
E�cient Algorithms for

MPEG Video Compression

E�cient Algorithms for
MPEG Video Compression

December 11, 2001

Dzung Tien Hoang and Je�rey Scott Vitter

A Wiley-Interscience Publication

JOHN WILEY & SONS, INC.

New York / Chichester / Weinheim / Brisbane / Singapore / Toronto

Contents

Preface xv

Acknowledgments xix

Acronyms xxi

1 Preliminaries 1

1.1 Digital Video Representation 1

1.1.1 Color Representation 2

1.1.2 Digitization 3

1.1.3 Spatial Sampling 4

1.1.4 Temporal Sampling 4

1.1.5 Quantization 5

1.1.6 Standard Video Data Formats 5

1.2 A Case for Video Compression 8

1.3 Spatial Redundancy 9

1.3.1 Vector Quantization 9

1.3.2 Block Transform 10

1.3.3 Discrete Cosine Transform 10

v

vi CONTENTS

1.4 Temporal Redundancy 12

1.4.1 Frame Di�erencing 12

1.4.2 Motion Compensation 13

1.4.3 Block Matching 14

1.5 H.261 Standard 17

1.5.1 Features 18

1.5.2 Encoder Block Diagram 18

1.5.3 Hypothetical Reference Decoder 20

1.5.4 Heuristics for Coding Control 20

1.5.5 Rate Control 22

1.6 MPEG-1 and MPEG-2 Standards 23

1.6.1 Features 23

1.6.2 Encoder Block Diagram 24

1.6.3 Layers 24

1.6.4 Video Bu�ering Veri�er 26

1.6.5 Rate Control 28

1.7 H.263 Standard 31

1.7.1 Features 31

1.7.2 Hypothetical Reference Decoder 33

1.8 Lossy Coding and Rate-Distortion 34

1.8.1 Classical Rate-Distortion Theory 34

1.8.2 Operational Rate-Distortion 34

1.8.3 Budget-Constrained Bit Allocation 37

1.8.4 Viterbi Algorithm 37

1.8.5 Lagrange Optimization 38

2 Lexicographic Bit Allocation Framework 41

2.1 Perceptual and Nominal Quantization 42

2.2 Constant Quality 43

2.3 Bit-Production Modeling and Quantization Scale 44

2.4 Bu�er Constraints 45

2.4.1 Constant Bit Rate 45

2.4.2 Variable Bit Rate 47

2.4.3 Encoder vs. Decoder Bu�er 48

2.5 Bu�er-Constrained Bit Allocation Problem 49

2.6 Lexicographic Optimality 50

2.7 Related Work 51

2.8 Discussion 53

CONTENTS vii

3 Optimal Bit Allocation under CBR Constraints 55

3.1 Analysis 56

3.2 CBR Allocation Algorithm 64

3.2.1 DP Algorithm 64

3.2.2 Correctness of DP Algorithm 65

3.2.3 Constant-Q Segments 65

3.2.4 Verifying a Constant-Q Allocation 66

3.2.5 Time and Space Complexity 67

3.3 Related Work 68

3.4 Discussion 69

4 Optimal Bit Allocation under VBR Constraints 71

4.1 Analysis 72

4.2 VBR Allocation Algorithm 80

4.2.1 VBR Algorithm 80

4.2.2 Correctness of VBR Algorithm 81

4.2.3 Time and Space Complexity 83

4.3 Discussion 84

5 Implementation of Lexicographic Bit Allocation 85

5.1 Perceptual Quantization 85

5.2 Bit-Production Modeling 86

5.2.1 Hyperbolic Model 86

5.2.2 Linear-Spline Model 88

5.2.3 Hyperbolic-Spline Model 90

5.3 Picture-Level Rate Control 91

5.3.1 Closed-Loop Rate Control 91

5.3.2 Open-Loop Rate Control 92

5.3.3 Hybrid Rate Control 93

5.4 Bu�er Guard Zones 93

5.5 Software Simulation Environment 94

5.6 Initial Simulations 94

5.7 Coding a Longer Sequence 106

5.7.1 Independent Coding Simulations 106

5.7.2 Dependent Coding Simulations 114

5.8 Limiting Lookahead 114

5.9 Related Work 121

5.10 Discussion 122

viii CONTENTS

6 A More E�cient Dynamic Programming Algorithm 123
6.1 Encoding the Next Picture 124

6.2 Initial Preprocessing of the Reverse Structure 128
6.2.1 Time and Space Complexity 131

6.3 Incremental Update of the Reverse Structure 132
6.4 Related Work 133

7 Real-Time VBR Rate Control 137
7.1 Optimal VBR Bit Allocation Algorithm 138
7.2 Single-Pass Algorithm 138

7.2.1 Basic VBR Algorithm 139

7.2.2 VBR Algorithm with Bit Budget 141
7.3 Simulation Results 141
7.4 Related Work 142
7.5 Conclusion 148

8 Extensions of the Lexicographic Framework 149
8.1 Applicability to Other Coding Domains 149
8.2 Multiplexing VBR Streams over a CBR Channel 150

8.2.1 Introduction 150

8.2.2 Multiplexing Model 152
8.2.3 Lexicographic Criterion 154
8.2.4 Equivalence to CBR Bit Allocation 154

8.3 Bit Allocation with a Discrete Set of Quantizers 155

8.3.1 Dynamic Programming 156
8.3.2 Lexicographic Extension 156

References 157

About the Authors 165

Index 167

List of Figures

1.1 Block Diagram of a Video Digitizer 3

1.2 Scanning Techniques for Spatial Sampling 4

1.3 Example of a Uniform Quantizer 6

1.4 4:2:2 Color Subsampling 7

1.5 4:2:0 Color Subsampling 8

1.6 Default Intraframe Quantization Matrix 11

1.7 Zig-Zag Scan 12

1.8 A Simple Frame-Di�erencing Coder 13

1.9 A Generic Motion-Compensated Video Encoder 14

1.10 Frame Types for Motion Compensation 15

1.11 Default Interframe Quantization Matrix 15

1.12 Modi�ed Interframe Quantization Matrix 16

1.13 Reordering with B Frames 16

1.14 Illustration of the Block Translation Model 17

1.15 Structure of a Macroblock 18

ix

x LIST OF FIGURES

1.16 Block Diagram of an H.261 Video Coder 19

1.17 Intraframe/Interframe Coding Decision Diagram 21

1.18 Motion Vector Decision Diagram 21

1.19 Block Diagram of Encoder Rate Control 22

1.20 Block Diagram of an MPEG Encoder 25

1.21 MPEG Video Bu�ering Veri�er 26

1.22 Fixed-Delay CBR Video Transmission System 27

1.23 Stored-Video System with Double Bu�ering 28

1.24 Block Diagram of an H.263 Video Coder 32

1.25 Rate-Distortion Function for a Gaussian Source 35

1.26 Operational Rate-Distortion Plot 36

1.27 Comparison of Coders Using Operational
Rate-Distortion 36

1.28 Trellis Construction by the Viterbi Algorithm 38

1.29 Graphical Interpretation of Lagrange Optimization 40

2.1 Evolution of Bu�er Fullness for CBR Operation 47

2.2 Evolution of Bu�er Fullness for VBR Operation 48

3.1 Sketch of Proof of Lemma 3.2 57

3.2 Search Step in DP Algorithm 66

5.1 Hyperbolic Bit-Production Models 87

5.2 Example of a Linear-Spline Interpolation Model 89

5.3 Linear-Spline and Hyperbolic-Spline Models 91

5.4 Guard Zones 94

5.5 Initial Simulation Results for TM5 CBR Coder 97

5.6 Initial Simulation Results for Linear-Spline CBR
Coder 98

5.7 Initial Simulation Results for Pass 1 of
Hyperbolic CBR Coder 99

5.8 Initial Simulation Results for Pass 2 of
Hyperbolic CBR Coder 100

LIST OF FIGURES xi

5.9 Initial Simulation Results for Pass 3 of
Hyperbolic CBR Coder 101

5.10 Initial Simulation Results for Linear-Spline VBR
Coder 102

5.11 Initial Simulation Results for Pass 1 of
Hyperbolic VBR Coder 103

5.12 Initial Simulation Results for Pass 2 of
Hyperbolic VBR Coder 104

5.13 Initial Simulation Results for Pass 3 of
Hyperbolic VBR Coder 105

5.14 Independent-Coding Results for TM5 CBR Coder 109

5.15 Independent-Coding Results for Hyperbolic-Spline
CBR Coder 110

5.16 Independent-Coding Results for Linear-Spline
CBR Coder 111

5.17 Independent-Coding Results for Hyperbolic-Spline
VBR Coder 112

5.18 Independent-Coding Results for Linear-Spline
VBR Coder 113

5.19 Dependent-Coding Results for TM5 CBR Coder 116

5.20 Dependent-Coding Results for Hyperbolic-Spline
CBR Coder 117

5.21 Dependent-Coding Results for Linear-Spline
CBR Coder 118

5.22 Dependent-Coding Results for Hyperbolic-Spline
VBR Coder 119

5.23 Dependent-Coding Results for Linear-Spline
VBR Coder 120

6.1 Reverse Structure for Determining Nominal
Quantization Scale 125

6.2 Bottom and Top Boundaries Starting at Picture 6 130

6.3 Bottom and Top Boundaries Starting at Picture 5 130

6.4 Bottom and Top Boundaries Starting at Picture 4 131

xii LIST OF FIGURES

6.5 Trace of Execution 132

6.6 Correspondence with Shortest Paths in Polygonal
Channels 134

6.7 Further Correspondence with Shortest Paths in
Polygonal Channels 135

7.1 Illustration of the Single-Pass VBR Algorithm 140

7.2 Simulation Results for TM5 CBR Coder 143

7.3 Simulation Results for Lexicographic VBR Coder 144

7.4 Simulation Results for Open-Loop Single-Pass
VBR Coder 145

7.5 Simulation Results for Controlled Single-Pass
VBR Coder 146

8.1 Illustration of Statistical Multiplexing 151

8.2 Multiplexing Model 152

8.3 Block Diagram of Encoder/Multiplexer 153

8.4 Operation of Multiplexer 153

8.5 Block Diagram of Demultiplexer/Decoder 154

List of Tables

1.1 Standardized H.263 Picture Formats 31

1.2 Minimum BPPmaxKb as Function of Picture Size 33

5.1 Parameters for Initial Simulations 96

5.2 Summary of Initial Simulations 106

5.3 Parameters for Independent-Coding Simulations 107

5.4 Summary of Independent-Coding Simulations 108

5.5 Parameters for Dependent-Coding Simulations 115

5.6 Summary of Dependent-Coding Simulations 121

7.1 Summary of Single-Pass VBR Simulations 142

xiii

Preface

In today's information-driven society, video and other forms of information are
being increasingly generated, manipulated, and transmitted in digital form.
This trend is manifested in the increased level of automation in businesses,
the ubiquity of personal computers, the explosive growth of the Internet and
the World Wide Web, and the growing library of multimedia software that
incorporates digital audio, images, and video. Within the past decade, we
have seen secondary storage on desktop personal computers mushroom from
a mere 20 megabytes to tens of gigabytes and beyond. Modem technology has
pushed the transmission bandwidth through plain telephone lines from 300
bits/second to 56,000 bits/second, and with asynchronous digital subscriber
line we can attain transmission speeds of megabits per second on existing
phone lines. Even with technological improvements in transmission bandwidth
and storage capacity, the information explosion is quickly making current
technologies seem inadequate. For example, application software that once �t
onto a few oppy disks now demands multi-megabytes of disk space.

Crucial to the management of digital information are data compression
techniques that help make more e�cient use of the limited transmission and
storage resources available. For storage applications, data compression in-
creases the e�ective storage space, allowing more data to be stored on a given
storage device. For transmission applications, data compression increases the
e�ective bandwidth, allowing a higher volume of data to be transmitted over
a given transmission medium. Data compression can be viewed as a logical
transformation of the data and is independent of the underlying transmission

xv

xvi PREFACE

or storage technology. Data compression will not be made obsolete by ad-
vances in these technologies, as there will be an ever-present need for even
more storage and even greater bandwidth.

A basic idea in data compression is that most information sources of prac-
tical interest are not random, but possess some structure. Recognizing and
exploiting structure is a major theme in data compression. The amount of
compression that is achievable depends upon the amount of redundancy or
structure present in the data that can be recognized and exploited. For ex-
ample, by noting that certain letters or words in English texts appear more
frequently than others, we can represent them using fewer bits than the less
frequently occurring letters or words. This principle is used in Morse Code,
where letters are represented using a varying number of dots and dashes. The
recognition and exploitation of statistical properties of a data source form the
basis for much of lossless data compression and entropy coding.

In lossy coding, there is a direct relationship between the length of an
encoding (or coding rate) and the amount of loss (or distortion) incurred.
Redundancy exists when an information source exhibits properties that al-
low it to be coded with fewer bits with little or no perceived distortion. For
example, in coding speech, distortion in high-frequency bands is not as per-
ceptible to the ear as is distortion in lower-frequency bands. As a result, the
high-frequency bands can be coded with less precision using fewer bits. In
Chapter 1 we explore the nature of redundancy for lossy coding, especially as
it relates to video coding.

Video belongs to a class of information called continuous media. Continu-
ous media is characterized by the essentially continuous manner in which the
information is presented.1 This is in contrast to discrete media, in which there
is no essential temporal component. Text, images, and graphics are examples
of discrete media, while movies, sound, and computer animation are examples
of continuous media. Even though a slide show is a time-based presentation
of images, it is not a continuous medium since each image is viewed as an
individual item. On the other hand, a video clip, while also consisting of a
sequence of images, is a continuous medium since each image is perceived in
the context of past and future images.

With continuous media, therefore, the temporal dimension becomes im-
portant. For example, a video sequence compressed with a constant image
quality for every frame is often more desirable than one in which the image
quality varies noticeably over time. However, because the compressibility of
individual frames varies over time, maintaining a constant image quality re-
sults in a variation in coding rate over time. The process of controlling the
coding rate to meet the requirements of a transmissions channel or storage
device, while maintaining a desired level of quality, is called bit rate control.

1The information may be discrete in representation, but it should be presented to give an

illusion of continuity.

PREFACE xvii

In this monograph, we focus on the rate control of compressed video.
Speci�cally, we present a new framework for allocating bits to the compression
of pictures in an MPEG video sequence.

Existing optimal rate control techniques typically regulate the coding rate
to minimize a sum-distortion measure. Whereas these techniques can lever-
age the wealth of tools from least-mean-square optimization theory, they do
not guarantee constant-quality video, an objective often mentioned in the lit-
erature. In Chapter 2, we develop a framework that casts rate control as a
resource allocation problem with continuous variables, nonlinear constraints,
and a novel lexicographic optimality criterion that is motivated for uniform
video quality. With the lexicographic criterion, we propose a new concept of
coding e�ciency to better reect the constancy in quality that is generally
desired from a video coder.

In Chapters 3 and 4, rigorous analysis within the lexicographic framework
reveals a set of necessary and su�cient conditions for optimality for coding
at both constant and variable bit rates. With these conditions, we are able
to construct polynomial-time algorithms for optimal bit rate control. Exper-
imental implementations of these algorithms con�rm the theoretical analysis
and produce encodings that are more uniform in quality than those achieved
with existing rate control methods. Details of the implementations and re-
sults are presented in Chapter 5. With further analysis of the optimality
conditions, we describe a more e�cient algorithm in Chapter 6 that can re-
cover from model errors and operates in O(N logN) time and linear space for
a video sequence of length N .

In Chapter 7, we modify the optimal VBR algorithm to operate in real-time.
Simulations show that the real-time VBR algorithm performs well compared
with the optimal algorithm. A review of the literature suggests that our
real-time VBR algorithm is well suited for use in conjunction with a channel
rate control algorithm to jointly control source and channel rates in an ATM
setting.

As evidence of the generality and exibility of the framework, we show how
to extend the framework in Chapter 8 to allocate bits among multiple variable
bit rate bitstreams that are to be transmitted over a common constant bit
rate channel and to encompass the case of discrete variables.

The starting point for the research described in this monograph was Dzung
Hoang's Ph.D. dissertation at Brown University, under the supervision of
Je�rey Vitter. Some of the initial work has appeared in various journals [29,
31] and conferences and in a U.S. patent [30].

Acknowledgments

We wish to thank most dearly our families for their love and support, which
helped carry us through this rate control project, even when the desired rate
seemed beyond our control! The work embodied in this book also owes
much to the interactions with and encouragement from colleagues, friends,
and family, most especially Swarup Acharya, Thomas Alexander, Boumedi-
ene Belkhouche, Mark Benard, Tia Chou, Shirish Gadre, C�esar Gonzales,
Johnette Hassell, Chi-Yuan Hsu, P. Krishnan, Elliot Linzer, Daniel Lopresti,
Dimitrios Michailidis, Jim Munro, T. M. Murali, Apostol Natsev, Duc Ngo,
Antonio Ortega, Taner �Ozcelik, Khai Phan, John Savage, Choh-Man Teng,
Darren Vengro�, Eric Viscito, Tu Vu, Min Wang, and Jian Zhou. To all those
wonderful people we owe a deep sense of gratitude.

We gratefully acknowledge the support provided along the way by the Na-
tional Science Foundation through a graduate fellowship and grants CCR{
9522047 and CCR{9877133, by the Air Force O�ce of Scienti�c Research, Air
Force Materiel Command, USAF, under grant F49620{94{1{0217, and by the
Army Research O�ce under grants DAAH04{93{G{0076 and DAAD19{01{
1{0725.

To my parents, my wife Kim, and our newborn Beatrice Huy�̂en-Trân.

San Jos�e, California D. T. Hoang

November 2001

To my wife Sharon and our kids Jillian, Scott, and Audrey.

New Orleans, Louisiana J. S. Vitter

November 2001

xix

Acronyms

ATM Asynchronous Transfer Mode

BMMC Block-Matching Motion Compensation

CBR Constant Bit Rate

CIF Common Intermediate Format

DCT Discrete Cosine Transform

DVD Digital Video Disk

GOB Group of Blocks

GOP Group of Pictures

HRD Hypothetical Reference Decoder

ITU International Telecommuncation Union

ITU-R ITU Radiocommunication Assembly

ITU-T ITU Telecommunication Standardization Sector

JPEG Joint Photographic Experts Group

MB Macroblock

MPEG Motion Pictures Expert Group

NTSC National Television Systems Committee

OBMC Overlapped Block Motion Compensation

xxi

xxii Acronyms

PAL Phase Alternating Line

QCIF Quarter-CIF

RBG Red Green Blue (color system)

SECAM Syst�eme �Electronique Couleur Avec M�emoire

SIF Source Input Format

VBR Variable Bit Rate

VBV Video Bu�ering Veri�er

VLC Variable Length Code

VQ Vector Quantization

1
Preliminaries

In this chapter we survey aspects of video compression that will be useful for
understanding the later chapters of this book. After a brief discussion about
the digital representation of video, we motivate video compression with two
illustrative examples that underscore the need for lossy compression. We then
describe basic lossy compression techniques for reducing spatial and temporal
redundancy in video, focusing on techniques commonly used in international
standards for video coding. Next, we present an overview of some of the more
popular standards for video coding, with special focus on the bit rate control
algorithms used in the development and evaluation of the standards. We
conclude with an introduction to rate-distortion theory and the operational
rate-distortion framework that forms the basis of much work on optimal bit
rate control of compressed video.

This chapter is by no means intended to be comprehensive; for more in-
depth discussions of the fundamentals and applications of video coding, the
reader is referred to [2, 26, 55, 57, 67, 73].

1.1 DIGITAL VIDEO REPRESENTATION

For compression to be meaningful, a standard representation should be de�ned
for the data to be compressed. In this section, we give an overview of some
of the more popular standard representations for digital video that are in use
today.

1

2 PRELIMINARIES

1.1.1 Color Representation

Although visible light consists of a continuum of wavelengths, it has been
known for several centuries that a small set of primary colors, when mixed in
the right proportions, can simulate a wide range of perceived colors.1 Red,
green, and blue (RGB) light sources form one set of primary colors; this is
an additive color system since the presence of all the primary colors at their
maximum intensities results in the perception of the color white. In painting
and printing, cyan, magenta, and yellow (CMY) pigments or inks form another
set of primary colors; this is a subtractive color system since the absence of
all primary colors yields the color of the canvas, which is usually a shade of
white.

The phenomenon of color perception reects the way that the human eye
detects and processes light and makes it possible to represent a visual image
as a small set of intensity signals (e.g., red, green, and blue). For example,
color televisions and computer monitors render a color image by exciting red,
green, and blue phosphors with electron beams of varying intensity.

There are numerous color representation systems in use today. Here we
briey describe several color systems most relevant to digital video.

In the United States, the National Television Systems Committee (NTSC)
has de�ned an RGB color system based upon three types of phosphor that
emit light in the red, green, and blue regions of the spectrum. Normalizing
the RGB components to the range [0,1], the color white is represented as
R = G = B = 1.

The NTSC RGB color components, however, are not used for the actual
television signal transmission. Instead, the color system called YIQ is used for
transmission. The YIQ system was engineered to maintain compatibility with
the preexisting black-and-white television system. The Y component captures
the luminance (brightness) information that can be compatibly decoded by a
black-and-white television. Supplementing the Y component are two chromi-
nance (color) components, I and Q. The I component captures esh tones
and near esh tones, and the Q component captures other colors [13]. In
order to �t the color YIQ signals into the same channel bandwidth as a black-
and-white signal, the color components I and Q are transmitted at a reduced
bandwidth compared with the luminance component. This approach takes ad-
vantage of the human visual system's reduced sensitivity to color changes. To
simplify the color decoding of YIQ to RGB, the YIQ components are de�ned
to be linearly related to the RGB components as described by the following
linear system of equations [37]:

Y = 0:299R+ 0:587G+ 0:114B;

1In the 17th century, Isaac Newton discovered that a small number of colors from the

spectrum produced by a prism can be mixed to produce other colors, including those not

in the spectrum.

DIGITAL VIDEO REPRESENTATION 3

amplifier
digitized

video
sensor

filter

red/green/blue

temporalraster

scanner sampler
quantizer

Fig. 1.1 Block Diagram of a Video Digitizer. This �gure shows the typical

processing steps involved in the digitization of video. After signal acquisition and

ampli�cation, the key processing steps are spatial sampling, temporal sampling, and

quantization.

I = 0:596R� 0:274G� 0:322B;

Q = 0:211R� 0:523G+ 0:896B:

Outside the United States, the PAL and SECAM television systems are
widely used. The PAL system uses the YUV color system, and the SECAM
system uses the YDbDr color system. In both YUV and YDrDb systems, the
Y component is identical to that of YIQ. As with YIQ, the YUV and YDrDb
components are linearly related to the RGB components. The conversion
equations [26] for YUV are

Y = 0:299R+ 0:587G+ 0:114B;

U = �0:147R� 0:289G+ 0:436B

= 0:492(B � Y);

V = 0:615R� 0:515G� 0:100B

= 0:877(R� Y):

The conversion equations [26] for YDrDb are

Y = 0:299R+ 0:587G+ 0:114B;

Dr = �0:450R� 0:883G+ 1:333B

= 3:059U ;

Db = �1:333R+ 1:116G� 0:217B

= �2:169V:

1.1.2 Digitization

In order to be processed by computers, analog video that is captured by a light
sensor must �rst be digitized. Digitization of video consists of three steps: 1)
spatial sampling, 2) temporal sampling, and 3) quantization. A block diagram
of the digitization process is depicted in Figure 1.1 for one color component.
The steps need not be performed in the order indicated and some steps may
be combined into one operation.

4 PRELIMINARIES

(a) Progressive Scan (b) Interlaced Scan

Fig. 1.2 Scanning Techniques for Spatial Sampling. In a progressive scan,

consecutive lines in a frame are sampled in order. In an interlaced scan, the lines are

divided into odd and even sets; the even lines are sampled after the odd lines.

1.1.3 Spatial Sampling

Spatial sampling consists of taking measurements of the underlying analog
signal at a �nite set of sampling points in a �nite viewing area (or frame).
To simplify the process, the sampling points are restricted to lie on a lat-
tice, usually a rectangular grid. The two-dimensional set of sampling points
are transformed into a one-dimensional set through a process called raster

scanning . The two main ways to perform raster scanning are shown in Fig-
ure 1.2: progressive and interlaced . In a progressive (or non-interlaced) scan,
the sampling points are scanned from left to right and top to bottom. In an
interlaced scan, the points are divided into odd and even scan lines. The odd
lines are scanned �rst from left to right and top to bottom. Then the even
lines are scanned. The odd (respectively, even) scan lines make up a �eld. In
an interlaced scan, two �elds make up a frame. It is important to note that
the odd and even �elds are sampled and displayed at di�erent time instances.
Therefore the time interval between �elds in an interlaced scan is half of that
between frames. Interlaced scanning is commonly used for television signals
and progressive scanning is typically used for �lm and computer displays.

1.1.4 Temporal Sampling

The human visual system is relatively slow in responding to temporal changes.
By showing at least 16 frames of video per second, an illusion of motion is
created. This observation is the basis for motion picture technology, which
typically performs temporal sampling at a rate of 24 frames/sec. For tele-
vision, sampling rates of 25 and 30 frames/sec are commonly used. With

DIGITAL VIDEO REPRESENTATION 5

interlaced scan, the sampling rate is sometimes expressed as the number of
�elds per second, which is twice the number of frames per second.

1.1.5 Quantization

After spatial and temporal sampling, the video signal consists of a sequence of
continuous intensity values. The continuous intensity values are incompatible
with digital processing, and one more step is needed before this information
can be processed digitally. The continuous intensity values are converted to
a discrete set of values in a process called quantization.

Quantization can be viewed as a mapping from a continuous domain to
a discrete range.2 A particular quantization mapping is called a quantizer.
An example is shown in Figure 1.3. In the �gure, there are eleven discrete
quantization levels, also called bins. Each bin has an associated size, which
is the extent of the continuous values that map to that bin. In the example,
each bin, except for the bins for �5, 0, and 5, has the same size, which is
sometimes referred to as the quantizer step size. This type of quantizer is
called a uniform quantizer. A binary encoding can be assigned to each of
the bins. Typically the initial quantization of a continuous source is done
using a number of quantization levels that is a power of 2, so that a �xed
number of bits can be used to represent the quantized value.3 This process
of representing a continuous value by a �nite number of levels using a binary
code is often referred to as pulse code modulation (PCM).

In conclusion, after spatial sampling, temporal sampling, and quantization,
we have N �M picture elements, commonly called pixels or pels , represented
using a �xed number of bits.

1.1.6 Standard Video Data Formats

To promote the interchange of digital video data, several formats for repre-
senting video data have been standardized. We now review some of the more
popular standard representations.

CCIR-601 Standard. Because they are designed for analog television, the YIQ,
YUV, and YDrDb color systems are inherently analog. The CCIR-601 digital
video standard4 de�nes a standard digital representation of video in terms of
digital YCrCb color components [3]. CCIR-601 de�nes both 8-bit and 10-bit

2This de�nition is intended also to encompass mappings from a discrete domain to a discrete

range.
3Further quantization of digitized data may use a number of quantization levels that is not

a power of 2 and employ variable-length entropy coding.
4The CCIR has changed its name to the International Telecommunication Union Radio-

communication Assembly (ITU-R), and the latest revision of the CCIR-601 standard is

formally known as Recommendation ITU-R BT.601-5. We use the term CCIR-601 since it

is still in common usage.

6 PRELIMINARIES

-6

-4

-2

0

2

4

6

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8

Q
ua

nt
iz

ed
 v

al
ue

Continuous value

Fig. 1.3 Example of a Uniform Quantizer. This example shows a quantizer that

has 11 possible discrete output values, or bins.

digital encodings. In the 8-bit encoding, assuming that the RGB components
have been digitized to the range [0; 255], the YCrCb components are de�ned
as follows [26]:

Y = 0:257R+ 0:504G+ 0:098B + 16;

Cr = 0:439R� 0:368G+�0:071B + 128;

Cb = �0:148R� 0:291G+ 0:439B + 128:

The CCIR-601 standard de�nes a family of digital video formats. The
most commonly used member of the family is the 4:2:2, 13.5 MHz format.
In this format, the luminance component is sampled at a rate of 13.5 MHz
with 720 active samples per line. The chrominance components, Cr and Cb,
each are sampled at 6.75 MHz with 360 active samples per line. For NTSC,
this sampling yields 486 active lines per frame at 60 �elds/sec. For PAL, the
sampling yields 576 active lines per frame at 50 �elds/sec.

In terms of pixels per frame, the 4:2:2 CCIR-601 format speci�es spatial
sampling of 720� 486 for NTSC and 720� 576 for PAL. Temporal sampling
is interlaced 60 �elds/sec for NTSC and interlaced 50 �elds/sec for PAL.
The chrominance components are subsampled horizontally with respect to
the luminance component to take advantage of the human visual system's
reduced spatial sensitivity to color. This subsampling process is referred to
as the 4:2:2 format and is depicted in Figure 1.4.

Source Input Format. The Source Input Format (SIF) speci�es spatial sam-
pling of 360 � 240 and progressive temporal sampling at 30 frames/sec for

DIGITAL VIDEO REPRESENTATION 7

Chrominance samplesLuminance samples

Fig. 1.4 4:2:2 Color Subsampling. With 4:2:2 chroma subsampling, the two

chroma components are subsampled by a factor of two horizontally. The positioning

of the chrominance values relative to the luminance values is shown as speci�ed by the

CCIR-601 standard.

NTSC-originated video, and 360�288 spatial sampling at a progressive frame
rate of 25 frames/sec for PAL-original video.5 As with CCIR-601, color is
represented using three components: Y , Cb, and Cr . Each component is
quantized linearly using eight bits. The chrominance components, Cb and
Cr , are subsampled by a factor of two both horizontally and vertically, yield-
ing a chrominance sampling of 180� 120 at 30 frames/sec and 180� 144 at
25 frames/sec.6 This subsampling format is referred to as the 4:2:0 format7

and is illustrated in Figure 1.5.

Common Intermediate Format. One drawback with the CCIR-601 and SIF for-
mats is that they specify di�erent spatial and temporal sampling parameters
for NTSC and PAL systems. As its name suggests, the Common Interme-
diate Format (CIF) was proposed as a bridge between NTSC and PAL. As
with CCIR-601, color is represented using YCrCb, quantized linearly using
eight bits. The CIF format uses 4:2:0 color subsampling with an image size of
352� 288. Temporal sampling is set at 30 frames/sec. For use with PAL sys-
tems, the CIF format requires conversion of the frame rate to 25 frames/sec.
For NTSC systems, a spatial resampling may be necessary.

5For some applications, such as MPEG-1 and MPEG-2 video, it is convenient for the spatial

dimensions to be a multiple of 16. For this reason, a horizontal dimension of 352 is often

used.
6When the horizontal image dimension of 352 is used, the horizontal chrominance sampling

would correspondingly be 176.
7The 4:2:0 format should not be confused with the 4:1:1 format in which the chrominance

components are subsampled by a factor of 4 only in the horizontal direction.

8 PRELIMINARIES

Chrominance samplesLuminance samples

Fig. 1.5 4:2:0 Color Subsampling. With 4:2:0 subsampling, the chroma compo-

nents are subsampled by a factor of two both horizontally and vertically. The position-

ing of the chrominance values relative to the luminance values is shown as speci�ed

in the MPEG-2 standard. In the MPEG-1 standard, the chrominance samples are

positioned in the center of four adjacent luminance samples.

For video conferencing and other low-bit-rate, low-resolution applications,
a scaled-down version of CIF called Quarter-CIF (QCIF) is commonly used.
QCIF speci�es an image with half the resolution of CIF in each spatial dimen-
sion: 176�144. For many low-bit-rate applications, the frame rate is reduced
from 30 frames/sec to as low as 5 frames/sec.

1.2 A CASE FOR VIDEO COMPRESSION

Now that we have described several standard representations for digital video,
we can estimate the compression ratio required for some typical applications.

For a two-hour movie encoded in the NTSC CCIR-601 4:2:2 format, the
uncompressed video representation would require about 151 gigabytes to store:

(720 � 486+2 � 360 � 486) bytes
frame

� 30frames
sec

� 3600sec
hr
� 2 hrs = 1:512 � 1011 bytes:

In order to store the movie on one single-sided digital video disk (DVD), which
has a capacity of 4.7 gigabytes, we need to compress the video by a factor of
about 32:1. To allow room for audio and other auxiliary data (such as text
captioning), an even higher compression ratio is needed.

As another example, consider low-bit-rate video conferencing over a tele-
phone modem. Assuming that the uncompressed video is encoded in QCIF

SPATIAL REDUNDANCY 9

format at 10 frames/sec, the uncompressed bit rate is computed to be:

(176 � 144 + 2 � 88 � 72) bytes
frame

� 8 bits
byte

� 10frames
sec

= 3:041 � 106bits
sec

:

To transmit video in this format over a 28.8 Kbits/sec modem would require a
compression ratio of about 106:1. At such a high compression ratio, depending
upon the complexity of the video sequence, the quality of the compressed video
may have to be sacri�ced. Alternatively, the frame rate could be reduced to
increase the image quality, at the expense of increased jerkiness in the motion.

The above examples show why compression is a must for some important
digital video applications. For example, without compression, a single-sided
DVD can hold less than four minutes of CCIR-601 digital video.

1.3 SPATIAL REDUNDANCY

Redundancy exists in a video sequence in two forms: spatial and temporal.
The former, also called intraframe redundancy, refers to the redundancy that
exists within a single frame of video, while the latter, also called interframe

redundancy, refers to the redundancy that exists between consecutive frames
within a video sequence.

Reducing spatial redundancy has been the focus of many image compres-
sion algorithms. Since video is just a sequence of images, image compression
techniques are directly applicable to video frames. Here, we outline some
popular image coding techniques applicable to lossy video coding.

1.3.1 Vector Quantization

In vector quantization (VQ) [21], an image is segmented into same-sized blocks
of pixel values. The blocks are represented by a �xed number of vectors called
codewords . The codewords are chosen from a �nite set called a codebook . This
process is analogous to the quantization described in Section 1.1.2, except that
now quantization is performed on vectors instead of scalar values. The size
of the codebook a�ects the coding rate (number of bits needed to encode
each vector) as well as the distortion; a bigger codebook increases the coding
rate and decreases the average distortion, whereas a smaller codebook has the
opposite e�ects.

With vector quantization, encoding is more computationally intensive than
decoding. Encoding requires searching the codebook for a representative code-
word for each input vector, whereas decoding requires only a table lookup.
Usually, the same codebook is used by the encoder and the decoder. The
codebook generation process is itself computationally demanding. Some ap-
plications of VQ in video compression can be found in [19, 78].

10 PRELIMINARIES

1.3.2 Block Transform

In block transform coding, an image is divided into blocks, as with vector
quantization. Each block is mathematically transformed into a di�erent rep-
resentation, which is then quantized and coded. The mathematical transform
is chosen so as to redistribute most of the useful information into a small set
of coe�cients. The coe�cients are then selectively quantized so that after
quantization most of the \unimportant" coe�cients are 0 and can be ignored,
while the \important" coe�cients are retained. In the decoder, a inverse
quantization process is followed by an inverse transformation.

Block transform coding can be viewed as an instance of vector quantiza-
tion where the codebook is determined by the transform and quantization
performed. Viewed in this way, for any source, a vector quantizer can be de-
signed that will be at least as good (in a rate-distortion sense) as a particular
block transform. A motivation for using block transforms is that for certain
block transforms with fast algorithms, encoding can be done faster than full-
blown vector quantization. However, with block transforms, decoding has
approximately the same complexity as encoding, which is more complex than
decoding with vector quantization.

Mathematical transforms that have been used for block transform coding
include discrete Fourier, discrete cosine, discrete sine, Karhunen-Loeve, slant,
and Hadamard [37].

1.3.3 Discrete Cosine Transform

For images, the two-dimensional discrete cosine transform (2D-DCT) is a
popular block transform that forms the basis of the lossy JPEG standard [62]
developed by the Joint Photographic Experts Group. Because of its success
within JPEG, the 2D-DCT has been adopted by many video coding standards,
such as H.261, H.263, MPEG-1, MPEG-2, and MPEG-4. We now describe
the mathematical basis of the DCT and show how it is applied to code an
image.

Forward DCT Transform. The JPEG standard speci�es a block size of 8� 8
for performing the 2D-DCT. This block size is small enough for the transform
to be quickly computed but big enough for signi�cant compression. For an
8� 8 block of pixel values f(i; j), the 2D-DCT is de�ned as

F (u; v) =
1

4
C(u)C(v)

7X
i=0

7X
j=0

f(i; j) cos
�u(2i+ 1)

16
cos

�v(2j + 1)

16
; (1.1)

where F (u; v) are the transform coe�cients and

C(x) =

8<
:

1p
2

if x = 0;

1 otherwise.

SPATIAL REDUNDANCY 11

2
66666666664

8 16 19 22 26 27 29 34
16 16 22 24 27 29 34 37
19 22 26 27 29 34 34 38
22 22 26 27 29 34 37 40
22 26 27 29 32 35 40 48
26 27 29 32 35 40 48 58
26 27 29 34 38 46 56 69
27 29 35 38 46 56 69 83

3
77777777775

Fig. 1.6 Default Intraframe Quantization Matrix. This �gure shows the de-

fault MPEG-2 intraframe quantization matrix to be applied to 2D-DCT coe�cients.

With this quantization matrix, transform coe�cients are quantized more coarsely with

increasing horizontal and vertical spatial frequencies.

