries, which is at most 2n (Lemma 3.3). Therefore, the overall space can be bounded
by O(n) words.

4.1. Answering Queries
Recall the notation from previous sections, where vP represents the locus node of P
and v′P represents the rightmost leaf in the subtree of vP . Let u1, u2, . . . , udepth(vP) de-
note the (proper) ancestors, and u∗1, u

∗
2, . . . , u

∗
ddepth(vP)/πe denote the marked (proper)

ancestors of vP , respectively, in the order in which they appear on the path from vP to
root.7 Note that both udepth(vP) and u∗ddepth(vP)/πe denote the root node.

Let λ be an integer such that uλ is the child of u∗1 on the path from u∗1 to vP (if the
parent of vP is marked, then we say λ = 0). Therefore, uλ+1 and u∗1 denote the same
node. Now, we show that instead of looking for answers from all those depth(vP) I-
structures Iu1

, Iu2
, . . . , Iroot, it is sufficient to search for answers within a fewer number

of carefully chosen Ir-structures and Ic-structures, as shown in Figure 4.

7Assume that P is not an empty string.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Space-Efficient Frameworks for Top-k String Retrieval A:19

Ir-‐structures

Ic-‐structures

a
c

b

e d

Entry b will not qualify as
a candidate due to depth

(far entries)

(near entries)
f

 ..a..b..

Fig. 4. Querying on Ic and Ir structures

LEMMA 4.2. Let [Li, Ri], [L
r
i, R

r
i] and [Lc

i , R
c
i] be the maximal contiguous ranges in

Iui , I
r
ui

and Icu∗i , respectively, such that all those entries in Iui [Li, Ri], Irui
[Lr
i, R

r
i], and

Icu∗i [Lc
i , R

c
i] for i ≥ 1 originate from the subtree of vP . Then,

(1) entries in
λ+1⋃
i=1

Irui
[Lr
i, R

r
i] are the same as the near entries in

depth(vP)⋃
i=1

Iui [Li, Ri].

(2) entries in Icu∗1 [Lc
1, R

c
1] with Depcu∗1 [·] < depth(vP) − depth(u∗1) correspond to the far

entries in
λ⋃
i=1

Iui
[Li, Ri].

(3) entries in
ddepth(vP)/πe⋃

i=2

Icu∗i [Lc
i , R

c
i] correspond to the far entries in

depth(vP)⋃
i=λ+1

Iui [Li, Ri].

PROOF. Any entry in Iui
originating in the subtree of vP is a far entry if i > λ + 1,

because uλ+1 is the first marked node from vP to the root. Thus, all the near entries in
all the I-structures Iui

that originate in the subtree of v must be exactly those entries
in Iru1

, Iru2
, . . . , Irλ+1. This gives the result in (1).

For each far entry e in
⋃λ
i=1 Iui [Li, Ri], there will be a corresponding entry e′ in

Icu∗1 [Lc
1, R

c
1]. However, the converse is not true; Icu∗1 [Lc

1, R
c
1] may contain some entry b′

whose corresponding far entry is not within
⋃λ
i=1 Iui [Li, Ri]. This happens if and only

if the target node of b is not an ancestor of vP (See Figure 4 for an example). We can
remove such entries with the constraint Depcu∗1 [·] < depth(vP)− depth(u∗1); this gives the
result in (2).

Finally, for entries in
⋃ddepth(vP)/πe
i=2 Icu∗i [Lc

i , R
c
i], each of their target nodes must be an

ancestor of vP ; thus, they are exactly the far entries in
⋃depth(vP)
i=λ+1 Iui

[Li, Ri]. This gives
the result in (3). ut

Based on the above lemma, after the initial pattern search in O(p) time, we can
compute k candidate entries from each category, and then compute the actual top k
answers by comparing the scores of these 3k entries. In category (i), we have λ + 1 ≤
π = log log n boundaries to be searched, which takes O(π log log n) time, and then we re-
trieve the k candidate answers in unsorted order in O(π+k) time using RMQ structure
(Lemma 2.5) over the Scor{·}-arrays. In category (iii) we search for at most ddepth(vP)/πe
boundaries, which takes O((p/π + 1) log log n)) time, and then we retrieve the k candi-

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 W. K. Hon et al.

date answers, unsorted, in O(p/π + k) time with the RMQ structure (Lemma 2.5) over
the Scoc{·}-arrays. For category (ii), we use the structure described in Lemma 2.6 over
the array Depcu∗1 . The time to get the candidates is O((log π + k)(log π + tscore)) (Note
that tscore = O(1)). Finally, it takes O(k log k) time to sort these O(k) candidate docu-
ments and report those k highest-scoring ones as the final output. Putting everything
together and setting π = log log n, we obtain Lemma 4.1.

4.2. Achieving Compact Space
This section shows how to encode our alternative linear-space index in compact space.
The major contribution is that, instead of using O(log n) bits for an entry, we design
some novel encodings so that each entry requires only logD + log π + O(1) bits. The
GST will be replaced by a CSA (we use the one by Belazzougui and Navarro, refer to
Section 2.3) along with the tree encoding of GST in 4n+ o(n) bits (refer to Section 2.5).
Thus, the locus node vP can be obtained by first computing the suffix range [sp, ep] of P
in O(p) time using CSA and then by taking the lca of leaves `sp and `ep in GST using
the tree encoding structure in O(1) time (refer to Section 2.5). A core component of our
index is the document array E (refer to Section 2.4), which can be used for efficient
encoding and decoding of entries in Ic- and Ir-structures. We remark that the original
I-structures are not stored anymore.

4.2.1. Document ID Encoding. Each document id can be encoded in logD bits. First we
obtain an array Docr = Docr1Doc

r
2Doc

r
3 · · · by concatenating Docr{·}-arrays in ascending

order of the preorder rank of the node to which it is associated. Let mi represent the
number of elements in Docri. We maintain a bit vector Br = 10m110m210m3 · · · , with
a constant-time rank/select structure over it [Raman et al. 2007]. Note that Docr can
be represented in nnear logD bits and Br in 2n + nnear + o(n) bits, where nnear (resp.,
nfar) represents the number of I-structure entries that are near (resp., far). Now given
any i and j, the position of Docri[j] within Docr can be located in O(1) time as follows:
Find the ith occurrence of 1 in Br, count the number of 0s till that position, and add j.
After that the desired Docri[j] value can be reported in O(1) time. In a similar way,
the arrays Docc{·} can also be encoded and maintained in nfar logD + O(n) bits. The
overall space can be bounded by (nnear + nfar) logD +O(n) ≤ 2n logD +O(n) bits. That
is, 2 logD +O(1) bits per entry.

4.2.2. Term Frequency Encoding. Given an entry (in an Ir- or an Ic-structure) with origin
v and document id r, the corresponding score freq(v, r) is exactly the number of occur-
rences of r in E[i..j], where `i and `j are the leftmost leaf and the rightmost leaf of v,
respectively. Thus, given the values v and r, we can find i and j in constant time based
on the tree encoding of GST, and then compute freq(v, r) in O(log logD) time based on
two rank queries on E. Therefore, we can safely discard the score field completely for
all Ic- and Ir-structures, but instead keep the RMQ structures over them; this requires
only 2 + o(1) bits per entry [Fischer and Heun 2011].

4.2.3. Origin Encoding. Encoding the origin arrays (Orir{·} and Oric{·}) is the trickiest part
and is based on the following lemma.

LEMMA 4.3. For any given document dr and any child node wq of w (where wq
denotes the qth leftmost child of w) , there cannot be more than one entry in Iw with
document id r and origin from the subtree of wq.