Inverse DCT Transform. To be useful for coding, a block transform needs
an inverse transform for purposes of decoding. The two-dimensional inverse
discrete cosine transform (2D-IDCT) for an 8� 8 block is de�ned as

f(i; j) =
1

4

7X
u=0

7X
v=0

F (u; v)C(u)C(v) cos
�u(2i+ 1)

16
cos

�v(2j + 1)

16
: (1.2)

Quantization. Since the DCT and IDCT are transform pairs, they do not
result in any compression by themselves. Compression is achieved by subse-
quent quantization of the transform coe�cients.

Quantization as applied to transform coe�cients can be viewed as division
followed by integer truncation. Speci�cally, the transform coe�cients are �rst
divided by a (prespeci�ed) matrix of integers that is weighted by a quantiza-

tion scale Q. After division, the results are truncated to integer values. In
the dequantization, the quantized values are multiplied by the quantization
matrix and adjusted according to the quantization scale. Typically 8 to 12
bits of precision are used.

An example of a quantization matrix is shown in Figure 1.6. The coe�-
cients can be speci�ed to exploit properties of the human visual system. Since
the human eye is more sensitive to low spatial frequencies and less sensitive
to high spatial frequencies, the transform coe�cients corresponding to high
spatial frequencies can be quantized more coarsely than those for low spatial
frequencies. This frequency-selective quantization can be seen in Figure 1.6.

Zig-Zag Scan. Because of the coarse quantization of coe�cients correspond-
ing to high spatial frequencies, those coe�cients are often quantized to 0.
An e�ective way to code the resulting set of quantized coe�cients is with
a combination of a zig-zag scan of the coe�cients as shown in Figure 1.7
and run-length encoding of consecutive zeros. Typically, the DC coe�cient,
F (0; 0), is coded separately from the other coe�cients and is not included in
the zig-zag scan.

12 PRELIMINARIES

DC

Frequency
Horizontal

F
re

qu
en

cy
V

er
tic

al

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Fig. 1.7 Zig-Zag Scan. This �gure shows a zig-zag scanning pattern for coding

quantized transform coe�cients as a one-dimensional sequence. A run-length encoding

of the zero values of the one-dimensional sequence is then performed.

1.4 TEMPORAL REDUNDANCY

Successive frames in a video sequence are typically highly correlated, espe-
cially for scenes where there is little or no motion. The spatial decorrelation
techniques described in the previous section only operate within a single frame
and do not exploit the redundancy that exists between frames. We now review
some basic techniques for reducing temporal redundancy.

1.4.1 Frame Di�erencing

A very simple technique for exploiting temporal redundancy in a video se-
quence is to code the di�erence between one frame and the next. This tech-
nique is called frame di�erencing and is an extension of the basic di�erential
pulse code modulation (DPCM) coding techniques (see, e.g. [57]). A block
diagram of an encoder that uses frame di�erencing is shown in Figure 1.8.

At some initial point, a frame must be coded without frame di�erencing and
using only spatial coding techniques. Such a frame is commonly referred to as
an intracoded frame, or I frame for short. Because they do not take advantage
of interframe redundancy, I frames consume more bits than predictive frames
of comparable quality. To prevent degradation in image quality from the
accumulation of prediction error and to allow for easy random access to frames
in a video, frames are periodically coded as I frames.

If there is little motion between successive frames, frame di�erencing yields
a di�erence image that is mostly uniform and can be coded e�ciently. How-
ever, frame di�erencing fails when there is appreciable motion between frames
or when a scene change occurs. An e�ective strategy when frame di�erenc-

TEMPORAL REDUNDANCY 13

Frame Buffer

Frame

Encoder

Frame

Decoder

OutputInput

Fig. 1.8 A Simple Frame-Di�erencing Coder. This block diagram shows a

simple frame-di�erencing coder. The frame bu�er stores the previously decoded frame

which is used to compute a di�erence frame.

ing fails is to switch to intracoding mode. However, this technique does not
improve the compression e�ciency of frame di�erencing.

1.4.2 Motion Compensation

Frame di�erencing can be viewed as a predictive coding technique where the
prediction is simply the previous decoded frame. By improving the prediction,
we can potentially obtain better compression. Motion compensation is one
such technique that uses a model of the motion of objects between frames to
form a prediction. Using the model, the encoder performs motion estimation

to determine the motion that exists between a reference frame and the current
frame. The reference frame can occur temporally before the current frame
(forward prediction) or after the current frame (backward prediction). An
advanced technique, called bidirectional prediction, uses two reference frames,
one each for forward and backward prediction, and interpolates the results.
This usually gives better prediction and handles the case where an object is
temporarily occluded.

The encoding process is illustrated in Figure 1.9. After motion estimation
and compensation, the motion information and prediction error are transmit-
ted to the decoder, which reconstructs the predicted frame from the motion
information and the decoded reference frame. Note that the reference frame
must have already been decoded for the decoder to be able to reconstruct the
current frame. As with frame di�erencing, an I frame is needed to seed the
motion compensation process.

Frames that are coded using forward prediction are called P frames, short
for predicted frames. A P frame uses as a reference a past I frame or P frame.

Backward prediction is typically not used exclusively, but as an option
for B frames, short for bidirectionally predicted frames. A B frame is coded
from a past reference frame and a future reference frame, as shown in Fig-
ure 1.10. At �rst, this might seem to present a causality problem since there
is a dependence upon a future frame. To avert any such problem, the frames

14 PRELIMINARIES

Motion

Estimation

Frame

Buffer

Frame

Encoder

Frame

Decoder

Input Output

Motion information

Motion Compensation

Fig. 1.9 A Generic Motion-Compensated Video Encoder. This �gure shows

a block diagram of a generic motion-compensated video encoder. The dashed box

encloses the motion compensation unit, which consists of a motion estimator and a

frame di�erencer.

are reordered so that all reference frames that are required by a B frame or P
frame come before that frame in the reordered sequence. An example is shown
in Figure 1.13. In practice, this reordering introduces some encoding and de-
coding delays and requires two frame bu�ers to hold the reference frames.
For non-real-time applications, such as stored video, the additional delay is
not a serious issue. For real-time applications, such as video conferencing,
the distance between successive reference frames are kept small to reduce the
delay. B frames may be omitted altogether to further reduce the delay.

For interframe coding, perceptual weighting as per Figure 1.6 is not usually
applied since the block to be coded is the block of prediction errors, which
does not share the perceptual properties of the original spatial block of pixel
values. The MPEG standards specify a default interframe quantization ma-
trix with uniform values, as shown in Figure 1.11. In practice, the modi�ed
interframe quantization matrix shown in Figure 1.12 is often used. In this
matrix, the quantization step size increases gradually as the frequency index
increases. This modi�ed interframe quantization matrix works well in prac-
tice and has been adopted as the default matrix in the MPEG-4 visual coding
standard [36].

In the �nal step, indicated in Figure 1.9, the prediction error that results
from motion compensation is coded with an intraframe coder, for instance,
one of the techniques mentioned in Section 1.3.

1.4.3 Block Matching

A motion model that is commonly used is the block translation model de-
veloped by Jain and Jain [38]. In this model, an image is divided into non-

TEMPORAL REDUNDANCY 15

PI B B P B B

Fig. 1.10 Frame Types for Motion Compensation. This �gure illustrates three

types of frames use in motion compensation. An I frame is coded using intraframe

techniques and has no temporal dependencies. A P frame is predicted from a previous

reference frame, which may be either an I frame or a P frame. B frames are predicted

from a past and a future reference frame.

2
66666666664

16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16
16 16 16 16 16 16 16 16

3
77777777775

Fig. 1.11 Default Interframe Quantization Matrix. This �gure shows the de-

fault MPEG-2 interframe quantization matrix to be applied to 2D-DCT coe�cients.

With this quantization matrix, transform coe�cients are quantized the same indepen-

dent of frequency.

16 PRELIMINARIES

2
66666666664

16 17 18 19 20 21 22 23
17 18 19 20 21 22 23 24
18 19 20 21 22 23 24 25
19 20 21 22 23 24 26 27
20 21 22 23 24 26 27 28
21 22 23 24 26 27 28 30
22 23 24 26 27 28 30 31
23 24 25 27 28 30 31 33

3
77777777775

Fig. 1.12 Modi�ed Interframe Quantization Matrix. This �gure shows a mod-

i�ed MPEG-2 interframe quantization matrix that is often used in practice and has

been incorporated into the MPEG-4 standard as the default interframe matrix [36].

With this quantization matrix, transform coe�cients are quantized gradually coarser

as the frequency increases.

Frame Type: I B B P B B P B I

Temporal Index: 1 2 3 4 5 6 7 8 9

(a) Original Sequence (Temporal Order)

Frame Type: I P B B P B B I B

Temporal Index: 1 4 2 3 7 5 6 9 8

(b) Reordered Sequence (Encoding Order)

Fig. 1.13 Reordering with B Frames. This �gure shows the reordering of I and

P frames to allow for causal decoding of B frames. A reference frame (I or P frame)

is moved immediately before the �rst B frame that uses it for backward prediction.

H.261 STANDARD 17

Current FrameReference Frame

Fig. 1.14 Illustration of the Block Translation Model. In this �gure, two

blocks in the Current Frame are shown to be copied from a similarly sized region in

the Reference Frame. This action forms the basis of the block translation motion

model.

overlapping rectangular blocks. Each block in the predicted image is formed
by a translation of a similarly shaped source region from the reference frame.
The source region needs not coincide with the block boundaries. This model
does not consider any rotation or scaling of the blocks, simplifying the motion
estimation procedure at the expense of decreased accuracy. A motion vector
may be speci�ed in integer or fractional pixel (pel) increments. Fractional-pel
motion compensation involves interpolation of the pixel values in the source
block. The block translation model is illustrated in Figure 1.14. For each
block, the encoder transmits a motion vector that speci�es the displacement
in the translation model.

Motion estimation algorithms using the block translation model are com-
monly called block matching algorithms since the procedure involves matching
(regularly-positioned) blocks in the current frame with (arbitrarily-positioned)
blocks in the reference frame. Because of its simplicity, block matching is com-
monly used in current video coding standards.

1.5 H.261 STANDARD

In 1990, the International Telegraph and Telephone Consultative Committee
(CCITT)8 approved an international standard for video coding at bit rates of
p � 64 Kbits/sec, where p is an integer between 1 and 30, inclusive [23, 49].

8The CCITT has since changed its name to the International Telecommunication Union

Telecommunication Standardization Sector (ITU-T).

18 PRELIMINARIES

CR CB

Y

Y

Y

Y

8

8 8

8

16

16

Fig. 1.15 Structure of a Macroblock. This �gure shows the structure of a mac-

roblock when the 4:2:0 chroma format is used. The macroblock consists of four adjacent

8� 8 blocks of Y samples, a co-sited 8� 8 block of Cr samples, and a co-sited 8� 8

block of Cb samples. This macroblock structure is used by H.261, H.263, MPEG-1,

MPEG-2, and MPEG-4 for 4:2:0 sources.

O�cially known as CCITT Recommendation H.261, the standard is intended
for low-bit-rate applications such as videophone and video conferencing. We
now provide a summary of some key aspects of the standard.

1.5.1 Features

The H.261 standard uses a combination of block matching motion compensa-
tion (BMMC) and 2D-DCT coding, as described in Sections 1.3.2 and 1.4.3.
Since H.261 is intended for real-time video conferencing applications, there is
a requirement for low encoding delay, which precludes the use of bidirectional
predictive motion compensation. Therefore only intraframe coding and for-
ward predictive coding are used, with a predicted block depending only upon
the previous frame. The real-time requirement also restricts the complexity
of higher-level algorithms, such as motion estimation and rate control.

The Common Intermediate Format (CIF) and Quarter-CIF (QCIF), de-
scribed in Section 1.1.6, are speci�ed for video frames. A video frame is
divided into Groups of Blocks (GOBs) made up of a number of macroblocks
(MBs). As depicted in Figure 1.15, each macroblock is composed of four 8�8
luminance blocks and two 8� 8 chrominance blocks, one each for the Cb and
Cr color components. Integer-pel motion compensation is performed at the
macroblock level; that is, there is one motion vector per macroblock.

1.5.2 Encoder Block Diagram

A block diagram of a basic H.261 coder is shown in Figure 1.16. At a high
level, the basic encoding process works as follows: The encoder �rst decides
whether to code a macroblock M using intraframe or interframe coding. For
intraframe coding, the techniques outlined in Section 1.3.3 are used. If inter-
frame coding is selected, the encoder performs motion estimation to choose a
motion vector ~v (how this is done is left unspeci�ed in the standard). If the

H.261 STANDARD 19

CC

T Q

T�1

m

PF

m q

q

q

q
a

a
�
��

�
��

-

-

-

- - -

-

-

-

��

-

-

6 -

-

Video In

p

t
qz

q

v

f �

�

��
To Video

Multiplex
Coder

T: Transform

Q: Quantizer

P: Picture Memory with motion-

compensated variable delay

F: Loop Filter

CC: Coding Control

p: Flag for INTRA/INTER

t: Flag for transmitted or not
qz: Quantizer indication
q: Quantizing index for transform

coe�cients
v: Motion vector

f: Switching on/o� of the loop �lter

?

Q�1

?

?

q

6

q

q

q

?

?

Fig. 1.16 Block Diagram of an H.261 Video Coder. This �gures shows a block

diagram of a typical H.261 video coder [23].

previous macroblock is intracoded, ~v is transmitted using a static Hu�man
code, otherwise the di�erence between ~v and the motion vector for the previ-
ous macroblock is sent using a static Hu�man code. For each 8� 8 block B

contained in M , a lossy version of the block of prediction errors obtained by
using ~v to predict B is then transmitted. This is done by applying the 2D-
DCT to the block of prediction errors, quantizing and scanning the transform
coe�cients, and encoding the results using a run-length/Hu�man coder, as
prescribed in Section 1.3.3.

The encoder has the option of changing certain aspects of the above pro-
cess. First, the encoder may simply not transmit the current macroblock; the
decoder is then assumed to use the corresponding macroblock in the previous
frame in its place. If motion compensation is used, there is an option to ap-
ply a linear low-pass �lter to the previous decoded frame before using it for
prediction.

20 PRELIMINARIES

1.5.3 Hypothetical Reference Decoder

In order to place a practical limit on the size of decoder bu�ers, the H.261 stan-
dard de�nes a Hypothetical Reference Decoder (HRD). Compliant encoders
must generate bitstreams that meet the requirements of the HRD.

One requirement of the HRD is that the number of bits used to code any
single picture shall not exceed a maximum that depends upon the picture
format. The limit is 64 � K bits for QCIF and 256 � K bits for CIF, where
K = 1024.

Another requirement is that the HRD bu�er shall not overow. The HRD
bu�er size is B + 256 � K bits, where B = 4Rmax=29:97 and Rmax is the
maximum video bit rate. The HRD bu�er is initially empty. The HRD bu�er
is examined at display intervals that occur every 1=29:97 sec. If there is at
least one complete coded picture in the bu�er, the decoder instantaneously
removes the bits for the earliest coded picture in the bu�er. Otherwise, the
decoder waits until the next display interval to examine the bu�er. After
removal of the coded picture bits, the bu�er fullness must be less than B.
This requirement prevents the encoder from overowing the decoder bu�er.

1.5.4 Heuristics for Coding Control

The H.261 standard does not specify how to make coding decisions. However,
to aid in the evaluation of di�erent coding techniques, the CCITT provides an
encoder simulation model called Reference Model 8 (RM8) [4]. In RM8, mo-
tion estimation is performed to minimize the mean absolute di�erence (MAD)
of the prediction errors. A fast three-step search, instead of an exhaustive full-
search, is used for motion estimation. RM8 speci�es several heuristics used
to make the coding decisions. We describe three such heuristics.

The variance VP of the prediction errors for the luminance blocks in M

after motion compensation using ~v is compared against the variance VY of the
original luminance blocks inM to determine whether to perform intraframe or
interframe coding. The intraframe/interframe decision diagram, as speci�ed
in RM8, is plotted in Figure 1.17.

If interframe motion compensation mode is selected, the decision of whether
to use motion compensation with a zero motion vector or with the estimated
motion vector is made by comparing the MAD with zero motion against that
with the estimated motion vector. If the zero motion vector is chosen, this is
indicated by a special coding mode and no motion vector is coded. The motion
vector decision diagram, as recommended in [4], is shown in Figure 1.18.

The loop �lter is enabled if a nonzero motion vector is used. The decision
of whether to transmit the block transform coe�cients is made individually
for each block in a macroblock by considering the values of the quantized
transform coe�cients. If all the coe�cients are zero for a block, they are not
transmitted for that block.

H.261 STANDARD 21

0

32

64

96

128

160

0 32 64 96 128 160

V
ar

ia
nc

e
of

 o
ri

gi
na

l b
lo

ck

Variance of motion compensated prediction error

Interframe
motion compensation

Intraframe
motion compensation

y=x

Fig. 1.17 Intraframe/Interframe Coding Decision Diagram. This is the

intraframe/interframe coding decision diagram of Reference Model 8 [4]. The variance

of the original source block is compared with the variance of the motion-compensated

prediction error to determine whether to use intraframe or interframe coding for the

source block.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

0 1 2 3 4 5 6

M
A

D
 w

ith
 e

st
im

at
ed

 m
ot

io
n

ve
ct

or

MAD with zero motion vector

Zero displacement
motion compensation

Motion vector
compensation

y=x/1.1

0.5

1.5

2.7

Fig. 1.18 Motion Vector Decision Diagram. This �gure shows the motion vector

decision diagram of Reference Model 8 [4]. The mean absolute di�erence (MAD) is

used as the measure of motion compensated prediction error. A motion-estimation

search is performed to determine a candidate motion vector with the least MAD. The

MAD with the candidate motion vector is compared with the MAD with the zero

motion vector to determine whether the candidate motion vector or the zero motion

vector is used for motion compensation.

22 PRELIMINARIES

Quantizer
Coder

Entropy Encoder

Buffer

Rate

Controller
Qs Bf

transform

coefficients

encoded

bitstream

Fig. 1.19 Block Diagram of Encoder Rate Control. This �gure shows the

functional blocks in a typical video encoder that are involved in bit rate control. The

Rate Controller monitors the Encoder Bu�er and adjusts the settings of the Quantizer

in order to prevent the Encoder Bu�er from overowing or underowing.

1.5.5 Rate Control

Video coders often have to operate within �xed bandwidth limitations. Since
the H.261 standard uses variable-length entropy coding of quantized trans-
form coe�cients and side information, resulting in a variable bit rate, some
form of bit rate control is required for operation on bandwidth-limited chan-
nels. For example, if the coder's output exceeds the channel capacity, then
frames could be dropped or the quality decreased in order to meet the band-
width constraints. On the other hand, if the coder's output is well below the
channel's capacity, the quality and/or frame-rate can be increased to better
utilize the channel.

A simple technique for rate control that is speci�ed in RM8 uses a bu�ered
encoding model as shown in Figure 1.19. In this model, the output of the
encoder is connected to a bu�er whose purpose is to even out the uctuations
in bit rate. By monitoring the fullness of the bu�er, the rate controller can
adjust the quantization scale Qs, which a�ects the encoder's bit rate, to pre-
vent the bu�er from underowing or overowing. In the model, the bu�er is
de�ned for the purpose of regulating the output bit rate and may or may not
correspond to an actual encoder bu�er.

RM8 gives some parameters and prescriptions for the rate control process.
The size of the bu�er is speci�ed to be p � 6:4 Kbits, which translates to a
maximum bu�ering delay of 100 ms. For purposes of rate control, the �rst
frame is coded using a �xed quantization scale that is computed from the
target bit rate. After the �rst frame is coded, the bu�er is reset to be half
full. The quantization scale Qs is determined from the bu�er fullness Bf using
the formula:

Qs = min
�
b32Bfc+ 1; 31

	
;

MPEG-1 AND MPEG-2 STANDARDS 23

where Qs has an integral range of [1; 31], and Bf is normalized to have a real-
valued range of [0; 1]. The quantization scale is adjusted once for each GOB
(11 macroblocks in RM8).

1.6 MPEG-1 AND MPEG-2 STANDARDS

In 1988, the International Standards Organization (ISO) formed the Moving
Pictures Expert Group (MPEG), with the formal designation ISO-IEC/JTC1
SC29/WG11, to develop standards for the digital encoding of moving pictures
(video) and associated audio. In 1991, the MPEG committee completed its
�rst international standard, MPEG-1 [35, 41], formally ISO/IEC 11172.

As a generic video coding speci�cation, MPEG-1 supports multiple image
formats, including, CIF, SIF, and QCIF. Image sizes up to 4; 095� 4; 095 are
supported. However, only progressive scan and 4:2:0 color subsampling are
supported. While MPEG-1 proved successful for the computer entertainment
industry, its lack of support for interlaced scan prevented its use in digital
television.

In 1990, the MPEG committee started work on MPEG-2 [24], formally
ISO/IEC 13818.9 MPEG-2 is an extension of MPEG-1 that remedies several
major shortcomings of MPEG-1 by adding support for interlaced video, more
color subsampling formats, and other advanced coding features. To lever-
age existing MPEG-1 titles and to promote its adoption, MPEG-2 retains
backward compatibility with MPEG-1.

As an international standard, MPEG-2 has been very successful. For ex-
ample, it has been adopted for use by the Advanced Television Systems Com-
mittee (ATSC) as the video compression engine for digital television in the
United States. MPEG-2 is currently used in several digital satellite broadcast
systems as well as in the consumer digital video disk (DVD).

1.6.1 Features

As with the H.261 standard, the MPEG standards specify a syntax for the
coded bitstream and a mechanism for decoding the bitstream. Not covered
by the standard are details about the encoding process, thus allowing for
exibility and innovation in encoder design and implementation.

Like H.261, the MPEG standards employ a hybrid video coding scheme
that combines BMMC with 2D-DCT coding. Unlike H.261, the MPEG stan-
dards allow for bidirectional prediction in addition to intraframe coding and
forward prediction, all of which are described in Section 1.4. Additionally,
the MPEG standards support motion compensation at half-pel accuracy to
allow for better image quality at the expense of additional computation. By

9Recommendation H.262 is the ITU-T designation of the MPEG-2 standard.

24 PRELIMINARIES

supporting advanced coding techniques, the MPEG standards allow an en-
coding system to trade o� between computation and image quality. This
exibility can be a great advantage for non-real-time encoding systems that
can be a�orded time to code a video sequence well, especially for applications
such as movies and commercials, where the quality of the coded video is of
utmost importance since the video will be played many times. However, by
using a subset of the coding features, the MPEG standards can also be used
for real-time applications such as video conferencing, news, and other live
broadcasts.

1.6.2 Encoder Block Diagram

A basic encoder block diagram is shown in Figure 1.20, with the embedded
decoder highlighted. The structure of the encoder is very similar to that in
Figure 1.16. The main di�erences, as outlined above, are hidden in the Coding
Control, Motion Estimation, and Motion Compensation blocks.

1.6.3 Layers

In the syntax of the MPEG standards, a video sequence is partitioned into
a hierarchy of layers . The presence of a layer in the bitstream is indicated
by a start code indicating the layer type followed by a header that speci�es
parameters for that layer. At the top of the hierarchy is the sequence layer.
The sequence header speci�es information for the entire video sequence, such
as the frame size, frame rate, bit rate, and quantization matrix. Below the
sequence layer is the group of pictures layer (GOP layer). A GOP is structured
as a set of contiguous frames that contains at least one I frame. A GOP can
start with either a B frame or an I frame and end with either an I frame or a
P frame. The GOP structure is designed to support random access, indexing,
and editing. An example of a GOP unit can be found in Figure 1.10(a). If
a GOP begins with a frame that does not depend upon a preceding frame,
it can be decoded and displayed independently of the previous GOP and is
called a closed GOP. GOPs that are not closed are referred to as open.

Below the GOP layer is the picture layer . The picture header contains
information about each picture10 coded, such as picture type (I, P, or B) and
temporal reference. A picture is divided into slices , each of which consists
of a segment of consecutive macroblocks . Dividing a picture into slices limits
the e�ects of transmission errors and allows the decoder to recover from these
errors.

A macroblock consists of a number of 8� 8 blocks of intensity and chromi-
nance values. The number of blocks in a macroblock depends upon the color

10With progressive scan, a picture in MPEG's terminology is equivalent to what we have

been calling a frame. With interlaced scan, a picture may refer to a single �eld.

MPEG-1 AND MPEG-2 STANDARDS 25

DCT

Coding Control

Quantizer

Motion
Estimator

Frame
Buffers

Inverse
Quantizer

IDCT

Compensation
Motion

Predictor

VLC Encoder
and Multiplexer

Embedded

Decoder

0

Inter/Intra

Q

Input

Picture Type

Buffer
Bitstream

Inter/Intra

Motion vectors

Motion vectors

Buffer fullness

Fig. 1.20 Block Diagram of an MPEG Encoder. This �gure shows a block

diagram of a typical MPEG encoder. The dashed box contains the blocks that perform

the same functions as an MPEG decoder. The embedded decoder is needed to generate

the same reference frames that a real decoder would.

subsampling scheme used (see Figures 1.4 and 1.5). For 4:2:0 subsampling,
the structure of a macroblock is shown in Figure 1.15. For 4:2:2 subsampling,
a macroblock contains four Y blocks, two Cb blocks, and two Cr blocks.
MPEG-2 supports an additional color subsampling mode, 4:4:4, in which the
Cb and Cr color components have the same spatial resolution as the lumi-
nance component Y . Thus for 4:4:4 color subsampling, a macroblock consists
of a total of twelve blocks.

As with JPEG and H.261, the 8� 8 block is the basic unit for DCT coding
and quantization.

26 PRELIMINARIES

Decoder

Buffer
Display

bitstream
encoded

channel

rate R

high

bandwidth

connection

Decoder

max

size Bvbv

Fig. 1.21 MPEG Video Bu�ering Veri�er. This �gure shows a block diagram

of the MPEG Video Bu�ering Veri�er, which is an idealized decoder model used to

derive bu�ering constraints.

1.6.4 Video Bu�ering Veri�er

In addition to de�ning a bitstream syntax and decoding process, the MPEG
video standards de�ne an idealized decoder model called the Video Bu�ering

Veri�er (VBV). The purpose of the VBV is to put quanti�able limits on the
variability in the coding rate such that an encoded bitstream can be decoded
with reasonable bu�ering requirements. As diagrammed in Figure 1.21, the
VBV consists of a decoder bu�er, a decoder, and a display unit. Encoded
bits enter the decoder bu�er at piecewise-constant rates up to Rmax. The
decoder bu�er stores the incoming bits for processing by the decoder. At
regular display intervals, the decoder instantaneously removes, decodes, and
displays the earliest picture in the bu�er. It should be emphasized that the
VBV is only an idealized decoder model and not a prescription of how to
build a decoder or how an actual decoder would function. The VBV model,
however, is useful in establishing rate constraints on encoded video such that
the encoding would be decodable with the speci�ed bu�ering requirements.

In a special low-delay mode, the VBV operates much like the HRD of
H.261. In this mode, the VBV examines the bu�er every display interval. If
all the bits for the earliest picture are present in the bu�er, those bits are
removed for decoding. Otherwise, the decoder waits until the next display
interval. The low-delay mode is intended for real-time video communications,
where encoder and bu�ering delays are to be minimized. However, the vast
majority of MPEG applications do not use the low-delay mode and we do not
consider this mode further.

When not in low-delay mode, the VBV has three prescribed modes of
operation: a constant bit rate (CBR) mode and two variable bit rate (VBR)
modes. MPEG-1 supports only the CBR mode while MPEG-2 supports all
three modes. In CBR mode, bits enter the decoder bu�er at a constant
rate Rmax as speci�ed in the sequence header. Initially, the bu�er is empty
and �lls for a prespeci�ed amount of time before bits for the �rst picture are
removed and decoded. Afterwards, the bu�er continues to �ll at the channel
rate Rmax while the decoder removes bits for coded pictures at regular display
intervals. The CBR mode models operation of a decoder connected to a
constant bit rate channel with a �xed channel delay, as shown in Figure 1.22.

MPEG-1 AND MPEG-2 STANDARDS 27

Encoder Buffer

fixed-delay
CBR channel

Buffer Decoder

Fig. 1.22 Fixed-Delay CBR Video Transmission System. This �gure shows

an encoder connected to a decoder through a �xed-delay CBR channel. A bu�er is

needed after the Encoder to smooth the bit rate for transmission over the CBR channel.

Another bu�er is needed before the Decoder to collects bits for decoding.

The amount of time that the start code for a given picture is to reside
in the VBV bu�er before that picture is decoded is speci�ed in the picture
header with a parameter called vbv delay.11 In CBR mode, vbv delay is
related to the VBV bu�er fullness Bf in the following manner:

vbv delay =
90000 � Bf

Rmax

:

In the �rst VBR mode, the compressed bits for picture n enter the bu�er
at a piecewise-constant rate R(n) that may vary from picture to picture, up
to the maximum rate Rmax speci�ed in the sequence header. The relationship
between R(n) and vbv delay is as follows:

R(n) =
sn

�(n) � �(n+ 1) + t(n+ 1)� t(n)
;

where

R(n) = the rate at which bits for picture n enter the VBV bu�er;

sn = the number of bits for picture n;

�(n) = the decoding delay coded in vbv delay for picture n, and

t(n) = the time when picture n is removed from the VBV bu�er.

In the second VBR mode, vbv delay is set to 65535 for all pictures. The
VBV bu�er is initially �lled to capacity at the peak rate Rmax before the �rst
picture is removed. Thereafter, in each display interval, bits enter the bu�er
at the peak rate until the bu�er is full, at which point bits stop entering the
bu�er until the next picture has been decoded. When the bu�er is full, bits
are not discarded, however. The channel is assumed to be able to hold the bits
until needed by the VBV. For stored-video applications, this requirement can
be met using the double-bu�ering scheme shown in Figure 1.23, for example.
With a maximum disk latency of TL, a bu�er size of TLRmax is su�cient to
guarantee timely delivery of bits to the VBV.

11The parameter vbv delay is coded as an integer in the range [0; 65534] and is expressed

in units of 1/90000 sec.

28 PRELIMINARIES

Disk

Buffer 1

Buffer 2

Video
Buffering
Verifier

Fig. 1.23 Stored-Video System with Double Bu�ering. This �gure shows the

block diagram of a video decoder that plays compressed video stored on a disk storage

medium. The data transfer from the disk is double-bu�ered to hide the latency of the

disk medium.

Since the decoder bu�er stops receiving bits when it is full, a potentially
variable number of bits can enter the bu�er in each display period. The
second VBR mode can be thought of as modeling the operation of a decoder
connected to a channel or device (e.g., a disk drive) that can transfer data at
a variable rate up to a peak rate Rmax.

For proper operation in any mode, the decoder bu�er should not exceed its
capacity Bvbv as speci�ed in the sequence header.12 Also, the bu�er should
contain at least the number of bits needed to decode the next picture at the
time it is to be decoded. As will be shown in Chapter 2, these requirements
impose constraints on the number of bits that the encoder can produce for
each picture.

A compliant encoder must produce a bitstream that results in proper op-
eration of the VBV. The VBV is not intended to be a prescription for an ac-
tual decoder implementation. However, a compliant decoder implementation
should be able to decode successfully (within resource limits) any bitstream
that meets the VBV bu�ering constraints.

1.6.5 Rate Control

As with H.261, the MPEG standards do not specify how to perform rate
control. To allow for testing and experimentation using a common set of
encoder routines, MPEG created a series of test models. Here, we describe
the rate control strategy outlined in the MPEG-2 Test Model 5 (TM5) [34].
In TM5, rate control is broken down into three steps:

1. Target bit allocation. In this step, the complexity of the current
picture is estimated based upon the encoding of previous pictures to
allocate a number of bits to code the picture.

12This requirement is always met in the second VBR mode.

MPEG-1 AND MPEG-2 STANDARDS 29

2. Rate control. A reference quantization scale is determined using a
virtual bu�er in a feedback loop to regulate the coding rate so as to
achieve the target bit allocation.

3. Adaptive quantization. The reference quantization scale is modu-
lated according to the spatial activity in each macroblock to determine
the actual quantization scale with which to code the macroblock.

Target Bit Allocation. The number of bits to be allocated to a picture depends
upon its type: I, P, or B. For each picture type, there is a complexity model
that attempts to relate the number of bits that would result from coding a
picture of a given type to the quantization scale used. The complexity models
are of the form

Si =
Xi

Qi

; Sp =
Xp

Qp

; Sb =
Xb

Qb

;

where S, X , and Q denote number of bits, complexity, and quantization scale,
respectively; and the subscript indicate the picture type.

Initially the complexity values are set to:

Xi =
160 � bit rate

115
; Xp =

60 � bit rate
115

; Xb =
42 � bit rate

115
;

where bit rate is measured in bits/sec.
After a picture of a given type is coded, its associated complexity model is

updated based upon the average quantization scale used and number of bits
produced:

Xi = SiQi; Xp = SpQp; Xb = SbQb:

Bit allocation is performed with the goal that the average bit rate is
achieved at the GOP layer. A corresponding number of bits is assigned to
code each GOP. Bits are allocated to each picture in a GOP based upon
the complexity models, the number of bits available to code the remaining
pictures in the GOP, and the number of remaining I, P, and B pictures in the
GOP. Let N be the total number of pictures in a GOP. Let Ni, Np, and Nb

be the number of remaining I, P, and B pictures, respectively. The bit target
for each type of picture is calculated according to

Ti = max

8<
:

R

1 +
NpXp

KpXi

+ NbXb

KbXi

;
bit rate

8 � picture rate

9=
; ;

Tp = max

8<
:

R

Np +
NbKpXb

KbXp

;
bit rate

8 � picture rate

9=
; ;

Tb = max

8<
:

R

Nb +
NpKbXp

KpXb

;
bit rate

8 � picture rate

9=
; ;

30 PRELIMINARIES

whereKp andKb are constants that depend upon the quantization matrices,
13

and R is the number of bits available to code the remaining pictures in the
GOP.

After all the pictures in a GOP have been coded, any di�erence between
the target and actual bit allocation is carried over to the next GOP.

Rate Control. Given a target bit allocation for a picture, a virtual encoding
bu�er is used to determine a reference quantization scale in a way similar
to the procedure in Section 1.5.5 for the H.261 standard. A separate virtual
bu�er is maintained for each picture type. The reference quantization scale is
computed for each macroblock from the bu�er fullness as

Qj =
31 � dj
r

;

where Qj is the reference quantization scale for macroblock j, dj is the bu�er
fullness, and r is a reaction parameter given by

r =
2 � bit rate
picture rate

:

Adaptive Quantization. The rate control step provides a reference quanti-
zation scale to code each macroblock. The reference quantization scale is
modulated with an activity factor that is determined from a measure of the
spatial activity of the macroblock. The rationale is that a macroblock that
has little spatial activity, such as a smooth region, should be quantized more
�nely than a macroblock with high spatial activity, such as a textured region,
since quantization error is typically more noticeable in smooth regions than
in textured regions. This approach attempts to equalize perceptual quality
for a given quantization scale.

For macroblock j, an activity factor actj is computed as one plus the min-
imum of the variances of the luminance blocks within the macroblock. A
normalized activity factor is then computed based upon the average of the
activity factor of the last encoded picture:

Nact =
2 � actj + avg act

actj + 2 � avg act
:

For the �rst picture, avg act = 400. The actual quantization scale Qs used
to code the macroblock is computed as

Qs = minfQj �Nact; 31g:

It should be noted that the TM5 rate control strategy does not take into
account the VBV and therefore does not guarantee VBV compliance. Also,
TM5 only performs rate control for CBR operation and not for VBR.

13For the matrices speci�ed in TM5, Kp = 1:0 and Kb = 1:4.

H.263 STANDARD 31

Table 1.1 Standardized H.263 Picture Formats. H.263 supports these stan-

dardized picture formats in addition to a custom picture format [25].

Picture Luminance Chrominance

Format Width Height Width Height

sub-QCIF 128 96 64 48
QCIF 176 144 88 72
CIF 352 288 176 144
4CIF 704 576 352 288
16CIF 1408 1152 704 576

1.7 H.263 STANDARD

Building on the H.261 standard, the ITU-T released an improved low-bit-rate
video coding standard in 1996 called Recommendation H.263 [25]. H.263 of-
fers improved compression e�ciency and quality over H.261 and is designed
to operate below 64 Kbits/sec. In 1998, the ITU-T released Recommendation
H.263 Version 2, also known as H.263+, which is compatible with the original
H.263 Version 1 with extra optional features. The ITU-T is currently work-
ing on a third version of H.263, uno�cially known as H.263++, and a new
standard for very low-bit-rate video coding called H.26L [67].

1.7.1 Features

As shown in Figure 1.24, H.263 maintains the same basic encoder structure
as H.261, except without the loop �lter. In lieu of the loop �lter, H.263
employs half-pel motion vectors in order to improve motion compensation
performance.

H.263 supports �ve standardized picture formats and a custom picture
format. The standardized formats are listed in Table 1.1. A custom picture
format may be speci�ed in the picture header with a width that is a multiple
of four in the range [4; 2048] and a height that is a multiple of four in the
range [4; 1152].

In addition to the core coding tools, H.263 Version 1 provides four optional
coding tools: Unrestricted Motion Vector, Syntax-based Arithmetic Coding,
Advanced Prediction Mode, and PB-frames.

Unrestricted Motion Vector. With this tool, motion vectors are allowed to ex-
tend beyond the picture boundary. Edge pixels are used as prediction outside
the picture area. This option improves compression e�ciency when there is
motion near picture boundaries, especially for small picture sizes. The motion
vector range is also extended to bene�t large pictures.