PROOF. This can be proved via contradiction. Assume that there are two or more
such entries. Then the lca of their origins must be a node in the subtree of wq, and
hence these entries will be associated with an I-structure of some node in the subtree
of wq instead of w. ut

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Space-Efficient Frameworks for Top-k String Retrieval A:21

From the definition of N-structures, if there exists an entry in Iw with document
id r and origin a node in the subtree of wq for some q ∈ [1, degree(w)], then this origin
node is the lca of the leftmost leaf and the rightmost leaf with document id r in the
subtree of wq. To compute this origin node, we can use the document array E and the
tree encoding of GST as follows: First find the leftmost leaf `a and the rightmost leaf `b
in the subtree of wq in O(1) time (using lmost leaf (wq)/rmost leaf (wq) operations on
the tree encoding of GST, refer to Section 2.5), then find the first and last occurrences
of r, say E[a′] and E[b′], among the entries in E[a..b] in O(log logD) time, and finally
compute the lca of `a′ and `b′ . In light of these findings, we show how to efficiently
encode Orir{·}-arrays and Oric{·}-arrays.

Encoding Orir{·}-arrays. Instead of maintaining Orirw-array, we maintain another ar-
ray Ori childrw, such that Ori childrw[j] = q if node Orirw[j] is from the subtree of wq.
As the elements in Orir{·} are monotonically increasing, the elements in Ori childr{·}
are also monotonically increasing. In addition, the value of each entry is between
1 and degree(w). Therefore, we shall encode Ori childrw in (|Irw|+ degree(w))(1 + o(1))
bits (refer to Section 2.8), so that we can decode Ori childrw[j] for any given j in con-
stant time. Then, from Ori childrw[j], we can decode Orirw[j] in O(log logD) time as
described earlier. The total space for encoding all Orir{·}-arrays can be bounded by
O(
∑
w∈GST(|Irw|+ degree(w))) = O(n) bits.

Encoding Oric{·}-arrays. First we introduce the following notions. Let w∗ be a marked
node in GST, then another node w∗q is called its qth marked child, if w∗q is the qth small-
est (in terms of preorder rank) marked node with w∗ as its lowest marked ancestor.
Given the preorder rank of w∗, the preorder rank of w∗q can be computed in constant
time by maintaining an additional O(n)-bit structure as follows: Let GST∗ be the tree
induced by the marked nodes in GST, so that w∗ is the lowest marked ancestor of w∗q
in GST if and only if the node corresponding to w∗ in GST∗ (say, w) is the parent of the
node corresponding to w∗q (say wq) in GST∗. Moreover, w∗q is said to be the qth marked
child of w∗ in GST, if wq is the qth child of w in GST∗. Given the preorder rank of any
marked node in GST, its preorder rank in GST∗ (and vice versa) can be computed in
constant time by maintaining an additional bit vector of size 2n+ o(n) that maintains
the information if a node is marked or not. We remark that this works only because
the encoding is in preorder.

In the case of entries in a combined I-structure, Lemma 4.3 may not hold. However,
the following holds: there cannot be two entries (that are far) in Icw∗ with the same
document id and both their origins coming from the subtree of the same marked child
w∗q of w∗. Therefore, instead of array Oricw∗ , we shall maintain another array Ori childcw∗ ,
such that Ori childcw∗ [j] = q if node Oricw∗ [j] is from the subtree of w∗q . Using a similar
scheme as before, all Oric{·}-arrays can be encoded in O(n) bits, and each entry can be
decoded in O(log logD) time using document array E and the tree encoding of GST.

4.2.4. Compressing Predecessor Search Structures. The predecessor search structure over
Orir{·}-arrays and Oric{·}-arrays, which requires O(log n) bits per element, can be re-
placed by a sampled predecessor search structure as follows: If the length of an array
is at most log2 n, we do not maintain any structure over such an array as we can
answer a query by binary search in O(log log n) time. Otherwise, we construct a new
array by sampling every (log2 n)th element in Orir{·}, and maintain predecessor search
structure over it. When answering a query, we can first search this sampled structure
for an approximate answer, and then obtain the exact answer by a binary search on
a smaller range of only log2 n elements in the original array. The search time still re-

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 W. K. Hon et al.

mains O(log log n). The overall space for these sampled structures can be bounded by
o(n) bits.

4.2.5. Depc-arrays Encoding. We use the result in Lemma 2.6, and the total space re-
quired can be bounded by O(n log π) bits. Note that tscore = O(log logD) as score values
are no more stored explicitly.

4.2.6. Overall Performance. Finally, the RMQ structures are maintained as before, re-
quiring O(n) bits overall. Putting all together, the total space can be bounded by
n(log σ+3n logD)(1+o(1))+O(n log π) bits. The query answering algorithm remains the
same as that in our linear index in Lemma 4.1, except that decoding origin and term
frequency score takes O(log logD) time. The initial time for pattern search and finding
the locus node vP is O(p). The time for predecessor search queries can be bounded by
O((p/π+π) log log n log logD). Note that this log logD factor comes from the time for de-
coding origin values. Then, the time to obtain the top k answers from Category (i) and
Category (iii) in Lemma 4.2 will be O((p/π + π + k) log logD) and that from Category
(ii) will be O((log π + k)(log π + log logD)); finally it takes O(k log k) time for choosing
the desired k answers from the above 3k answers. By setting π = log2 log n, we obtain
the following lemma.

LEMMA 4.4. There exists an index of size n(log σ + 3 logD)(1 + o(1)) +O(n log log log n)
bits for the top-k frequent document retrieval problem with query time
O(p+ log4 log n+ k log log n+ k log k). ut

The index space can be improved further. We first show how to remove the
O(n log log log n) term. Note that when D + σ > log1/3 n, the O(n log log log n) term can
be absorbed in the o(n logD+ n log σ) term. Otherwise, we can construct a very simple
index that consists of the following components: CSA, document array E, and a table
that maintains the top k documents for all distinct patterns of length at most

√
log n.

Such a table can be maintained in O(
∑√logn
i=1 σiD logD) = o(n) bits and can report the

top k documents in optimal O(p + k) time when p <
√

log n. If p ≥
√

log n, we shall
simply compute the term frequency of all documents using E in O(D log logD) time,
and then report the top k highest-scoring ones in an extra O(D logD) time. As D is
bounded by O(log1/3 n), the total time can be bounded by O(p). Therefore, the index
space can be bounded by n(log σ + 3 logD)(1 + o(1)) bits.

The space can be further reduced by n logD bits from the following observation: The
term frequency is 1 for any entry whose origin is a leaf in GST, and there are n such
entries (in Ic and Ir structures combined). We shall delete all such entries, only that
a problem will arise when we query a pattern P for the top k answers, and k′ < k
documents are reported. In this case, since only documents with term frequency of at
least 2 are reported, we need check if there are documents with term frequency 1 to
make up the top k answers.

To get documents with term frequency 1, we shall apply Muthukrishnan’s chain
array idea [Muthukrishnan 2002]. The chain array C[1..n] is defined with C[i] = j,
where j < i is the largest number with E[i] = E[j]. As the chain array can be simu-
lated using E as j = selectE(E[i], rankE(E[i], i) − 1) in O(log logD) time, it will not be
maintained explicitly. In addition, we will maintain an RMQ structure over C, taking
2n + o(n) = o(n logD) bits. Let [sp, ep] be the suffix range of P in the CSA. Then, we
can obtain all those documents dE[i] such that sp ≤ i ≤ ep and C[i] < sp using repeated
RMQs; these documents are exactly those that contain P and are distinct [Muthukr-
ishnan 2002]. To address our current problem, once we have obtained a document dE[i]
from the above procedure, we check if its term frequency is 1 in O(log logD) time. Note

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Space-Efficient Frameworks for Top-k String Retrieval A:23

that we only need to obtain and check up to k documents for our purpose, in which case,
there will be k − k′ documents with term frequency 1 to make up the top k answers.8
The overall time complexity is increased by O(k log logD), and is thus unchanged.

THEOREM 4.5. A given collection D of D documents with n characters in total taken
from an alphabet set Σ = [σ] can be indexed in n(log σ + 2 logD)(1 + o(1)) bits of space,
such that whenever a pattern P (of p characters) and an integer k come as a query, the
index returns those k documents with the highest TF(P, ·) values in decreasing order of
TF(P, ·) in O(p+ log4 log n+ k log log n+ k log k) time, where TF(P, dr) of a document dr
counts the number of times P occurs in dr.

The index space can be further improved as summarized in the following theorem.

THEOREM 4.6. A given collection D of D documents with n characters in total taken
from an alphabet set Σ = [σ] can be indexed in n(log σ+logD)(1+o(1)) bits of space, such
that whenever a pattern P (of p characters) and an integer k come as a query, the index
returns those k documents with the highest TF(P, ·) values in decreasing order of TF(P, ·)
in O(p+ log5 log n+ k((log σ log log n)1+ε + log2 log n+ log k)) time, where TF(P, dr) of a
document dr counts the number of times P occurs in dr, and ε > 0 is any constant.

PROOF. If logD ≤ (log σ log log n)1+ε, we shall use an alternative index as de-
scribed in Lemma 5.5 in Section 5.1 (with constants adjusted properly) to
achieve the result. Otherwise, logD > (log σ log log n)1+ε. Then, instead of us-
ing n logD(1 + o(1)) bits to represent E, we choose the representation described
in Corollary 2.3, whose space is O(n log σ log log n) = o(n logD) bits. The re-
sulting query time is O(p+ (p/π + π) log log n× log2 log n+ k log2 log n+ k log k), as
the time for rankE operation is now O(log2 log n). By choosing π = log3 log n,
we achieve an index of total size n logD(1 + o(1)) bits with query time
O(p+ log5 log n+ k((log σ log log n)1+ε + log2 log n+ log k)). The theorem thus follows. ut

5. SUCCINCT SPACE STRUCTURES
In this section, we describe succinct indexes for the top-k frequent document retrieval
problem. We start with the following notation:

— Leaf (x) denotes the set of leaves in the subtree of node x in GST.
— Leaf (x\y) denotes the leaves in the subtree of x, but not in that of y. That is,

Leaf (x\y) = Leaf (x) \ Leaf (y).

Let g be a parameter called the grouping factor. Using the following scheme, we
identify a subset Sg of nodes, called marked nodes, in GST: First, we traverse the leaves
of GST from left to right to form groups of g contiguous leaves. That is, the first group
consists of leaves `1, `2, . . . , `g, the next group consists of `g+1, . . . , `2g, and so on. In
total, there will be dn/ge groups. Next, for each group, we mark the lca in GST of its
first and last leaves; the total number of marked nodes will be at most dn/ge. After
that, we do further marking, such that if nodes u and v are marked, then lca(u, v) will
be marked. Finally, we mark the leftmost and the rightmost leaves within the subtree
rooted at each marked node.

LEMMA 5.1. The above marking scheme ensures the following properties:

(1) The number of marked nodes, |Sg|, is bounded by O(n/g).
(2) If there is no marked node in the subtree of x, then |Leaf (x)| < 2g.

8In the boundary case where P occurs in fewer than k documents, we shall report all the documents obtained
from querying the chain array.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 W. K. Hon et al.

(3) The highest marked descendant node y of any unmarked node x, if it exists, is
unique, and |Leaf (x\y)| < 2g.

PROOF. The number of groups at the end of first step is dn/ge, and at most one
internal node corresponding to each group is marked. Thus, at the end of the first step,
there are at most dn/ge marked nodes. Next, we mark the lca of these marked nodes;
the total number of marked nodes will at most be doubled (as the marked nodes now
form an induced subtree, with marked nodes at the end of first step as leaves), so that
it is bounded by O(n/g). Finally, we mark the leftmost and the rightmost leaf nodes
of every marked node. Thus, the the total number of marked nodes will at most be
tripled, so that it is bounded by O(n/g). This gives the result in (1).

Whenever |Leaf (x)| ≥ 2g, there will be at least one group completely contained in
the subtree of x. The lca of the first and the last leaves in such a group is within the
subtree of x, and is marked. Thus, by contraposition, the result in (2) follows.

The last statement in the lemma can be proved as follows: Let `L and `R be the
leftmost and the rightmost leaves in the subtree of x. Then, according to our marking
scheme, y is the lca of leaves `L′ and `R′ , where L′ = gdL/ge + 1 and R′ = gdR/ge.
Let `L∗ and `R∗ be the leftmost and the rightmost leaves respectively, that are in the
subtree of y. Then clearly L ≤ L∗ ≤ L′ < L + g and R ≥ R∗ ≥ R′ > R − g. Therefore,
|Leaf (x\y)| = (L∗ − L) + (R−R∗) < 2g. ut

Let top(x, k) represent the list (or set) of top-k documents corresponding to a pattern
with node x as the locus. Maintaining top(x, k) explicitly for all possible x values and
k values is not possible in compressed space. Instead, we maintain top(x, k) only for
marked nodes x (with respect to various carefully chosen g values) and for values
of k that are powers of 2, such that top(x, k) for the general x and k can be efficiently
computed on the fly. We next prove the following lemma.

LEMMA 5.2. By maintaining an index called GSTg of size O((n/g) log g) +

O(n/ log2 n) bits, the following query can be answered in O(1) time: Given a suffix range
[sp, ep] of a pattern P as an input, find the node v∗P and the range [sp∗, ep∗], where (i)
v∗P denotes the highest-marked descendent of the locus node vP of P , and (ii) `sp∗ and
`ep∗ denote, respectively, the leftmost leaf and the rightmost leaf in the subtree of v∗P .

PROOF. The index GSTg, requiring O((n/g) log g) +O(n/ log2 n) bits of space, con-
sists of the following components:

(1) A compact trie obtained by retaining only those nodes in GST that are marked.
Then, corresponding to every marked node in GST, there will be a unique node in
this trie and vice versa. As the number of marked nodes is O(n/g), the topology of
this trie can be maintained in O(n/g) bits of space (refer to Section 2.5).

(2) A bit-vector Bno[1..2n], where Bno[i] = 1 if the ith node in GST is marked, else 0. This
can be maintained in |Sg| log(n/|Sg|) + O(|Sg|) + O(n/ logO(1) n) = O((n/g) log g) +

O(n/ log2 n) bits of space [Patrascu 2008],9 so that the operations selectBno(j) (the
position of the jth 1 in Bno) and rankBno(i) (the number of 1s in Bno[1..i]) can be
supported in O(1) time.

(3) A bit-vector Ble[1..n], where Ble[i] = 1 if the ith leftmost leaf in GST is marked,
else 0. As in the case of Bno, Ble will be maintained in O((n/g) log g) + O(n/ log2 n)
bits, so that it can support selectBle

(·) and rankBle
(·) operations in O(1) time.

9In the word-RAM model, we can represent a bit vector of length n with m 1s in log2

(n
m

)
+ O(n/ logt n) +

O(n3/4 logO(1) n) bits of space, so that each rank/select query can be supported in O(t) time, where t is
any positive integer constant (refer to Theorem 2 in [Patrascu 2008]). Moreover, log

(n
m

)
≤ m log(ne/m) ≈

m log(n/m) + 1.44m [Pagh 2001].

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Space-Efficient Frameworks for Top-k String Retrieval A:25

Given an input suffix range [sp, ep], the sp∗th leaf is the first marked leaf towards
the right side of `sp (inclusive), and the `∗epth leaf is the last marked leaf towards the
left side of `ep (inclusive), in GST. These two leaves will correspond to the sp′th and the
ep′th leaves in the compact trie, where

sp′ = 1 + rankBle
(sp− 1) and ep′ = rankBle

(ep);

the desired values of sp∗ and ep∗ can thus be computed, in O(1) time, by sp∗ =
selectBle

(sp′) and ep∗ = selectBle
(ep′).