32 PRELIMINARIES

CC

T Q

T�1

m

P

m q

q

q

q
a

a
�
��

�
��

-

-

-

- - -

-

-

-

�

-

-

6

-

Video In

p

t
qz

q

v

�

�

��
To Video

Multiplex
Coder

T: Transform

Q: Quantizer

P: Picture Memory with motion-

compensated variable delay

F: Loop Filter

CC: Coding Control

p: Flag for INTRA/INTER

t: Flag for transmitted or not
qz: Quantizer indication
q: Quantizing index for transform

coe�cients
v: Motion vector

?

Q�1

?

?

q

6

q

q

q

?

?

Fig. 1.24 Block Diagram of an H.263 Video Coder. This �gures shows a block

diagram of a typical H.263 video coder [25].

Syntax-based Arithmetic Coding. Arithmetic coding replaces variable-length
Hu�man codes for improved compression with no change in image quality.

Advanced Prediction Mode. In this mode, an advanced motion compensation
technique called Overlapped Block Motion Compensation (OBMC) is applied
to the luminance component. One motion vector is associated with each
8� 8 luminance block. The prediction for each pixel is the weighted average
of the predictions using the motion vectors for the current block and the
two nearest neighboring block in its four-connected neighborhood (left, right,
above, below). For example, the prediction for pixels in the lower left 4 � 4
quadrant of a block is formed from the motion vectors from the current block
and the two blocks to the left and below.

The increased number of motion vectors requires more bits to transmit but
results in better motion compensated prediction. In addition, the overlapped
blending of prediction blocks results in fewer blocking artifacts.

PB-frames Mode. This optional mode adds bidirectional prediction using PB-
frames. A PB-frame combines two pictures into one coding unit. The second

H.263 STANDARD 33

Table 1.2 Minimum BPPmaxKb as Function of Picture Size. This table

lists the minimum value that the BPPmaxKb parameter can take as a function of

the picture size in pixels, where BPPmaxKb is the maximum compressed size of a

picture in units of 1024 bits [25].

Minimum

Picture Size in Pixels BPPmaxKb

up to 25,344 (or QCIF) 64
25,360 to 101,376 (or CIF) 256
101,392 to 405,504 (or 4CIF) 512

405,520 and above 1024

picture in the unit is coded with forward prediction and the �rst with bidirec-
tional prediction. The use of PB-frames allows for increased frame rate with
a small increase in bits.

Version 2 Modes. In addition to the above coding tools, H.263 Version 2
adds twelve more negotiable options. These additional tools address coding
e�ciency, scalability, and error resilience. It is beyond the scope of this book
to discuss these in any detail. The reader is referred to [25, 74].

1.7.2 Hypothetical Reference Decoder

As with the H.261 standard, H.263 de�nes a Hypothetical Reference Decoder
(HRD). Since H.263 supports additional picture formats beyond the QCIF
and CIF formats supported by H.261, the parameters of the HRD have been
modi�ed accordingly.

The number of bits used to code any single picture shall not exceed a max-
imum de�ned by the parameter BPPmaxKb in units of 1024 bits. A mini-
mum value for BPPmaxKb is de�ned based upon the picture size, as shown
in Table 1.2. The encoder may negotiate a larger value of BPPmaxKb.

The HRD bu�er size in bits is de�ned to be B + 1024 � BPPmaxKb,
where B = 4Rmax=PCF, Rmax is the maximum video bit rate, and PCF is
the picture clock frequency in Hz. The HRD bu�er is initially empty and
is examined at picture clock intervals (1=PCF sec). If there is at least one
complete coded picture in the bu�er, the decoder instantaneously removes the
bits for the earliest coded picture in the bu�er. Otherwise, the decoder waits
until the next picture clock interval. After removal of the coded picture bits,
the bu�er fullness must be less than B.

There is no bu�er underow condition because the HRD simply waits until
all the bits for the next coded picture are in the bu�er before removing them.
This implies that some pictures may be repeated when the coding rate exceeds
Rmax for several picture clock intervals.

34 PRELIMINARIES

1.8 LOSSY CODING AND RATE-DISTORTION

The examples in Section 1.2 show that existing video applications require high
compression ratios, over an order of magnitude higher than what is typically
possible with lossless compression methods. These high levels of compression
can be realized only if we accept some loss in �delity between the uncom-
pressed and compressed representations. There is a natural tradeo� between
the size of the compressed representation and the �delity of the reproduced
images. This tradeo� between coding rate and distortion is quanti�ed in
rate-distortion theory.

1.8.1 Classical Rate-Distortion Theory

Let D be a measure of distortion according to some �delity criterion. In
classical rate-distortion theory, as pioneered by Claude Shannon [71], a rate-
distortion function, R(D), is de�ned to be the theoretical lower bound on the
best coding rate achievable as a function of the desired distortion D for a
given information source, by any compressor. In general, the �delity criterion
can be any valid metric; in practice, a squared-error distortion is often used;
that is, D(x; x̂) = (x� x̂)2.

For a discrete source, R(0) is simply the entropy of the source and corre-
sponds to lossless coding (D = 0). In cases where the distortion is bounded
from above by Dmax, then R(Dmax) = 0. Furthermore, it can be shown that
R(D) is a nonincreasing convex function of D (see, e.g., [14]).

For some speci�c information sources and distortion measures, closed-form
expressions for the rate-distortion function have been determined. For a zero-
mean Gaussian source with variance �2 and a squared-error distortion mea-
sure,

R(D) =

8<
:

1

2
log2

�2

D
; if 0 � D � �2;

0; if D > �2:

This is plotted for � = 1 in Figure 1.25.

1.8.2 Operational Rate-Distortion

In practice, classical rate-distortion theory is not directly applicable to com-
plex encoding and decoding systems since sources are typically not well char-
acterized and R(D) is di�cult, if not impossible, to determine. Even though
not directly computable, the existence of a hypothetical rate-distortion func-
tion for a given type of information source allows a comparison to be made
between competing encoding systems and algorithms.

A more practical approach is taken in [8, 72]. By measuring actual coding
rates and distortion achieved by the coder under study, an operational rate-

distortion plot similar to Figure 1.26 can be constructed. It is sometimes

LOSSY CODING AND RATE-DISTORTION 35

0

0.5

1

1.5

2

2.5

3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

R
(D

)

D

Fig. 1.25 Rate-Distortion Function for a Gaussian Source This �gure shows

the theoretical rate-distortion function for a zero-mean Gaussian source with variance

�
2 = 1.

useful to show the convex hull of the data points to �ll in the gap between
points. Data points are typically generated by varying the level of quantization
or other coding parameters under study.

By plotting operational rate-distortion curves for various competing coders,
a comparison can be made of their e�ectiveness. A basic idea is that the more
e�ective and capable a coder is, the closer is its operational rate-distortion
curve to the hypothetical rate-distortion function. In Figure 1.27, Coder 1
performs better than Coder 2 for coding rates greater than about 600 bits
per coding unit, where a coding unit is a generic term for a block of data. At
coding rates less than 600 bits/unit, Coder 2 performs better.

The mean square error (MSE) distortion measure is commonly used in the
literature since it is a convenient measure that lends itself to mathematical
analysis. For images and video, however, MSE is not an ideal measure since it
is not a good model of human visual perception. For example, in many cases,
two encodings with the same MSE can have remarkably di�erent perceptual
quality. However, in keeping with convention, we assume the use of MSE as
the distortion measure for the remainder of this chapter.

36 PRELIMINARIES

0

200

400

600

800

1000

0 2 4 6 8 10

R
at

e
(b

its
/u

ni
t)

Distortion (MSE)

Empirical Data
Convex Hull

Fig. 1.26 Operational Rate-Distortion Plot. This �gure illustrates the practice

of estimating the rate-distortion characteristics of a coder by plotting measured coding

rate and distortion values. The lower convex hull of the plotted measurements forms

an approximation to the rate-distortion function.

0

200

400

600

800

1000

1200

1400

1600

0 2 4 6 8 10

R
at

e
(b

its
/u

ni
t)

Distortion (MSE)

Hypothetical R(D)
Coder 1
Coder 2

Fig. 1.27 Comparison of Coders Using Operational Rate-Distortion. This

�gure shows how two coders can be evaluated by comparing their operational rate-

distortion curves. From this plot, it can be seen that Coder 1 performs better than

Coder 2 for coding rates greater than about 600 bits/unit.

LOSSY CODING AND RATE-DISTORTION 37

1.8.3 Budget-Constrained Bit Allocation

A problem that well illustrates the operational rate-distortion framework is
the budget-constrained bit allocation problem, which we state below. Without
loss of generality, quantization is the coding parameter to be adjusted.

Problem 1.1 Given a set of quantizers
�
q1; q2; : : : ; qM

	
, a sequence of N

blocks, and a target bit budget B, determine an assignment of quantizers Q =
hQ1; Q2; : : : ; QNi to each block that minimizes a distortion measure D(Q) and
uses R(Q) � B bits.

1.8.4 Viterbi Algorithm

Problem 1.1 can be solved using a dynamic programming algorithm commonly
referred to as the Viterbi algorithm (VA) [18, 77]. Assuming that quantization
always produces an integral number of bits, the Viterbi algorithm works by
�rst constructing a trellis of nodes and then �nding a shortest path through
the trellis. Each node represents a state and each edge a transition between
states. For the bit allocation problem, we identify each state with a tuple
(b; t; d; p), where t is a time index, b is the total number of bits used in
an allocation for the sequence of blocks hx1; x2; : : : ; xti, d is the minimum
sum distortion for any allocation to those blocks using exactly b bits, and p

is a pointer back to a previous state. There is a single start state labeled
(0; 0; 0; 0).

Starting with the start state, we construct the trellis by adding an edge for
each choice of quantizer and creating a corresponding set of new states. The
new states record the number of bits and minimum distortion for all choices of
quantizer for coding the �rst block. There may be more than one edge entering
a new state if more than one quantizer results in the same number of bits.
However, only the minimum distortion is recorded as d, and p is made to point
to a source state that results in the minimum distortion. In case more than
one incoming edge produces the minimum distortion, the pointer can point to
any of the edges with the minimum distortion. This process is repeated so that
new states for time index k+1 are constructed by adding edges corresponding
to the quantization of block xk+1 to the states with time index k. In the trellis
construction, we prune out those states whose bit consumption exceeds the bit
budget B. After the states with time index N have been constructed, we pick
a state with time index N that has the minimum distortion. The sequence of
bit allocations can then be constructed by following the pointers p back from
the end state to the start state.

A simple example with M = 2 and N = 3 is shown in Figure 1.28 to
illustrate the Viterbi algorithm. In the example, the shaded node marks a
state that exceeds the bit budget B and can be pruned. An optimal path is
shown with thick edges. As in this example, there may be more than one path
with the minimum distortion.

38 PRELIMINARIES

Time

B
its

(0,0,0,0)

budget B

Fig. 1.28 Trellis Construction by the Viterbi Algorithm. This �gure shows

an example of a trellis constructed with the Viterbi Algorithm. The shaded node

marks a state that exceeds the bit budget B and can be pruned. An optimal path is

shown with thick edges. Note that there may be more than one optimal path.

1.8.5 Lagrange Optimization

Although the Viterbi algorithm �nds an optimal solution to Problem 1.1,
it is computationally expensive. There could potentially be an exponential
number of states generated, on the order of MN .

Shoham and Gersho [72] give an e�cient bit allocation algorithm based
upon the Lagrange multiplier method [17]. In this method, Problem 1.1,
a constrained optimization problem, is transformed to the following uncon-
strained optimization problem:

Problem 1.2 Given a set of M quantizers
�
q1; q2; : : : ; qM

	
, a sequence of

N blocks, and a parameter �, determine an assignment of quantizers Q =
hQ1; Q2; : : : ; QNi to each block that minimizes the cost function C�(Q) =
D(Q) + �R(Q).

Here the parameter � is called the Lagrange multiplier. Let Q�(�) denote
an optimal assignment of quantizers for Problem 1.2 given �, and let R

�
Q�(�)

�
denote the resulting total number of bits allocated. (There may be more than
one optimal solution for a given �, with each solution having a di�erent coding
rate R.) It can be shown that a solution to Problem 1.2 is also a solution
to Problem 1.1 with B = R

�
Q
�(�)

�
, where B is the target bit budget of

Problem 1.1. This is proved in [17], and we reproduce the theorem and proof
as presented in [72].

Theorem 1.1 For any � � 0, a solution Q�(�) to Problem 1.2 is also a

solution to Problem 1.1 with the constraint R(Q) � R
�
Q�(�)

�
.

LOSSY CODING AND RATE-DISTORTION 39

Proof : For the solution Q�(�), we have

D
�
Q�(�)

�
+ �R

�
Q�(�)

�
� D(Q) + �R(Q)

for all quantizer allocations Q. Equivalently, we have

D
�
Q�(�)

�
�D(Q) � �R(Q)�R

�
Q�(�)

�

for all Q. In particular, this result applies for all Q belonging to the set

S� =
�
Q
�� R(Q) � R

�
Q�(�)

�	
:

Since � � 0 and R(Q)�R
�
Q�(�)

�
� 0 for Q 2 S�, we have

D
�
Q�(�)

�
�D(Q) � 0; for Q 2 S�:

Therefore Q�(�) is a solution to the constrained problem.

The Lagrange multiplier � can be viewed as determining a tradeo� between
coding rate and distortion. A low value for � favors minimizing distortion over
coding rate, and a high value favors minimizing coding rate over distortion. In
the limit, when � = 0, we are minimizing distortion; as �!1, we minimize
coding rate.

Lagrange optimization can be interpreted graphically as shown in Fig-
ure 1.29. The minimization of the Lagrange cost function C� can be viewed
as �nding the last point or points intersected in the rate-distortion plane as
a line with slope �� is swept from right to left. In the example shown, there
are two such points. From this graphical view, we can easily see that the only
points that can be found by Lagrange optimization are those that lie on the
convex hull of the set of all points. This is a fundamental limitation of the
Lagrange method.

In light of the above limitation, Theorem 1.1 does not guarantee that a
solution for the constrained Problem 1.1 can always be found by solving the
unconstrained Problem 1.2. It only applies for cases where there is a value
for � such that the number of bits used in a solution to Problem 1.2 is the
same as the bit budget B in Problem 1.1.

For a given bit budget B, in order to apply the Lagrange multiplier method,
we need to know what value of � to use. In practice, an iterative search
procedure can be used to determine the proper value. The search procedure
takes advantage of a useful property of Lagrange optimization: The solution
coding rate R

�
Q�(�)

�
is a nonincreasing function of �. With appropriate

initial upper and lower bounds for �, a bisection search can be performed to
�nd the proper value for �. Details of the search procedure can be found
in [72].

For an additive distortion measure, the distortion D(Q) can be expressed
as

D(Q) =
X
i

Di(Qi);

40 PRELIMINARIES

0

200

400

600

800

1000

0 2 4 6 8 10

R
at

e
(b

its
/u

ni
t)

Distortion (MSE)

Sweep

Fig. 1.29 Graphical Interpretation of Lagrange Optimization. Lagrange

optimization can be viewed as �nding the last point(s) intersected by a right-to-left

sweep of a line with slope ��. In this example, the two data points circled are found

in the minimization.

where Di(Qi) is the distortion for block i when using the quantizer speci�ed
by Qi. If we assume that the coding of each block is independent of the
quantization choices of other blocks, the coding rate R(Q) can be expressed
as

R(Q) =
X
i

Ri(Qi);

where Ri(Qi) is the coding rate for block i when using the quantizer speci�ed
by Qi. The minimization of C� in Problem 1.2 can then be expressed as

min
Q

�
C�(Q)

	
= min

Q

�
R(Q) + �D(Q)

	

= min
Q

n NX
i=1

Ri(Qi) + �

NX
i=1

Di(Qi)
o

=
NX
i=1

�
min
Qi

�
Ri(Qi) + �Di(Qi)

	�
:

In short, we can minimize C�(Q) by minimizing Ri(Qi) + �Di(Qi), with
respect to Qi, separately for each block. This property makes the Lagrange
method e�cient for applications where blocks are coded independently.

2
Lexicographic
Bit Allocation

Framework
In any lossy coding system, there is an inherent trade-o� between the coding
rate of the data and the distortion of the reconstructed signal. Often the
transmission (storage) medium is bandwidth (capacity) limited. The purpose
of rate control is to allocate bits to coding units and to regulate the coding
rate to meet the bit rate constraints imposed by the transmission or storage
medium while maintaining an acceptable level of distortion.

We consider rate control in the context of the MPEG-1 and MPEG-2 video
coding standards. In addition to specifying a syntax for the encoded bitstream
and a mechanism for decoding it, the MPEG standards de�ne a hypothetical
decoder called the Video Bu�ering Veri�er (VBV), which places quanti�able
limits on the variability in bit rate of encoded video. The VBV is diagrammed
in Figure 1.21 and described in Section 1.6.

As outlined in Section 1.6.5, the overall rate control process can be broken
down into three steps:

1. a high level bit allocation to coding units (video pictures),

2. a low level control of the quantization scale within a coding unit to
achieve the bit allocation,

3. adjustment to the quantization scale to equalize perceptual quality.

In this chapter, we develop a framework that addresses the �rst step: bit
allocation under VBV constraints and a total bit budget. This framework
consists of three components: 1) a bit-production model, 2) a novel lexico-
graphic optimality criterion, and 3) a set of bu�er constraints for constant and

41

42 LEXICOGRAPHIC BIT ALLOCATION FRAMEWORK

variable bit rate operation. We formalize bit allocation as a resource alloc-
ation problem with continuous variables and nonlinear constraints, to which
we apply a global lexicographic optimality criterion.

The global nature of the lexicographic optimization requires the use of
o�-line techniques wherein the complexities of all the coded pictures, as spec-
i�ed with bit-production models, are known prior to computing a global bit
allocation. One way to view this is as a serial computation with unlimited
lookahead, wherein the inputs are the bit-production models for each picture.
In practice, this would entail making multiple passes over the video sequence
in order to construct the models, to compute an optimal allocation, and to
compress the sequence using the computed allocation. In Chapter 5, we ex-
plore some techniques for reducing the computation by limiting the amount
of lookahead used. Recognizing that no bit-production model is completely
accurate, we develop e�cient algorithms in Chapters 5 and 6 that can recover
from model errors without having to recompute an optimal allocation from
scratch. In Chapter 7, we develop an on-line VBR rate control algorithm
based upon the optimal algorithm of Chapter 4 which, though suboptimal,
compares favorably to the optimal algorithm.

In the next two chapters, we use the lexicographic framework to analyze
bit allocation under constant bit rate and variable bit rate operation. The
analyses yield necessary and su�cient conditions for optimality that lead to
e�cient bit allocation algorithms. In Chapter 5, we describe an implemen-
tation of these algorithms within a software MPEG-2 encoder and present
simulation results.

2.1 PERCEPTUAL AND NOMINAL QUANTIZATION

As shown in Figure 1.19, the output bit rate of a typical video coder can be
regulated by adjusting a quantization scale Qs. Increasing Qs reduces the
output bit rate, but it also decreases the visual quality of the compressed
pictures. Similarly, decreasing Qs both increases the output bit rate and
improves the picture quality. Therefore by varying Qs, we can trace out a
rate vs. distortion curve, such as that shown in Figure 1.25.

Although Qs can be used to control rate and distortion, coding with a
constant value of Qs generally does not result in either constant bit rate
or constant perceived quality. Both of these factors depend upon the scene
content as well. Studies into human visual perception suggest that perceptual
distortion is correlated to certain spatial and temporal properties of a video
sequence [1, 59]. These studies lead to various techniques, called perceptual

quantization or adaptive quantization, that take into account properties of the
Human Visual System (HVS) in determining the quantization scale [11, 12,
39, 44, 65, 76, 79].

Based upon this body of work, we propose a separation of the actual quan-
tization scale Qs into a nominal quantization scale Q and a perceptual quan-

CONSTANT QUALITY 43

tization function P (I;Q) such that Qs = P (I;Q), where I denotes the block
being quantized. The function P is chosen so that if the same nominal quan-
tization scale Q is used to code two blocks, then the blocks will have the same
perceptual distortion. For example, if block i is signi�cantly more complex
than block j in a visual sense, then in order for the two blocks to have the
same perceptual distortion, the same nominal quantization scale Q must be
used. However, the actual quantization scaleQs for block i will be signi�cantly
smaller than the Qs of block j.

In this way, the nominal quantization scale Q corresponds directly to the
perceived distortion and can serve as the object for optimization. We favor a
multiplicative model where P (I;Q) = �IQ.

1 Where quantization noise is less
noticeable, such as in highly-textured regions, we can use a larger value for �I
compared with regions where quantization noise is more noticeable, such as
in relatively uniform areas. In this regards, �I can be viewed as a perceptual
weighting factor.

The problem of determining P (I;Q) has been studied elsewhere [10, 76]
and is an active area of research. It is not considered further in this book.
In this chapter, we address the assignment of nominal quantization Q to each
picture to give constant or near-constant quality among pictures while satis-
fying bit rate constraints imposed by the channel and decoder. We propose
to compute Q at the picture level; that is, we compute one Q for each picture
to be coded. Besides decreasing the computation over computing a di�er-
ent Q for each macroblock, this method results in constant perceptual quality
within each picture. The framework can certainly be generalized to other
coding units, and in principle can be applied to code other types of data, such
as images and speech.

2.2 CONSTANT QUALITY

The goal of optimal bit allocation traditionally has been to minimize an ad-
ditive distortion measure, typically mean-squared error (MSE), averaged over
coding blocks [60, 66]. Whereas this approach leverages the wealth of tools
from optimization theory and operations research, it does not guarantee the
constancy of quality that is generally desired from a video coding system. For
example, a video sequence with a constant or near-constant level of distortion
is more desirable than one with lower average distortion but higher variability,
because human viewers tend to �nd frequent changes in quality more notice-
able and annoying. A long video sequence typically contains segments which,
even if encoded at a fairly low bit rate, will not contain any disturbing quan-

1The MPEG-2 Test Model 5 [34] also uses a multiplicative formulation, whereas an additive

formulation is proposed in [63]. Our bit allocation framework works with any perceptual

quantization function that is monotonically increasing.

44 LEXICOGRAPHIC BIT ALLOCATION FRAMEWORK

tization artifacts. Improving the quality of pictures in those segments is less
important than improving the quality of pictures in segments that are more
di�cult to encode, where artifacts may be readily visible.

To address these issues, we propose a lexicographic optimality criterion that
better expresses the desired constancy of quality. The idea is to minimize
the maximum distortion of a block and then minimize the second highest
block distortion, and so on. The intuition is that doing so would equalize
distortion by limiting peaks in distortion to their minimum. As we will show
later, if a constant quality allocation is feasible, then it must necessarily be
lexicographically optimal.

2.3 BIT-PRODUCTION MODELING AND QUANTIZATION SCALE

For simplicity, we assume that each picture has a bit-production model that
relates the picture's nominal quantization scale Q to the number of coded
bits B. This assumes that the coding of one picture is independent of any
other. This independence holds for an MPEG encoding that uses only intra-
frame (I) pictures, but not for one that uses forward predictive (P) or bidi-
rectionally predictive (B) pictures, for example. In practice, the extent of the
dependency is limited to small groups of pictures. Nonetheless, we initially
assume independence to ease analysis, and we defer treatment of dependencies
until a later chapter, where we consider practical implementations.

We specify Q and B to be nonnegative real-valued variables. In practice,
the actual quantization scaleQs and the number of bits B are positive integers,
satisfying Qs = b�I �Qc. However, to facilitate analysis, we assume that there
is a continuous function for each picture that maps the nominal quantization
scale Q to B.

For a sequence of N pictures, we de�ne N corresponding bit-production
models ff1; f2; : : : ; fNg, where fk : [0;1] ! [lk; uk], with 0 � lk < uk. (We
number the N pictures in encoding order and not temporal display order. See
Figure 1.13.) For picture k, the bit production model fk maps a nominal
quantization scale Q to a corresponding number fk(Q) = B of bits. We
require the models to have the following properties:

1. fk(0) = uk,

2. fk(1) = lk,

3. fk is continuous and monotonically decreasing.

From these conditions, it follows that fk is invertible with Q = gk
�
fk(Q)

�
,

where gk = f�1k and gk : [lk; uk]! [0;1]. Like fk, the inverse gk is also
continuous and monotonically decreasing. Although monotonicity does not
always hold in practice, it is a generally accepted assumption.

In video coding systems, the number of bits produced for a picture also de-
pends upon myriad coding choices besides quantization scale, such as motion

BUFFER CONSTRAINTS 45

compensation and the mode used for coding each block. We assume that these
choices are made independent of quantization scale and prior to performing
rate control.

2.4 BUFFER CONSTRAINTS

The MPEG standards specify that an encoder should produce a bitstream that
can be decoded by a hypothetical decoder referred to as the Video Bu�ering
Veri�er (VBV), as shown in Figure 1.21 and described in Section 1.6. Data
can be transferred to the VBV either at a constant or variable bit rate.2 In
either mode of operation, the number of bits produced by each picture must
be controlled so as to satisfy constraints imposed by the operation of the
decoder bu�er, whose size Bvbv is speci�ed in the bitstream by the encoder.
The encoder also speci�es the maximum transfer rate Rmax into the VBV
bu�er and the amount of time the decoder should wait before removing and
decoding the �rst picture. In this section, we consider constraints on the
number of bits produced in each picture that follow from analysis of the VBV.

2.4.1 Constant Bit Rate

We �rst examine the mode of operation in which the compressed bitstream is
to be delivered at a constant bit rate Rmax.

De�nition 2.1 An allocation sequence s = hs1; s2; : : : ; sN i is an N -tuple
containing bit allocations for N pictures, so that sn is the number of bits
allocated to picture n, for 1 � n � N .

De�nition 2.2 Let Bvbv be the size of the VBV decoding bu�er. For 1 �
n � N , we use Bf(s; n) to denote the bu�er fullness (the number of bits in the
VBV bu�er) resulting from allocation sequence s just before the nth picture
is removed from the bu�er for decoding. We let B�

f (s; n) denote the bu�er
fullness just after the nth picture is removed from the bu�er for decoding. We
de�ne Rmax to be the rate at which bits enter the VBV bu�er, and we let Tn be
the amount of time required to display picture n. We de�ne Binc(n) = RmaxTn
to be the maximum incoming number of bits that can enter the bu�er in the
time it takes to display picture n.

The bu�er fullness levels before and after the nth picture satisfy the relation

Bf(s; n) = B�
f (s; n) + sn: (2.1)

2The MPEG-1 standard only de�nes VBV operation with a constant bit rate, whereas the

MPEG-2 standard also allows for variable bit rate.

46 LEXICOGRAPHIC BIT ALLOCATION FRAMEWORK

For constant bit rate (CBR) operation, the state of the VBV bu�er is
described by the recurrence

Bf(s; 1) = B1;

Bf(s; n+ 1) = Bf(s; n) +Binc(n)� sn;
(2.2)

where B1 is the initial bu�er fullness. Unwinding the recurrence, we can
express (2.2) as

Bf(s; n+ 1) = B1 +

nX
j=1

Binc(j)�
nX
j=1

sj : (2.3)

To prevent the VBV decoder bu�er from overowing we must have

Bf(s; n+ 1) � Bvbv: (2.4)

The MPEG standards allow pictures to be skipped in certain applications.
We assume that all pictures are coded, in which case all of picture n must
arrive at the decoder by the time it is to be decoded and displayed; that is, we
have the following upper bound on the number sn of bits allocate to picture n:

Bf(s; n) � sn; (2.5)

or equivalently,
B�
f (s; n) � 0: (2.6)

A violation of this condition is called a bu�er underow.
To derive a lower bound on the number of bits to code picture n, we can

use (2.2) and (2.4) to get

sn � Bf(s; n) +Binc(n)�Bvbv:

Since we cannot produce a negative number of bits, the lower bound on sn is

sn � max
�
Bf(s; n) +Binc(n)�Bvbv; 0

	
: (2.7)

In summary, for constant bit rate operation, in order to pass video bu�er
veri�cation, an allocation sequence s must satisfy the following for all n:

max
�
Bf(s; n) +Binc(n)�Bvbv; 0

	
� sn � Bf(s; n): (2.8)

An exemplary plot of the evolution of the bu�er fullness over time for
CBR operation is shown in Figure 2.1. In this example, the decoder waits T0
seconds before decoding and removing the �rst picture. The initial bu�er
fullness at time T0 is B1. The time to display each picture is assumed to be
a constant T seconds; that is, Binc(n) is a constant for all n. In the plot, the
upper and lower bounds for the number of bits to code picture 2 are shown
as U2 and L2, respectively.

BUFFER CONSTRAINTS 47

U2

T0 T0+T T0+2T T0+3T T0+4T

L2
B1

F
ul

ln
es

s
B

uf
fe

r

BVBV

Time

0
0

Fig. 2.1 Evolution of Bu�er Fullness for CBR Operation. This �gure plots

the evolution of the bu�er fullness of the VBV for CBR operation. Bits enter the VBV

decoder bu�er at a constant rate until time T0, when the �rst picture is decoded and

removed. Successive pictures are removed after a time interval T . Upper and lower

bounds on the number of bits that can be produced for the second picture are shown

as U2 and L2, respectively. Note that U2 = Bf(s; 2).

2.4.2 Variable Bit Rate

We now examine the scenario where the compressed video bitstream is to
be delivered at a variable bit rate (VBR). Speci�cally, we adopt the second
VBR mode of the MPEG-2 VBV model (see Section 1.6.4), where bits always
enter the VBV decoder bu�er at the peak rate Rmax until the bu�er is full.

3

Depending upon the state of the bu�er, bits enter during each display interval
at a rate that is e�ectively variable up to the peak rate Rmax. As before, we
denote the maximum number of bits entering the bu�er in the time it takes
to display picture n as Binc(n) = RmaxTn.

For VBR operation, the state of the VBV bu�er is described by

Bf(s; 1) = Bvbv;

Bf(s; n+ 1) = min
�
Bvbv; Bf(s; n) +Binc(n)� sn

	
:

(2.9)

Unlike the CBR case, the VBV bu�er is prevented from overowing by
the minimization in (2.9). When Bf(s; n) + Binc(n) � sn > Bvbv, we say

3We note that with the same bit allocation, the VBV bu�er fullness for the second VBR

mode is always equal to or higher than the fullness when operating in the �rst VBR mode.

Intuitively, if the channel bit rate is not further constrained, a lexicographically optimal bit

allocation sequence for the second VBR mode should not be worse (lexicographically) than

an optimal bit allocation sequence for the �rst VBR mode, given the same total bit budget.

48 LEXICOGRAPHIC BIT ALLOCATION FRAMEWORK

that picture n results in a virtual overow. When a virtual overow occurs,
the e�ective input rate to the VBV bu�er during that display interval is less
than the peak rate. Like the CBR case, underow is possible, and to prevent
it (2.5) must hold. The evolution of the bu�er fullness is shown for VBR
operation in Figure 2.2. The time to display each picture is assumed to be a
constant T seconds. As shown in the plot, the number of bits that enter the
bu�er during each display interval is variable, with virtual overows occurring
for pictures 2 and 4.

U2

T T T T T0 0 0 0 0+T +2T +3T +4T

F
ul

ln
es

s
B

uf
fe

r

B

0

VBV

Time

0

Fig. 2.2 Evolution of Bu�er Fullness for VBR Operation. This �gure plots

the evolution of the bu�er fullness of the VBV for VBR operation. Bits enter the VBV

bu�er at a constant rate until time T0, when the �rst picture is decoded and removed.

Successive pictures are removed after a time interval T . By the VBR property, when

the bu�er becomes full, no more bits enter until the next picture is removed; hence

there is no lower bound on the number of bits produced for a picture. The upper

bound on the number of bits for the second picture is shown as U2.

2.4.3 Encoder vs. Decoder Bu�er

In the above discussion, we have focused solely on the decoder bu�er, whereas
Figure 1.19 shows the Rate Controller monitoring the fullness of the encoder
bu�er. By assuming a �xed channel delay the encoder bu�er fullness can
be shown to mirror the decoder bu�er fullness, except for an initial startup
period. That is, an empty decoder bu�er would correspond to a full encoder
bu�er, and vice versa. The reader is referred to [68] for a more complete
discussion of bu�er constraints in video coder systems. We therefore refer
exclusively to the decoder bu�er in our discussions of the VBV.

BUFFER-CONSTRAINED BIT ALLOCATION PROBLEM 49

2.5 BUFFER-CONSTRAINED BIT ALLOCATION PROBLEM

Using the bit-production model and VBV constraints de�ned above, we now
formalize the bu�er-constrained bit allocation problem.

De�nition 2.3 A bu�er-constrained bit allocation problem P is speci�ed by
a tuple

P = hN;F;Btgt; Bvbv; B1; Binci;
where the terms are de�ned as follows:

� N is the number of pictures;

� F = hf1; f2; : : : ; fN i is a sequence of N modeling functions (as spec-
i�ed in Section 2.3) that model the relationship between the nominal
quantization scale and the number of coded bits for each picture;

� Btgt is the target number of bits to code all N pictures;

� Bvbv is the size of the VBV bu�er in bits;

� B1 is the number of bits initially in the VBV bu�er; and

� Binc(n) is a function that gives the maximum number of bits that can
enter the decoding bu�er while the nth picture is being displayed (i.e.,
between the time when the nth picture is removed from the bu�er and
the time when the (n+ 1)st picture is removed from the bu�er).

For convenience, in the sequel we shall use the shorter term \bit allocation
problem" to refer to the bu�er-constrained bit allocation problem.

De�nition 2.4 Given P = hN;F;Btgt; Bvbv; B1; Binci, an allocation se-
quence s is a legal allocation if the following conditions hold for 1 � n � N :

1.
PN

j=1 sj = Btgt.

2. Equation (2.5) holds: Bf(s; n) � sn.

3. For CBR only, (2.7) holds: sn � max
�
Bf(s; n) +Binc(n)�Bvbv; 0

	
.

In order for a CBR bit allocation problem to have a legal allocation se-
quence, we must have

Bvbv � max
1�j�N�1

�
Binc(j)

	
: (2.10)

Also, the bu�er fullness at the end of the sequence must be within bounds.
For an allocation sequence s, by (2.1) and (2.3), the �nal bu�er fullness is

B�
f (s; N) = B1 +

N�1X
j=1

Binc(j)�Btgt: (2.11)

50 LEXICOGRAPHIC BIT ALLOCATION FRAMEWORK

The bound on B�
f (s; N) is thus

0 � B�
f (s; N) � Bvbv: (2.12)

From (2.11) and (2.12), we get the following CBR bounds on Btgt:

B1 +

N�1X
j=1

Binc(j)�Bvbv � Btgt � B1 +

N�1X
j=1

Binc(j): (2.13)

A VBR bit allocation problem does not have a lower bound for the target
bit rate Btgt since the VBV does not impose a lower bound on the number
of bits produced by each picture. The upper bound for Btgt depends upon
whether max1�j�N

�
Binc(j)

	
> Bvbv. In general, the VBR upper bound

on Btgt is

Btgt � B1 +
N�1X
j=1

min
�
Binc(j); Bvbv

	
: (2.14)

However, in the sequel, we assume that max1�j�N�1
�
Binc(j)

	
� Bvbv. We

also assume that bit allocation problems are given so that a legal allocation
sequence exists.

2.6 LEXICOGRAPHIC OPTIMALITY

We now formally de�ne the lexicographic optimality criterion. As mentioned
in Section 2.1, we equate nominal quantization scale with perceptual distor-
tion and de�ne the optimality criterion based upon the nominal quantization
scale Q assigned to each picture.

Let S be the set of all legal allocation sequences for a bit allocation prob-
lem P . For an allocation sequence s 2 S, let Qs = hQs1; Qs2; : : : ; QsN i be
the quantizer values to achieve the bit allocations speci�ed by s. Thus
Qsj = gj(sj), where gj is as de�ned in Section 2.3. Ideally, we would like
an optimal allocation sequence to use a constant nominal quantization scale.
However, this may not be feasible because of bu�er constraints. We could
consider minimizing an lk norm of Qs. However, as discussed earlier, such
an approach does not guarantee constant quality where possible, and it may
result in some pictures having extreme values of Qj .

Instead, our goal is to minimize the maximum Qj . Additionally, given that
the maximum Qj is minimized, we want the second largest Qj to be as small
as possible, and so on. This condition is referred to as lexicographic optimality
in the literature (e.g., [33]).

We de�ne a sorted permutation DEC on Qs such that for DEC(Qs) =
hQsj1 ; Qsj2 ; : : : ; QsjN i we haveQsj1 � Qsj2 � � � � � QsjN . Let rank(s; k) be the kth
largest element of DEC(Qs); that is, rank(s; k) = Qsjk . We de�ne a binary
relation � on allocation sequences as follows: We say that s � s0 if and only

RELATED WORK 51

if for some 1 � k � N we have rank(s; j) = rank(s0; j) for 1 � j < k and
rank(s; k) > rank(s0; k). We de�ne s � s0 if and only if s0 � s; s � s0 if and
only if rank(s; j) = rank(s0; j) for all j. We de�ne s � s0 if and only if s � s0
or s � s0, and similarly we de�ne s � s0 if and only if s � s0 or s � s0.

De�nition 2.5 A legal allocation sequence s� is lexicographically optimal

if s� � s for all other legal allocation sequences s.