We now show how to find v∗P , which is the lca of `sp∗ and `ep∗ in GST. As GST is not
stored explicitly, we shall find v∗P in an indirect way. First, we identify the leaf nodes
corresponding to `sp∗ and `ep∗ in the compact trie, which is its sp′th and ep′th leaves.
Next, we find their lca (say, with preorder rank x) in the compact trie; such a node will
correspond to v∗P in GST. It follows that v∗P is the xth marked node in GST, so that we
can finally find (the preorder rank of) v∗P in GST by selectBno(x). The procedure again
takes O(1) time in total, as it involves only a constant number of rank/select operations
and an lca operation. ut

5.1. The Compressed Index
Our compressed index will make use of both CSA of the concatenated text T of all the
documents, and a compressed suffix array CSAr of each individual document dr. We
prove the following in this section.

THEOREM 5.3. A given collection D of D documents with n characters in total taken
from an alphabet set Σ = [σ] can be indexed in 2|CSA∗| + D log n

D + O(D) + o(n) bits of
space, such that whenever a pattern P (of p characters) and an integer k come as a query,
the index returns those k documents with the highest TF(P, ·) values in decreasing order
of TF(P, ·) in O(ts(p)+k× tsa log2+ε n) time; here, |CSA∗| denotes the maximum space (in
bits) to store either a compressed suffix array (CSA) of the concatenated text with all the
given documents in D, or all the CSAs of individual documents, tsa is the time decoding
a suffix array value, ts(p) is the time for computing the suffix range of P using CSA, and
ε > is any constant.

A set Scand ⊆ D is called a candidate set of a query if it is a multiset that contains
all those documents in the answers to the query. Therefore, once the candidate set
is given, the top-k query can be answered by first finding the TF(P, dr) score of each
document dr ∈ Scand, and then reporting the k highest-scoring ones.

LEMMA 5.4. Once the candidate set Scand is identified, a top-k query can be an-
swered in O(|Scand| × tsa log log n+ k log k) time using CSA and the structure described
in Lemma 2.2.

PROOF. First, we remove duplicates in Scand if there are any. This can be easily done
in O(|Scand|) time by maintaining an extra bit vector Bcand[1..D], where all its bits are
initialized to 0. Note that this additional structure will not change the space bound in
Theorem 5.3. Then, we scan all documents in Scand one by one and do the following: If
a document dr ∈ Scand, then we check if Bcand[r] is 0. If so, we set Bcand[r] = 1; otherwise,
we delete such an occurrence of dr (which is a duplicate) from Scand. After scanning all
the documents in Scand, we can reset all bits in Bcand back to 0 by rescanning Scand once.

Next, we compute the TF(P, dr) score for all those documents dr ∈ Scand in
O(tsa log log n) time per document (refer to Lemma 2.4). To retrieve the top-k answers
from this, we first find the score X of the kth highest-scoring document using the lin-
ear time selection algorithm [Blum et al. 1973]. Then, we get those documents whose
scores are at least X; note that there may be more than k of them, because of ties.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 W. K. Hon et al.

To get the desired answer, we shall remove the excess (whose scores are equal to X).
Finally, we spend another O(k log k) time to obtain the answers in sorted order of their
scores. ut

The query time in the above lemma is dependent on the size |Scand| of the candidate
list. To speed up the whole process (so as to achieve the claimed result in Theorem 5.3),
our objective is to find a candidate set whose size is as small as possible.

5.1.1. Index for Top-k Queries for a Fixed k. First, we define an index for answering top-k
frequent queries, where k is fixed in advance. The index consists of (i) a compressed
suffix array CSA of T; (ii) the document array E (represented in |CSA∗| + D log n

D +
O(D) + o(n) bits, refer to Lemma 2.2); (iii) an auxiliary structure that includes (a) the
GSTg index (refer to Lemma 5.1) with a grouping factor g = k log2+ε n, and (b) for each
marked node x ∈ Sg in GST, we store top(x, k) explicitly in k logD bits. The total space
of the auxiliary structures is O((n/g)k logD) +O(n/ log2 n) = o(n/ log n) bits.

Query Answering. First, we find the suffix range [sp, ep] of P in ts(p) time using CSA.
Let vP be the locus node of P . Then, we find v∗P and [sp∗, ep∗] in O(1) time, where vP ∗
is the highest marked descendent of vP (if it exists), and [sp∗, ep∗] is the suffix range
corresponding to v∗P in GST (refer to Lemma 5.2). Then,

top(v∗P , k) ∪
{
dE[j] | j ∈ [sp, sp∗ − 1] ∪ [ep∗ + 1, ep]

}
will be a candidate set.10 The number of documents in top(v∗P , k) is at most k,
and the number of remaining documents in the candidate set is at most 2g (refer
to Lemma 5.1). To construct the candidate set, we first retrieve all documents in
top(v∗P , k) in O(k) time, as these documents are precomputed and explicitly stored
at v∗P ; then, since each E[·] value can be decoded in O(tsa) time (refer to Lemma 2.2),
we retrieve all the remaining documents in O(g × tsa) time. In summary, we ob-
tain a candidate set of O(g + k) documents in O(g × tsa + k) time. Combining
with Lemma 5.4, the top-k documents can be answered in another O((g + k) ×
tsa log log n) time. By substituting g = k log2+ε n the resulting query time will be
O(ts(p) + k × tsa log2+ε n log log n) = O(ts(p) + k × tsa log2+ε n) (the log log n term is ab-
sorbed in the logε n term).

5.1.2. Index for Top-k Queries for General k. To support top-k queries for general k, we
maintain CSA, E, and (at most) logD auxiliary structures of Section 5.1.1 for any
fixed k that is a power of 2 (i.e., k = 1, 2, 4, 8, . . . , D). Since an auxiliary structure for
a specific k requires o(n/ log n) bits, the overall increase in total space is bounded by
o(n) bits. Now, a top-k query for a general k can be answered by choosing z = 2dlog2 ke

and retrieving the top-z documents by querying on the auxiliary structure specific
to z. Then, we select the k highest-scoring documents (using [Blum et al. 1973]) and
report them in decreasing order of score. Since k = Θ(z), the resulting query time will
be O(ts(p) + k × tsa log2+ε n). This completes the proof of Theorem 5.3.

As a corollary, we can obtain a simple compact index by rederiving Theorem 5.3 with
g = z log1+εD, and maintaining E explicitly as in Lemma 2.1. The resulting query time
will be O(ts(p) + k log1+εD log logD + k log k) = O(ts(p) + k log1+εD) (the log logD term
is absorbed in the logεD term).

10In the boundary case where v∗P does not exist, the candidate set is simply {dE[j] | j ∈ [sp, ep]}, whose size
is at most 2g (refer to Lemma 5.1).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Space-Efficient Frameworks for Top-k String Retrieval A:27

LEMMA 5.5. There exists an index of size |CSA|+ n logD(1 + o(1)) bits for the top-k
frequent document retrieval problem with O(ts(p) + k log1+εD) query time, where ε > is
any constant.

5.2. Faster Compressed Index
This section describes how to improve the index to speed up the query. The idea is
to choose a smaller grouping factor, thereby reducing the size of the candidate set.
However, this will result in more marked nodes, so that explicit storage of precomputed
answers (with logD bits per entry) at these marked nodes will lead to a non-succinct
solution. Our key contribution is to show how these precomputed lists can be encoded
in O(log log n) bits per entry. Our main result is summarized as follows.

THEOREM 5.6. A given collection D of D documents with n characters in total taken
from an alphabet set Σ = [σ] can be indexed in 2|CSA∗| + D log n

D + O(D) + o(n) bits of
space, such that whenever a pattern P (of p characters) and an integer k come as a query,
the index returns those k documents with the highest TF(P, ·) values in decreasing order
of TF(P, ·) in O(ts(p) + k× tsa log k logε n) time; here, |CSA∗| denotes the maximum space
(in bits) to store either a compressed suffix array (CSA) of the concatenated text with
all the given documents in D, or all the CSAs of individual documents, tsa is the time
decoding a suffix array value, ts(p) is the time for computing the suffix range of P using
CSA, and ε > is any constant.

5.2.1. Index for Top-k Queries for a Fixed k. Similar to the index in Section 5.1.1, we define
an index for answering top-k frequent queries, where k is fixed in advance. The index
consists of (i) a compressed suffix array CSA; (ii) the document array E (represented
in |CSA∗|+D log n

D +O(D) + o(n) bits, refer to Lemma 2.2) (iii) an auxiliary structure
with respect to two grouping factors g and h, which is defined as follows. First, we
mark the nodes in GST based on two grouping factors g and h, where g = k log2+ε n
and h = k log k logε n. Then, we maintain the corresponding GSTg and GSTh in a total
of O((n/g) log g + (n/h) log h) = o(n/k) bits (refer to Lemma 5.2).

In order to distinguish the marked nodes based of these two different grouping fac-
tors, we shall use the following terminology: If a node is marked as per the grouping
factor g, we shall simply call it a marked node. Otherwise, if a node is marked as per
the grouping factor h only, we shall call it as a prime node.

Query Answering. Let vP be the locus node of the input pattern P in GST with v′P
and v∗P , respectively, being its highest prime descendant and highest marked descen-
dant (if they exist). Let [sp, ep], [sp′, ep′], and [ep∗, ep∗], respectively, be the ranges of
leaves within the subtree of vP , v∗P and v′P . (See Figure 5 for an illustration.) Note that
the following inequalities hold (refer to Lemma 5.1):

(1) sp ≤ sp′ ≤ sp∗ ≤ ep∗ ≤ ep′ ≤ ep;
(2) sp′ − sp < h and ep− ep′ < h;
(3) sp∗ − sp′ < g and ep′ − ep∗ < g.

Then,

top(v′P , k) ∪
{
dE[j] | j ∈ [sp, sp′ − 1] ∪ [ep′ + 1, ep]

}
will be a candidate set, where we shall denote it by Shcand. The number of documents in
top(v′P , k) is at most k, and the number of the remaining documents in the candidate
set is at most 2h.

Once Shcand is given, it takes only an extra O((h + k) × tsa log log n) = O(k ×
tsa log k logε n) time for answering a top-k query (using Lemma 5.4). Note that the doc-
uments dE[j] for j ∈ [sp, sp′−1]∪[ep′+1, ep] can be computed on the fly in O(h×tsa) time,

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 W. K. Hon et al.

vP

prime node with grouping
factor h = k log k log n

marked node with grouping
factor g = k log2+ n

vP' O(log log n) bits per entry
Top-‐k list, using

 O(log n) bits per entry
Top-‐k list, using

vP*

candidates candidates

Fig. 5. Query answering with prime nodes and marked nodes

which will not affect the overall time complexity. It remains to show how to obtain the
list top(v′P , k) efficiently. By the following lemma, the total query time can be bounded
by O(ts(p) + k × tsa log k logε n).

LEMMA 5.7. We can encode top(·, k) corresponding to every prime node in a total of
O(n/(log k logε n)) + o(n/ log n) bits of space, such that top(w′, k) of any prime node w′
can be decoded in O(k × tsa log log n) time.

PROOF. We shall give an encoding of top(w′, k) for each prime node w′ that allows us
to obtain a candidate set corresponding to w′ as the locus. Then, by using Lemma 5.4,
we can compute the desired top(w′, k) based on the candidate set.

Let w∗ be the highest marked descendent of w′ (if it exists). Let [L′, R′] and [L∗, R∗],
respectively, denote the range of leaves in the subtree of w′ and w∗. A candidate set
corresponding to w′ as the locus (i.e., a superset of top(w′, k)) is given by

top(w∗, k) ∪
{
dE[j] | j ∈ [L′, L∗ − 1] ∪ [R∗ + 1, R′]

}
.

The set top(w∗, k) can be obtained inO(k) time by maintaining top(·, k) for each marked
node explicitly, which requires a total of O((n/g)k logD) = o(n/ log n) bits. For the
set {dE[j] | j ∈ [L′, L∗ − 1] ∪ [R∗ + 1, R′] } of the remaining documents, we select only
the subset of its top k documents; then we see that this subset, when combined with
top(w∗, k), still forms a candidate set corresponding to w′ as the locus. In other words,
even though we have O(g) documents in this category, only at most k of them can be
among top(w′, k). Now, suppose that these k documents can be encoded in O(k log log n)
bits, while supporting decoding in O(k × tsa) time. Thus, the total space for all the en-
codings in all the prime nodes is O(n/(log k logε n)) bits, and we can obtain the desired
candidate set in a total of O(k × tsa) time. Consequently, top(w′, k) can be computed in
O(k × tsa log log n) time using Lemma 5.4.

It remains to show how to encode the selected top k documents with the claimed
performance. For each such document dj , it can be associated with an integer i ∈
[L′, L∗ − 1] ∪ [R∗ + 1, R′] such that E[i] = j. If we replace each such i by its relative
position in [L′, L∗ − 1] ∪ [R∗ + 1, R′], this problem can be rephrased as the encoding of
k distinct integers drawn from [1, 2g]. An encoding with O(k log log n) bits of space and
O(k) decoding time can be achieved, by maintaining a bit vector Bw′,k with constant-

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Space-Efficient Frameworks for Top-k String Retrieval A:29

time select operations supported [Raman et al. 2007]; here, Bw′,k[1..2g] is defined such
that Bw′,k[i] = 1 if and only if i is an integer to be stored. Therefore Bw′,k can be
maintained in k log(2g/k) + O(k) = O(k log log n) bits of space, and the stored integers
can be decoded by selectBw′,k(j) queries for j = 1, 2, 3, . . . , k. Finally, given these integers
(relative positions), the corresponding document can be retrieved in O(tsa) time. This
completes the proof. ut

Putting everything altogether, we have the following lemma.

LEMMA 5.8. The auxiliary structure for a specific k takes O(n/(log k logε n)) +
o(n/ log n) + o(n/k) bits of space. Given the suffix range [sp, ep] of a pattern P , a top-
k frequent document retrieval query can be answered in O(k × tsa log k logε n) time.

5.2.2. Index for Top-k Queries for General k. To support top-k queries for general k,
we maintain CSA, E, and (at most) logD auxiliary structures of Section 5.2.1 for
k = 1, 2, 4, 8, . . . , D, analogous to how we handle the general k case as in Section 5.1.2.
This requires a total of∑

z=1,2,4,...,D

(
O(n/(logε n log z)) + o(n/ log n) + o(n/z)

)
= o(n) bits.

A top-k query can be answered by choosing z = 2dlog2 ke and retrieving the top-z
documents by querying on the auxiliary structure specific to z. Then, we select the k
highest-scoring documents (using [Blum et al. 1973]) and report them in decreasing
order of score. Combining with the fact that k = Θ(z), we obtain Theorem 5.6.

5.3. Extensions
Although we described our result in terms of term frequency as the scoring function, we
can in fact extend it to some other scoring functions that are succinctly calculable. Un-
fortunately, we do not know if TP(·, ·) is succinctly calculable. In contrast, docrank(·, ·) is
not only succinctly calculable, but is trivial to compute. In fact, to support top-k queries
with the docrank metric, we do not even need the document array E using Lemma 2.2,
but only the bit vector BE and an array R of sizeD logD bits such that R[r] gives the rel-
ative docrank of document dr among the others; after the change, we can still compute
docrank of any document dE[i] within the same time bound. This gives the following
theorem.