Lemma 2.1 (Constant-Q) Given a bit allocation problem P = hN , F ,

Btgt, Bvbv, B1, Binci, if there exists a legal allocation sequence s and a nom-

inal quantization scale Q such that gn(sn) is the constant value Q for all n,

where gn is de�ned as in Section 2.3, then s is the only lexicographically op-

timal allocation sequence for P .

Proof : First we prove that s is optimal. Since s is a legal allocation sequence,
we have

NX
j=1

sj =

NX
j=1

fj(Q) = Btgt:

Suppose that s is not optimal. Let s0 be an optimal allocation sequence.
Then rank(s0; k) < rank(s; k) = Q for some k, and rank(s0; j) � rank(s; j)
for all j. Therefore s0m > fm(Q) for some m and s0j � fj(Q) for all j since fj
is a decreasing function. Thus

NX
j=1

s0j >

NX
j=1

fj(Q) = Btgt:

So s0 is not a legal allocation sequence, a contradiction. Therefore s is optimal.
Now we show that s is the only optimal allocation sequence. Let s0 be an

optimal allocation sequence. Since s and s0 are both optimal, we have s � s0
and s � s0, thus implying s � s0. Therefore rank(s; j) = rank(s0; j) = Q for
all j, or simply s0 = s.

Lemma 2.1 establishes a desirable property of the lexicographic optimality
criterion: If a constant-Q allocation sequence is legal, it is the only lexico-
graphically optimal allocation sequence. This meets our objective of obtaining
a constant-quality allocation (via perceptual quantization) when feasible.

2.7 RELATED WORK

Shoham and Gersho [72] have examined the budget-constrained bit allocation
problem (see Section 1.8.3) in the context of a discrete set of independent
quantizers. A bit allocation algorithm based upon Lagrangian minimization
is presented as a more e�cient alternative to the well-known dynamic pro-
gramming solution based upon the Viterbi algorithm [18, 77]. Although it

52 LEXICOGRAPHIC BIT ALLOCATION FRAMEWORK

only solves the simple budget-constrained allocation problem, this work lays
the foundation for much of the ensuing work on optimal bit allocation.

Uz, Shapiro, and Czigler [75] examine optimal budget-constrained bit
allocation in a dependent-coding setting. They propose a parametric rate-
distortion model for intraframe coding and forward predictive coding. The
model has an exponential form and is motivated by theoretical rate-distortion
results for stationary Gaussian sources. Lagrangian minimization is chosen
as the optimization technique and a closed-form solution is obtained in terms
of known statistics and the Lagrange multiplier. A search over the Lagrange
multiplier then yields a solution to the budget-constrained problem. The au-
thors acknowledge that minimizing sum-distortion does not lead to uniform
distortion. They propose an alternate minimax formulation that minimizes
the maximum picture distortion by equating the distortion among pictures.4

Budget-constrained minimax bit allocation for dependent coding is also
considered by Schuster and Katsaggelos [70]. They provide a minimax solu-
tion by �rst showing how to �nd a minimum-rate solution given a maximum
distortion and then using an bisection search to �nd the maximum distor-
tion corresponding to the desired rate. However, the bisection search is not
guaranteed to converge in a �nite number of iterations.

Reibman and Haskell [68] derive bit rate constraints for bu�ered video
coders for a general variable bit rate channel, such as that provided by an ATM
network. The constraints take into account both the encoder and decoder
bu�ers. The bit rate constraints are used in an ad hoc algorithm that jointly
selects the channel and encoder rates.

Ortega, Ramchandran, and Vetterli [60] study the problem of optimal
bit allocation in a bu�ered video coder. The authors consider video cod-
ing with CBR bu�er constraints and formulate bit allocation as an integer-
programming problem. They assume a �nite set of quantization scales, an
integral number of coded bits, and independent coding. The problem is opti-
mally solved using a dynamic programming algorithm based upon the Viterbi
algorithm (as described in Section 1.8.4). Heuristic methods based upon La-
grangian minimization and other ad hoc techniques are proposed to provide
more e�cient, but suboptimal, solutions.

Ramchandran, Ortega, and Vetterli [66] extend the discrete optimization
framework of [60] to handle dependent coding. Except for a simple illustrative
case, computing an optimal bit allocation under the dependent framework
requires time and space exponential in the number of coding units. A heuristic
pruning technique is proposed to reduce the number of states considered.
However, the e�ectiveness of the heuristic depends upon the rate-distortion
characteristics of the source.

4Our lexicographic framework produces a minimax solution since lexicographic optimality

is a re�nement of minimax.

DISCUSSION 53

The work in [60] is further extended by Hsu, Ortega, and Reibman [32]
to include transmission over a VBR channel with delay constraints. Besides
bu�er and delay constraints, the authors also consider constraints imposed by
several policing mechanisms proposed for ATM networks. Assuming a discrete
set of quantizers and a discrete set of transmission rates, the quantization scale
and transmission rate can be jointly optimized using the Viterbi algorithm to
produce a minimum sum-distortion encoding. In the construction of the trellis
used by the Viterbi algorithm, states that violate the various constraints are
discarded. Unlike our framework, there is no explicit constraint on the total
number of bits used.

Ding [15] also considers joint control of encoder and channel rate. Instead
of considering global optimality, the author focuses on real-time control algo-
rithms. An algorithm is proposed that separates rate control into a \short-
term" process and a \long-term" process. The long term rate control sets a
base quantization scale Qseq called the sequence quantization parameter.5 In
normal operation, Qseq is used to code each picture. Long-term rate control
monitors the average fullness of a virtual encoder bu�er and adjusts Qseq to
maintain the bu�er fullness between two thresholds. Short-term rate control
is applied when the upper bound on encoder rate needs to be enforced. Several
methods are proposed for performing short-term rate control.

Chen and Hang [5] derive a model for block transform video coders that re-
lates bits, distortion, and quantization scale. Assuming a stationary Gaussian
process, the authors derive a bit-production model containing transcendental
functions. The model is applied to control the frame rate of motion-JPEG
and H.261 video coders.

In the operations research literature, lexicographic optimality has been
applied to such problems as resource location and allocation (e.g., [22, 40, 50,
52, 58, 64]) and is sometimes referred to as lexicographic minimax, since it can
be viewed as a re�nement of minimax theory.

2.8 DISCUSSION

As described above, much of the previous work on optimal rate control for
video coding use the conventional rate-distortion approach of minimizing an
additive distortion measure with budget and bu�er constraints. However,
the conventional approach does not directly achieve the constancy in quality
that is generally desired. In contrast, our proposed framework, based upon a
novel lexicographic optimality criterion, is designed to achieve constant quality
when possible and a well-de�ned notion of near-constant quality otherwise.

5The sequence quantization parameter is similar to the notion of nominal quantization scale

de�ned in Section 2.1.

54 LEXICOGRAPHIC BIT ALLOCATION FRAMEWORK

We incorporate into the framework a set of bu�er constraints based upon the
Video Bu�ering Veri�er of the popular MPEG video coding standards.

In the following chapters, we analyze rate control under both CBR and
VBR constraints, and we derive a set of necessary and su�cient conditions for
optimality. These conditions, intuitive and elegant, lead to e�cient algorithms
for computing optimal allocation sequences in polynomial time and linear
space. Based upon the analytical results and the optimal algorithms, we
develop a real-time VBR rate control algorithm in Chapter 7. This algorithm
operates with a single encoding pass and has many practical applications.

In Chapter 8, we describe some extensions to the lexicographic framework.
We show how to apply the framework to allocate bits to multiple VBR streams
for transport over a CBR channel. We also show how to adapt the operational
rate-distortion framework of [60] to perform lexicographic optimization with
a discrete set of quantizers.

3
Optimal Bit Allocation
under CBR Constraints

In this chapter, we analyze the bu�er-constrained bit allocation problem under
constant bit rate VBV constraints, as described in Section 2.4.1. The analysis
leads to an e�cient dynamic programming algorithm for computing a lexico-
graphically optimal solution. An even faster and more robust approach, based
upon the framework we present in this chapter, will be explored in Chapter 6.

Before proceeding with a formal theoretical treatment, we �rst present
some intuition for the results that follow. If we consider a video sequence as
being composed of segments of di�ering coding di�culty, a segment of \easy"
pictures can be coded at a higher quality (lower distortion) than an imme-
diately following segment of \hard" pictures if we code each segment at the
same average bit rate. Since we have a decoder bu�er, we can vary the bit rate
to some degree, depending upon the size of the bu�er. If we could somehow
\move" bits from the easy segment to the hard segment, we would be able to
code the easy segment at a lower quality than before and the hard segment at
a higher quality, thereby reducing the di�erence in perceptual quality between
the two segments. In terms of the decoder bu�er, this corresponds to �lling
up the bu�er during the coding of the easy pictures, which are coded with less
than the average bit rate. By use of the accumulated bits in the bu�er, the
hard pictures can be coded with e�ectively more than the average bit rate.

Similarly, suppose we have a hard segment followed by an easy segment.
We would like to empty the bu�er during the coding of the hard pictures in
order to use as many bits as the bu�er allows to code the hard pictures at
above the average bit rate. This simultaneously leaves room in the bu�er to
accumulate excess bits resulting from coding the subsequent easy pictures at
below the average bit rate.

55

56 OPTIMAL BIT ALLOCATION UNDER CBR CONSTRAINTS

This behavior of emptying and �lling the bu�er is intuitively desirable
because it means that we are taking advantage of the full capacity of the
bu�er. In the following analysis, we will show that such a behavior is indeed
exhibited by a lexicographically optimal bit allocation sequence.

3.1 ANALYSIS

First, we seek to prove necessary conditions for lexicographic optimality. To
do so, we use the following lemma.

Lemma 3.1 Consider two allocation sequences s and s0 that are identical

except for the bit allocations to pictures u and v. If max
�
gu(s

0
u); gv(s

0
v)
	
<

max
�
gu(su); gv(sv)

	
, where g is the quantization function de�ned in Sec-

tion 2.3, then we have s0 � s.

Proof : Suppose max
�
gu(s

0
u); gv(s

0
v)
	

< max
�
gu(su); gv(sv)

	
. Let j be

the greatest index such that rank(s; j) = max
�
gu(su); gv(sv)

	
. Then

rank(s; j) > rank(s; j + 1). Consider rank(s0; j). Either rank(s0; j) =
rank(s; j + 1) or rank(s0; j) = max

�
gu(s

0
u); gv(s

0
v)
	
. In either case,

rank(s; j) > rank(s0; j). Therefore, s0 � s.

The following important lemma establishes a set of necessary switching

conditions in order for an allocation sequence to be optimal. It states that an
optimal allocation sequence consists of segments of constant nominal quan-
tization scale Q, with changes in Q occurring only at the bu�er boundaries
(when the bu�er is empty or full). In particular, Q can decrease only when
the bu�er becomes empty, and Q can increase only when the bu�er gets full.

Lemma 3.2 Consider bit allocation problem P = hN;F;Btgt; Bvbv; B1; Binci
with CBR constraints. If s� is an optimal allocation sequence, then the fol-

lowing conditions hold for all 1 � j < N :

1. If gj(s
�
j) > gj+1(s

�
j+1) (i.e., the nominal quantization decreases), then

we have Bf(s
�; j) = s�j (or equivalently, B�

f (s
�; j) = 0) .

2. If gj(s
�
j) < gj+1(s

�
j+1) (i.e., the nominal quantization increases), then

we have Bf(s
�; j + 1) = Bvbv (or equivalently, B�

f (s
�; j) = Bvbv �

Binc(j)) .

In an optimal allocation sequence, the VBV decoder bu�er is full before
decoding starts on a relatively di�cult scene, which is marked by an increase
in Q (case 2). This policy makes the entire capacity of the decoder bu�er
available to code the more di�cult pictures. The nominal quantization scale
is increased because otherwise the scene may be too costly to encode in terms
of number of bits, even making use of the full capacity of the bu�er. On
the other hand, before decoding a relatively easy scene, which is marked by

A
N
A
LY
S
IS

5
7

1
Q

2
Q

3
Q

1
Q

2
Q

<

Q
2

Q
3

>

0

0

B

B

T
T

+
T

T
+

2T
T

+
3T

T
im

e

Buffer

0
0

0
0

1

V
B

V

Fullness

F
ig
.
3
.1

S
k
e
tc
h
o
f
P
r
o
o
f
o
f
L
e
m
m
a
3
.2
.
T
h
is
�
g
u
re

sh
ow

s
th
e
sta

te
o
f
th
e
V
B
V

b
u
�
er

fo
r
a
h
y
p
o
th
etica

l
situ

a
tio

n
w
h
ere

Q
1
<
Q

2
(ca

se
2
),
Q

2
>
Q

3
(ca

se
1
),
a
n
d
th
e

sw
itch

in
g
co
n
d
itio

n
s
o
f
L
em

m
a
3
.2

a
re

n
o
t
m
et.

T
h
e
d
a
sh
ed

lin
es

sh
ow

th
e
e�
ects

o
f

in
crea

sin
g
Q

1
a
n
d
d
ecrea

sin
g
Q

2
w
ith

o
u
t
ch
a
n
g
in
g
th
e
to
ta
l
n
u
m
b
er

o
f
b
its

a
llo
ca
ted

.

T
h
e
d
o
tted

lin
es

sh
ow

th
e
e�
ects

o
f
d
ecrea

sin
g
Q

2
a
n
d
in
crea

sin
g
Q

3
w
h
ile

m
a
in
ta
in
in
g

th
e
to
ta
l
b
it
a
llo
ca
tio

n
.

a
d
ecrea

se
in

Q
(ca

se
1
),
th
e
b
u
�
er

is
em

p
tied

in
o
rd
er

to
p
rov

id
e
th
e
m
o
st

sp
a
ce

to
a
ccu

m
u
la
te

b
its

w
h
en

th
e
ea
sy

scen
e
u
ses

less
th
a
n
th
e
av
era

g
e
b
it

ra
te.

T
h
ese

o
b
serva

tio
n
s
a
g
ree

w
ith

th
e
in
tu
itio

n
s
p
rov

id
ed

ea
rlier.

A
sk
etch

o
f
th
e
p
ro
o
f
o
f
L
em

m
a
3
.2

is
sh
ow

n
in

F
ig
u
re

3
.1
.
T
h
e
p
ro
o
f
is

b
y
co
n
tra

d
ictio

n
.
In

th
e
�
g
u
re,

th
e
V
B
V

b
u
�
er

is
sh
ow

n
fo
r
a
h
y
p
o
th
etica

l
situ

a
tio

n
in

w
h
ich

Q
1
<
Q
2
a
n
d
Q
2
>
Q
3
a
n
d
th
e
sw
itch

in
g
co
n
d
itio

n
s
a
re

n
o
t
m
et.

B
y
n
ecessity,

th
ere

is
a
slig

h
t
a
sy
m
m
etry

in
w
h
a
t
w
e
m
ea
n
b
y
th
e

b
u
�
er

b
ein

g
fu
ll
a
n
d
th
e
b
u
�
er

b
ein

g
em

p
ty
:
W
e
ta
lk

a
b
o
u
t
th
e
b
u
�
er

b
ein

g
fu
ll
befo

re
th
e
n
ext

p
ictu

re
is
rem

o
ved

fro
m

th
e
bu
�
er.

T
h
e
b
u
�
er

in
clu

d
es
th
e

in
co
m
in
g
b
its

th
a
t
a
rriv

e
w
h
ile

th
e
cu
rren

t
p
ictu

re
is
b
ein

g
d
isp

lay
ed
.
O
n
th
e

o
th
er

h
a
n
d
,
w
e
ta
lk

a
b
o
u
t
th
e
b
u
�
er

b
ein

g
em

p
ty

a
fter

th
e
cu
rren

t
p
ictu

re
is

rem
o
ved

fro
m

th
e
bu
�
er.

In
th
is
ca
se,

th
e
b
u
�
er
d
o
es
n
o
t
in
clu

d
e
th
e
in
co
m
in
g

b
its

th
a
t
a
rriv

e
d
u
rin

g
th
e
d
isp

lay
o
f
th
e
cu
rren

t
p
ictu

re.
C
a
se

2
co
rresp

o
n
d
s
to

th
e
situ

a
tio

n
Q
1
<
Q
2
(i.e.,

j
=

1
)
in

F
ig
u
re

3
.1
.

S
in
ce

th
e
b
u
�
er

is
n
o
t
fu
ll
b
efo

re
th
e
n
ex
t
p
ictu

re
(p
ictu

re
2
)
is
rem

ov
ed
,

a
n
a
ltern

a
te

a
llo
ca
tio

n
ca
n
b
e
co
n
stru

cted
th
a
t
is
th
e
sa
m
e
a
s
th
e
a
llo
ca
tio

n
sh
ow

n
,
ex
cep

t
th
a
t
th
e
V
B
V

p
lo
t
fo
llow

s
th
e
d
a
sh
ed

lin
e
fo
r
th
e
seg

m
en
t

b
etw

een
p
ictu

res
1
a
n
d
2
.
T
h
e
d
a
sh
ed

lin
e
co
rresp

o
n
d
s
to
in
crea

sin
g
Q
1
fo
r
th
e

�
rst

p
ictu

re
a
n
d
d
ecrea

sin
g
Q
2
fo
r
th
e
seco

n
d
p
ictu

re,
w
h
ile

still
m
a
in
ta
in
in
g

th
e
co
n
stra

in
t
Q
1
<

Q
2
a
n
d
n
o
t
ca
u
sin

g
th
e
b
u
�
er

to
ov
er

ow
.
T
h
is
n
ew

a
llo
ca
tio

n
seq

u
en
ce

is
lex

ico
g
ra
p
h
ica

lly
b
etter

th
a
n
b
efo

re.
In
tu
itiv

ely,
th
e

58 OPTIMAL BIT ALLOCATION UNDER CBR CONSTRAINTS

new allocation shifts bits left-to-right from a relatively easy picture (with
lower Q) to a relatively hard picture (with higher Q). This shifting of bits
can take place until the bu�er becomes full.

Case 1 corresponds to the situation Q2 > Q3 (i.e., j = 2) in Figure 3.1.
Since the bu�er is not empty after picture 2 is removed, an alternate allocation
can be constructed that is the same as the allocation shown, except that
the VBV plot follows the dotted line for the segment between pictures 2
and 3. The dotted line results from decreasing Q2 and increasing Q3 while
still maintaining Q2 > Q3 and not causing the bu�er to underow. This
new allocation sequence is lexicographically better than before. Intuitively,
the new allocation shifts bits right-to-left from a relatively easy picture (with
lower Q) to a relatively hard picture (with higher Q). This shifting of bits
can take place until the bu�er becomes empty.

We note that Lemma 2.1 follows directly from Lemma 3.2.

Proof of Lemma 3.2:
Case 1. We prove Case 1 by contradiction. Suppose that gj(s

�
j) > gj+1(s

�
j+1)

for some 1 � j < N , but that Bf(s
�; j) 6= s�j . Let � = Bf(s

�; j) � s�j . Then
by (2.5), � > 0. Consider an allocation sequence s0 that di�ers from s� only
for pictures j and j + 1; that is,

s0k = s�k; for k 2 f1; : : : ; Ng n fj; j + 1g; (3.1)

s0k 6= s�k; for k 2 fj; j + 1g: (3.2)

In order to show a contradiction, we want to �nd an assignment to s0j and s
0
j+1

that makes s0 a legal allocation sequence and \better" than s�. By \better"
we mean lexicographically smaller:

gj(s
0
j); gj+1(s

0
j+1) < gj(s

�
j); (3.3)

or equivalently
s0j > s�j (3.4)

and
s0j+1 > fj+1

�
gj(s

�
j)
�
: (3.5)

To meet the target bit rate, we must have

s0j + s0j+1 = s�j + s�j+1: (3.6)

Let � = s0j � s�j . Then s�j+1 � s0j+1 = �. By (3.4), we want � > 0. We want
to show that s0 is a legal allocation sequence for some value of � > 0. To
avoid VBV violations, (2.8) must hold for all pictures under the allocation
sequence s0. From (3.2) and (3.6), we have

Bf(s
0; k) = Bf(s

�; k); for k 6= j + 1: (3.7)

Since s� is a legal allocation sequence, there are no VBV violations for pictures
1, 2, : : :, j � 1 under s0. Furthermore, if our choice for s0j does not cause a

ANALYSIS 59

VBV violation for picture j, then we are assured that there would be no VBV
violations in pictures j + 1, j + 2, : : :, N . So we must choose s0j subject to
(2.8) and (3.4). Therefore

s�j < s0j � s�j +�: (3.8)

If 0 < � � �, then s0 is a legal allocation sequence. We also want (3.5) to
hold. For this we need

� < s�j+1 � fj+1
�
gj(s

�
j)
�
: (3.9)

Since gj(s
�
j) > gj+1(s

�
j+1), we have fj+1(gj

�
s�j)
�
< s�j+1. Therefore, s�j+1 �

fj+1
�
gj(s

�
j)
�
> 0. So for

0 < � � min
�
�; s�j+1 � fj+1

�
gj(s

�
j)
�	
; (3.10)

s0 is a legal allocation sequence that meets condition (3.3). By Lemma 3.1,
we have s0 � s�, and thus s� is not an optimal allocation sequence, a contra-
diction.

Case 2. We prove Case 2 by contradiction. Suppose that gj(s
�
j) < gj+1(s

�
j+1)

for some 1 � j < N , but that Bf(s
�; j+1) 6= Bvbv. Let � = Bvbv�Bf(s

�; j+
1); by (2.4), � > 0. Consider an allocation sequence s0 that di�ers from s�

only for pictures j and j + 1; that is,

s0k = s�k; for k 2 f1; : : : ; Ng n fj; j + 1g: (3.11)

We want to �nd an assignment to s0j and s
0
j+1 that makes s

0 a legal allocation
sequence and \better" than s�, in order to show a contradiction. By \better"
we mean lexicographically smaller:

gj(s
0
j); gj+1(s

0
j+1) < gj+1(s

�
j+1); (3.12)

or equivalently
s0j+1 > s�j+1 (3.13)

and
s0j > fj

�
gj+1(s

�
j+1)

�
: (3.14)

To meet the target bit rate, we must have

s0j + s0j+1 = s�j + s�j+1: (3.15)

Let � = s0j+1 � s�j+1. Then s�j � s0j = �. By (3.13), we want � > 0. We want
to show that s0 is a legal allocation sequence for some value of � > 0. To
avoid VBV violations, (2.8) must hold for all pictures under the allocation
sequence s0. From (3.11) and (3.15), we have

Bf(s
0; k) = Bf(s

�; k) for k 6= j + 1: (3.16)

60 OPTIMAL BIT ALLOCATION UNDER CBR CONSTRAINTS

Since s� is a legal allocation sequence, there are no VBV violations for pictures
1 to j � 1 under s0. Furthermore, if our choice for s0j does not cause a VBV
violation, then we are assured that there would be no VBV violations in
pictures j + 1 to N . So we must choose s0j subject to (2.8) and (3.13):

Bf(s
0; j + 1) = Bf(s

0; j) +Binc(j)� s0j

= Bf(s
�; j) +Binc(j)� s0j ;

Bf(s
�; j + 1) = Bf(s

�; j) +Binc(j)� s�j :

Combining the last two lines, we get

Bf(s
0; j + 1) = Bf(s

�; j + 1) + s�j � s0j

= Bvbv ��+ �

� Bvbv:

In order for the last inequality to hold, we need 0 < � � �, in which case s0

is a legal allocation sequence. We also want (3.14) to hold. For this we need

� < s�j � fj
�
gj+1(s

�
j+1)

�
: (3.17)

Since gj+1(s
�
j+1) > gj(s

�
j), we have fj

�
gj+1(s

�
j+1)

�
< s�j . Therefore, s�j �

fj
�
gj+1(s

�
j+1)

�
> 0. So for

0 < � � min
�
�; s�j � fj

�
gj+1(s

�
j+1)

�	
; (3.18)

s0 is a legal allocation sequence that meets condition (3.14). By Lemma 3.1,
we have s0 � s�, and thus s� is not an optimal allocation sequence, a contra-
diction.

The theorem that follows is the main result of this section and shows that
the switching conditions at the bu�er boundaries are not only necessary but
also su�cient for optimality. But �rst we prove a useful lemma that will be
helpful in the proof of the theorem.

Lemma 3.3 Given two integers u < v in the range [1; N], let s and s0 be

legal bit allocation sequences such that Bf(s; u) � Bf(s
0; u) and sj � s0j for all

u � j � v. Then Bf(s; v+1) = Bf(s
0; v+1) if and only if Bf(s; u) = Bf(s

0; u)
and sj = s0j for all u � j � v.

Proof : We use (2.3) to express Bf(s; v + 1) in terms of Bf(s; u):

Bf(s; u) = B1 +

u�1X
j=1

�
Binc(j)� sj

�

Bf(s; v + 1) = B1 +

vX
j=1

�
Binc(j)� sj

�

= Bf(s; u) +

vX
j=u

�
Binc(j)� sj

�
:

ANALYSIS 61

Similarly,

Bf(s
0; v + 1) = Bf(s

0; u) +

vX
j=u

�
Binc(j)� s0j

�
:

First we prove the \if" part. Suppose that Bf(s; u) = Bf(s
0; u) and sj = s0j

for all u � j � v. Then

Bf(s; v + 1) = Bf(s; u) +

vX
j=u

�
Binc(j)� sj

�

= Bf(s
0; u) +

vX
j=u

�
Binc(j)� s0j

�

= Bf(s
0; v + 1):

Now we prove the \only if" part. Suppose Bf(s; v + 1) = Bf(s
0; v + 1).

Then

Bf(s; v + 1) = Bf(s
0; v + 1);

Bf(s; u) +

vX
j=u

�
Binc(j)� sj

�
= Bf(s

0; u) +

vX
j=u

�
Binc(j)� s0j

�
;

Bf(s; u)�Bf(s
0; u) =

vX
j=u

(sj � s0j): (3.19)

But Bf(s; u) � Bf(s
0; u) and sj � s0j for u � j � v. Therefore, Bf(s; u) �

Bf(s
0; u) � 0 and

Pv

j=u(sj�s0j) � 0. Combined with (3.19), this implies that

Bf(s; u) = Bf(s
0; u) and

Pv

j=u sj =
Pv

j=u s
0
j . Since sj � s0j for u � j � v, we

get sj = s0j for u � j � v.

Now for the main result of this section:

Theorem 3.1 Given P = hN;F;Btgt; Bvbv; B1; Binci, with CBR constraints,

a legal allocation sequence s is optimal if and only if the following conditions

hold for all 1 � j � N . Also, the optimal allocation sequence is unique.

1. If gj(sj) > gj+1(sj+1) (i.e., the nominal quantization decreases), then

we have Bf(s; j) = sj (or equivalently, B
�
f (s; j) = 0).

2. If gj(sj) < gj+1(sj+1) (i.e., the nominal quantization increases), then

we have Bf(s; j+1) = Bvbv (or equivalently, B
�
f (s; j) = Bvbv�Binc(j)).

Proof : Lemma 3.2 established these condition as necessary for optimality.
Now we need to show that these conditions are also su�cient for optimality
and imply uniqueness. Let s� be an optimal allocation sequence for P . Let s
be a legal allocation sequence that meets both conditions of the theorem. We
will show that s = s�.

62 OPTIMAL BIT ALLOCATION UNDER CBR CONSTRAINTS

First let us restrict ourselves to a maximal segment of consecutive pictures
to which s assigns its maximum quantization scale Qmax. That is, let Qmax =
max1�j�N

�
gj(sj)

	
. Let u be the index of the �rst picture in such a segment.

There are two cases to consider: u = 1 and u > 1. If u = 1, then Bf(s; u) =
Bf(s

�; u) = B1. If u > 1, then since u is the index of the start of the
segment, we have gu�1(su�1) < gu(su), which by condition 2 implies that
Bf(s; u) = Bvbv. Since s

� is a legal allocation sequence, we have Bf(s
�; u) �

Bvbv = Bf(s; u). Therefore, in either case we have

Bf(s; u) � Bf(s
�; u): (3.20)

Let v be the index of the last picture of the constant-Qmax segment.
Since s� is optimal, it follows that gj(s

�
j) � Qmax for u � j � v, and

s�j � sj ; for u � j � v: (3.21)

Combining (3.20) and (3.21) we get

Bf(s
�; j) � Bf(s; j); for u � j � v: (3.22)

There are two cases for v: v = N and v < N . If v = N , then Bf(s; v + 1) =

Bf(s
�; v+1) = B1+

PN�1
j=1 Binc(j)�Btgt. If v < N , then since v is the index

of the end of the segment, we have gv(sv) > gv+1(sv+1), which implies that

Bf(s; v) = sv (3.23)

by condition 1. Since s� is a legal allocation sequence, we have Bf(s
�; v) � s�v.

Combining this with (3.23) and (3.21) we get

Bf(s
�; v) � s�v � sv = Bf(s; v): (3.24)

By (3.22) and (3.24), we have Bf(s
�; v) = Bf(s; v) and s�v = sv. As a result,

it follows that Bf(s
�; v + 1) = Bf(s; v + 1). Therefore, in either case v = N

or v < N , we have Bf(s
�; v + 1) = Bf(s; v + 1).

By (3.21) and Lemma 3.3, we have Bf(s
�; u) = Bf(s; u) and s�j = sj for

u � j � v. As a consequence, Bf(s; j) = Bf(s
�; j) for u � j � v. This means

that s and s� agree on pictures that are assigned quantization scale Qmax.
Now we consider the other segments of the video sequence, for which s does

not assign quantization scale Qmax. Let us partition pictures 1 throughN into
maximal contiguous segments such that the pictures in a segment use the same
nominal quantization scale Q. It follows that the �rst picture in a segment
is picture 1 or it uses a di�erent value of Q than the previous picture in the
video sequence. Similarly, the last picture in a segment is picture N or it uses
a value of Q di�erent from the next picture in the video sequence. Let M
be the number of such segments. We order the segments so that segment k
uses a value of Q greater than or equal to the value of Q used in the previous
segments 1, 2, . . . , k�1. We denote the value of Q used by segment k as Q(k).

ANALYSIS 63

We will show that allocation sequence s� uses the same number of bits as
allocation sequence s for each picture in segment k, for 1 � k � M . This
will establish the conditions in the theorem as necessary and show that the
optimal allocation sequence is unique. We will prove this claim by induction
on k.

Claim: Let the kth video segment start at picture uk and end at picture vk.
That is,

� Either uk = 1 or guk�1(suk�1) 6= guk(suk);

� Either vk = N or gvk(svk) 6= gvk+1(svk+1); and

� gj(sj) = Q(k), for all uk � j � vk .

Then for all uk � j � vk, we have s
�
j = sj and Bf(s; j) = Bf(s

�; j).

We have already proven the base case (k = 1) of the claim. Our inductive
hypothesis is that the claim is true for k < m. We need to show that the
claim is also true for k = m.

Consider the mth segment of consecutive pictures, which s assigns nominal
quantization scale Q(m). For notational simplicity let us denote u = um and
v = vm. By the inductive hypothesis, s and s� use the same values of Q
for all pictures in which s uses Q > Q(m). Because s� is optimal, we have
gj(s

�
j) � gj(sj) = Q(m) for u � j � v, and thus

s�j � sj ; for u � j � v: (3.25)

We consider all cases for the segment boundaries. For the left boundary
there are three cases: u = 1, gu�1(su�1) > gu(su), or gu�1(su�1) < gu(su).
If u = 1, then Bf(s

�; u) = Bf(s; u) = B1. If gu�1(su�1) > gu(su), then
from the inductive hypothesis, we have Bf(s

�; u � 1) = Bf(s; u � 1) and
s�u�1 = su�1; therefore, Bf(s

�; u) = Bf(s; u). If gu�1(su�1) < gu(su), then
from condition 2, we have Bf(s; u) = Bvbv; since s

� is a legal allocation
sequence, Bf(s

�; u) � Bvbv = Bf(s; u). Therefore, for all three cases of u, we
have

Bf(s
�; u) � Bf(s; u): (3.26)

For the right segment boundary there are three cases to consider: v = N ,
gv(sv) < gv+1(sv+1), or gv(sv) > gv+1(sv+1). If v = N , then Bf(s

�; v + 1) =
Bf(s; v + 1) = B1 +

PN�1
j=1 Binc(j)�Btgt. If gv(sv) < gv+1(sv+1), then from

the inductive hypothesis, we have Bf(s
�; v + 1) = Bf(s; v + 1).

The last case on v to consider is gv(sv) > gv+1(sv+1). From (3.25) and
(3.26) we have

Bf(s
�; j) � Bf(s; j); for u � j � v: (3.27)

From condition 1 we have
Bf(s; v) = sv: (3.28)

64 OPTIMAL BIT ALLOCATION UNDER CBR CONSTRAINTS

Since s� is a legal allocation sequence, we get Bf(s
�; v) � s�v . Combining this

with (3.25) and (3.28), we get

Bf(s
�; v) � s�v � sv = Bf(s; v): (3.29)

From (3.27) and (3.29), we get Bf(s
�; v) = Bf(s; v) and s�v = sv. And thus

we get Bf(s
�; v + 1) = Bf(s; v + 1).

Therefore, for all three cases of v, we have

Bf(s
�; v + 1) = Bf(s; v + 1): (3.30)

From (3.25), (3.26), (3.30), and Lemma 3.3, we have s�j = sj for u � j � v.
It follows that Bf(s; j) = Bf(s

�; j) for u � j � v, which proves the claim for
k = m and thus �nishes the proof by induction.

3.2 CBR ALLOCATION ALGORITHM

Theorem 3.1 is a powerful result. It says that to �nd the optimal alloc-
ation sequence, we need only �nd a legal allocation sequence that meets the
stated switching conditions. In this section, we use the technique of dynamic
programming (DP) to develop an algorithm to compute a lexicographically
optimal CBR allocation sequence in polynomial time and linear space. We
assume for purposes of this section that the bit-production model as described
in Section 2.3 is perfectly accurate. (In Chapters 5 and 6, we consider the
more realistic case in which the bit-production model is only approximately
correct.)

3.2.1 DP Algorithm

The basic idea behind dynamic programming is to decompose a given prob-
lem in terms of optimal solutions to smaller problems. All we need to do is
maintain invariant the conditions stated in Theorem 3.1 for each subproblem
we solve. We do this by constructing optimal bit allocations for pictures 1
to j that end up with the VBV bu�er in one of two states: full or empty.
These states are exactly the states where a change in the nominal quantiza-
tion scale Q may occur. For 1 � j < N , let Top[j] be the legal allocation
sequence, if such an allocation sequence exists, for pictures 1 to j that ends
up, immediately before the (j +1)st picture is removed, with the VBV bu�er
full (i.e., Bf(s

�; j + 1) = Bvbv, or equivalently B�
f (s

�; j) = Bvbv � Binc(j)).
Similarly, let Bot[j] be the legal allocation sequence for pictures 1 to j that
ends up, immediately after the jth picture is removed, with the VBV bu�er
empty (i.e., Bf(s

�; j) = s�j , or equivalently, B
�
f (s

�; j) = 0). We use Initial
to denote the empty allocation, which corresponds to the starting point with
initial bu�er fullness B1. We denote the �nal complete legal allocation se-
quence s� by Final. By (2.11), after the Nth picture is removed, the �nal

bu�er contains B1 +
PN�1

j=1 Binc(j)�Btgt bits.

CBR ALLOCATION ALGORITHM 65

Suppose that we have computed Top[k] and Bot[k] for 1 � k < j <

N . To compute Top[j], we search for a legal allocation sequence among�
Initial, Top[1], Top[2], . . . , Top[j � 1], Bot[1], Bot[2], . . . , Bot[j � 1]

	
to which we can concatenate a constant-Q segment to give a legal allocation
sequence s such that the switching conditions are met and the bu�er ends up
full (i.e., Bf(s; j+1) = Bvbv). Similarly, for Bot[j] we search for a previously
computed allocation sequence in

�
Initial, Top[1], Top[2], . . . , Top[j � 1],

Bot[1], Bot[2], . . . , Bot[j � 1]
	
, so that when it is extended by a constant-

Q segment, it meets the switching conditions and results in the bu�er being
empty (i.e., Bf(s; j) = sj , or equivalently, B

�
f (s

�; j) = 0). There is at most
one legal (and therefore optimal) allocation sequence to each state.

Once we have computed Top[N � 1] and Bot[N � 1], we can compute the
legal allocation sequence Final for all N pictures in a process similar to the
one above for computing Top[j] and Bot[j], except that the �nal allocation
results in a �nal bu�er state that gives the desired target number of bits Btgt.
We can then trace in reverse order the path of concatenated links that lead
from the empty state Initial to the �nal bu�er state Final.

The basic step in the DP algorithm is illustrated in Figure 3.2. The round
nodes represent bu�er states for which we have previously computed optimal
allocation sequences leading to that state. Each node stores the last Q used
in the legal allocation sequence leading to that state and the origin of the last
constant-Q segment leading to that state. The square node represents the
next state whose legal allocation sequence we wish to compute (e.g., Top[j]
or Bot[j], for j < N , or Final, for j = N). The dashed lines each represent
a constant-Q allocation that connects the respective nodes. To compute a
solution for the square node, we need to search for a constant-Q segment
that connects the square node with a round node such that the switching
conditions are met. The switching conditions are checked by comparing the Q
used for the segment against the last Q used in the legal solution for the round
node that the segment connects. The allocation implied by each constant-Q
segment is also checked for VBV compliance.

3.2.2 Correctness of DP Algorithm

When computing Top[j] and Bot[j] for 1 � j < N , we have insured that
the conditions of Theorem 3.1 are met. The conditions are also met in the
computation of the �nal state Final. Therefore, we end up with a legal
allocation sequence that meets the conditions of Theorem 3.1 and is thus
optimal.

3.2.3 Constant-Q Segments

We have used the concept of a constant-Q segment extensively in the above
discussion. We now formalize this concept in connection with the notion of

66 OPTIMAL BIT ALLOCATION UNDER CBR CONSTRAINTS

Initial Buffer

Fullness

Bot[1] Bot[2] Bot[j-1]

Top[1] Top[2] Top[j-1]

Next State

Fig. 3.2 Search Step in DP Algorithm. This �gure illustrates the generic search

step in the DP algorithm. To extend the legal (optimal) solution to the Next State

(which is either Top[j] or Bot[j], for j < N , or Final, for j = N), we search for for

a constant-Q connector (shown as dashed lines) that meets the switching conditions

of Theorem 3.1.

bit-production models de�ned in Section 2.3. First, we de�ne a family of
bit-production functions

�
Fi;j(Q)

	
that gives the number of bits resulting

from allocating a constant nominal quantization scale Q for pictures i to j,
inclusive:

Fi;j(Q) =
X
i�k�j

fk(Q): (3.31)

What we are really interested in, though, is the inverse of Fi;j . We denote the
inverse as Gi;j so that Gi;j = F�1

i;j . Then Gi;j(B) gives the constant Q that
results in B bits being produced by pictures i to j collectively. Since fk is
monotonically decreasing, so is Fi;j , and thus Gi;j is monotonically increasing.

3.2.4 Verifying a Constant-Q Allocation

The DP algorithm for CBR bit allocation given in Section 3.2.1 needs to verify
whether each allocation subsequence of constant nominal quantization scale Q
meets the VBV bu�er constraints. This can be done in time linear in the
length of the allocation segment by simulating the VBV. In the DP algorithm,
for each time step 1 � j < N , as shown in Figure 3.2, we need to verify the
constant-Q segments leading from the 2j � 1 round nodes

�
Initial, Top[1],

Top[2], . . . , Top[j � 1], Bot[1], Bot[2], . . . , Bot[j � 1]
	
to Top[j] and to

Bot[j], and there is a similar set of 2N � 1 veri�cations when j = N leading

to the desired �nal state Final, for a total of 2N�1+
PN�1

j=1 2(2j�1) = �(N2)
veri�cations of constant-Q allocations. If each veri�cation requires linear time
in the length of the constant-Q segment, the total complexity for the DP
algorithm is at least cubic time.

CBR ALLOCATION ALGORITHM 67

To rectify this situation, we can observe that the constant-Q allocations to
be veri�ed all start with the bu�er either full, empty, or at its initial state;
and they all end with the bu�er either full, empty, or at its �nal state. We
also note that for bit allocations to a segment of pictures (say, from frames i
to j) with a �xed initial bu�er state (say, B1) and using BT bits, there is a
continuous range of Q values that results in a legal allocation sequence. When
additional pictures are considered, this range of legal Q values never widens.
The upper bound for Q is simply the minimum Q among the constant-Q
allocation sequences for pictures i to j in which the VBV bu�er is exactly
full immediately before picture k + 1 is removed, for some i � k < j. More
formally, we have

Gi;j(BT) � min
i�k<j

n
Gi;k

�
B1 +

kX
m=i

Binc(m)�Bvbv

�o
: (3.32)

Similarly, the lower bound for Q is the maximum Q among the constant-
Q allocations for pictures i to j in which the VBV bu�er is exactly empty
immediately after picture k is removed, for some i � k < j. More formally,
we have

Gi;j(BT) � max
i�k<j

n
Gi;k

�
B1 +

kX
m=i

Binc(m)
�o

: (3.33)

For the current frame j, where 1 � j � N , we can use the above
observations to perform the O(j) VBV veri�cations (3.32) and (3.33) for
1 � i < j in constant time per veri�cation. For each 1 � i � N and the
current j, we store the values of the term on the right-hand side of (3.32)
and the term on the right-hand side of (3.33). Each time we increase j,
we can update each of these values in constant time. For example, if we
denote the term on the right-hand size of (3.32) by Ui;j , then by de�ni-
tion, Ui;j+1 = min

�
Ui;j ; Gi;j

�
B1 +

Pj

m=iBinc(m)�Bvbv

�	
. The pre�x sumPj

m=iBinc(m) can obviously be computed from
Pj�1

m=i Binc(m) in constant
time. We show in the next section how to compute Gi;j in constant time.
The total space bound to store the terms is linear.

3.2.5 Time and Space Complexity

The time complexity of the DP algorithm depends upon two main factors:
the time to compute a constant-Q segment and the time to verify whether the
constant-Q segment can be appended to one of the previously computed alloc-
ation sequences. In the last section, we discussed how to verify a constant-Q
segment, so what remains is to show how to compute a constant-Q allocation.

We assume that the bit-production model fk for picture k and the inverse
function Gi;j = F�1

i;j for pictures i to j can be evaluated in constant time
with O(N) preprocessing time and space. An example is the hyperbolic bit-

production model fk(Q) = �k=Q+�Q, for positive real values �k and �k. We

68 OPTIMAL BIT ALLOCATION UNDER CBR CONSTRAINTS

have

Fi;j(Q) =

jX
k=i

fk(Q)

=
1

Q

jX
k=i

�k +

jX
k=i

�k;

Q =

Pj
k=i �k

Fi;j(Q)�
Pj

k=i �k
: (3.34)

Since Fi;j and Gi;j are inverses, we can substitute B for Fi;j(Q) and Gi;j(B)
for Q to get

Gi;j(B) =

Pj

k=i �k

B �
Pj

k=i �k

=

Pj
k=1 �k �

Pi�1
k=1 �k

B �
Pj

k=1 �k +
Pi�1

k=1 �k
: (3.35)

We can precompute the N pre�x sums
Pj

k=1 �k and
Pj

k=1 �k, 1 � j � N ,
in linear time and space. By (3.35), we can use the pre�x sums to compute
Gi;j in constant time. The same technique can be used for bit-production
models of the form fk(Q) = �k=Q

2+ �k=Q+ k, fk(Q) = �k=Q
3+ �k=Q

2+
k=Q+ �k , and fk(Q) = �k=Q

4 + �k=Q
3 + k=Q

2 + �k=Q+ �k. Examples
of other functional forms for fk with a closed-form solution for Gi;j can be
found in [51]. Of course, we need to insure that the models are monotonically
decreasing. We discuss bit-production models further in Chapter 5, including
the important issue of how to handle inaccuracies in a model.

From what we learned in this section and the last, VBV veri�cation and
constant-Q calculation can be done in constant time with linear-time prepro-
cessing, and hence computing Top[j] and Bot[j] takes O(j) time. Therefore,
we can compute an optimal allocation sequence for the entire sequence of N
pictures in

PN
j=1 O(j) = O(N2) time. If we store pointers for tracing the

optimal sequence of concatenations, the algorithm requires O(N) space.

3.3 RELATED WORK

Lin and Chan [43] give conditions similar to the switching conditions of The-
orem 3.1 for optimal bu�ered bit allocation under a minimum sum-distortion
criterion, assuming independent convex rate-distortion functions. They use
the Lagrange multiplier method to �nd a bit allocation sequence that is op-
timal within a convex hull approximation. The optimal vector of Lagrange
multipliers consists of constant-valued segments that increase (decrease, re-
spectively) only when the decoder bu�er is full (empty).

DISCUSSION 69

Salehi et al. [69] apply the theory of majorization [53] to reduce the vari-
ability in transmission rate for stored video. The problem is to determine
a feasible transmission schedule by which a pre-compressed video bitstream
can be transmitted over a communications channel to the decoder without
underowing or overowing the decoder bu�er. As applied to that problem,
majorization results in minimizing the peak and variance in transmission rate.
Salehi et al. [69] provide an optimal smoothing algorithm that runs in time
linear in the length of the video sequence, based upon the algorithm of Lee
and Preparata [42] for �nding shortest paths in polygonal channels.

3.4 DISCUSSION

It can be easily shown that the majorization solution to optimal smoothing
of [69] is, in fact, equivalent to lexicographic minimization of the transmitted
rates, subject to the constraint that the total number of bits transmitted is
�xed. Linear running time is possible because the bu�ering constraints are
manifested as �xed upper and lower bounds on the cumulated number of bits
transmitted. In bu�er-constrained bit allocation, there is no �xed relationship
between the bit allocation on the one hand and the nominal quantization scale
(or equivalently, distortion) that is the object of optimization, but for any
given video sequence, the relationship between the two can be precomputed
in linear time and space using the approach of Section 3.2.5. As a result, the
approach of [69], when modi�ed appropriately, will yield a linear-time and
linear-space approach to bu�er-constrained bit allocation.

However, there is still one crucial di�erence between the transmission
scheduling problem of [69] and bu�er-constrained bit allocation: The bit-
production model described in Section 2.3, which is at the heart of the re-
lation between the bu�ering constraints and the quantization scale, is only
approximate in practice. The value fk(Q) is the predicted number of bits
used to encode picture k with nominal quantization scale Q, but the actual
encoding length for the kth picture will typically be di�erent. Therefore, after
encoding the kth picture, the optimal allocation sequence for the remaining
pictures would have to be recomputed. Redoing the approach of [69] after
each picture is encoded would take linear time for each 1 � k � N � 1, and
therefore the total algorithm would become O(N2).

In Chapter 5, we consider errors in the bit-production models and show
how a slight rearrangement of the DP algorithm|in which the dynamic pro-
gramming is done in reverse order with respect to the video sequence|will
allow the recomputation after each picture is encoded to be done in linear
time, and thus the resulting total time is O(N2).

In Chapter 6 we show how to do better. We develop an optimal data
structure for the bu�er-constrained bit allocation problem for the case of
inaccurate bit-production models. Recomputation after each picture takes
constant time typically and O(logN) time in the worst case. The net result is

70 OPTIMAL BIT ALLOCATION UNDER CBR CONSTRAINTS

that the entire video sequence can be encoded in linear time in practice and
always in linear space; in the worst case, the running time is O(N logN).

Another simpli�cation of our analysis to date is that the bit-production
model assumes that the coding of a particular picture is independent of the
coding of any other picture. As noted earlier, this independence assump-
tion does not hold for video coders that employ a di�erential coding scheme
such as motion compensation. In this case, the coding of a reference picture
a�ects the coding of subsequent pictures that are coded with respect to it.
Therefore, the bit-production model for picture j would depend causally not
only upon the nominal quantization scale used for picture j but also upon
the nominal quantization scale used for its reference picture. The dependent
coding problem has been addressed in the traditional distortion-minimization
framework in [66]. How e�ectively the results of this chapter can be extended
to a dependent-coding framework is an open problem.

4
Optimal Bit Allocation
under VBR Constraints

In this chapter, we analyze the bu�er-constrained bit allocation problem un-
der variable bit rate VBV constraints, as described in Section 2.4.2. The
analysis leads to an e�cient iterative algorithm for computing the unique
lexicographically optimal solution.

In CBR operation, the total number of bits that a CBR stream can use is
dictated by the channel bit rate and the bu�er size. With VBR operation, the
total number of bits has no lower bound, and its upper bound is determined
by the peak bit rate and the bu�er size. Consequently, VBR is useful and
most advantageous over CBR when the average bit rate needs to be lower than
the peak bit rate. This is especially critical in storage applications, where the
storage capacity, and not the transfer rate, is the limiting factor. Another
important application of VBR video coding is multiplexing multiple video
bitstreams over a CBR channel [27]. In this application, statistical properties
of the multiple video sequences allow more VBR bitstreams with a given peak
rate Rmax to be multiplexed onto the channel than CBR bitstreams coded at
a constant rate of Rmax.

For typical VBR applications, then, the average bit rate is lower than the
peak. In this case, bits enter the decoder bu�er at an e�ective bit rate that is
less than the peak during the display interval of many pictures. In interesting
cases, there will be segments of pictures that will be coded with an average
bit rate that is higher than the peak. This is possible because of the bu�ering.
During the display of these pictures, the VBV bu�er �lls at the peak rate.
Since these pictures require more bits to code than the peak rate, they are
\harder" to code than the other \easier" pictures.

71

72 OPTIMAL BIT ALLOCATION UNDER VBR CONSTRAINTS

In order to equalize quality, the easy pictures should be coded at the same
base quality. It does not pay to code any of the hard pictures at a quality
higher than that of the easy pictures. The bits expended to do so could
instead be better distributed to raise the quality of the easy pictures. Among
the hard pictures, there are di�erent levels of coding di�culty. Using the
same intuitions from the CBR case, we can draw similar conclusions about
the bu�er emptying and �lling behavior among the hard pictures.

In the following analysis, we show that a lexicographically optimal VBR bit
allocation sequence possesses the properties described above. In particular,
the hard segments of pictures in a VBR bit allocation sequence behave as in
a CBR setting. In fact, the VBR algorithm invokes the CBR algorithm to
allocate bits to segments of hard pictures.

4.1 ANALYSIS

For an optimal allocation sequence, let us refer to the pictures that are coded
with the best quality (i.e., with the lowest nominal quantization scale Qmin)
as \easy" pictures. Lemma 4.1 below characterizes the easy pictures (except
for picture N) as precisely those pictures whose encoding causes a virtual
bu�er overow, in which the bu�er must be �lled at less than maximum rate.
Lemma 4.2 characterizes the Nth picture as easy if the �nal bu�er state is
nonempty.

Lemma 4.1 Consider optimal allocation sequence s� for bit allocation prob-

lem P = hN;F;Btgt; Bvbv; B1; Binci with VBR constraints. If Bf(s
�; j) +

Binc(j) � s�j > Bvbv for some 1 � j � N , then gj(s
�
j) = min1�k�N

�
gk(s

�
k)
	
,

where g is the quantization function de�ned in Section 2.3.

Proof : Let Qmin = min1�k�N
�
gk(s

�
k)
	
. Let j be an index such that

Bf(s
�; j) + Binc(j) � s�j > Bvbv. Let � = Bf(s

�; j) + Binc(j) � s�j � Bvbv.
Thus, � > 0.

Suppose that gj(s
�
j) > Qmin. Let u be an index such that gu(s

�
u) = Qmin.

Consider an allocation sequence s that di�ers from s� only for pictures j
and u. We want to assign values to sj and su that make s a legal allocation
sequence with gj(sj), gu(su) < gj(s

�
j), which implies s � s�, a contradiction.

The idea is that we want to shift a (positive) number of bits, say �, from
picture u to picture j but still have a legal allocation sequence. Let sj =
s�j + � and su = s�u � � with � > 0. Then gj(sj) < gj(s

�
j) and

PN

k=1 sk =PN

k=1 s
�
k = Btgt. We �rst need to show that s does not result in a VBV bu�er

underow; that is, we want to show that Bf(s; k) � sk. There are two cases
to consider: u < j and u > j.

Case 1: u < j. Since sk = s�k for k < u, we have Bf(s; k) = Bf(s
�; k) for

k � u. And since su < s�u and sk = s�k for u < k < j, we have Bf(s; k) �
Bf(s

�; k) for u < k � j. Therefore, pictures 1 to j� 1 cannot cause any VBV

ANALYSIS 73

bu�er underows. If we choose 0 < � < �, then Bf(s; j + 1) = Bvbv and
picture j cannot cause a VBV bu�er underow. Since sk = s�k for k > j and
Bf(s; j+1) = Bf(s

�; j+1), pictures j+1 to N cannot cause any VBV bu�er
underows.

Case 2: u > j. Since sk = s�k for k < j, we have Bf(s; k) = Bf(s
�; k)

for k � j. If we choose 0 < � < �, then Bf(s; j + 1) = Bvbv and picture
j cannot cause a VBV bu�er underow. Since sk = s�k for j < k < u, and
Bf(s; j+1) = Bf(s

�; j+1) by our choice of �, pictures j+1 to u�1 cannot cause
any VBV bu�er underows. Since su < s�u, we have Bf(s; k) � Bf(s

�; k) for
k � u. Therefore, pictures u to N cannot cause any VBV bu�er underows.

Therefore, s is a legal allocation sequence with gj(sj) < gj(s
�
j). We need

to guarantee that gu(su) < gj(s
�
j) so that s � s�. Let = gj(s

�
j) � gu(s

�
u).

Since gj(s
�
j) > gu(s

�
u), we have > 0. Let � = s�u � fu(gu(s

�
u) + =2). Since

fu is decreasing and > 0, we have � > 0 and

s�u � � = fu

�
gu(s

�
u) +

2

�
;

gu(s
�
u � �) = gu(s

�
u) +

2
< gu(s

�
u) +

= gj(s
�
j):

Consider the assignment � = minf�; �=2g. There are two cases: � � �=2
and � > �=2. If � � �=2, we have � = �, from which follows gu(su) =
gu(s

�
u � �) = gu(s

�
u � �) < gj(s

�
j); since 0 < � < �, the allocation sequence s

is legal. If � > �=2, we have � = �=2. Since gu is decreasing and � > �=2, we
have gu(s

�
u��=2) < gu(s

�
u��) and thus gu(su) = gu(s

�
u��) = gu(s

�
u��=2) <

gj(s
�
j). Since 0 < � < �, the allocation sequence s is legal. Since s is a legal

allocation sequence that di�ers from s� only for pictures u and j with gu(su) <
gj(s

�
j) and gj(sj) < gj(s

�
j), from Lemma 3.1 we have s � s�, and thus s� is

not optimal, a contradiction. Therefore, gj(s
�
j) = mink

�
gk(s

�
k)
	
.

Lemma 4.2 Consider optimal allocation sequence s� for bit allocation prob-

lem P = hN;F;Btgt; Bvbv; B1; Binci with VBR constraints. If Bf(s
�; N) >

s�N , then gN(s
�
N) = min1�k�N

�
gk(s

�
k)
	
.

Proof : Let Qmin = min1�k�N
�
gk(s

�
k)
	
. Let j be an index such that

Bf(s
�; j) +Binc(j)� s�j > Bvbv. Let � = Bf(s

�; N)� s�N . Since Bf(s
�; N) >

s�N , we have � > 0. Suppose that gN (s
�
N) > Qmin. Let u be an index

such that gu(s
�
u) = Qmin. Now consider an allocation sequence s that di�ers

from s� only for pictures u and N . We want to assign values to sN and su
that make s a legal allocation sequence with gN (sN); gu(su) < gN (s

�
N), from

which will follow s � s�, a contradiction. Let sN = s�N + � and su = s�u � �

with � > 0. Then gN (sN) < gN (s
�
N) and

PN

k=1 sk =
PN

k=1 s
�
k = Btgt. We

now need to show that s does not result in a VBV bu�er underow; that is,
we want to show that Bf(s; k) � sk.

74 OPTIMAL BIT ALLOCATION UNDER VBR CONSTRAINTS

Since sk = s�k for k < u, we have Bf(s; k) = Bf(s
�; k) for k � u. Since

su < s�u and sk = s�k for u < k < N , we have Bf(s; k) � Bf(s
�; k) for u < k �

N . Therefore, pictures 1 to N � 1 cannot cause any VBV bu�er underows.
For picture N , we have Bf(s; N) � Bf(s

�; N) = � + s�N = � + sN � �.
Therefore, if we choose � < �, then Bf(s; N) > sN and picture N cannot
cause a VBV bu�er underow.

We have thus shown that s is a legal allocation sequence with gN (sN) <
gN (s

�
N). We now need to guarantee that gu(su) < gN (s

�
N). Let = gN(s

�
N)�

gu(s
�
u). Since gN(s

�
N) > gu(s

�
u), we have > 0. Let � = s�u�fu(gu(s�u)+=2).

Since fu is decreasing and > 0, we have � > 0 and

s�u � � = fu

�
gu(s

�
u) +

2

�
;

gu(s
�
u � �) = gu(s

�
u) +

2
< gu(s

�
u) +

= gN (s
�
N):

Consider the assignment � = min
�
�; �=2

	
. There are two cases: � � �=2

and � > �=2. If � � �=2, we have � = �, from which follows gu(su) =
gu(s

�
u� �) = gu(s

�
u��) < gN (s

�
N); since 0 < � < �, the allocation sequence s

is legal. If � > �=2, we have � = �=2. Since gu is decreasing and � > �=2, we
have gu(s

�
u��=2) < gu(s

�
u��) and thus gu(su) = gu(s

�
u��) = gu(s

�
u��=2) <

gN (s
�
N). Since 0 < � < �, the allocation sequence s is legal.

Since s is a legal allocation sequence that di�ers from s� only for pictures u
and N with gu(su) < gN (s

�
N) and gN(sN) < gN(s

�
N), then from Lemma 3.1,

we have s � s�, and thus s� is not optimal, a contradiction. Therefore,
gN (s

�
N) = mink

�
gk(s

�
k)
	
.

The next lemma gives a set of switching conditions for changes in Q that
are similar to the results of Lemma 3.2. Condition 1 dealing with an empty
bu�er state remains the same.

Lemma 4.3 Consider bit allocation problem P = hN;F;Btgt; Bvbv; B1; Binci
with VBR constraints. If s� is an optimal allocation sequence, then the fol-

lowing conditions hold for all 1 � j < N :

1. If gj(s
�
j) > gj+1(s

�
j+1) (i.e., the nominal quantization decreases), then

we have Bf(s
�; j) = s�j (or equivalently, B�

f (s
�; j) = 0).

2. If gj(s
�
j) < gj+1(s

�
j+1) (i.e., the nominal quantization increases), then

we have Bf(s
�; j + 1) = Bvbv and Bf(s

�; j + 1) + Binc(j + 1)� s�j+1 �
Bvbv.

Proof :
Case 1. The proof is identical to the proof of Case 1 of Lemma 3.2, except
that condition (2.5) now holds instead of (2.8).

ANALYSIS 75

Case 2. Let us consider the case in which gj(s
�
j) < gj+1(s

�
j+1) for some

1 � j < N . If Bf(s
�; j + 1)+Binc(j + 1)� s�j+1 > Bvbv, then by Lemma 4.1,

we have gj+1(s
�
j+1) � gj(s

�
j), a contradiction. Therefore, we have

Bf(s
�; j + 1) +Binc(j + 1)� s�j+1 � Bvbv: (4.1)

Suppose that Bf(s
�; j + 1) < Bvbv. Let � = Bvbv � Bf(s

�; j + 1) > 0.
Consider an allocation sequence s that di�ers from s� only for pictures j and
j +1. We want to assign values to sj and sj+1 that make s a legal allocation
sequence with gj(sj), gj+1(sj+1) < gj+1(s

�
j+1), from which it will follow that

s � s�, a contradiction.
Let = gj+1(s

�
j+1)� gj(s�j) and � = s�j � fj(gj(s�j) + =2). Since gj(s

�
j) <

gj+1(s
�
j+1), we have > 0. Since fj is decreasing and > 0, we have � > 0

and

s�j � � = fj

�
gj(s

�
j) +

2

�
;

gj(s
�
j � �) = gj(s

�
j) +

2
< gj(s

�
j) +

= gj+1(s
�
j+1):

Consider the assignments sj = s�j � � and sj+1 = s�j+1 + �, where � =
minf�; �=2g. By these assignments, we have gj+1(sj+1) < gj+1(s

�
j+1). We

now show that gj(sj) < gj+1(s
�
j+1). There are two cases: � � �=2 and

� > �=2. If � � �=2, we have � = � and thus gj(sj) = gj(s
�
j � �) =

gj(s
�
j � �) < gj+1(s

�
j+1). If � > �=2, we have � = �=2. Since gj is

decreasing and � > �=2, we have gj(s
�
j � �=2) < gj(s

�
j � �) and thus

gj(sj) = gj(s
�
j � �) = gj(s

�
j � �=2) < gj+1(s

�
j+1). In either case, we have

gj(sj) < gj+1(s
�
j+1).

We need to show that allocation sequence s as de�ned above is legal. Since
sk = s�k for k < j, we have Bf(s; k) = Bf(s

�; k) for k � j. Therefore, there
are no VBV bu�er violations in pictures 1 to j � 1. Since sj < s�j , we have
Bf(s; j + 1) > Bf(s

�; j + 1), and thus picture j cannot cause a VBV bu�er
underow.

Now we need to show that pictures j +1 to N cannot cause a VBV bu�er
underow. Since we assumed that Bf(s

�; j+1) < Bvbv, we haveBf(s
�; j+1) =

Bf(s
�; j) +Binc(j)� s�j and

Bf(s; j) +Binc(j)� sj = Bf(s
�; j) +Binc(j)� (s�j � �)

= Bf(s
�; j + 1) + �

< Bf(s
�; j + 1) +�

= Bvbv:

Therefore, it follows that Bf(s; j + 1) = Bf(s; j) + Binc(j) � sj . By (4.1) we
know that Bf(s

�; j+1)+Binc(j+1)�s�j+1 � Bvbv, and hence Bf(s
�; j+2) =

76 OPTIMAL BIT ALLOCATION UNDER VBR CONSTRAINTS

Bf(s
�; j + 1) +Binc(j + 1)� s�j+1. Now,

Bf(s; j + 1) +Binc(j + 1)� sj+1

= Bf(s; j) +Binc(j)� sj +Binc(j + 1)� sj+1

= Bf(s
�; j + 1) + � +Binc(j + 1)� s�j+1 � �

= Bf(s
�; j + 1) +Binc(j + 1)� s�j+1

= Bf(s
�; j + 2)

� Bvbv:

Therefore, Bf(s; j + 2) = Bf(s
�; j + 2). Since sk = s�k for k > j + 1, we have

Bf(s; k) = Bf(s
�; k) for k > j +1. Hence, pictures j +1 to N cannot cause a

VBV bu�er underow, and s is a legal allocation sequence.
Since s is a legal allocation sequence that di�ers from s� only for pictures j

and j+1 and we have gj(sj) < gj+1(s
�
j+1) and gj+1(sj+1) < gj+1(s

�
j+1), then

from Lemma 3.1 we have s � s�, which implies that s� is not optimal, a
contradiction.

The following theorem is the main result of this section. It shows that the
minimum-Q conditions and switching conditions in the previous lemmas are
su�cient for optimality.

Theorem 4.1 Given P = hN;F;Btgt; Bvbv; B1; Binci with VBR constraints,

a legal allocation sequence s is optimal if and only if the following conditions

hold for all 1 � j � N . Also, the optimal allocation sequence is unique.

1. If Bf(s; j) +Binc(j)� sj > Bvbv, then we have gj(sj) = min
k

�
gk(sk)

	
.

2. If Bf(s
�; N) > s�N then we have gN(s

�
N) = min

1�k�N

�
gk(s

�
k)
	
.

3. If gj(sj) > gj+1(sj+1) (i.e., the nominal quantization decreases), then

we have Bf(s; j) = sj (or equivalently, B
�
f (s

�; j) = 0).

4. If gj(sj) < gj+1(sj+1) (i.e., the nominal quantization increases), then

we have Bf(s; j+1) = Bvbv and Bf(s; j+1)+Binc(j + 1)�sj+1 � Bvbv.

Proof : Lemmas 4.1, 4.2, and 4.3 establish these as necessary conditions. Now
we need to show that these conditions are also su�cient for optimality and
that they imply uniqueness.

The proof for su�ciency and uniqueness is similar to that of Theorem 3.1
except for segments with the minimum Q. Here we consider only segments
that use the minimum Q.

Let s� be an optimal allocation sequence and Qmin = minj
�
gj(sj)

	
. By

condition 2, if gN (sN) > Qmin then it must be that Bf(s; N) = sN , or equiv-
alently, Bf(s; N + 1) = Binc(N). Therefore, Bf(s; N) is known if picture N
does not use the minimum Q, and we can use arguments of Theorem 3.1. Fol-
lowing the steps of Theorem 3.1, we can show that s�j = sj for all j satisfying
gj(sj) > Qmin.

ANALYSIS 77

Let Jmin =
�
j
�� gj(sj) = Qmin

	
. Since s� is optimal, we have gj(s

�
j) �

gj(sj) for j 2 Jmin. Therefore,

s�j � sj ; for j 2 Jmin: (4.2)

Since the total number of bits allocated is the same for s and s�, the number
of bits they allocate to pictures in J must also be the same. That is,

X
j2Jmin

s�j =
X

j2Jmin

sj : (4.3)

But (4.2) and (4.3) both hold if and only if s�j = sj for j 2 Jmin. Therefore,
we have s = s�.

Although Theorem 4.1 is an important result, it does not show us how to
compute the minimum nominal quantization scale Q with which to code the
\easy" pictures. The following lemmas and theorem show that, if we relax the
bit budget constraint, we can �nd the minimum Q and therefore the optimal
allocation sequence to meet the bit budget by an iterative process, which we
describe in detail in the next section. The iterative process is guaranteed to
converge to the optimal allocation sequence in a �nite number of steps.

Lemma 4.4 Consider two VBR problems P = hN;F;Btgt; Bvbv; B1; Binci
and P 0 = hN;F;B0

tgt; Bvbv; B1; Binci with Btgt < B0
tgt, and let their optimal

allocation sequences be s and s0, respectively. It follows that s � s0.

Proof : Let Jover =
�
j
�� Bf(s; j) +Binc(j)� sj > Bvbv

	
. Then Jover contains

exactly the pictures that result in virtual overows, as de�ned in Section 2.4.2.
If we start with allocation sequence s, it is clear that we can use more bits
for the pictures in Jover without changing the bu�er fullness Bf(s; n). Let
Bover =

P
j2Jover

�
Bf(s; j) +Binc(j)� sj �Bvbv

�
. Then Bover is the maxi-

mum number of bits we can add to the pictures in Jover without changing
the bu�er fullness. Let � = B0

tgt �Btgt. There are two cases to consider:
� � Bover and � > Bover.

Case 1: � � Bover. Consider an allocation sequence s for problem P 0 con-
structed as follows: Let sj = sj for j 62 Jover. We distribute � bits to the
pictures in Jover without changing the bu�er fullness. Then we have sj � sj ,
which implies that gj(sj) � gj(sj). Since � > 0, we also have sj > sj for
some j 2 Jover. Since Bf(s; j) = Bf(s; j) for all j, allocation sequence s does
not cause any bu�er underows. We used Btgt +� = B0

tgt bits in s, and thus
s is a legal allocation sequence for P 0.

Case 2: � > Bover. Consider an allocation sequence s00 for problem P 0 con-
structed as follows: Let s00j = sj for j 62 Jover [fNg. We then distribute Bover

bits to pictures in Jover by the assignments s00j = sj + (Bf(s; j) +Binc(j) �
sj �Bvbv), for j 2 Jover . Finally, we distribute the remaining ��Bover bits
to picture N with s00N = sN +��Bover .

78 OPTIMAL BIT ALLOCATION UNDER VBR CONSTRAINTS

We have shown how to create a legal allocation sequence s00 for P 0 start-
ing with s. When we add more bits to s to form s00, we strictly decrease Q
for the pictures that we add bits to and never increase Q anywhere. There-
fore, we have s � s00. Since s0 is the optimal allocation sequence for P 0, we
have s00 � s0. Therefore, s � s0.

Lemma 4.5 Consider two VBR problems P = hN;F;Btgt; Bvbv; B1; Binci
and P 0 = hN;F;B0

tgt; Bvbv; B1; Binci with Btgt < B0
tgt, and let their optimal

allocation sequences be s and s0, respectively. It follows that sj = s0j for all

1 � j � N for which gj(sj) > min1�k�N
�
gk(sk)

	
:

Proof : We provide an inductive proof similar to that used to prove Theo-
rem 3.1. First we assume that s is not a constant-Q allocation sequence, for
if it were, the lemma would hold vacuously. Let Q(k) be the kth largest value
of Q assigned by allocation sequence s. Let Qmin be the minimum value of Q
assigned by s.

Claim: Consider a segment of consecutive pictures in the video sequence
such that

� Either u = 1 or gu�1(su�1) 6= gu(su);

� Either v = N or gv(sv) 6= gv+1(sv+1); and

� gj(sj) = Q(k) > Qmin, for all u � j � v.

Then for all u � j � v, we have sj = s0j and Bf(s; j) = Bf(s
0; j).

We �rst prove the base case (k = 1) of the claim. Consider a maximal
segment of consecutive pictures that is assigned a constant nominal quanti-
zation scale Q(1) by allocation sequence s. Let u be the index of the starting
picture of such a segment. We consider two cases: u = 1 and u > 1. If
u = 1, then Bf(s; u) = Bf(s

0; u) = B1. If u > 1, then since u is the index
of the start of the segment, we have gu�1(su�1) < gu(su), which implies that
Bf(s; u) = Bvbv by Lemma 4.3; since s

0 is a legal allocation sequence, we have
Bf(s

0; u) � Bvbv. In either case we have

Bf(s; u) � Bf(s
0; u): (4.4)

Let v be the index of the end of the segment. We consider two cases: v = N

and v < N . If v = N , then by the contrapositive of Lemma 4.2, Bf(s; v) = sv.
(Here we use the condition that Q(1) > Qmin.) If v < N , then since v is the
index of the end of the segment, we have gv(sv) > gv+1(sv+1), which implies
that Bf(s; v) = sv by Lemma 4.3. In either case we have

Bf(s; v) = sv: (4.5)

From Lemma 4.4, we have s � s0. Therefore, we have gj(s0j) � Q(1) for all j
and thus

sj � s0j ; for u � j � v: (4.6)

ANALYSIS 79

From (4.4) and (4.6) we have

Bf(s; j) � Bf(s
0; j); for u � j � v: (4.7)

Since s0 is a legal allocation sequence, we have

Bf(s
0; v) � s0v � sv = Bf(s; v): (4.8)

Combining (4.7) and (4.8), we have Bf(s; v) = Bf(s
0; v) and sv = s0v.

Therefore, Bf(s; v + 1) = Bf(s
0; v + 1). Since Q(1) > Qmin, by the contraposi-

tive of Lemma 4.2, we see that the bu�er fullness for pictures u to v is updated
as with CBR operation. Therefore, we can use the results of Lemma 3.3, which
implies that Bf(sj) = Bf(s

0; j) and sj = s0j for u � j � v, and thus the claim
is true for k = 1.

Our inductive hypothesis is that the claim is true for k < m. We need
to show that it is also true for k = m, assuming that Q(m) > Qmin. Con-
sider a segment of consecutive pictures that are assigned nominal quantization
scale Q(m). Let u be the index of the start of the segment and v the index of
the end of the segment. We consider all cases for the segment boundaries.

For the left segment boundary we consider three cases: u = 1,
gu�1(su�1) > gu(su), and gu�1(su�1) < gu(su). If u = 1, then Bf(s; u) =
Bf(s

0; u) = B1. If gu�1(su�1) > gu(su), then from the inductive hypoth-
esis, we know that Bf(s; u� 1) = Bf(s

0; u� 1) and su�1 = s0u�1; there-
fore Bf(s; u) = Bf(s

0; u). If gu�1(su�1) < gu(su), then from Lemma 4.3,
we have Bf(s; u) = Bvbv; since s

0 is a legal allocation sequence, we have
Bf(s

0; u) � Bvbv = Bf(s; u). For all three cases we have

Bf(s
0; u) � Bf(s; u): (4.9)

For the right segment boundary we consider three cases: v = N ,
gv(sv) > gv+1(sv+1), and gv(sv) < gv+1(sv+1). If v = N , then by
the contrapositive of Lemma 4.2, Bf(s; v) = sv. (We use the condition
that Q(m) 6= Qmin.) If gv(sv) > gv+1(sv+1), then by Lemma 4.3, we have
Bf(s; v) = sv. If gv(sv) < gv+1(sv+1), then from the inductive hypothesis, we
get Bf(s; v + 1) = Bf(s

0; v + 1). For the �rst two cases, we have

Bf(s; v) = sv: (4.10)

From Lemma 4.4, it follows that s � s0. Therefore, gj(s
0
j) � Q(m) for u �

j � v and thus
sj � s0j ; for u � j � v: (4.11)

From (4.9) and (4.11) we have

Bf(s; j) � Bf(s
0; j); for u � j � v: (4.12)

By (4.10), (4.11), and the fact that s0 is a legal allocation sequence, we get

Bf(s
0; v) � s0v � sv = Bf(s; v): (4.13)

80 OPTIMAL BIT ALLOCATION UNDER VBR CONSTRAINTS

Combining (4.12) and (4.13), we have Bf(s; v) = Bf(s
0; v) and sv = s0v.

Therefore, Bf(s; v + 1) = Bf(s
0; v + 1). So for all three cases for v, we have

Bf(s; v + 1) = Bf(s
0; v + 1).

Since Q(m) > Qmin, by the contrapositive of Lemma 4.2, we see that the
bu�er fullness for pictures u to v is updated in the same way as with CBR
operation. Therefore, we can use the results of Lemma 3.3, which implies that
Bf(s; j) = Bf(s

0; j) and sj = s0j for u � j � v. And thus the claim is true for
k = m, which �nishes the proof by induction.

Lemma 4.6 Consider two VBR problems P = hN;F;Btgt; Bvbv; B1; Binci
and P 0 = hN;F;B0

tgt; Bvbv; B1; Binci with Btgt < B0
tgt, and let their optimal

allocation sequences be s and s0, respectively. It follows that

min
1�j�N

�
gj(sj)

	
> min

1�j�N

�
gj(s

0
j)
	
:

Proof : Let Qmin = minj
�
gj(sj)

	
and Q0

min = minj
�
gj(s

0
j)
	
. From

Lemma 4.4 we have s � s0. From Lemma 4.5, the only pictures that can
be assigned a di�erent Q by s and s0 are those that are assigned nominal
quantization scale Qmin by s. But s � s0 which implies that s0 must assign
to some picture a nominal quantization scale lower than Qmin. Therefore,
Qmin > Q0

min.