THEOREM 5.9. A given collection D of D documents with n characters in total taken
from an alphabet set Σ = [σ] can be indexed in |CSA|+ o(n) +D log n

D +O(D) +D logD
bits of space, such that whenever a pattern P (of p characters) and an integer k come
as a query, the index returns those k documents with the highest docrank(·) values in
decreasing order of docrank(·) in O(ts(p) + k × tsa log k logε n) time; here, docrank(dr) of
a document dr is a static importance score associated with dr, ts(p) is the time to search
for a pattern of length p with CSA, tsa is the time to compute a suffix array entry with
CSA, and ε > is any constant.

See [Belazzougui and Navarro 2011] for a similar result, which appeared earlier but
used different techniques.

6. MULTIPATTERN RETRIEVAL
In this section, we consider a generalization of the top-k document retrieval problem.
Instead of a single pattern P , a query now consists of a set P = {P1, P2, . . . , Pm} of m
patterns, and the relevance of a document dr with respect to P depends only on the set
of occurrences of all Pj in dr. For simplicity, we first give an index for the simplest case,

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 W. K. Hon et al.

where P contains only two patterns P1 and P2 (of lengths p1 and p2, respectively). We
choose TF(P1, dr)+TF(P2, dr) as the score function score(P1, P2, dr) with an additional
restriction that in order for a document dr to be qualified as an answer, both P1 and
P2 must occur in dr. Therefore, score(P1, P2, dr) is given by TF(P1, dr)+TF(P2, dr) if both
TF(P1, dr),TF(P2, dr) > 0, and is zero otherwise. We later show how our index can be
modified to handle other score functions.

Our index is built from the succinct framework in Section 5. It consists of a suffix
array SA (of size O(n) words) in addition to GST (uncompressed, whose size is O(n)
words), a document array E, and auxiliary structures for answering for top-z queries
for fixed z = 1, 2, 4, . . . , D. The auxiliary structure for a specific z can be constructed
with g =

√
nz logD as the grouping factor, where we identify the marked nodes in GST.

Note that the marked node information can be maintained in O(n/g) bits (refer to
Lemma 5.2). Let top(u, v, k) denote the list of top-z documents with respect to the score
function score(path(u), path(v), ·). Then, corresponding to all pairs of marked nodes u∗
and v∗ in GST, we maintain the list top(u∗, v∗, z) explicitly. The space for each specific
auxiliary structure is thus bounded by O(n/g) + O((n/g) × (n/g) × z logD) = O(n)
bits, so that the total space for all the O(logD) auxiliary structures is bounded by
O(n logD) = O(n log n) bits, which is O(n) words.

Query Answering. The algorithm to answer a query is analogous to that of our suc-
cinct index in Section 5. First, we find the locus nodes uP1

and uP2
of P1 and P2, re-

spectively, in O(p1 + p2) time using GST. Next, we set z = 2dlog ke (the minimum power
of 2 greater than or equal to the input integer k). Then, using the auxiliary structure
specific to this z (with grouping factor g =

√
nz logD), we find the highest marked de-

scendent of nodes, u∗P1
and u∗P2

, of the locus nodes uP1
and uP2

, respectively. Afterwards,
the set

top(u∗P1
, u∗P2

, z) ∪ {dE[i] | `i ∈ Leaf (uP1
\u∗P1

) ∪ Leaf (uP2
\u∗P2

) }
will be a candidate set Scand that contains the desired top k answers.

Hence, by computing score(P1, P2, dr) of each document dr ∈ Scand, and by choosing
those k highest-scoring documents, we obtain the final output. Given the suffix ranges
of P1 and P2, the score of any particular document can be computed in O(log log n) time
using E (refer to Lemma 2.2 and Lemma 2.4, as TF(P, dr) can be evaluated by rankE,
given the suffix range of P , and tsa = O(1) when SA is stored explicitly). As |Scand| =
O(g + z), the overall query time can be bounded by O(p1 + p2 +

√
nk logD log log n).

THEOREM 6.1. A given collection D of D documents with n characters in total taken
from an alphabet set Σ = [σ] can be indexed in O(n) words of space, such that when-
ever two pattern P1 and P2 (of p1 and p2 characters, respectively) and an integer k come
as a query, the index returns those k documents with the highest score(P1, P2, ·) val-
ues in decreasing order of score(P1, P2, ·) in O(p1 + p2 +

√
nk logD log log n) time; here,

score(P1, P2, dr) = TF(P1, dr) + TF(P2, dr) if both TF(P1, dr) and TF(P2, dr) are greater
than 0, and is zero otherwise.

The above index can readily be adapted to handle the case with other score func-
tions, with tradeoffs between the space for storing a data structure that can compute
score(·, ·, ·) on the fly, and the per-document reporting time. In particular, the space
remains O(n) words for linearly-calculable score functions, where score(·, ·, dr) can be
computed on the fly by maintaining an O(|dr|)-word index. For instance, when docrank
is the score function, the following result can be obtained.

THEOREM 6.2. A given collection D of D documents with n characters in total taken
from an alphabet set Σ = [σ] can be indexed in O(n) words of space, such that whenever
two pattern P1 and P2 (of p1 and p2 characters, respectively) and an integer k come as a

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Space-Efficient Frameworks for Top-k String Retrieval A:31

query, then among all those documents containing both P1 and P2, the index returns k
documents with the highest docrank(·) values in decreasing order of docrank(·) in O(p1+
p2 +

√
nk logD log logD) time; here, docrank(dr) of a document dr is a static importance

score associated with dr.

Remark. The index of Theorem 6.2 can be used to solve the document listing problem
for two patterns, where the task is to report all those documents containing both the
input patterns P1 and P2. To do so, we simply set k = D and then obtain the output of
each query in O(p1+p2+

√
nD logD log logD) time. To reduce the last term in the query

bound, we can issue the top-1 query, then top-2, then top-4, and so on until a top-q query
returns the ndoc answers, where ndoc < q denotes the number of documents in the
desired output. Note that the patterns are searched only once here. Hence, the query
time will be O(p1 + p2 +

√
n logD log logD +

√
2n logD log logD +

√
4n logD log logD +

· · ·+
√
n× ndoc logD log logD) = O(p1 + p2 +

√
(ndoc + 1)× n logD log logD).

THEOREM 6.3. A given collection D of D documents with n characters in total
taken from an alphabet set Σ = [σ] can be indexed in O(n) words of space, such
that whenever two pattern P1 and P2 (of p1 and p2 characters respectively) come as
a query, the index returns all those ndoc documents containing both P1 and P2 in
O(p1 + p2 +

√
(ndoc + 1)× n logD log logD) time. ut

6.1. Handling m > 2 Patterns
All the above results can be extended to handle the case where the query consists of a
set of m > 2 patterns P = {P1, P2, . . . , Pm}, with pi denoting the length of Pi. Precisely,
for a specific 2-power z, we choose a grouping factor g = n1−1/m(z logD)1/m, identify
the marked nodes in GST, and maintain top-z documents corresponding to each com-
bination of (u∗1, u

∗
2, . . . , u

∗
m), where u∗i for any i denotes a marked node in GST. Over

all logD choices of z, the total space can be bounded by O((n/g)mz logD) × logD =
O(n log n) bits, or equivalently by O(n) words. Note that m is fixed at index con-
struction time. Then, whenever a query comes, we can quickly find a candidate set
Scand of O(n1−1/m(k logD)1/m) documents, compute the score of a document (if needed)
in Scand in O(m log logD) time, and finally output the k highest-scoring ones among
them. Putting everything together, we can obtain an O(n)-word index with query time
O(
∑m
i=1 pi +mn1−1/m(k logD)1/m log logD).