We summarize Lemmas 4.4, 4.5, and 4.6 with the following theorem.

Theorem 4.2 Consider two VBR problems P = hN;F;Btgt; Bvbv; B1; Binci
and P 0 = hN;F;B0

tgt; Bvbv; B1; Binci with Btgt < B0
tgt, and let their optimal

allocation sequences be s and s0, respectively. It follows that

1. s � s0,

2. sj = s0j for all 1 � j � N such that gj(sj) > min
1�k�N

�
gk(sk)

	
, and

3. min
1�j�N

�
gj(sj)

	
> min

1�j�N

�
gj(s

0
j)
	
.

4.2 VBR ALLOCATION ALGORITHM

Theorems 4.1 and 4.2 give us a way to �nd the optimal allocation sequence
for a given VBR allocation problem. If we know the minimum nominal quan-
tization scale Q present in the optimal allocation sequence, then it is easy to
�nd the optimal allocation sequence. However, in general, we do not know
the minimum Q. Theorem 4.2 gives us an iterative way to �nd it.

4.2.1 VBR Algorithm

Here we sketch an iterative algorithm for computing a VBR allocation.

VBR ALLOCATION ALGORITHM 81

1. Mark all pictures as easy. Let Beasy Btgt.

2. Allocate Beasy bits collectively to the easy pictures using a constant
nominal quantizer. Let Qmin be the nominal quantizer used.

3. Simulate the VBV in VBRmode to identify hard segments of pictures. A
hard segment is one that leads to a bu�er underow when Qmin is used.
It consists of pictures that follow the most recent virtual overow up to
and including the picture the caused the underow. After identifying a
hard segment, reduce the bit allocation to the picture that caused the
underow to just prevent underow. Reset the bu�er fullness to empty
and continue the simulation, adding new pictures to the existing hard
segment if the bu�er continues to underow.

4. Allocate bits to each newly identi�ed hard segment according to the
optimal CBR algorithm, with a bit budget such that the underow is
just prevented. By preventing underow in the hard segments, we are
left with extra unallocated bits.

5. Let Bhard be the total number of bits allocated to the hard pictures.
Let Beasy Btgt �Bhard.

6. If a new hard segment was identi�ed in the most recent execution of
Step 3, go to Step 2.

4.2.2 Correctness of VBR Algorithm

We now prove that the VBR algorithm computes a lexicographically opti-
mal allocation sequence by showing that the resulting allocation satis�es the
switching conditions of Theorem 4.1.

First, we make several observations about the VBR algorithm.

1. Pictures marked \easy" are assigned the same value of Q,

2. \Hard" pictures are marked in segments that start either at the begin-
ning of the video sequence or with the bu�er full and that end with the
bu�er empty.

3. Segments of hard pictures are allocated using the CBR algorithm.

The correctness of the CBR algorithm insures that within hard segments
conditions 3 and 4 of Theorem 4.1 hold. In order to show that the other
conditions also hold, we �rst need to show that the CBR algorithm does not
assign a Q lower than the Qmin computed in Step 2.

Lemma 4.7 Let s be an allocation sequence computed by the VBR algorithm.

Let i and j denote the indices of the beginning and end, respectively, of a hard

segment as identi�ed in Step 3. Then

min
i�k�j

�
gk(sk)

	
� Qmin:

82 OPTIMAL BIT ALLOCATION UNDER VBR CONSTRAINTS

Proof : Let s0 be an allocation sequence that is the same as s except for
pictures i to j, where s0 uses Qmin. Thus, in a VBV simulation using s0

for pictures i to j, s0 does not cause a virtual overow and underows only
at picture j. Let u and v mark the beginning and end, respectively, of a
segment with the minimum Q in the CBR allocation sequence for pictures i
to j. We consider two cases for u: u = i and u > i. If u = i, then we have
Bf(s; u) = Bf(s

0; u) since sk = s0k for k < i. If u > i, then since u marks
the beginning of a segment with minimum Q in the CBR allocation sequence
for pictures i to j, from Theorem 3.1, Bf(s; u� 1) = su�1. This implies that
Bf(s; u) = Binc(u�1). Since s0 does not cause an underow for picture u�1,
Bf(s

0; u � 1) � s0u�1, which implies that Bf(s
0; u) � Binc(u � 1). In either

case, we have

Bf(s
0; u) � Bf(s; u): (4.14)

We consider two cases for v: v = j and v < j. If v = j, then Bf(s
0; v) < s0v

since an underow occurs at picture j. Thus Bf(s
0; v + 1) < Binc(v). But

since s is a legal allocation sequence, Bf(s; v + 1) � Binc(v). If v < j, then
since v marks the end of a segment with minimum Q in the CBR allocation
sequence for pictures i to j, from Theorem 3.1, Bf(s; v + 1) = Bvbv. Since s

0

does not cause virtual overow, Bf(s
0; v + 1) � Bvbv. In either case,

Bf(s
0; v + 1) � Bf(s; v + 1): (4.15)

Expanding for Bf(s; u) and Bf(s; v + 1) we have

Bf(s; u) = B1 +

u�1X
k=1

Binc(k)�
u�1X
k=1

sk; (4.16)

Bf(s; v + 1) = B1 +
vX

k=1

Binc(k)�
vX

k=1

sk: (4.17)

Subtracting (4.17) from (4.16), canceling like terms, and rearranging, we have

vX
k=u

sk =

vX
k=u

Binc(k) +Bf(s; u)�Bf(s; v + 1): (4.18)

The same manipulations with Bf(s
0; u) and Bf(s

0; v + 1) yield

vX
k=u

s0k =

vX
k=u

Binc(k) +Bf(s
0; u)�Bf(s

0; v + 1): (4.19)

Combining (4.14), (4.15), (4.18), and (4.19) we have

vX
k=u

sk �
vX

k=u

s0k: (4.20)

VBR ALLOCATION ALGORITHM 83

Pictures u to v use a constant Q in both allocation sequences s and s0,
where s uses Q = mini�k�j

�
gk(sk)

	
and s0 uses Qmin. Therefore, we have

Fu;v

�
min
i�k�j

�
gk(sk)

	�
� Fu;v(Qmin): (4.21)

Since Fu;v is a monotonically decreasing function (see Section 3.2.3), we have

min
i�k�j

�
gk(sk)

	
� Qmin:

From Lemma 4.7, we can conclude that after each iteration of the VBR
algorithm, Qmin is indeed the minimum Q. Since hard segments do not include
pictures that cause a virtual overow and does not include the last picture if
it does not cause a bu�er underow, conditions 1 and 2 of Theorem 4.1 also
hold.

We are now ready to state the main result of this section.

Theorem 4.3 (Correctness of VBR Algorithm) Each pass through the

VBR algorithm results in an allocation sequence that is lexicographically op-

timal for the number of bits actually allocated.

4.2.3 Time and Space Complexity

We note that the loop in the VBR algorithm terminates when no more hard
segments are identi�ed. This implies that the algorithm terminates after at
most N iterations, where N is the number of pictures.

Assuming that Gi;j can be evaluated in constant time, we have shown in
Section 3.2.5 that the CBR algorithm operates in O(N2) time and uses O(N)
space. Not counting the executions of the CBR algorithm, each iteration
of the VBR algorithm takes O(N) time and space. Since at most O(N)
iterations are performed, the time complexity excluding the executions of the
CBR algorithm is O(N2).

We can defer actually invoking the CBR algorithm in Step 4 of the VBR
algorithm until the end. This would avoid invoking the CBR algorithm more
than once for each hard picture. LetM be the number of hard segments found
by the VBR algorithm and Li be the size of the ith hard segment. The time
consumed by execution of the CBR algorithm can be expressed as

TCBR(N) =
MX
i=1

O(L2
i) = O

� MX
i=1

L2
i

�
: (4.22)

Since
P

i Li � N , we have
P

i L
2
i �

�P
i Li

�2 � N2: Therefore, the time
complexity of the VBR algorithm is O(N2). For cases where there are rel-
atively few hard segments, computing an optimal VBR allocation sequence

84 OPTIMAL BIT ALLOCATION UNDER VBR CONSTRAINTS

will likely be faster, in practice, than computing a CBR allocation sequence.
Furthermore, Theorem 4.3 guarantees that we can halt the VBR algorithm
after any number of iterations and have an optimal allocation sequence. The
decision to continue depends upon whether the achieved bit consumption is
acceptable. With each iteration the number of bits allocated increases.

4.3 DISCUSSION

The above complexity analysis is performed in the context of o�-line global
optimization. The vast majority of CBR video coders in operation today
work in real-time mode without the luxury of lookahead processing. Since
VBR coders can potentially give better quality for the same bit budget, they
are targeted for quality-sensitive applications (such as encoding a Hollywood
movie) where expensive o�-line processing is a viable option. However, the
above analysis does allow for \one-pass" VBR encoding. By substituting a
real-time CBR algorithm for the optimal one invoked by the VBR algorithm,
we can construct a one-pass real-time VBR encoder. Though necessarily
suboptimal, the resulting coder would have complexity comparable to existing
CBR coders. An approach along these lines is discussed in Chapter 7.

5
Implementation of

Lexicographic
Bit Allocation

In this chapter, we describe an implementation of rate control using the lexi-
cographically optimal bit allocation algorithms presented in Chapters 3 and 4
within a publicly available software MPEG-2 encoder [56]. With this imple-
mentation, we have four aims: 1) to verify the e�ectiveness of lexicographic
optimality, 2) to assess the practical implications of the assumptions made in
the framework, namely, independent coding and continuous variables, 3) to
explore various bit-production models, and 4) to develop robust techniques
for recovering from errors with the approximate bit-production models.

5.1 PERCEPTUAL QUANTIZATION

For perceptual quantization, we use the TM5 adaptive quantization scheme
(described in Section 1.6.5), where the nominal quantization scale is modu-
lated by an activity factor that is computed from the spatial activity of the
luminance blocks within a macroblock. In TM5, the actual quantization scale
used for coding a particular macroblock is determined from an initially com-
puted (global) reference quantization scale, a (local) feedback factor that is
dependent of the state of a virtual encoding bu�er, and the activity factor.
For modeling purposes, we de�ne the nominal quantization for a picture as
the average of the product of the reference quantization scale and the bu�er-
feedback factor over all coded macroblocks.

85

86 IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

5.2 BIT-PRODUCTION MODELING

The framework in Chapter 2 presumes the existence of an exact continuous
bit-production model for each picture. In practice, the rate-distortion function
of a complex encoding system, such as MPEG, cannot be determined exactly
for nontrivial classes of input. Therefore, approximate models are used in
practice.

As the complexity analyses in Sections 3.2.5 and 4.2.3 show, the run-
ning time for the optimal bit allocation algorithms depends upon the time
to evaluate Gi;j , the function that is used to compute a constant-Q allocation
sequence. In practice, therefore, the chosen models should admit e�cient
computation of Gi;j . In this section, we examine three classes of models|
hyperbolic, linear-spline, and hyperbolic-spline|for which Gi;j can be e�-
ciently computed.

5.2.1 Hyperbolic Model

In [76], the following simple hyperbolic bit-production model forms the basis
of an adaptive bit allocation algorithm:

fk(Q) =
�k

Q
+ �k; (5.1)

Fi;j(Q) =

jX
k=i

fk(Q); (5.2)

where we associate �k > 0 with the complexity of coding picture k and �k > 0
with the overhead for coding the picture. The hyperbolic model is one of
the simplest models to exhibit the monotonicity and concavity characteristic
of rate-distortion functions.1 Several instances of the hyperbolic model are
plotted in Figure 5.1. TM5 adopts a similar model where only the complexity
term is used. With adaptive quantization techniques, �k and �k are typically
estimated from the results of encoding previous pictures. The parameters can
also be determined by coding a sampling of blocks in picture k and �tting the
parameters to the coding statistics.

We saw in (3.35) that the hyperbolic model has a simple closed-form ex-
pression for the nominal quantization scale Gi;j(b) that uses a total of b bits
for pictures i, i+ 1, . . . , j:

Gi;j(b) =

Pj
k=i �k

b�
Pj

k=i �k
: (5.3)

As previously discussed in Section 3.2.5, we can precompute the cumulative
sums for �k and �k in linear time and space and then use these to computeGi;j

1Our framework only requires monotonicity and not concavity.

BIT-PRODUCTION MODELING 87

0

20

40

60

80

100

120

140

0 5 10 15 20 25 30

B
its

Quantization

f(q) = 100/q + 10
f(q) = 200/q + 20
f(q) = 400/q + 10
f(q) = 500/q + 30

Fig. 5.1 Hyperbolic Bit-Production Models. This �gure shows several in-

stances of a simple hyperbolic bit-production model.

in constant time. This results in a time complexity of O(N2) for both optimal
CBR and VBR allocation.

In related work, Ding and Liu [16] propose the following more general class
of bit-production models and describe its use in rate control:

fk(Q) =
�k

Qk
+ �k: (5.4)

The exponent parameter k is dependent on the picture type (I, P, or B)
and is intended to capture the di�erent rate-distortion characteristics for each
picture type. One drawback to (5.4) is that the model is nonlinear with
respect to the parameters, and we know of no closed-form solution to Gi;j

in the general setting. Although numerical techniques can be used to solve
for Gi;j , this could adversely a�ect the computational e�ciency of the bit
allocation algorithms.

In preliminary experiments, we �nd that the hyperbolic model works well
near the operating point where �k and �k have been determined, but is not
reliable at a distant operating point. This observation leads us to formulate
the following encoding strategy.

1. Encode the sequence using the standard TM5 coder, keeping statistics
(for each picture) on the average nominal quantization scale, the coding
rate (number of bits used), and the number of bits used to code the
quantized DCT coe�cients.

88 IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

2. Compute �k and �k from the statistics gathered in the previous encoding
pass. Allocate bits to pictures with the lexicographic bit allocation algo-
rithm and encode the sequence using this allocation, gathering statistics
as before.

3. Repeat Step 2.

The idea is that with each encoding, the accuracy of the bit models will
improve as the operating Q is determined and re�ned for each picture.

5.2.2 Linear-Spline Model

As noted above, the hyperbolic model works well with small changes in the
nominal quantization scale Q. However, with a large variation in Q between
successive pictures, as may occur with a scene change, the model becomes less
reliable. After all, the model is de�ned by only two parameters �k and �k.
Previously, we have compensated for this limitation by performing multiple
encoding passes to ensure that the parameters are determined close to the
actual operating point. We now consider a di�erent approach where more
e�ort is expended to construct more accurate bit models that are then used
to encode the video sequence in a single pass.

Lin, Ortega, and Kuo [47, 48] propose using cubic-spline interpolation mod-
els of rate and distortion in conjunction with a gradient-based rate control
algorithm [45, 46]. The spline models are computed by �rst encoding each
picture several times using a select set of M quantization scales, fq1, q2,
: : :, qMg with q1 < q2 < � � � < qM , and measuring the coding rate (actual
number of bits used). Each tuple consisting of a quantization scale and the
coding rate is called a control point. For picture i, the function between two
consecutive control points (qm; bk;m) and (qm+1; bk;m+1) has the form

fmk (Q) = ak;mQ
3 + bk;mQ

2 + ck;mQ+ dk;m: (5.5)

The real-valued parameters ak;m, bk;m, ck;m, and dk;m are computed from four
control points (qm�1; bk;m�1), (qm; bk;m), (qm+1; bk;m+1), and (qm+2; bk;m+2),
such that fmk (qm) = bk;m and fm+1

k (qm+1) = bk;m+1 and the �rst-order deriva-
tives of fmk and fm+1

k are continuous at the control points. The authors sug-
gest using the Fibonacci-like set f1, 2, 3, 5, 8, 13, 21, 31g for the control
quantization scales to exploit the exponential decay typical of rate-distortion
functions.

One drawback of a cubic-spline model is that it is generally not mono-
tonic. To ensure monotonicity, we consider a simpler linear-spline interpo-

lation bit-production model , where a line segment is used to interpolate the
bit-production function between control points. For picture k, the function
between two consecutive control points (qm; bk;m) and (qm+1; bk;m+1) has the
form

fmk (Q) = �k;mQ+ �k;m: (5.6)

BIT-PRODUCTION MODELING 89

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

B
its

Quantization

Control Points
Linear Spline

Fig. 5.2 Example of a Linear-Spline Interpolation Model. This �gure shows

how line segments are used to interpolate between control points.

We choose the control quantization scales to be f1, 2, 3, 5, 8, 13, 21, 34, 55g
to exploit the exponential-decay property of rate-distortion functions. In case
the control points themselves do not exhibit monotonicity, we enforce mono-
tonicity by skipping those control points where the monotonicity property is
violated. For nominal quantization scales less than q1 or greater than qM , we
extrapolate using the parameters �k;1, �k;1 or �k;M�1, �k;M�1, respectively.
An example of a linear-spline model is shown in Figure 5.2.

The linear-spline model gives a simple closed-form expression for the nom-
inal quantization scale Q = Gi;j(B) if we know the two control points that
bracket the resulting operating point Q. Between the control points qm
and qm+1, we have from (5.9)

Fi;j(Q) =

jX
k=i

fmk (Q) (5.7)

= Q

jX
k=i

�k;m +

jX
k=i

�k;m; (5.8)

Q =
Fi;j(Q)�

Pj
k=i �k;mPj

k=i �k;m
: (5.9)

Thus, the nominal quantization scale Q can be computed as

Q =
B �

Pj

k=i �k;mPj
k=i �k;m

: (5.10)

90 IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

Because of the monotonicity property, we can determine the correct two
bracketing control points using binary search. For example, suppose we start
with an arbitrary value of m and compute Q using (5.10). If qm � Q � qm+1

then the correct operating point Q has been found. If Q < qm, the operating
point must lie between two control points with lower indices. Similarly, if
Q > qm+1, the operating point must lie between two control points with
higher indices. A simple binary search procedure on m can be used to �nd
the correct operating point Q.

Since there are a �xed number of control points, we can compute Gi;j(B) in
constant time with linear-time preprocessing. As with the hyperbolic model,
we can compute optimal CBR and VBR allocation sequences in quadratic
time.

The cubic-spline model of [47, 48] is used in a dependent-coding framework,
where the e�ects of coding previous pictures are taken into account in the
modeling. Our framework assumes independent coding and does not take
these e�ects into account. However, from the switching theorems, we note that
an optimal allocation sequence has segments of constant Q. This provides a
basis for estimating the linear-spline model parameters. By encoding the video
sequence multiple times with a constantQ determined from the control points,
we can construct a linear-spline interpolation model for each picture. We
expect these models to be reasonably accurate within a segment of constantQ.
At the boundary between segments, however, we can expect some discrepancy
in the models for dependent pictures (P and B types).

5.2.3 Hyperbolic-Spline Model

In preliminary simulations, we found that the linear-spline model gave consis-
tently better results than the simple hyperbolic model. This improvement is
not surprising since the linear-spline model has more parameters and can bet-
ter approximate a picture's rate-distortion characteristics over a wider range of
quantization values. The hyperbolic model, on the other hand, better matches
the rate-distortion characteristics locally. These observations suggest that we
can construct a more accurate hyperbolic-spline interpolation bit-production

model by combining the two, namely, by replacing the linear interpolation in
the spline model with hyperbolic interpolation. Instead of (5.6), we use

fmk (Q) =
�k;m

Q
+ �k;m; (5.11)

to interpolate for Q within the range qm � Q < qm+1. A comparison between
linear-spline interpolation and hyperbolic-spline interpolation using the same
control points is shown in Figure 5.3. As with the linear-spline model, com-
puting a constant Q still takes constant time with linear-time preprocessing.

PICTURE-LEVEL RATE CONTROL 91

0

50

100

150

200

250

300

0 10 20 30 40 50 60

B
its

Quantization

Control Points
Linear Spline

Hyperbolic Spline

Fig. 5.3 Linear-Spline and Hyperbolic-Spline Models. This �gure illustrates

the interpolation of points between control points using linear splines and hyperbolic

splines.

5.3 PICTURE-LEVEL RATE CONTROL

A bit allocation speci�es the number of bits and the corresponding nomi-
nal quantization to be used to code each picture. Even with accurate bit-
production models, the actual number of bits produced will inevitably depart
from the model. When coding a given picture, we can either use the spec-
i�ed nominal quantization to code the entire picture, or we can control the
encoding to meet the speci�ed bit allocation. These two approaches are often
referred to as open-loop control and closed-loop control, respectively.

5.3.1 Closed-Loop Rate Control

A popular approach taken in TM5 is to regulate the quantization scale at
the macroblock level while coding a picture so that the desired bit allocation
is met. This is achieved with a closed-loop feedback mechanism using the
fullness of a virtual encoder bu�er to control the macroblock quantization.
One drawback of this technique is that the coded quality within a picture
may vary considerably, especially for a picture that contains regions of varying
complexity. With gross errors in the bit-production models, the actual average
quantization scale may di�er markedly from the desired quantization scale,
thereby adversely a�ecting the coded quality.

92 IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

5.3.2 Open-Loop Rate Control

Another approach is to perform open-loop control where the assigned nomi-
nal quantization scale is used to code a picture. We can then adjust the bit
allocation of the remaining uncoded pictures to compensate for the di�erence
between desired and actual bit production. An advantage of this approach is
that the quality is more constant within a picture. In addition, less processing
is required to code each picture. A disadvantage is that, since the bit produc-
tion is not controlled below the picture layer, the actual bit production may
vary from the target and potentially cause the bu�er to overow or underow.

After coding a picture, we can reallocate bits to the remaining pictures op-
timally (for the given models). Instead of recomputing an optimal allocation
sequence from scratch and incurring an extra factor of N in the time com-
plexity, we can take advantage of dynamic programming to increase the time
complexity by only a constant factor. We do this for a CBR allocation and for
hard pictures in a VBR allocation by constructing the dynamic programming
table in the CBR algorithm in reverse.

As presented in Section 3.2, the dynamic programming algorithm works by
solving for allocation sequences for pictures 1 to j for increasing values of j.
Alternatively we can rework the dynamic programming to compute optimal
allocation sequences for pictures j to N for decreasing values of j. The �nal
bu�er state, which we denote by Final, corresponds by (2.11) to a bu�er

fullness level of B1 +
PN�1

j=1 Binc(j) � Btgt bits. For each 1 < j � N , we
rede�ne Top[j] to represent the legal allocation sequence for pictures j, j+1,
. . . , N that starts with a full bu�er immediately before picture j is removed
(i.e., Bf(s

�; j) = Bvbv, or equivalently B
�
f (s

�; j�1) = Bvbv�Binc(j)) and ends
up in Final. We rede�ne Bot[j] to represent the legal allocation sequence
for pictures j, j + 1, . . . , N that starts with an empty bu�er immediately
after picture j � 1 is removed (i.e., Bf(s

�; j � 1) = s�j�1, or equivalently,
B�
f (s

�; j � 1) = 0 or Bf(s
�; j) = Binc(j)) and ends up in Final. We rede�ne

Initial to be the optimal allocation sequence s� for all N pictures that begins
with initial bu�er fullness level B1 and ends up in Final.

With this setup, we can use a dynamic programming procedure to compute
Top[j] and Bot[j] from

�
Top[j + 1], Top[j + 2], . . . , Top[N], Bot[j + 1],

Bot[j+2], . . . , Bot[N], Final
	
. Similarly, we can compute the full allocation

sequence Initial from
�
Top[2], Top[3], . . . , Top[N], Bot[2], Bot[3], . . . ,

Bot[N], Final
	
. As with the forward approach, each step takes linear time,

so the total running time is O(N2).
Once this reverse dynamic programming table is precomputed, we can com-

pute a revised allocation for picture j, after encoding picture j�1, by searching
for a proper constant-Q segment that starts with the corrected VBV bu�er
fullness before picture j is removed and that connects to one of the states�
Top[j + 1], Top[j + 2], . . . , Top[N], Bot[j + 1], Bot[j + 2], . . . , Bot[N],

Final
	
. With the reverse dynamic programming table available, this search

consumes O(N) time for the hyperbolic, linear-spline, and hyperbolic-spline

BUFFER GUARD ZONES 93

bit-production models (or for any bit-production model that can be computed
in constant time). The total time to recover from bit-production errors is thus
O(N) per picture, or O(N2) overall during the course of the entire video se-
quence, the same as the time complexity for computing the initial allocation.

In Chapter 6 we will show how to do the reverse preprocessing making use of
a more sophisticated technique, based upon the Lee-Preparata [42] algorithm
for �nding shortest paths in polygonal channels. The preprocessing takes
O(N logN) time. After picture j � 1 is encoded, the recomputation needed
to encode picture j will take constant time in typical cases and never more
than O(logN) time, so the total encoding time for the entire video sequence
will be O(N), in practice, and O(N logN) in the worst case. The total space
usage remains linear.

The above procedures apply to a CBR allocation and to hard pictures in
a VBR allocation (which are allocated using the CBR routine). For easy
pictures in a VBR allocation, we can simply recompute a new value for Qmin.
Here, we assume that errors in bit-production modeling are not severe enough
to change the classi�cation of hard and easy pictures.

5.3.3 Hybrid Rate Control

In early experiments, we observed that closed-loop rate control resulted in
rapid uctuations in the nominal quantization scale2 between pictures ow-
ing to the bu�er-feedback mechanism. With accurate bit-production models,
however, the need to perform low-level rate control below the picture level is
questionable. This suggests using open-loop control. As noted earlier, since we
assume independent coding, we can expect more errors in the bit-production
models at pictures where the assigned Q changes. With these observations,
we propose a hybrid rate control strategy, where closed-loop control is used
for pictures at the boundaries of a constant-Q segment and open-loop con-
trol is used for the rest. Another motivation for using closed-loop control for
boundary pictures is that the VBV bu�er should be either nearly empty or
nearly full for these pictures, and the bit rate must be carefully controlled to
avoid underowing or overowing the bu�er.

5.4 BUFFER GUARD ZONES

Even with the picture-level rate control strategies outlined above, there is still
the possibility of the VBV bu�er overowing or underowing. To safeguard
against this, we compute a bit allocation sequence using a slightly smaller
bu�er than that speci�ed in the MPEG bitstream so that we can have guard

2By nominal quantization scale, we mean the average measured macroblock quantization

scale with perceptual quantization factored out.

94 IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

BVBV

F
ul

ln
es

s
B

uf
fe

r
VBV0.95 B

VBV0.05 B
0

Guard Zones

Fig. 5.4 Guard Zones. This �gure illustrates the use of guard zones to safeguard

against underow and overow of VBV bu�er. A bit allocation is computed so that

the bu�er fullness remains between the guard zones.

zones near the top and bottom of the bu�er. For the experiments with CBR,
have we chosen to place the guard zones at 5% and 95% of maximum bu�er
size. This is illustrated in Figure 5.4. For VBR mode, the upper guard zone
is not needed since bu�er overow is not a concern.

5.5 SOFTWARE SIMULATION ENVIRONMENT

We implemented the rate control algorithms within the software encoder pro-
vided by the MPEG Software Simulation Group (MSSG) [56]. The MSSG
coder follows the TM5 coding model with minor di�erences. We made a fur-
ther modi�cation to the MSSG coder by restricting the fullness of the virtual
encoding bu�ers used to regulate the macroblock-level quantization scale to
the range [0; 2r], where r is the reaction parameter de�ned in Section 1.6.5.
In addition, we added facilities to save and restore motion vectors and coding
decisions, allowing us to test di�erent rate control algorithms while keeping
the motion vectors and coding decisions �xed.

5.6 INITIAL SIMULATIONS

In the initial set of simulations, we evaluate the e�ectiveness of the hyperbolic
model with closed-loop rate control and the linear-spline model with hybrid
rate control using the following short video clips: flower garden, football,

INITIAL SIMULATIONS 95

mobile, and table tennis. The clips are in SIF format (352� 240). In the
flower garden clip, the camera pans over a bed of brightly colored owers
with a house in the background and a tree in the foreground. The football
clip shows an action sequence from a football game, with high motion within
the scene. The mobile clip contains a scene with a lot of picture detail, moving
and rotating objects, and camera zoom. The table tennis clip contains some
action and abrupt changes in the camera angle. To simulate scene changes, the
four clips are concatenated into a 418{frame video sequence in the following
order: flower garden, mobile, football, table tennis.

The coding parameters for the simulations are listed in Table 5.1. For CBR
mode, we specify a constant bit rate of 1.0 Mbits/sec. For VBR, we use an
average bit rate of 1.0 Mbits/sec and a peak bit rate of 1.2 Mbits/sec. The
VBV bu�er size is set to 720,896 bits. The MPEG-2 TM5 CBR rate control
algorithm is used as a reference, using the same set of coding parameters. In
order to reduce factors that would a�ect the actual bit production, full-search
motion estimation is initially performed using a �xed nominal quantization
scale of 13, and the same motion vectors are then used for all the encodings.
The coding decisions, however, are still determined on-line.

In the �rst set of simulations, we used the hyperbolic model with closed-
loop rate control and performed multiple encoding passes. The results of
the encodings are presented in Table 5.2 and Figures 5.5 to 5.13. The table
collects some summary statistics for the various coders. Figures 5.5 to 5.13
contain plots showing the bu�er fullness, smoothed instantaneous bit rate,
nominal quantization, and PSNR of the various coders.

The initial pass of the Hyperbolic CBR and VBR coders used statistics
gathered with the TM5 coder in order to determine the parameters of the
bit-production models. Later passes of the Hyperbolic CBR (VBR) coder
used statistics gathered from the previous pass. From the results in Table 5.2
and Figures 5.7 to 5.9, the Hyperbolic CBR coder does not exhibit much
change between passes. However, from Table 5.2 and Figures 5.11 to 5.13,
the Hyperbolic VBR coder does show a reduction in the standard deviations
of both PSNR and nominal Q as well as better usage of the VBV bu�er with
later passes.

As evident from Figure 5.5, the TM5 coder uses only a fraction of the VBV
bu�er and maintains the bu�er relatively level. In contrast, the lexicographic
coders make better use of the VBV bu�er.

Comparing hyperbolic modeling with closed-loop rate control on the one
hand with linear-spline modeling with hybrid rate control on the other, we see
that the latter outperforms the former in all aspects. It is noteworthy that
the hyperbolic model seems to underestimate the bit production, whereas the
linear-spline model overestimates the bit production. The result is that the
nominal quantization scales used are higher than the target for the hyperbolic
model and lower for the linear-spline model.

96 IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

Table 5.1 Parameters for Initial Simulations. This table lists the coding pa-

rameters used for the initial simulations.

Value Description

418 number of frames

15 N (# of frames in GOP)

3 M (I/P frame distance)

0 ISO/IEC 11172-2 stream

0 0:frame pictures, 1:field pictures

352 horizontal_size

240 vertical_size

2 aspect_ratio: 1=square pel, 2=4:3, 3=16:9, 4=2.11:1

5 frame_rate: 1=23.976, 2=24, 3=25, 4=29.97, 5=30 frames/sec

1000000 bit_rate (bits/sec)

44 vbv_buffer_size (in multiples of 16 kbit)

0 low_delay

0 constrained_parameters_flag

4 Profile ID: Simple=5, Main=4, SNR=3, Spatial=2, High=1

8 Level ID: Low=10, Main=8, High 1440=6, High=4

1 progressive_sequence

1 chroma_format: 1=4:2:0, 2=4:2:2, 3=4:4:4

2 video_format: 0=comp,1=PAL,2=NTSC,3=SECAM,4=MAC,5=unspec

352 display_horizontal_size

240 display_vertical_size

0 intra_dc_precision: 0=8 bit, 1=9 bit, 2=10 bit, 3=11 bit

0 top_field_first

1 1 1 frame_pred_frame_dct (I P B)

0 0 0 concealment_motion_vectors (I P B)

1 1 1 q_scale_type (I P B)

1 0 0 intra_vlc_format (I P B)

0 0 0 alternate_scan (I P B)

0 repeat_first_field

1 progressive_frame

0 P distance between complete intra slice refresh

0 rate control: r (reaction parameter)

0 rate control: avg_act (initial average activity)

0 rate control: Xi (initial I frame global complexity)

0 rate control: Xp (initial P frame global complexity)

0 rate control: Xb (initial B frame global complexity)

0 rate control: d0i(initial I frame virtual buffer fullness)

0 rate control: d0p(initial P frame virtual buffer fullness)

0 rate control: d0b(initial B frame virtual buffer fullness)

3 3 23 23 P: forw_hor_f_code forw_vert_f_code search_width/height

1 1 7 7 B1: forw_hor_f_code forw_vert_f_code search_width/height

2 2 15 15 B1: back_hor_f_code back_vert_f_code search_width/height

2 2 15 15 B2: forw_hor_f_code forw_vert_f_code search_width/height

1 1 7 7 B2: back_hor_f_code back_vert_f_code search_width/height

INITIAL SIMULATIONS 97

Normalized Buffer Fullness

25

30

35

40

0 50 100 150 200 250 300 350 400 450

PS
N

R
 (

dB
)

Frame

PSNR

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

N
om

in
al

 Q

Frame

Nominal Quantization

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 50 100 150 200 250 300 350 400 450

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 5.5 Initial Simulation Results for TM5 CBR Coder.

98 IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

Normalized Buffer Fullness

25

30

35

40

0 50 100 150 200 250 300 350 400 450

PS
N

R
 (

dB
)

Frame

PSNR

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

N
om

in
al

 Q

Frame

Nominal Quantization

Actual
Target

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 50 100 150 200 250 300 350 400 450

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 5.6 Initial Simulation Results for Linear-Spline CBR Coder.

INITIAL SIMULATIONS 99

Normalized Buffer Fullness

25

30

35

40

0 50 100 150 200 250 300 350 400 450

PS
N

R
 (

dB
)

Frame

PSNR

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

N
om

in
al

 Q

Frame

Nominal Quantization

Actual
Target

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 50 100 150 200 250 300 350 400 450

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 5.7 Initial Simulation Results for Pass 1 of Hyperbolic CBR Coder.

100 IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

Normalized Buffer Fullness

25

30

35

40

0 50 100 150 200 250 300 350 400 450

PS
N

R
 (

dB
)

Frame

PSNR

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

N
om

in
al

 Q

Frame

Nominal Quantization

Actual
Target

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 50 100 150 200 250 300 350 400 450

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 5.8 Initial Simulation Results for Pass 2 of Hyperbolic CBR Coder.

INITIAL SIMULATIONS 101

Normalized Buffer Fullness

25

30

35

40

0 50 100 150 200 250 300 350 400 450

PS
N

R
 (

dB
)

Frame

PSNR

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

N
om

in
al

 Q

Frame

Nominal Quantization

Actual
Target

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 50 100 150 200 250 300 350 400 450

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 5.9 Initial Simulation Results for Pass 3 of Hyperbolic CBR Coder.

102 IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

Normalized Buffer Fullness

25

30

35

40

0 50 100 150 200 250 300 350 400 450

PS
N

R
 (

dB
)

Frame

PSNR

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

N
om

in
al

 Q

Frame

Nominal Quantization

Actual
Target

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 50 100 150 200 250 300 350 400 450

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 5.10 Initial Simulation Results for Linear-Spline VBR Coder.

INITIAL SIMULATIONS 103

Normalized Buffer Fullness

25

30

35

40

0 50 100 150 200 250 300 350 400 450

PS
N

R
 (

dB
)

Frame

PSNR

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

N
om

in
al

 Q

Frame

Nominal Quantization

Actual
Target

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 50 100 150 200 250 300 350 400 450

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 5.11 Initial Simulation Results for Pass 1 of Hyperbolic VBR Coder.

104 IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

Normalized Buffer Fullness

25

30

35

40

0 50 100 150 200 250 300 350 400 450

PS
N

R
 (

dB
)

Frame

PSNR

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

N
om

in
al

 Q

Frame

Nominal Quantization

Actual
Target

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 50 100 150 200 250 300 350 400 450

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 5.12 Initial Simulation Results for Pass 2 of Hyperbolic VBR Coder.

INITIAL SIMULATIONS 105

Normalized Buffer Fullness

25

30

35

40

0 50 100 150 200 250 300 350 400 450

PS
N

R
 (

dB
)

Frame

PSNR

5

10

15

20

25

0 50 100 150 200 250 300 350 400 450

N
om

in
al

 Q

Frame

Nominal Quantization

Actual
Target

0
5000

10000
15000
20000
25000
30000
35000
40000
45000
50000

0 50 100 150 200 250 300 350 400 450

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 5.13 Initial Simulation Results for Pass 3 of Hyperbolic VBR Coder.

106 IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

Table 5.2 Summary of Initial Simulations. This table contains summary statis-

tics for the initial coding simulations.