7. CONCLUSION
In this paper, we presented space-efficient frameworks for desiging indexes for top-
k string retrieval problems. Our frameworks are based on annotating suffix tree (or
compressed suffix tree) with additional information. In particular, we maintain a suffix
tree of the concatenated documents, superimpose the local suffix trees of the individual
documents in terms of “pointers”, and solve geometric range problems on these point-
ers. Our compact framework is based on encoding these pointers in smaller amount
of bits, while the compressed framework further samples these pointers as they pass
through some specially chosen nodes. These frameworks are fairly general and have
also been shown to be practical [Patil et al. 2011; Culpepper et al. 2012; Navarro et al.
2011; Belazzougui et al. 2013]. Even though efficient solutions are already available
for the central problem, there are still many interesting variations and open questions
one could ask about. We conclude with some of them as listed below:

(1) The current I/O-optimal index requires O(n log∗ n)-word space [Shah et al. 2013].
It is interesting to see if we can bring down this space to linear (i.e., using O(n)

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 W. K. Hon et al.

words) without sacrificing the optimality in the I/O bound. Designing indexes in
the cache-oblivious model [Frigo et al. 1999] is another future research direction.

(2) The current space-optimal index for top-k frequent document retrieval is pro-
posed by Navarro and Thankachan [2013]), whose per-document reporting time is
O(tsa log2 k logε n). In contrast, the per-document reporting time of our compressed
index (Theorem 5.6) is faster by a factor of log k, but our index takes twice the size
of text. An interesting problem is to design a space-optimal index, while keeping
the query time the same as (or better than) that of ours (which is currently the
fastest in compressed space).

(3) The document selection problem — where we want to obtain the kth highest-scoring
document (or its score) corresponding to the query — may have useful IR applica-
tions in practice.

(4) Even though many succinct indexes have been proposed for top-k queries for fre-
quency or PageRank-based score functions, it is still unknown if a succinct index
with O((p + k) logO(1) n) query time can be designed if the score function is term
proximity (as it is not known to be succinctly calculable). Designing such an index
even for special cases (say, with long query patterns only, or when we allow approx-
imate score, etc.) or deriving lower bounds are interesting research directions. We
remark that it is possible to design such an index for the special case where the
input pattern is of length at least log2 n, by combining our succinct framework with
known techniques [Hon et al. 2012; Chien et al. 2013].

(5) Approximate pattern matching (i.e., allowing bounded errors and don’t cares) is
another active research area [Cole et al. 2004]. Adding this aspect to document
retrieval leads to many new problems. The following is one such problem: Report
all those documents in which the edit (or Hamming) distance between one of its
substrings and P is at most τ , where τ ≥ 1 is an input parameter.

(6) Indexing a highly repetitive or a highly similar document collection is an active
line of research. In recent work, Gagie et al. [2013] propose an efficient document
retrieval index suitable for a repetitive collection. An open problem is to extend the
result for handling top-k queries.

REFERENCES
AGGARWAL, A. AND VITTER, J. S. 1988. The Input/Output Complexity of Sorting and Related Problems.

Communications of the ACM 31, 9, 1116–1127.
BELAZZOUGUI, D. AND NAVARRO, G. 2011. Improved Compressed Indexes for Full-Text Document Re-

trieval. In Proceedings of International Symposium on String Processing and Information Retrieval.
386–397.

BELAZZOUGUI, D., NAVARRO, G., AND VALENZUELA, D. 2013. Improved Compressed Indexes for Full-Text
Document Retrieval. Journal of Discrete Algorithms 18, 3–13.

BENDER, M. A. AND FARACH-COLTON, M. 2000. The LCA Problem Revisited. In Proceedings of Latin
American Symposium on Theoretical Informatics. 88–94.

BLUM, M., FLOYD, R. W., PRATT, V. R., RIVEST, R. L., AND TARJAN, R. E. 1973. Time Bounds for Selection.
Journal of Computer and System Sciences 7, 4, 448–461.

BROWN, M. R. AND TARJAN, R. E. 1979. A Fast Merging Algorithms. Journal of the ACM 26, 2, 211–226.
CHAZELLE, B. 1988. A Functional Approach to Data Structures and Its Use in Multidimensional Searching.

SIAM Journal on Computing 17, 3, 427–462.
CHIEN, Y. F., HON, W. K., SHAH, R., THANKACHAN, S. V., AND VITTER, J. S. 2013. Geometric BWT:

Compressed Text Indexing via Sparse Suffixes and Range Searching. Algorithmica. To appear.
CLARK, D. R. 1996. Compact Pat Trees. Ph.D. thesis, University of Waterloo.
COHEN, H. AND PORAT, E. 2010. Fast Set Intersection and Two-Patterns Matching. Theoretical Computer

Science 411, 40–42, 3795–3800.
COLE, R., GOTTLIEB, L.-A., AND LEWENSTEIN, M. 2004. Dictionary Matching and Indexing with Errors

and Don’t Cares. In Proceedings of Symposium on Theory of Computing. 91–100.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Space-Efficient Frameworks for Top-k String Retrieval A:33

CULPEPPER, J. S., NAVARRO, G., PUGLISI, S. J., AND TURPIN, A. 2010. Top-k Ranked Document Search in
General Text Databases. In Proceedings of European Symposium on Algorithms. 194–205.

CULPEPPER, J. S., PETRI, M., AND SCHOLER, F. 2012. Efficient in-memory top-k document retrieval. In
Proceedings of SIGIR Conference on Research and Development in Information Retrieval. 225–234.

FARACH, M. 1997. Optimal Suffix Tree Construction with Large Alphabets. In Proceedings of Symposium
on Foundations of Computer Science. 137–143.

FERRAGINA, P. AND MANZINI, G. 2005. Indexing Compressed Text. Journal of the ACM 52, 4, 552–581.
FERRAGINA, P., MANZINI, G., MÄKINEN, V., AND NAVARRO, G. 2007. Compressed Representations of Se-

quences and Full-Text Indexes. ACM Transactions on Algorithms 3, 2.
FISCHER, J., GAGIE, T., KOPELOWITZ, T., LEWENSTEIN, M., MÄKINEN, V., SALMELA, L., AND VÄLIMÄKI,

N. 2012. Forbidden Patterns. In Proceedings of Latin American Symposium on Theoretical Informatics.
327–337.

FISCHER, J. AND HEUN, V. 2007. A New Succinct Representation of RMQ-Information and Improvements
in the Enhanced Suffix Array. In Proceedings of Symposium on Combinatorics, Algorithms, Probabilistic
and Experimental Methodologies. 459–470.

FISCHER, J. AND HEUN, V. 2011. Space-Efficient Preprocessing Schemes for Range Minimum Queries on
Static Arrays. SIAM Journal on Computing 40, 2, 465–492.

FREDERICKSON, G. N. 1993. An Optimal Algorithm for Selection in a Min-Heap. Information and Compu-
tation 104, 2, 197–214.

FREDMAN, M. L., KOMLÓS, J., AND SZEMERÉDI, E. 1984. Storing a Sparse Table with O(1) Worst Case
Access Time. Journal of the ACM 31, 3, 538–544.

FRIGO, M., LEISERSON, C. E., PROKOP, H., AND RAMACHANDRAN, S. 1999. Cache-Oblivious Algorithms.
In Proceedings of Symposium on Foundations of Computer Science. 285–298.

GAGIE, T., KARHU, K., NAVARRO, G., PUGLISI, S. J., AND SIRÉN, J. 2013. Document Listing on Repetitive
Collections. In Proceedings of Symposium on Combinatorial Pattern Matching. 107–119.

GAGIE, T., NAVARRO, G., AND PUGLISI, S. J. 2010. Colored Range Queries and Document Retrieval. In
Proceedings of International Symposium on String Processing and Information Retrieval. 67–81.

GAGIE, T., NAVARRO, G., AND PUGLISI, S. J. 2012. New Algorithms on Wavelet Trees and Applications to
Information Retrieval. Theoretical Computer Science 426, 25–41.