Rate Control PSNR (dB) Nominal Q Nominal Q

Algorithm Average Std. Dev. Average Std. Dev. Max Min

TM5 CBR 26:66 3:06 16:19 4:48 26:20 6:70

Hyperbolic
CBR, Pass 1 26:48 2:67 16:19 3:44 22:63 7:78
CBR, Pass 2 26:48 2:66 16:23 3:40 21:44 7:43
CBR, Pass 3 26:48 2:67 16:28 3:41 20:68 7:20

Linear-Spline
CBR, Hybrid 26:73 2:68 15:80 3:36 19:48 8:29

Hyperbolic
VBR, Pass 1 26:54 2:36 15:95 2:77 21:15 9:16
VBR, Pass 2 26:52 2:10 16:00 2:14 19:60 9:34
VBR, Pass 3 26:49 1:99 16:09 1:83 19:22 9:76

Linear-Spline
VBR, Hybrid 26:66 1:87 15:83 1:13 17:59 12:97

5.7 CODING A LONGER SEQUENCE

Since the video clips used in the initial experiments are short and we had
to concatenate them to form somewhat arti�cial scene changes, we were not
able to detect much perceptual di�erence between the di�erent encodings.
To assess the perceptual gains of lexicographically optimal bit allocation, we
performed additional coding simulations using a longer video sequence with
varied and dynamic content. The sequence is in NTSC CCIR-601 format and
consists of 3,660 frames of a commercial produced by IBM to demonstrate its
MPEG-2 encoding chipset. The clip starts with a fade-in to a spokeswoman
standing in front of a slowing changing background. A block diagram in one
corner of the picture then rotates and zooms to �ll the screen. The diagram
then remains static with some illumination changes before fading back to the
spokeswoman. On one side of the picture, a collage of di�erent video clips
scroll up the screen. One of the clips zooms to occupy the full picture. The
clips cycle through a variety of action-�lled scenes from horses running to a
skydiver rotating on a skateboard to a bicycle race and �nally to highlights
from a basketball game.

5.7.1 Independent Coding Simulations

With the IBM Commercial video sequence, we �rst evaluate the performance
of the lexicographic bit-allocation algorithms using only I-frames so that the
bit-production models are independent. For CBR mode, the constant bit rate
is set to 10.5 Mbits/sec with guard zones at 5% and 95%. For VBR mode,
the target average bit rate is set to 10.5 Mbits/sec with a peak bit rate of
13.5 Mbits/sec and a lower guard zone at 15%. The VBV bu�er size is set to
1,835,008 bits. The coding parameters are listed in Table 5.3.

CODING A LONGER SEQUENCE 107

Table 5.3 Parameters for Independent-Coding Simulations. This table lists

the coding parameters used for the independent-coding simulations with the IBM

Commercial sequence.

Value Description

3660 number of frames

1 N (# of frames in GOP)

1 M (I/P frame distance)

0 ISO/IEC 11172-2 stream

0 0:frame pictures, 1:field pictures

720 horizontal_size

480 vertical_size

2 aspect_ratio: 1=square pel, 2=4:3, 3=16:9, 4=2.11:1

5 frame_rate: 1=23.976, 2=24, 3=25, 4=29.97, 5=30 frames/sec

10500000 bit_rate (bits/sec)

112 vbv_buffer_size (in multiples of 16 kbit)

0 low_delay

0 constrained_parameters_flag

1 Profile ID: Simple=5, Main=4, SNR=3, Spatial=2, High=1

8 Level ID: Low=10, Main=8, High 1440=6, High=4

0 progressive_sequence

2 chroma_format: 1=4:2:0, 2=4:2:2, 3=4:4:4

2 video_format: 0=comp,1=PAL,2=NTSC,3=SECAM,4=MAC,5=unspec

720 display_horizontal_size

480 display_vertical_size

2 intra_dc_precision: 0=8 bit, 1=9 bit, 2=10 bit, 3=11 bit

1 top_field_first

0 0 0 frame_pred_frame_dct (I P B)

0 0 0 concealment_motion_vectors (I P B)

1 1 1 q_scale_type (I P B)

1 0 0 intra_vlc_format (I P B)

0 0 0 alternate_scan (I P B)

0 repeat_first_field

0 progressive_frame

0 P distance between complete intra slice refresh

0 rate control: r (reaction parameter)

0 rate control: avg_act (initial average activity)

0 rate control: Xi (initial I frame global complexity)

0 rate control: Xp (initial P frame global complexity)

0 rate control: Xb (initial B frame global complexity)

0 rate control: d0i(initial I frame virtual buffer fullness)

0 rate control: d0p(initial P frame virtual buffer fullness)

0 rate control: d0b(initial B frame virtual buffer fullness)

4 4 63 63 P: forw_hor_f_code forw_vert_f_code search_width/height

108 IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

Table 5.4 Summary of Independent-Coding Simulations. This table contains

summary statistics for the independent-coding simulations with the IBM Commercial

sequence.

Rate Control PSNR (dB) Nominal Q Nominal Q

Algorithm Average Std. Dev. Average Std. Dev. Max Min

TM5 CBR 35:03 3:53 9:93 3:81 28:97 0:48

Linear-Spline
CBR, Hybrid 35:04 3:31 9:81 3:31 19:69 0:57

Hyperbolic-Spline
CBR, Hybrid 35:04 3:29 9:80 3:29 19:11 0:74

Linear-Spline
VBR, Hybrid 34:98 2:04 9:64 0:97 14:31 7:98

Hyperbolic-Spline
VBR, Hybrid 35:01 2:03 9:58 0:91 14:18 7:99

Summary encoding statistics are listed in Table 5.4. The bu�er fullness,
smoothed instantaneous bit rate, nominal quantization, and PSNR plots are
shown in Figures 5.14 to 5.18. The di�erences between the di�erent coders
are more pronounced with these simulations than with the previous ones. The
lexicographic CBR coders are able to control the quantization to a narrower
range than the TM5 coder, with a resulting increase in PSNR. The lexico-
graphic VBR coders sacri�ce quality in earlier pictures in order to code better
the later more complex pictures. The result is that the nominal quantization
is nearly constant and the PSNR plot is more even. Among the lexicographic
coders, those using the hyperbolic-spline model slightly outperform those us-
ing the linear-spline model. Because of the better match between the ac-
tual and target nominal quantization, we conclude that the hyperbolic-spline
model is slightly more accurate than the linear-spline model.

The lexicographic VBR coders produce near constant-quality video with
few noticeable coding artifacts. In contrast, the CBR coders produce notice-
able blocking artifacts in scenes with high motion, especially in the basketball
scene. However, the lexicographic CBR coders fare noticeably better than
TM5 at maintaining constant quality through scene changes and reducing
artifacts during complex scenes of short duration.

CODING A LONGER SEQUENCE 109

Normalized Buffer Fullness

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

PSNR

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

Nominal Quantization

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

0 500 1000 1500 2000 2500 3000 3500 4000

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 5.14 Independent-Coding Results for TM5 CBR Coder.

110 IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

Normalized Buffer Fullness

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

PSNR

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

Nominal Quantization

Actual
Target

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

0 500 1000 1500 2000 2500 3000 3500 4000

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 5.15 Independent-Coding Results for Hyperbolic-Spline CBR Coder.

CODING A LONGER SEQUENCE 111

Normalized Buffer Fullness

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

PSNR

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

Nominal Quantization

Actual
Target

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

0 500 1000 1500 2000 2500 3000 3500 4000

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 5.16 Independent-Coding Results for Linear-Spline CBR Coder.

112 IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

Normalized Buffer Fullness

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

PSNR

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

Nominal Quantization

Actual
Target

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

0 500 1000 1500 2000 2500 3000 3500 4000

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 5.17 Independent-Coding Results for Hyperbolic-Spline VBR Coder.

CODING A LONGER SEQUENCE 113

Normalized Buffer Fullness

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

PSNR

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

Nominal Quantization

Actual
Target

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

0 500 1000 1500 2000 2500 3000 3500 4000

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 5.18 Independent-Coding Results for Linear-Spline VBR Coder.

114 IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

5.7.2 Dependent Coding Simulations

In the �nal set of encoding simulations, we evaluate the performance of the lex-
icographic bit-allocation algorithms using I-frames, P-frames, and B-frames.
The aim of these simulations is to determine the e�ects of using indepen-
dent bit-production models with dependent coding. As with the independent-
coding simulations, we use the IBM Commercial sequence. For CBR mode,
the constant bit rate is set to 3.0 Mbits/sec with guard zones at 5% and 95%.
For VBR mode, the target average bit rate is set to 3.0 Mbits/sec with a peak
bit rate of 4.5 Mbits/sec and a lower guard zone at 10%. The VBV bu�er
size is set to 1,835,008 bits. The coding parameters are listed in Table 5.5.

Encoding statistics are listed in Table 5.6, with the bu�er fullness, nominal
quantization scale Q, and PSNR plots shown in Figures 5.19 to 5.23. The
di�erences between the actual and target nominal quantization are more no-
ticeable for the dependent-coding results compared to the independent-coding
results. This indicates that the models are less accurate for dependent cod-
ing. The di�erences are more pronounced for the linear-spline model than
for the hyperbolic-spline model. With the hyperbolic-spline model, the errors
introduced by using independent bit-production models is quite small. This
suggests that independent bit-production models can be used e�ectively for
dependent coding with hybrid rate control.

5.8 LIMITING LOOKAHEAD

The above rate control algorithms compute an allocation sequence for the
entire video sequence. This may not be feasible when the video sequence
consists of many pictures, as in a feature-length movie, for example. One way
to deal with this is to partition the sequence into blocks consisting of a small
number of consecutive pictures. Optimal allocation can then be performed
on the blocks separately. In order to do this, the starting and ending bu�er
fullness must be speci�ed for each block for the CBR case. For the VBR case,
the bit budget must also be speci�ed for each block. This approach is globally
suboptimal; however, it is easy to parallelize since the block allocations are
independent of each other.

Another approach is to use limited lookahead in conjunction with hybrid
rate control. Using a lookahead window of size W and a step size S �W , the
procedure is as follows:

1. Compute a bit allocation sequence for the nextW pictures not yet coded
by computing a reverse dynamic programming table.

2. Code the next S pictures using hybrid rate control, using the dynamic
programming table to recover from model errors.

3. Repeat Step 1.

LIMITING LOOKAHEAD 115

Table 5.5 Parameters for Dependent-Coding Simulations. This table lists

the coding parameters used for the Dependent-coding simulations with the IBM

Commercial sequence.

Value Description

3660 number of frames

15 N (# of frames in GOP)

3 M (I/P frame distance)

0 ISO/IEC 11172-2 stream

0 0:frame pictures, 1:field pictures

720 horizontal_size

480 vertical_size

2 aspect_ratio: 1=square pel, 2=4:3, 3=16:9, 4=2.11:1

5 frame_rate: 1=23.976, 2=24, 3=25, 4=29.97, 5=30 frames/sec

4500000 bit_rate (bits/sec)

112 vbv_buffer_size (in multiples of 16 kbit)

0 low_delay

0 constrained_parameters_flag

1 Profile ID: Simple=5, Main=4, SNR=3, Spatial=2, High=1

8 Level ID: Low=10, Main=8, High 1440=6, High=4

0 progressive_sequence

2 chroma_format: 1=4:2:0, 2=4:2:2, 3=4:4:4

2 video_format: 0=comp,1=PAL,2=NTSC,3=SECAM,4=MAC,5=unspec

720 display_horizontal_size

480 display_vertical_size

2 intra_dc_precision: 0=8 bit, 1=9 bit, 2=10 bit, 3=11 bit

1 top_field_first

0 0 0 frame_pred_frame_dct (I P B)

0 0 0 concealment_motion_vectors (I P B)

1 1 1 q_scale_type (I P B)

1 0 0 intra_vlc_format (I P B)

0 0 0 alternate_scan (I P B)

0 repeat_first_field

0 progressive_frame

0 P distance between complete intra slice refresh

0 rate control: r (reaction parameter)

0 rate control: avg_act (initial average activity)

0 rate control: Xi (initial I frame global complexity)

0 rate control: Xp (initial P frame global complexity)

0 rate control: Xb (initial B frame global complexity)

0 rate control: d0i(initial I frame virtual buffer fullness)

0 rate control: d0p(initial P frame virtual buffer fullness)

0 rate control: d0b(initial B frame virtual buffer fullness)

4 4 63 63 P: forw_hor_f_code forw_vert_f_code search_width/height

4 4 63 63 B1: forw_hor_f_code forw_vert_f_code search_width/height

4 4 63 63 B1: back_hor_f_code back_vert_f_code search_width/height

4 4 63 63 B2: forw_hor_f_code forw_vert_f_code search_width/height

4 4 63 63 B2: back_hor_f_code back_vert_f_code search_width/height

116 IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

Normalized Buffer Fullness

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

PSNR

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

Nominal Quantization

0

50000

100000

150000

200000

250000

0 500 1000 1500 2000 2500 3000 3500 4000

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 5.19 Dependent-Coding Results for TM5 CBR Coder.

LIMITING LOOKAHEAD 117

Normalized Buffer Fullness

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

PSNR

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

Nominal Quantization

Actual
Target

0

50000

100000

150000

200000

250000

0 500 1000 1500 2000 2500 3000 3500 4000

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 5.20 Dependent-Coding Results for Hyperbolic-Spline CBR Coder.

118 IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

Normalized Buffer Fullness

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

PSNR

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

Nominal Quantization

Actual
Target

0

50000

100000

150000

200000

250000

0 500 1000 1500 2000 2500 3000 3500 4000

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 5.21 Dependent-Coding Results for Linear-Spline CBR Coder.

LIMITING LOOKAHEAD 119

Normalized Buffer Fullness

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

PSNR

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

Nominal Quantization

Actual
Target

0

50000

100000

150000

200000

250000

0 500 1000 1500 2000 2500 3000 3500 4000

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 5.22 Dependent-Coding Results for Hyperbolic-Spline VBR Coder.

120 IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

Normalized Buffer Fullness

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

PSNR

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

Nominal Quantization

Actual
Target

0

50000

100000

150000

200000

250000

0 500 1000 1500 2000 2500 3000 3500 4000

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 5.23 Dependent-Coding Results for Linear-Spline VBR Coder.

RELATED WORK 121

Table 5.6 Summary of Dependent-Coding Simulations. This table contains

summary statistics for the dependent-coding simulations with the IBM Commercial

sequence.

Rate Control PSNR (dB) Nominal Q Nominal Q

Algorithm Average Std. Dev. Average Std. Dev. Max Min

TM5 CBR 34:99 4:62 10:07 5:80 34:30 2:32

Linear-Spline
CBR, Hybrid 35:05 4:47 9:74 5:07 20:17 2:76

Hyperbolic-Spline
CBR, Hybrid 35:06 4:46 9:73 5:05 19:72 2:80

Linear-Spline
VBR, Hybrid 34:68 2:74 9:20 2:22 16:09 6:52

Hyperbolic-Spline
VBR, Hybrid 34:68 2:72 9:20 2:19 15:43 7:04

This procedure can be thought of as performing lookahead with a sliding
window.

Another approach similar to the hybrid rate control method is to use the
allocation sequence computed from a given model and only recompute the
allocation sequence when the bu�er fullness breaches preset bu�er boundaries,
such as 10% and 90% of bu�er fullness. As with hybrid rate control, reverse
dynamic programming can be used to speed up the reallocation, so that the
next optimal nominal quantization scale can be determined in O(N) time. A
more e�cient option is to use the approach of Chapter 6 so that the time per
picture can be reduced from O(N) time to constant time in practice and to
O(logN) time in the worst case.

5.9 RELATED WORK

Ortega, Ramchandran, and Vetterli [60] propose a suite of heuristic methods
to reduce the complexity of bit allocation from that of the Viterbi algorithm.
They apply a Lagrangian optimization technique to recompute an allocation
sequence incrementally for each picture, similarly to the technique described
in Section 5.3.2. In addition, the Lagrangian optimization is performed with
a �nite window size. In essence, this method implements limited lookahead
with a sliding window, as we did in Section 5.8. The authors also describe the
heuristic of recomputing an allocation only when the bu�er reaches prede�ned
threshold levels.

In this chapter, we have considered a simple hyperbolic model, a linear-
spline model, and a hyperbolic-spline model of bit production. Chen and
Hang [5] derive a bit-production model for block transform coders based
upon rate-distortion theory and assuming a stationary Gaussian process.

122 IMPLEMENTATION OF LEXICOGRAPHIC BIT ALLOCATION

They apply the model to VBR coding with motion JPEG and H.261 coders.
Cheng and Hang [6] propose an adaptive tree-structured piecewise linear bit-
production model and apply it to MPEG video coding using a one-pass en-
coding strategy. Lin, Ortega, and Kuo [47, 48] develop a cubic-spline model
of rate and distortion for use with their gradient-based rate control algorithm
that attempts to minimize MSE. The model takes into account the temporal
dependencies introduced by predictive coding.

5.10 DISCUSSION

In this chapter, we have described an implementation of the bit allocation
algorithms of Chapters 3 and 4 within an MPEG-2 software encoder. In ad-
dition to evaluating three types of bit-production models, we have developed
robust techniques for recovering from errors in the bit-production models.
Since we can view coding dependencies as contributing to errors in the (in-
dependent) bit-production models, these error-recovery techniques e�ectively
allow us to apply the bit allocation framework to predictive video coders. In
the next chapter we introduce more sophisticated (and optimal) methods for
handling errors in the bit-production model.

6
A More E�cient

Dynamic Programming
Algorithm

In practice, the bit-production model described in Section 2.3, which is at the
heart of the relation between the bit allocation and the nominal quantization
scale, is only approximate. The value fk(Q) is the predicted number of bits
used to encode picture k with nominal quantization scale Q, but the actual
encoding length for the kth picture will typically be di�erent. Therefore, after
the (j� 1)st picture is encoded, when it is time to assign a nominal quantiza-
tion scale for the jth picture, the actual bu�er fullness level is generally not
the same as what it was predicted to be. In order to assign the nominal quan-
tization scale for the jth picture, we need to recompute the optimal solution
from the current bu�er fullness level, using the bit-production model for the
remaining pictures j, j + 1, . . . , N .

Our modi�ed DP algorithm of Section 5.3.2, in which we compute the
dynamic programming table in reverse order, allows the recomputation for
each 1 < j � N to be done in linear time, so the total running time remains
O(N2). If the bit-production model is accurate, the approach of Salehi et
al. [69], appropriately modi�ed as described in Section 3.3, computes the entire
allocation sequence in linear time, using the Lee and Preparata [42] algorithm
for computing shortest paths in polygonal channels. But with an inaccurate
bit-production model, as is typically the case, rerunning the algorithm for
each 1 < j � N results in an O(N2)-time algorithm, as with our reverse
approach.

In this chapter we develop an improved algorithm for CBR (and thus VBR)
bit allocation that is robust against inaccurate bit-production models and is
faster than those mentioned above. Our new algorithm uses a modi�cation
of the Lee-Preparata approach for �nding shortest paths within polygonal

123

124 A MORE EFFICIENT DYNAMIC PROGRAMMING ALGORITHM

boundaries [42]. We run the algorithm on the pictures of the sequence in

reverse order, but rather than construct a full dynamic programming table
for the reversed sequence as in Section 5.3.2, we maintain a sparse represen-
tation of the table, which we call the reverse structure. After we encode the
(j � 1)st picture and determine the actual bu�er fullness level, we use the re-
verse structure to compute the nominal quantization for the jth picture, and
then we update the reverse structure for the subsequent picture. Each picture
typically takes only constant time and in the worst case takes O(logN) time.
The net result is that the entire video sequence can be encoded in linear time,
in practice, and always in linear space; in the worst case, the running time is
O(N logN).

In the next section, we show how to determine the nominal quantization
scale based upon the reverse structure. In Section 6.2, we describe the pre-
processing needed for the reverse structure, and in Section 6.3, we show how
to update the reverse structure incrementally as each picture is encoded. We
discuss related work in Section 6.4.

6.1 ENCODING THE NEXT PICTURE

For simplicity in discussion, let us assume CBR rate control with hybrid
picture-level control, as explained in Section 5.3. The particulars can be
modi�ed easily for various control scenarios and bu�er guards as well as for
VBR.

In the general scenario, after we have just �nished encoding the (j � 1)st
picture, the actual bu�er fullness level may not be not what was predicted,
because of the inaccuracies in the bit-production model. If we are in the
middle of a constant-Q segment, and if we continue coding the subsequent
pictures j, j + 1, . . . in that segment using nominal quantization scale Q,
then rather than arrive as desired at a full or empty bu�er (at which point
the nominal quantization scale changes), we may instead arrive at a bu�er
that is partially full, which will be nonoptimal according to the switching
conditions of Section 3.1, or worse yet, the bu�er may overow or underow.

Therefore, we need to recompute the optimal allocation sequence for pic-
tures j, j + 1, . . . , N based upon the actual bu�er fullness level after the
(j � 1)st picture is processed. The key tool we use for the recomputation is
the reverse structure, which is a sparse representation of the reverse dynamic
programming table described in Section 5.3.2 for pictures j, j + 1, . . . , N .
Figure 6.1 gives an example of a reverse structure for j = 6, which we will use
as a running example in the remainder of this section to explain our algorithm.

To describe the reverse structure, it helps to make use of our revised no-
tation in Section 5.3.2 for dynamic programming on the sequence of pic-
tures j, j + 1, . . . , N , for decreasing j. We de�ne Final to be the �-
nal bu�er state, which corresponds by (2.11) to a bu�er fullness level of
B1 +

PN�1
j=1 Binc(j) � Btgt bits. For 1 < j � N , we use Top[j] to repre-

ENCODING THE NEXT PICTURE 125

Top[4] Top[5] Top[6] Top[7] Top[8] Top[9] Top[10] Top[11] Top[12] Top[13]

Bot[13]Bot[12]Bot[11]Bot[10]Bot[9]Bot[8]Bot[7]Bot[6]Bot[5]Bot[4]

Final

fork

seg[12]
seg[11]

seg[13]

seg[14]seg[15]

seg[14]

seg[13]

seg[12]

seg[11]

seg[10]

A

C

B

D

E

Fig. 6.1 Reverse Structure for Determining Nominal Quantization Scale.

This �gure illustrates the various legal choices for the end destination of the constant-

Q segment starting with picture 6. Which destination is chosen depends upon the

actual bu�er fullness after picture 5 is processed.

sent the legal allocation sequence for pictures j, j+1, . . . , N that starts with
a full bu�er immediately before picture j is removed (i.e., Bf(s

�; j) = Bvbv,
or equivalently B�

f (s
�; j � 1) = Bvbv � Binc(j)) and ends up in Final. Simi-

larly, we de�ne Bot[j] to be the legal allocation sequence for pictures j, j+1,
. . . , N that starts with an empty bu�er immediately after picture j � 1 is
removed (i.e., Bf(s

�; j � 1) = s�j�1, or equivalently, B�
f (s

�; j � 1) = 0 or
Bf(s

�; j) = Binc(j)) and ends up in Final. We use Initial to denote the op-
timal allocation sequence s� for all N pictures that begins with initial bu�er
fullness level B1 and ends up in Final.

With a slight abuse of notation, we use Top[j] (resp., Bot[j]) to denote
not only the legal allocation sequence for pictures j, j + 1, . . . , N as de�ned
above, but also its beginning state at picture j. Similarly, we refer to Initial
and Final as the initial and �nal states for the entire allocation sequence of
N pictures. We say that Top[j] corresponds to a \full bu�er," and Bot[j]
corresponds to an \empty bu�er." We refer to Initial, Final, and Top[j]
and Bot[j], for 1 < j � N , as boundary states . The switching conditions of
Section 3.1 state that the nominal quantization scale for an optimal allocation
sequence with an exact bit-rate model can change only at the boundary states.

The reverse structure consists of the allocation sequences Top[j] and
Bot[j]. In the example in Figure 6.1, where j = 6, Top[6] starts with
constant-Q segments

seg [15] for picture 6 (ending at picture 7);
seg [14] for picture 7 (ending at picture 8);
seg [13] for pictures 8{10 (ending at picture 11);

(6.1)

126 A MORE EFFICIENT DYNAMIC PROGRAMMING ALGORITHM

and Bot[6] starts with constant-Q segments

seg [10] for pictures 6{7 (ending at picture 8);
seg [11] for pictures 8{9 (ending at picture 10);
seg [12] for picture 10 (ending at picture 11):

(6.2)

The fork point occurs at Bot[11], where the two sequences Top[j] and Bot[j]
merge for pictures 11, 12, and 13 (ending at Final).

Let us denote the nominal quantization scale for segment seg [i] by seg [i]:q.
By the switching conditions of Section 3.1, the nominal quantization scales
for the constant-Q segments in (6.1) and (6.2) are strictly decreasing when
considered in counterclockwise order:

seg [10]:q > seg [11]:q > seg [12]:q > seg [13]:q > seg [14]:q > seg [15]:q: (6.3)

In the reverse structure, we explicitly store only a subset of the boundary
states Top[j], Top[j + 1], . . . , Top[N] and Bot[j], Bot[j + 1], . . . , Bot[N],
namely, the ones that are su�xes of the optimal allocation sequences Top[j]
and Bot[j], up to and including the fork point. In the example in Figure 6.1,
for j = 6, the constant-Q segments of (6.1) and (6.2) lead from

Top[6] to Top[7] to Top[8] to Bot[11]; (6.4)

and from

Bot[6] to Bot[8] to Bot[10] to Bot[11]: (6.5)

It is convenient to list the boundary states of the reverse structure in the
counterclockwise order of (6.3):

Bot[6]; Bot[8]; Bot[10]; Bot[11]; Top[8]; Top[7]; Top[6]: (6.6)

The corresponding constant-Q segments that connect them in counterclock-
wise order are

seg [10]; seg [11]; seg [12]; seg [13]; seg [14]; seg [15]: (6.7)

Our algorithm is based upon the following key observation: In order to
recompute the optimal allocation sequence starting with picture j, only the
states (6.6) in the reverse structure (other than Bot[j] and Top[j]) are eligi-
ble as possible boundary destinations for the constant-Q segment starting at
picture j, since by the switching conditions, the allocation sequence cannot
cross over the constant-Q segments in (6.7).

Before we encode picture j, we can imagine partitioning the possible bu�er
fullness levels into at most a linear number of contiguous intervals, where each
interval corresponds to a particular boundary destination for the constant-Q
segment starting at picture j. In Figure 6.1, we denote these intervals as A,
B, C, D, and E. The corresponding boundary destinations are

ENCODING THE NEXT PICTURE 127

Region Boundary Destination

A Top[7]

B Top[8]

C Bot[11]

D Bot[10]

E Bot[8]

To encode the jth picture, we determine which interval the actual bu�er
fullness level lies in, which, in turn, determines the boundary destination.
Given the boundary destination, we can compute in constant time the nominal
quantization scale needed to reach that destination, using the formulas in
Section 5.2.

Conceptually we can form the contiguous intervals by continuing in reverse

the constant-Q segments in (6.7) all the way back to picture j. For exam-
ple, in Figure 6.1, if we extend segment seg [14] backwards from Top[7] to
picture 6, then by (6.3) it dips below the path for segment seg [15], forming
the interval A. We do the same for the other segments in (6.7) and end up
with a set of contiguous intervals A, B, C, D, and E and their corresponding
boundary destinations, as speci�ed in (6.1).

We do not actually compute the bu�er fullness intervals explicitly. Rather,
for a given bu�er fullness level, we search to determine the legal Q to use
for the jth picture. Given a candidate boundary destination, say, Top[k], let
q0 and q00 be the two nominal quantization scales in counterclockwise order
in (6.3) whose segments touch the boundary at Top[k]. Given the current
bu�er fullness level, we compute the nominal quantization scale Q to arrive
at Top[k], using the formulas for the bit-production model in Section 5.2. If
q0 � Q � q00, then Q meets the switching conditions of Section 3.1, and we
assign Q to encode the jth picture. Otherwise if Q > q0, then we choose a
new candidate boundary destination that is earlier in the counterclockwise
order (6.6). If q00 > Q, we choose a new candidate boundary destination that
is later in the counterclockwise order (6.6).

The above conditions suggest a natural binary �nger search strategy for
�nding the legal Q: We can start with the target boundary destination pre-
dicted by the model before the previous picture was actually encoded. We
can then use the search strides 1, 2, 4, 8, . . . in the appropriate direction until
we overshoot the correct target boundary destination, after which a normal
binary search on the last stride interval will narrow in on the legal destina-
tion. For the jth picture, if there are kj bu�er fullness intervals between
the predicted destination and the legal destination, the search takes O(log kj)
time, which is O(logN) in the worst case. If there are no errors, then each
picture can obviously be encoded in constant time. When the bit models are
fairly accurate, or when the number of bu�er fullness intervals in the reverse
structure is small, the total running time

PN
j=1 log kj is O(N). In practice, a

128 A MORE EFFICIENT DYNAMIC PROGRAMMING ALGORITHM

linear search may be faster than a binary �nger search. In the worst case, the
total running time is O(N logN).

6.2 INITIAL PREPROCESSING OF THE REVERSE STRUCTURE

In order to recompute the nominal quantization scale for the jth picture, the
algorithm we developed in the last section makes use of the reverse structure
for pictures j, j + 1, . . . , N , which is essentially an encoding of Top[j] and
Bot[j]. We can compute that reverse structure in an e�cient way by \rolling
back" the reverse structure for pictures j � 1, j, . . . , N , so as to avoid com-
puting it from scratch for each j. We defer to the next section how to do the
rollback. In this section we show how to precompute the reverse structure for
pictures 1, 2, . . . , N from scratch, which we use to start the encoding process.

The reverse sequence for pictures j, j + 1, . . . , N , for the cases j = 6,
j = 5, and j = 4 are pictured in Figures 6.2, 6.3, and 6.4. We represent the
reverse structure by an array called seg . The maximum number of constant-Q
segments in the reverse structure at any one time is 2N (at most N on the
top boundary and N on the bottom boundary), so we index the array from 1
to 2N . The current constant-Q segments on the boundary are stored consec-
utively in counterclockwise order (6.7) in seg [�rst], seg [�rst+1], . . . , seg [last].
Each entry in the seg array has a member (or �eld) q that stores the nominal
quantization scale for the segment as well as members start and end that store
the starting boundary state and the ending boundary state for the segment,
according to the counterclockwise order. For each �rst � i < last , we have
seg [i]:end = seg [i + 1]:start . Because of the counterclockwise order, if seg [i]
is on the top boundary, then seg [i]:start is a higher-numbered boundary state
than is seg [i]:end .

The algorithm below computes the entire reverse structure for pictures 2,
3, . . . , N . The idea is to construct, for decreasing values of j, the reverse
structure for pictures j, j + 1, . . . , N from the reverse structure for pictures
j+1, j+2, . . . ,N . In particular, we need to add a constant-Q segment starting
from Top[j] and a constant-Q segment starting from Bot[j] so as to maintain
the counterclockwise order of constant-Q segments. In the process, some of
the previous constant-Q segments get deleted from the counterclockwise order.
The fork point changes when one of the new constant-Q segments goes from
the top boundary to the bottom boundary, or vice versa.

1. [Initialize counterclockwise order.] Assign �rst N , last N + 1,
seg[�rst] the constant-Q segment that connects the bottom boundary
at picture N to the �nal state, and seg[last] the constant-Q segment
that connects the top boundary at picture N to the �nal state. Initialize
the fork point to be the �nal state.

2. [Process pictures in reverse.] For each picture j = N � 1, N � 2, . . . , 2,
do Steps 3{8:

INITIAL PREPROCESSING OF THE REVERSE STRUCTURE 129

3. [Determine where to connect the new constant-Q segment from the top
boundary at picture j.] Set the dummy sentinel value seg [�rst�1] to be
the constant-Q segment that connects the bottom boundary at picture j
to the bottom boundary at picture j + 1. Decrement last zero or more
times until seg [last]:q is larger than the constant nominal quantization
scale Q that connects the top boundary at picture j to seg [last]:end .

4. [Update the fork point?] If seg [last]:end is on the bottom boundary
and is not the fork point, then make it the new fork point, and add
to the optimal allocation sequence the boundary segments between the
previous fork point and the new fork point.

5. [Insert the top constant-Q segment.] Increment last and assign
seg [last] the constant-Q segment that connects the top boundary
at picture j to seg [last � 1]:end .

6. [Determine where to connect the new constant-Q segment from the bot-
tom boundary at picture j.] Increment �rst zero or more times until
seg [�rst]:q is less than the constant nominal quantization scale Q that
connects the bottom boundary at picture j to seg [�rst]:start .

7. [Update the fork point?] If seg [�rst]:start is on the top boundary and
is not the fork point, then make it the new fork point, and add to
the optimal allocation sequence the boundary segments between the
previous fork point and the new fork point.

8. [Insert the bottom constant-Q segment.] Decrement �rst and assign
seg [�rst] the constant-Q segment that connects the bottom boundary
at picture j to seg [�rst + 1]:start .

Strictly speaking, in order to avoid consecutive constant-Q segments with
the same Q value, the \larger than" condition in Step 3 should be replaced
by \larger than or equal to" when seg [last] is part of the bottom boundary.
Similarly, the \less than" condition in Step 6 should be replaced by \less than
or equal to" when seg [�rst] is on the top boundary.

The process to extend the reverse structure to all N pictures (i.e., including
j = 1) is a straightforward modi�cation of Steps 3{5. The only di�erence is
that we use the starting point Initial rather than the top boundary starting
point Top[j].

To explain how the algorithm works, let us consider the case j = 5, in
which we convert the reverse structure for pictures 6, 7, . . . , N in Figure 6.2
to the reverse structure for pictures 5, 6, . . . , N in Figure 6.3. In Steps 3{5,
we determine that the constant Q segment from Top[5] should end at Top[7]
in order to maintain the counterclockwise decreasing order of nominal quan-
tization scales. The old value of seg [15] in Figure 6.2 is thus replaced by the
new value of seg [15] in Figure 6.3; the value of last remains 15. Similarly, in
Steps 6{8, we �nd that the constant-Q segment from Bot[15] should end at

130 A MORE EFFICIENT DYNAMIC PROGRAMMING ALGORITHM

Top[4] Top[5] Top[6] Top[7] Top[8] Top[9] Top[10] Top[11] Top[12] Top[13]

Bot[13]Bot[12]Bot[11]Bot[10]Bot[9]Bot[8]Bot[7]Bot[6]Bot[5]Bot[4]

Final

fork

seg[15] seg[14]

seg[13]

seg[12]

seg[11]seg[10]

Fig. 6.2 Bottom and Top Boundaries Starting at Picture 6. This �gure

shows the reverse structure for pictures 6, 7, . . . , N . The six constant-Q segments on

the boundaries are stored in seg [10], . . . , seg [15]; that is, the current values of �rst

and last are 10 and 15, respectively. We have, for example, seg [10]:start = Bot[6],

seg [10]:end = Bot[8], and seg [13]:start = Bot[11], seg [13]:end = Top[8].

Top[4] Top[5] Top[6] Top[7] Top[8] Top[9] Top[10] Top[11] Top[12] Top[13]

Bot[13]Bot[12]Bot[11]Bot[10]Bot[9]Bot[8]Bot[7]Bot[6]Bot[5]Bot[4]

Final

fork

seg[15]

seg[14]

seg[13]

seg[11]

seg[12]

Fig. 6.3 Bottom and Top Boundaries Starting at Picture 5. This �gure

shows the reverse structure for pictures 5, 6, . . . , N . The six constant-Q segments on

the boundaries are stored in seg [11], . . . , seg [15]; that is, the values of �rst and last

are 11 and 15, respectively.

INITIAL PREPROCESSING OF THE REVERSE STRUCTURE 131

Top[4] Top[5] Top[6] Top[7] Top[8] Top[9] Top[10] Top[11] Top[12] Top[13]

Bot[13]Bot[12]Bot[11]Bot[10]Bot[9]Bot[8]Bot[7]Bot[6]Bot[5]Bot[4]

Final

fork

seg[16]

seg[15]

seg[14]

Fig. 6.4 Bottom and Top Boundaries Starting at Picture 4. This �gure

shows the reverse structure for pictures 4, 5, . . . , N . The six constant-Q segments on

the boundaries are stored in seg [14], . . . , seg [16]; that is, the values of �rst and last

are 14 and 16, respectively.

Bot[10]. The former segments seg [10] and seg [11] in Figure 6.2 are replaced
by the new segment seg [11] in Figure 6.3; the value of �rst is changed from 10
to 11. The new counterclockwise order of segments in Figure 6.3, in decreasing
order of nominal quantization scale, is

seg [11]; seg [12]; seg [13]; seg [14]; seg [15]: (6.8)

The case j = 4, in which we convert from Figure 6.3 to Figure 6.4, involves
an update of the fork point. The new constant-Q segment added to the top
boundary is seg [16] from Top[4] to Top[5], and the value of last is changed
from 15 to 16. The more interesting update involves the bottom boundary,
in which the constant-Q segment seg [14] is added from Bot[4] to Top[7], the
value of �rst is changed from 11 to 14, and the fork point shifts from Bot[11]
to Top[7]. The new counterclockwise order of segments in Figure 6.4, in
decreasing order of nominal quantization scale, is

seg [14]; seg [15]; seg [16]: (6.9)

The full trace of all segments ever written during the preprocessing of
Figure 6.4 appears in Figure 6.5.

6.2.1 Time and Space Complexity

In order to determine the total time used by the algorithm in order to con-
struct the full reverse sequence for all N pictures, let us consider the work
done in Steps 3{8 for each value of j. We add a new segment to the top
boundary and a new segment to the bottom boundary. In the process we
walk through the counterclockwise list of segments from both ends, discard-
ing segments until we �nd the proper endpoints for the newly added segments.

132 A MORE EFFICIENT DYNAMIC PROGRAMMING ALGORITHM

Top[4] Top[5] Top[6] Top[7] Top[8] Top[9] Top[10] Top[11] Top[12] Top[13]

Bot[13]Bot[12]Bot[11]Bot[10]Bot[9]Bot[8]Bot[7]Bot[6]Bot[5]Bot[4]

Final

seg[10]’’’ seg[9]’ seg[9] seg[10]’

seg[10]’’

seg[14]’’’

seg[10] seg[11]

seg[11]’

seg[11]’’

seg[13]’ seg[12]

seg[13]

seg[14]

seg[15]’

seg[14]’

seg[16]’

seg[16] seg[15]

seg[13]’’
fork

seg[14]’’seg[15]’’

seg[15]’’’

seg[16]’’

seg[12]’

Fig. 6.5 Trace of Execution. This �gure shows all the segments ever written during

the course of the construction of the reverse sequence for pictures 4, 5, . . . ,N , as shown

in Figure 6.4. To avoid confusion, we add a prime 0 every time a segment in the seg

array gets modi�ed. For example, the segment seg [15]000 from Top[5] to Top[7] means

that it was the fourth segment stored (i.e., the third modi�ed) in position 15 during

the course of the preprocessing algorithm. The dashed segments are those whose sole

purpose was to serve as dummy sentinels for the linear search in Step 3.