GAGIE, T., PUGLISI, S. J., AND TURPIN, A. 2009. Range Quantile Queries: Another Virtue of Wavelet Trees.
In Proceedings of International Symposium on String Processing and Information Retrieval. 1–6.

GOLYNSKI, A., MUNRO, J. I., AND RAO, S. S. 2006. Rank/Select Operations on Large Alphabets: A Tool for
Text Indexing. In Proceedings of Symposium on Discrete Algorithms. 368–373.

GROSSI, R., GUPTA, A., AND VITTER, J. S. 2003. High-Order Entropy-Compressed Text Indexes. In Pro-
ceedings of Symposium on Discrete Algorithms. 841–850.

GROSSI, R. AND VITTER, J. S. 2005. Compressed Suffix Arrays and Suffix Trees with Applications to Text
Indexing and String Matching. SIAM Journal on Computing 35, 2, 378–407.

HON, W.-K., PATIL, M., SHAH, R., THANKACHAN, S. V., AND VITTER, J. S. 2013. Indexes for document
retrieval with relevance. In Space-Efficient Data Structures, Streams, and Algorithms. 351–362.

HON, W. K., PATIL, M., SHAH, R., AND WU, S. B. 2010. Efficient Index for Retrieving Top-k Most Frequent
Documents. Journal of Discrete Algorithms 8, 4, 402–417.

HON, W. K., SHAH, R., AND THANKACHAN, S. V. 2012. Towards an Optimal Space-and-Query-Time Index
for Top-k Document Retrieval. In Proceedings of Symposium on Combinatorial Pattern Matching. 173–
184.

HON, W. K., SHAH, R., THANKACHAN, S. V., AND VITTER, J. S. 2010. String Retrieval for Multi-pattern
Queries. In Proceedings of International Symposium on String Processing and Information Retrieval.
55–66.

HON, W. K., SHAH, R., THANKACHAN, S. V., AND VITTER, J. S. 2012. On Position Restricted Substring
Searching in Succinct Space. Journal of Discrete Algorithms 17, 109–114.

HON, W. K., SHAH, R., AND VITTER, J. S. 2009. Space-Efficient Framework for Top-k String Retrieval
Problems. In Proceedings of Symposium on Foundations of Computer Science. 713–722.

HON, W. K., THANKACHAN, S. V., SHAH, R., AND VITTER, J. S. 2013. Faster Compressed Top-k Document
Retrieval. In Proceedings of Data Compression Conference. 341–350.

HSU, B.-J. P. AND OTTAVIANO, G. 2013. Space-Efficient Data Structures for Top-k Completion. In Proceed-
ings of International Conference on World Wide Web. 583–594.

KARPINSKI, M. AND NEKRICH, Y. 2011. Top-K Color Queries for Document Retrieval. In Proceedings of
Symposium on Discrete Algorithms. 401–411.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 W. K. Hon et al.

KNUTH, D. E., MORRIS, J. H., AND PRATT, V. B. 1977. Fast Pattern Matching in Strings. SIAM Journal on
Computing 6, 2, 323–350.

KONOW, R. AND NAVARRO, G. 2013. Faster Compact Top-k Document Retrieval. In Proceedings of Data
Compression Conference. 351–360.

MANBER, U. AND MYERS, G. 1993. Suffix Arrays: A New Method for On-Line String Searches. SIAM Jour-
nal on Computing 22, 5, 935–948.

MATIAS, Y., MUTHUKRISHNAN, S., SAHINALP, S. C., AND ZIV, J. 1998. Augmenting Suffix Trees, with
Applications. In Proceedings of European Symposium on Algorithms. 67–78.

MCCREIGHT, E. M. 1976. A Space-Economical Suffix Tree Construction Algorithm. Journal of the
ACM 23, 2, 262–272.

MUNRO, J. I., RAMAN, V., AND RAO, S. S. 2001. Space Efficient Suffix Trees. Journal of Algorithms 39, 2,
205–222.

MUTHUKRISHNAN, S. 2002. Efficient Algorithms for Document Retrieval Problems. In Proceedings of Sym-
posium on Discrete Algorithms. 657–666.

NAVARRO, G. 2013. Spaces, Trees and Colors: The Algorithmic Landscape of Document Retrieval on Se-
quences. CoRR abs/1304.6023.

NAVARRO, G. AND MÄKINEN, V. 2007. Compressed Full-Text Indexes. ACM Computing Surveys 39, 1.
NAVARRO, G. AND NEKRICH, Y. 2012. Top-k Document Retrieval in Optimal Time and Linear Space. In

Proceedings of Symposium on Discrete Algorithms. 1066–1077.
NAVARRO, G., PUGLISI, S. J., AND VALENZUELA, D. 2011. Practical Compressed Document Retrieval. In

Proceedings of Symposium on Experimental Algorithms. 193–205.
NAVARRO, G. AND THANKACHAN, S. V. 2013. Faster Top-k Document Retrieval in Optimal Space. Proceed-

ings of International Symposium on String Processing and Information Retrieval. To appear.
PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T. 1999. The PageRank Citation Ranking: Bringing

Order to the Web. Technical Report 1999-66, Stanford InfoLab. November.
PAGH, R. 2001. Low Redundancy in Static Dictionaries with Constant Query Time. SIAM Journal on Com-

puting 31, 2, 353–363.
PATIL, M., THANKACHAN, S. V., SHAH, R., HON, W. K., VITTER, J. S., AND CHANDRASEKARAN, S. 2011.

Inverted Indexes for Phrases and Strings. In Proceedings of SIGIR Conference on Research and Devel-
opment in Information Retrieval. 555–564.

PATRASCU, M. 2008. Succincter. In Proceedings of Symposium on Foundations of Computer Science. 305–
313.

RAMAN, R., RAMAN, V., AND RAO, S. S. 2007. Succinct Indexable Dictionaries with Applications to Encoding
k-ary Trees, Prefix Sums and Multisets. ACM Transactions on Algorithms 3, 4.

SADAKANE, K. 2007a. Compressed Suffix Trees with Full Functionality. Theory of Computing Systems,
589–607.

SADAKANE, K. 2007b. Succinct Data Structures for Flexible Text Retrieval Systems. Journal of Discrete
Algorithms 5, 1, 12–22.

SADAKANE, K. AND NAVARRO, G. 2010. Fully-Functional Succinct Trees. In Proceedings of Symposium on
Discrete Algorithms. 134–149.

SHAH, R. AND FARACH-COLTON, M. 2002. Undiscretized Dynamic Programming: Faster Algorithms for
Facility Location and Related Problems on Trees. In Proceedings of Symposium on Discrete Algorithms.
108–115.

SHAH, R., SHENG, C., THANKACHAN, S. V., AND VITTER, J. S. 2013. Top-k Document Retrieval in External
Memory. In Proceedings of European Symposium on Algorithms. 803–814.

TSUR, D. 2013. Top-k Document Retrieval in Optimal Space. Information Processing Letters 113, 12, 440–
443.

VÄLIMÄKI, N. AND MÄKINEN, V. 2007. Space-Efficient Algorithms for Document Retrieval. In Proceedings
of Symposium on Combinatorial Pattern Matching. 205–215.

VITTER, J. S. 2008. Algorithms and Data Structures for External Memory. Foundations and Trends R© in
Theoretical Computer Science 2, 4, 305–474.

WEINER, P. 1973. Linear Pattern Matching Algorithms. In Proceedings of Symposium on Switching and
Automata Theory. 1–11.

WILLARD, D. E. 1983. Log-Logarithmic Worst-Case Range Queries are Possible in Space Θ(N). Information
Processing Letters 17, 2, 81–84.

WITTEN, I., MOFFAT, A., AND BELL, T. 1999. Managing Gigabytes: Compressing and Indexing Documents
and Images. Morgan Kaufmann Publishers, Los Altos, CA, USA.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