We spend constant time plus the time for the discarded segments, which we
never process again. Therefore, the amortized time for each new value of j is
O(1), and the total time over the course of the algorithm is O(N). The time
for each j can be made O(logN) in the worst case by use of binary search
to determine where to insert the new constant-Q segment. The total time
remains O(N). As noted earlier, the size of the seg array is at most 2N .

6.3 INCREMENTAL UPDATE OF THE REVERSE STRUCTURE

In order to complete our algorithm for bu�er-constrained bit allocation in the
presence of an inaccurate bit-production model, all that remains is to show
how to e�ciently \roll back" the reverse structure for pictures j�1, j, . . . , N
in order to obtain the the reverse structure for pictures j, j + 1, . . . , N .

We can easily accomplish this rollback task if we record all updates made
during during the course of the preprocessing algorithm of Section 6.2. We
noted in Section 6.2.1 that the total number of updates to the seg array was
linear. If we record the history of updates to the seg array and also to �rst

and last , then in order to perform the roll backs, we can replay the history in
reverse order and \undo" the updates. The extra space required to store the
history is O(N), which increases the space by a constant factor. The total
time to do all the rollbacks is therefore O(N), since each item in the history
is processed once and takes constant time to undo.

RELATED WORK 133

6.4 RELATED WORK

The problem of preprocessing the reverse structure for all N pictures in Sec-
tion 6.2 is equivalent to computing the shortest path in a polygonal channel
in reverse order. In the former case, the switching conditions require that the
nominal quantization scales in the counterclockwise list of segments on the
bottom and top boundaries are strictly decreasing. Beyond the fork point,
the bottom and top boundaries coalesce into a common path. The same phe-
nomenon occurs in computing the shortest path in a polygonal channel, except
that in this case, the switching conditions apply to the slopes of the segments
along the boundary paths: The slopes of the segments on the bottom and
top boundaries are strictly decreasing in counterclockwise order. Figures 6.6
and 6.7 illustrate the correspondence between the two problems.

With this reduction in mind, the particular approach we used for the pre-
processing algorithm in Section 6.2 corresponds to the algorithm of Lee and
Preparata [42] for �nding shortest paths in polygonal channels. Salehi et
al. [69] used the same approach in a more direct setting to reduce variability
in the transmission rate for stored video. Their setting corresponded exactly to
�nding shortest paths in polygonal channels. However, in bu�er-constrained
bit allocation, there is no �xed relationship between the bit allocation and the
nominal quantization scale (or equivalently, distortion), which is the object of
optimization. Instead, we require one extra level of indirection; for each video
sequence of interest, we precompute the relationship between bit allocation
and nominal quantization scale in linear time and space by the approach of
Section 3.2.5. One other di�erence to note in our approach over that of Salehi
et al. [69] is the conceptual simpli�cation we gain by merging the bottom and
top boundaries into a single counterclockwise order. The searches for which
constant-Q segments to add become simple linear scans from both ends of
the list; the decision of updating the fork point follows directly and does not
require a separate scan.

In the shortest path problem, the switching conditions on the slopes imply
that the bottom boundary leading up to the fork point is an upper convex
hull, and similarly the top boundary is a lower convex hull. (See Figures 6.6
and 6.7. E.g., the segments c, d, e on the top boundary in Figure 6.6 form a
lower convex hull.) Melkman [54], Friedman et al. [20], and Hershberger and
Suri [28] consider the problem of how to maintain upper and lower convex
hulls when vertices are inserted and deleted. The rollback technique we used
for updating the reverse structure is akin to a technique developed by [20] in
a more general setting.

134 A MORE EFFICIENT DYNAMIC PROGRAMMING ALGORITHM

Top[6]

Bot[6]

Bot[4]

Bot[5]

Bot[7]

Bot[9]

Bot[10]
Bot[11] Bot[12]

Bot[13]

Top[4]

Top[5]

Top[7] Top[8]

Top[9]

Top[12]

Top[14]

Top[10]

Top[13]

Bot[8]

Final

fork

a

b
c

d

e

Fig. 6.6 Correspondence with Shortest Paths in Polygonal Channels.

Finding shortest paths in this polygonal channel from Top[5] to Final and from

Bot[5] to Final corresponds to the problem of bit allocation in the reverse structure

in Figure 6.3. The slopes of segments a, b, c, d, e appear in decreasing order, as do

the nominal quantization scales of the corresponding segments seg [11], seg [12], seg [13]

seg [14], seg [15] in Figure 6.3. The fork point in both cases is Bot[11].

RELATED WORK 135

Top[6]

Bot[6]

Bot[4]

Bot[5]

Bot[7]

Bot[9]

Bot[10]
Bot[11] Bot[12]

Bot[13]

Top[4]

Top[5]

Top[7] Top[8]

Top[9]

Top[12]

Top[14]

Top[10]

Top[13]

Bot[8]

fork

a

b

c

Final

Fig. 6.7 Further Correspondence with Shortest Paths in Polygonal Chan-

nels. Finding shortest paths in this polygonal channel from Top[4] to Final and from

Bot[4] to Final corresponds to the problem of bit allocation in the reverse structure

in Figure 6.4. The slopes of segments a, b, c appear in decreasing order, as do the

nominal quantization scales of the corresponding segments seg [14], seg [15], seg [16] in

Figure 6.4. The fork point in both cases is Top[7].

7
Real-Time VBR

Rate Control

The lexicographic bit allocation framework presented in Chapter 2 and the
optimal algorithms of Chapters 3 and 4 assume a priori knowledge of the
rate-distortion characteristics of the input video sequence. In practice, this
assumption is met by processing the video sequence o�-line with three com-
putational passes. In the �rst pass, the rate-distortion characteristics of each
picture are measured and modeled. In the second pass, an optimal global bit
allocation sequence is computed. In the third and �nal pass, the computed
bit allocation sequence is used to encode the video sequence. For some video
applications, o�-line processing is impractical. Examples of these applications
include live broadcasting, digital VCR, and video-telephony. In these appli-
cations, all processing must be performed in real time and with low delay.

In this chapter, we address VBR encoding in a real-time environment re-
quiring low encoding delay. Speci�cally, we present a new real-time VBR rate
control algorithm that is based upon the optimal algorithm of Chapter 4. In
the real-time algorithm, we skip the �rst two passes and perform bit alloc-
ation \on-the-y" in a single encoding pass, while maintaining some of the
desirable properties of the optimal algorithm.

In Section 7.1, we review the optimal VBR algorithm of Section 4.2. We
then show and then show how to modify this algorithm to work in a single
pass in Section 7.2. We present simulation results in Section 7.3 and discuss
related work in Section 7.4.

137

138 REAL-TIME VBR RATE CONTROL

7.1 OPTIMAL VBR BIT ALLOCATION ALGORITHM

Below is the algorithm of Section 4.2 for computing an optimal VBR allocation
sequence that uses a total of Btgt bits.

1. Mark all pictures as easy. Let Beasy Btgt.

2. Allocate Beasy bits to easy pictures using a constant nominal quantizer.
Let Qmin be the nominal quantizer used.

3. Simulate the VBV to identify hard segments of pictures. A hard segment
leads to a bu�er underow when Qmin is used and consists of pictures
that follow the most recent virtual overow up to and including the
picture the caused the underow. After identifying a hard segment,
reduce the bit allocation to the picture that caused the underow to
just prevent underow. Reset the bu�er fullness to empty and continue
the simulation, adding new pictures to the existing hard segment if the
bu�er continues to underow.

4. Allocate bits to each newly identi�ed hard segment according to the
optimal CBR algorithm, with a bit budget such that the underow is
just prevented. By preventing underow in the hard segments, we are
left with extra unallocated bits.

5. Let Bhard be the total number of bits allocated to the hard pictures.
Let Beasy Btgt �Bhard.

6. If a new hard segment has been identi�ed in Step 3, goto Step 2.

We make the following observations about the algorithm. The algorithm
loops when a new hard segment has been detected. Since the number of
hard segments is bounded by the length N of the sequence, the algorithm
terminates after at most N iterations. With each iteration, Qmin is reduced.
Halting the algorithm at the end of an iteration results in an optimal allocation
sequence for the bit budget used. In e�ect, additional iterations only re�ne
the allocation sequence to meet the original bit budget Btgt.

7.2 SINGLE-PASS ALGORITHM

To transform the above algorithm to operate in a single pass, we need to
remove any looping and o�-line processing. This means that we can perform
only one iteration. We cannot perform Step 2 which assumes knowledge of the
rate-quantization characteristics of the entire sequence to be able to compute
the value required for Qmin. The identi�cation of hard pictures in Step 3
requires looking into the future to determine whether the current picture

SINGLE-PASS ALGORITHM 139

belongs to a hard segment. Finally, the optimal CBR algorithm in Step 4 is
an o�-line algorithm and needs to be replaced with an on-line algorithm.

The design of e�cient algorithms for on-line CBR rate control has been
taken up by many researchers, for example [7, 9, 61, 76]. We do not propose
yet another CBR algorithm, but show how to modify an existing one to use
in our VBR algorithm.

The limitation of a single iteration and the lack of knowledge of rate-
quantization characteristics impact the bit budget and the choice of Qmin.
One approach is not to impose a bit budget and to set Qmin based upon the
desired quality. This approach results in a �nal bit budget (and average bit
rate) that depends upon the complexity of the input sequence. Another ap-
proach is to monitor and control the average bit rate to meet a speci�ed target.
Which approach is best to use depends upon the particular application. For
example, storage applications that are capacity-limited would require the lat-
ter approach, whereas quality-conscious applications would favor the former.
We �rst describe an algorithm to deliver video at a desired base quality and
later show how to modify it to meet a desired bit budget.

7.2.1 Basic VBR Algorithm

The single-pass VBR algorithm below removes the o�-line processing identi-
�ed above and is suitable for low-complexity encoding with a speci�ed base
quality.

1. Initially the VBV bu�er is set to full. In addition to the VBV bu�er
size Bvbv, peak input bit rate Rmax, and base quantization scale Qmin,
the algorithm has three extra parameters: a CBR trigger threshold tcbr,
a VBR trigger threshold tvbr, and a target bu�er fullness Btgt, with
Bvbv > tvbr � tcbr > Btgt > 0.

2. The encoder simulates operation of the VBV and keeps track of the VBV
bu�er fullness Bf . The encoder operates in VBR mode and encodes the
input pictures using Qmin until Bf � tcbr. With this event, the encoder
switches to CBR mode and allocates bits to the next K pictures so that
the target fullness Btgt would be reached after those pictures have been
encoded. The parameter K may correspond to the number of pictures
in a small number of GOPs, for example. In CBR mode, the peak
rate Rmax is used as the target rate.

3. A CBR rate control algorithm, such as the one speci�ed in TM5, can
be used in CBR mode with one modi�cation: the perceptually adjusted
nominal quantization scale used to code any picture cannot be lower
than Qmin. The VBV bu�er is to be operated near the target full-
ness Btgt.

4. The encoder switches from CBR mode to VBR mode when Bf > tvbr.
When this occurs the base quantizer Qmin is again used.

140 REAL-TIME VBR RATE CONTROL

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35

N
o
rm
a
li
ze
d
B
u
�
er
F
u
ll
n
es
s
B
f

Time

VBR Region

Transition Region

CBR Region

tVBR

tCBR

Btgt

Fig. 7.1 Illustration of the Single-Pass VBR Algorithm. This �gure illus-

trates key points in the operation of the single-pass VBR algorithm. The algorithm

initially operates in VBR mode, switches to CBR mode when Bf � tcbr and switches

back to VBR mode when Bf > tvbr.

The operation of the algorithm is illustrated with the aid of Figure 7.1. In
the VBR region above tvbr, the algorithm operates in a constant-quality VBR
mode. The CBR region below tcbr marks where the algorithm operates in
CBR mode at the peak input rate. The transition region provides hysteresis
for transitions between VBR and CBR modes.

The single-pass VBR algorithm does not attempt to model the complexity
of the coded pictures. Instead, it reacts to changes in complexity of pictures
that are manifested as changes in the VBV bu�er level. One implication of
this reactive nature is a delay in switching between VBR and CBR modes
compared to the optimal algorithm. Whereas the optimal algorithm switches
to CBR mode when the bu�er is full, the single-pass algorithm must wait
until the bu�er reaches tcbr before switching. This leaves less bu�ering for the
CBR-coded pictures. Another di�erence is that for segments with short spikes
in complexity, the single-pass algorithm may switch to CBR coding when the
optimal algorithm would continue to operate in VBR mode. The switching
from CBR mode to VBR mode is less problematic. Because the CBR algo-
rithm in Step 3 enforces a minimum nominal quantization scale of Qmin, the
switching to VBR mode can actually take place before the bu�er reaches tvbr.
In fact, it is this enforcement of the minimum nominal quantization scale that
enables the bu�er to �ll up as the complexity of coded pictures decreases.

SIMULATION RESULTS 141

7.2.2 VBR Algorithm with Bit Budget

As presented above, the single-pass VBR algorithm does not attempt to con-
trol the coding rate to meet a speci�ed bit budget. In a sense, meeting a
total bit budget is a long-term process in which a target rate is speci�ed over
a long interval, whereas the basic VBR algorithm above can be viewed as a
short-term process in which coding decisions are made in response to local
variations in bu�er state. A similar approach is taken by Ding [15]. Enforcing
a bit budget is akin to specifying a constant bit rate with the rate averaged
across the entire sequence, or a large portion of the sequence. In this context,
a budget-constrained VBR algorithm can be viewed as performing the func-
tion of a CBR algorithm in which the encoder bu�er is sized large enough to
su�ciently smooth the variation in coding rate across a large portion of the
sequence. In a practical VBR encoder, the size of the encoder bu�er is �xed
and limited. However, we can use this intuition to design a VBR rate control
algorithm that incorporates a bit-budget constraint.

In the TM5 encoder model, a simple bu�er-feedback mechanism is used to
perform CBR rate control. In this scheme, a base quantizer scale is computed
as a function of the fullness of a \virtual" encoder bu�er that empties at a
constant rate. Denoting the fullness of the virtual bu�er as Bv, the bu�er-
feedback function takes the form Q = clip(31Bv=r), where r is a normaliza-
tion factor and the function clip() clips the quantization scale to the range
of [1; 31]. The base quantizer scale is then modulated with an activity factor

that attempts to compensate for the di�erence in visibility of quantization
errors among blocks with di�erent levels of spatial detail.

For simulation, we use the TM5 bu�er-feedback mechanism to perform the
long-term rate control. However, instead of controlling the quantizer scale
directly, we control Qmin with the feedback function: Q = clip(31Bv=r). The
size of virtual bu�er determines how quickly Qmin can change, and it also
a�ects the accuracy of the rate control. Conceptually, the size of the virtual
bu�er need not be constant. For example, to come close to the speci�ed bit
budget, we can reduce the size of the bu�er gradually to constrain the variance
in rate near the end of the sequence. In the simulation results presented below,
the virtual bu�er size is held constant. The constant emptying rate of the
virtual bu�er is computed as the total bit budget divided by the number of
pictures in the sequence.

7.3 SIMULATION RESULTS

We use the same simulation environment as described in Section 5.5. For the
test sequence, we use the 3,660-frame video clip described in Section 5.7. We
report results here for the following four algorithms: 1) Lexicographic VBR
with hyperbolic-spline model, 2) TM5 CBR, 3) single-pass VBR without long-

142 REAL-TIME VBR RATE CONTROL

Table 7.1 Summary of Single-Pass VBR Simulations. This table summarizes

the results of encoding simulations comparing the TM5 CBR, Lexicographic VBR,

Open-Loop Single-Pass VBR, and Controlled Single-Pass VBR Rate Control Algo-

rithms.

Rate Control PSNR (dB) Nominal Q Nominal Q

Algorithm Average Std. Dev. Average Std. Dev. Max Min

TM5 CBR 34:99 4:62 10:07 5:80 34:30 2:32
Lexicographic VBR 34:68 2:72 9:20 2:19 15:43 7:04
Single-Pass VBR 34:86 2:91 8:44 2:38 21:96 7:00
Controlled VBR 35:15 4:34 8:97 4:33 17:34 2:22

term rate control, and 4) single-pass VBR with long-term rate control. The
simulation parameters are as described in Section 5.7.2.

For both single-pass VBR algorithms, the initial base quantization param-
eters were adjusted to give roughly the same encoded �le size as TM5 and
the following thresholds were used: tvbr = 0:85Bvbv, tcbr = 0:7Bvbv and
Btgt = 0:3Bvbv. For the single-pass VBR algorithm with long-term rate con-
trol, the size of the virtual encoder bu�er was set to 20Bvbv.

A summary of the simulation results is listed in Table 7.1. Plots of the
bu�er fullness, smoothed instantaneous bit rate, nominal quantization, and
PSNR are shown in Figures 7.2{7.5. The results show that the VBR al-
gorithms produce less variance in PSNR and nominal quantization compared
with TM5 CBR. However, the average PSNR is actually better for TM5 CBR
than for the VBR algorithms. We observe that TM5 gives better PSNR for
scenes in the �rst half of the sequence where the the VBR algorithms operate
in constant-quality mode and worse PSNR on for complex scenes in the second
half. Since the majority of the pictures operate in constant-quality mode, the
average PSNR is biased toward TM5. Visually however, the VBR encodings
have more even quality and better scene transitions. Between the optimal
VBR algorithm and the single-pass VBR algorithm without long-term rate
control, the major di�erences can be attributed to the use of on-line versus
o�-line CBR algorithms. The single-pass VBR algorithm with rate control
shows some similarity with TM5 CBR in long-term variations in nominal
quantization, but with smoother local variations in nominal quantization and
PSNR.

7.4 RELATED WORK

Reibman and Haskell [68] study encoder rate constraints in the context of
an ATM network with a leaky-bucket policing function and propose a cod-
ing system in which the selections of channel rate and encoder rate are per-
formed jointly. The proposed encoder rate control is based upon the Reference
Model 8 (RM8) simulation encoder [4]. In order to prevent the use of pro-

RELATED WORK 143

Normalized Buffer Fullness

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

PSNR

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

Nominal Quantization

0

50000

100000

150000

200000

250000

0 500 1000 1500 2000 2500 3000 3500 4000

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 7.2 Simulation Results for TM5 CBR Coder.

144 REAL-TIME VBR RATE CONTROL

Normalized Buffer Fullness

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

PSNR

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

Nominal Quantization

Actual
Target

0

50000

100000

150000

200000

250000

0 500 1000 1500 2000 2500 3000 3500 4000

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 7.3 Simulation Results for Lexicographic VBR Coder.

RELATED WORK 145

Normalized Buffer Fullness

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

PSNR

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

Nominal Quantization

0

50000

100000

150000

200000

250000

0 500 1000 1500 2000 2500 3000 3500 4000

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 7.4 Simulation Results for Open-Loop Single-Pass VBR Coder.

146 REAL-TIME VBR RATE CONTROL

Normalized Buffer Fullness

25

30

35

40

45

50

0 500 1000 1500 2000 2500 3000 3500 4000

PS
N

R
 (

dB
)

Frame

PSNR

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000 3500 4000

N
om

in
al

 Q

Frame

Nominal Quantization

0

50000

100000

150000

200000

250000

0 500 1000 1500 2000 2500 3000 3500 4000

B
its

Frame

Instantaneous Bit Rate Averaged over 30 Frames

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000

N
or

m
al

iz
ed

 B
uf

fe
r

Fu
lln

es
s

Frame

20

Fig. 7.5 Simulation Results for Controlled Single-Pass VBR Coder.

RELATED WORK 147

gressively smaller quantizer scales for low-complexity segments of video, a
minimum quantizer scale is enforced, assuming that the user has selected a
maximum desired quality setting. The motivation for this modi�cation is to
save some rate for future peaks. The modi�ed RM8 encoder rate control is
similar to that speci�ed in Step 3 of the single-pass VBR algorithm of Sec-
tion 7.2.1.

The leaky-bucket policing mechanism ensures that the channel rate cannot
be sustained above a speci�ed average rate for a period of time determined by
the size of the bucket. Such constraints are not considered in Equation (2.9).
The \Greedy Leaky-Bucket Rate Control Algorithm" of [68] selects the highest
allowed transmission rate in order to empty the encoder bu�er as fast as
possible. In the absence of leaky-bucket constraints, this policy corresponds
to the MPEG-2 VBR mode described by Equation 2.9, where the decoder is
�lled as quickly as possible with the maximum transmission rate.

If we disregard the leaky-bucket constraints, the similarities and di�erences
between the encoder rate control algorithm in [68] and the single-pass VBR
algorithm of Section 7.2.1 become more evident. Since RM8 uses a feedback
rate control mechanism whereby the quantizer scale is determined as a mono-
tonically increasing function of the fullness of the encoder bu�er, there is a
bu�er fullness Be

min that corresponds to Qmin. When the encoder's bu�er
fullness falls below Be

min, the modi�ed RM8 algorithm is essentially operat-
ing in VBR mode with constant quantizer scale of Qmin. Since the encoder's
bu�er mirrors the decoder's bu�er in the case under consideration, the mod-
i�ed RM8 algorithm corresponds roughly to our single-pass VBR algorithm
with tvbr = tcbr = Bvbv � Be

min. The modi�ed RM8 algorithm does not have
a corresponding Btgt.

Ding [15] also considers joint encoder and channel rate control over ATM
networks. The proposed channel rate control basically performs bitstream
smoothing, where the channel rate is determined as an average of the encoding
rate of some number of past pictures. Encoder rate control is separated into
two processes: encoder instantaneous-rate control and encoder sustainable-

rate control. Encoder instantaneous-rate control also uses the concept of
a minimum quantization parameter, labeled sequence Qs in [15]. The en-
coder instantaneous-rate control increases the encoding quantization parame-
ter above Qs only when the upper bound on encoder bit rate is violated. The
violation can be determined either by estimating the bit rate of the current pic-
ture or by performing a two-pass encoding. Again, if we disregard constraints
imposed by ATM policing function, the encoder instantaneous-rate control
roughly corresponds to our single-pass VBR algorithm with tvbr = tcbr = Ei,
where Ei is the estimated or computed number of bits to encode the current
picture with Qs.

The encoder sustainable-rate control of [15] adjusts the sequence Qs to
adapt to the changing local statistics of the video sequence. The sequenceQs is
adjusted in discrete increments by monitoring changes in the average fullness

148 REAL-TIME VBR RATE CONTROL

of the virtual bu�er, which is de�ned to be the sum of the fullness of the
encoder bu�er and the leaky bucket.

Considering the previous works described above, our single-pass VBR al-
gorithm, with or without long-term control of Qmin, seems eminently suitable
for encoder rate control in an ATM setting when coupled with an appropriate
channel rate control algorithm.

7.5 CONCLUSION

We have presented a low-complexity VBR rate control algorithm suitable for
low-delay, real-time encoding applications. The development of the algorithm
is motivated by the lexicographic bit allocation framework. Although the al-
gorithm is best suited to provide a desired quality level and can be used for
short-term encoder rate control, it can also be applied with a suitable long-
term rate control strategy to meet bit budget constraints. Results from a
challenging encoding simulation shows that the new algorithm retains advan-
tages of the more complex optimal algorithm in equalizing quality, especially
for scene transitions.

8
Extensions of the

Lexicographic Framework

In Chapters 2{4, we laid a theoretical foundation for lexicographic bit allo-
cation, and in Chapter 5 we demonstrated that the framework works well
in practice. In this chapter, we provide evidence that the framework is also
exible and general by showing how it can be readily applied to other do-
mains, extended to perform statistical multiplexing, and used in a discrete
optimization setting.

8.1 APPLICABILITY TO OTHER CODING DOMAINS

While the lexicographic bit allocation framework was originally motivated and
formulated for MPEG video coding, it can be applied equally well in other
lossy coding domains for which bu�er-constrained bit allocation is a valid
problem and where a perceptual distortion measure needs to be equalized
among coding units. With the increasing popularity and reach of the Internet,
bu�er-constrained bit allocation becomes relevant for compressed data that
are streamed across a network. Obvious examples include lossy image coding
(such as speci�ed by the JPEG standard [62]), where the coding unit would
logically be a block of pixels, and audio coding, where a coding unit might
correspond to half a second of sampled sound.

149

150 EXTENSIONS OF THE LEXICOGRAPHIC FRAMEWORK

8.2 MULTIPLEXING VBR STREAMS OVER A CBR CHANNEL

8.2.1 Introduction

There are many scenarios where multiple compressed video streams are to
be transmitted through a common channel. Two obvious examples are net-
worked video and digital video broadcasting. In these types of applications,
the transmission channel is typically bandwidth-limited. With the available
bandwidth, we would like to provide as much video programming as possible
without having to sacri�ce quality.

An often-cited motivation for VBR video encoding is that VBR encoding
can potentially allow for the simultaneous transmission of more video streams
over a common channel than CBR encoding at the same quality level. The
main reasoning is provided through a concept called statistical multiplexing.
Statistical multiplexing is based upon the observation that the bit rate of
constant-quality video is highly variable from frame to frame. In order to
achieve image quality that is not less lexicographically than that of a constant-
quality VBR encoding, a CBR encoding would require a bit rate that would
correspond to the peak rate of the VBR encoding. Since a VBR encoding
typically requires the peak rate for only a small percentage of time, it uses
less bandwidth on average than a comparable CBR encoding. Furthermore,
assuming that the VBR streams have independent bit rate characteristics, we
can transmit more VBR streams than CBR streams over a common channel
with a low probability that the combined instantaneous bit rate would exceed
the channel rate.

As an example, consider a channel with a bandwidth of 100 Mbits/sec.
Suppose that for a desired level of quality, a peak rate of 10 Mbits/sec is
required for coding a suite of video programming. Using CBR encoding, up
to 10 sequences can be transmitted through the channel simultaneously. Since
the peak rate is required only a small percentage of the time, suppose that
the actual average rate is only 5 Mbits/sec. Then using VBR encoding with a
peak rate of 10 Mbits/sec and average rate of 5 Mbits/sec, we can potentially

transmit 20 simultaneous sequences. This would correspond to a statistical

multiplexing gain of 2.
In order to transmit the 20 VBR sequences simultaneously, however, the

instantaneous bit rate for the 20 sequences must not exceed the channel ca-
pacity for an extended period of time, which is determined by the amount of
bu�ering present. Assuming that the bit rates of the di�erent video streams
are uncorrelated in time, there is a low probability that the channel capac-
ity would be exceeded in any time interval. Quantifying and minimizing this
probability are central themes of research.

The advantage of VBR encoding over CBR is illustrated through a simple
example in Figure 8.1. In this example, three VBR encodings are shown
multiplexed using at most the same bandwidth required by a CBR encoding
of only two of the sources.

MULTIPLEXING VBR STREAMS OVER A CBR CHANNEL 151

C
on

su
m

pt
io

n
B

an
dw

id
th

Program 1 Program 2

Time

(a) Multiplexing of 2 CBR Bitstreams

Program 2 Program 3Program 1

Time

B
an

dw
id

th
C

on
su

m
pt

io
n

(b) Multiplexing of 3 VBR Bitstreams

Fig. 8.1 Illustration of Statistical Multiplexing. This �gure shows an example

of how three VBR bitstreams can be multiplexed into the same channel as two CBR

bitstreams, yielding a statistical multiplexing gain of 1.5.

152 EXTENSIONS OF THE LEXICOGRAPHIC FRAMEWORK

Encoder/Multiplexer

Input 1

Input 2

Input M

Demultiplexer/Decoder

Output 1

Output 2

Output M

CBR Channel

Fig. 8.2 Multiplexing Model. This �gure shows a block diagram of system for

transmitting multiple sequences over a single channel. At the encoder, the video

sources are encoded, multiplexed, and transmitted over a common channel. At the

decoder, the compressed video streams are received, demultiplexed, and decoded.

In the remainder of this section, we will show how our basic lexicographic
bit allocation framework can be readily extended to handle the multiplexing of
multiple VBR bitstreams over a CBR channel. However, in contrast to typical
statistical multiplexing techniques, as exempli�ed in Figure 8.1, our method
allocates bits to the VBR bitstreams in a deterministic manner, making full
use of all the available channel bandwidth.

In related work, a bu�ered rate control scheme for multiplexing VBR
sources onto a CBR channel is described in [61]. This work is based upon
the rate-distortion framework of [60] and [7] and uses a multiplexing model
very similar to the one we are about to present. As described in the paper,
the basic allocation unit is taken to be a GOP.

8.2.2 Multiplexing Model

We �rst elaborate a model for multiplexing multiple VBR bitstreams onto a
CBR channel. Since our bit allocation framework is deterministic and uses
lookahead, we assume that complete statistics of the multiple video sources are
available to the bit allocation algorithm. This requirement can be met by pro-
viding a centralized encoder for the multiple sources, as depicted in Figure 8.2.
In the �gure, M video sources enter a encoder/multiplexer that produces a
single multiplexed stream for transport over a CBR channel. On the receiv-
ing end, a demultiplexer/decoder performs demultiplexing and decoding to
reproduce the M video sequences. This multiplexing model is similar to that
proposed in [27].

This model is applicable to applications such as a video server where the
video sequences to be multiplexed are known in advance. An especially note-
worthy case is that of near-video-on-demand (NVOD), where a single sequence
is to be transmitted simultaneously with di�erent starting times. For exam-
ple, 20 copies of a two-hour movie can be multiplexed so that the viewing of
the movie can begin every six minutes.

The encoder/multiplexer block is expanded in Figure 8.3. As shown, the
input video sources are encoded individually and time-division multiplexed
and stored in a bu�er before being output to the channel at a constant bit

MULTIPLEXING VBR STREAMS OVER A CBR CHANNEL 153

Multiplexer

Buffer

CBR ChannelVBR EncoderInput 2

VBR EncoderInput 1

VBR EncoderInput M

Fig. 8.3 Block Diagram of Encoder/Multiplexer. This block diagram shows

the time-division multiplexing of the output of several encoders, with the multiplexed

output being stored in a single channel bu�er.

Program 2 Program 3Program 1

Frame 2 Frame 1

Time

To Channel

Fig. 8.4 Operation of Multiplexer. This diagram illustrates the operation of a

simple multiplexing model. In this multiplexing model, the compressed frames of video

from the multiple sources are time-division multiplexed onto the CBR channel.

rate. The encoders are synchronized so that they output the encoding of a
picture at the same time every T seconds. The multiplexer then concatenates
the multiple encodings in order as shown in Figure 8.4.

The demultiplexer/decoder block is expanded in Figure 8.5. The demul-
tiplexer/decoder mirrors the operation of the encoder/multiplexer. Incoming
bits from the channel are stored in a decoding bu�er. Every T seconds, the de-
multiplexer instantaneously removes from the bu�er all bits needed to decode
the next picture of all sequences and routes the bitstreams to the appropriate
decoders, which then output the reconstructed video.

The multiplexing model described above resembles the operation of the
single-stream encoder and decoder system implied by the MPEGVideo Bu�er-
ing Veri�er. If we view the di�erent input sources as providing \slices" of the

154 EXTENSIONS OF THE LEXICOGRAPHIC FRAMEWORK

Decoder

Decoder

Decoder

Output 1

Output 2

Output M

CBR Channel

Buffer

Demultiplexer

Fig. 8.5 Block Diagram of Demultiplexer/Decoder. The demultiplexer and

decoders shown in this diagram are used to separate and decode the multiplexed

bitstreams produced by the encoder/multiplexer of Figure 8.3.

same picture, the resemblance would be very close indeed. This construction
is intentional and allows us to apply the lexicographic framework to allocate
bits optimally to the multiple VBR bitstreams.

8.2.3 Lexicographic Criterion

Before we can apply our lexicographic bit allocation framework, we need to de-
�ne an optimality criterion. Since there are multiple sources, a lexicographical
criterion based upon the encoding of a single video sequence is certainly not
appropriate. We need to consider the quality of all the sequences. A simple
way to do this is to consider the concatenation of all the sequences and de�ne
a lexicographic criterion on the concatenated video stream. By doing this,
we are putting equal weight to each picture of each video sequence. We can
consider extending the lexicographic criterion to compare vectors of lengthM
instead of scalar quantities. However, as we will see, this is equivalent to just
considering the concatenation of the M sequences.

8.2.4 Equivalence to CBR Bit Allocation

In this section, we show for the multiplexing model put forth above that the
problem of optimal bit allocation for multiple VBR streams reduces to a CBR
bit allocation problem for a single stream.

The multiplexing model follows the operation of the MPEGVideo Bu�ering
Veri�er (VBV). We can view the bu�er, the demultiplexer, and the bank
of M decoders in Figure 8.5 as comprising a single VBV. The lexicographic

BIT ALLOCATION WITH A DISCRETE SET OF QUANTIZERS 155

framework of Chapter 2 can then be applied. Since the transmission channel
operates at a constant bit rate, the CBR constraints of Chapter 3 would apply.

For display interval i, we need to consider the nominal quantization scales
used to code picture i of each of the M video sequences. Given a �xed bit
budget for coding picture i of each video sequence, it is easy to show that the
same nominal quantization scale must be used to code picture i of all sequences
to achieve lexicographic optimality; if the nominal quantization scales di�er,
we can always shift bits around to reduce the highest nominal quantization
scale by increasing a lower nominal quantization scale. This result also holds if
we formulate the lexicographic criterion using vectors of nominal quantization
scales.

By using a combined bit-production model that is the sum of the bit-
production models for the individual sequences, we can then allocate bits
jointly to the sequences using the CBR algorithm of Chapter 3.

While the above technique guarantees that the bu�er in Figure 8.5 does
not overow or underow, it should be noted that doing so does not guar-
antee MPEG VBV compliance for the individual sequences, except when the
individual VBV bu�ers are at least the size of the bu�er in Figure 8.5. A mul-
tiplexing model that explicitly includes individual decoder bu�ers is certainly
possible. However, analysis of this situation is not as straightforward as the
above model and remains an open problem.

8.3 BIT ALLOCATION WITH A DISCRETE SET OF QUANTIZERS

One of the assumptions made in Chapter 2 is that there is a continuous re-
lationship between quantization (distortion) and coding rate (number of bits
used). As shown in Chapters 3 and 4, this assumption facilitates rigorous anal-
ysis of the bu�er-constrained bit allocation problem under the lexicographic
optimality criterion and results in an elegant characterization of the optimal
solution. In order to apply directly the results of the analysis, we need to
construct a continuous model of the relationship between quantization and
coding rate. As demonstrated in Chapter 5, this can be done by gathering
statistics during multiple encoding passes and �tting these to a chosen func-
tional form. Because of the inevitable error in the modeling, some form of
error recovery is needed, such as the scheme proposed in Chapter 5.

In most practical coders, however, both the set of available quantizers and
the number of bits produced are discrete and �nite. The problem of bu�er-
constrained bit allocation under these conditions has been examined by Or-
tega, Ramchandran, and Vetterli [60]. They provide a dynamic programming
algorithm to �nd a CBR allocation sequence that minimizes a sum-distortion
metric. In this section, we briey describe their algorithm and show how it
can be readily extended to perform lexicographic minimization.

156 EXTENSIONS OF THE LEXICOGRAPHIC FRAMEWORK

8.3.1 Dynamic Programming

The dynamic programming algorithm described in [60] is based upon the
Viterbi algorithm outlined in Section 1.8.4 for solving the budget-constrained
bit allocation problem. To handle the additional bu�er constraints, the bu�er
fullness is recorded at each state instead of the total number of bits used
so far; for CBR coding, the number of bits used can be determined from
the bu�er fullness. We can use the recurrence equations in Section 2.4.1 to
update the bu�er fullness and create a trellis. Instead of pruning states that
exceed a given bit budget, we instead prune states that overow or underow
the bu�er. At each stage in the construction of the trellis, we compare the
current sum distortion associated with edges that enter a new state and record
the minimum distortion along with a pointer to the source state. At the last
stage of trellis construction, we identify the state with the minimum sum
distortion and backtrack through the stored pointers to recover an optimal
bit allocation sequence. Since an integral number of bits is generated, the
maximum number of states that can be generated at each stage is equal to
the size of the bu�er. Therefore, with M quantizers, N pictures, and a bu�er
of size B, the dynamic programming algorithm of [60] requires O(MBN) time
to compute an optimal bit allocation sequence.

8.3.2 Lexicographic Extension

It is straightforward to modify the dynamic programming algorithm of [60] to
perform lexicographic minimization. Instead of keeping track of a minimum
sum distortion value, a scalar, we keep track of a lexicographic minimum, a
vector. A naive implementation would store a vector of length k for a state
at the kth stage in the trellis, where the vector records the quantizers used
for coding the �rst k pictures. However, since the set of quantizers is �nite
and we are only concerned with the number of times a given quantizer is used
and not with the order in which the quantizers are used, we only need to
store M values at each state, where M is the number of quantizers. Each of
these M values count the number of times a given quantizer has been used to
code the �rst k pictures in an optimal path ending at the given state. Given
two vectors of quantizer counts, a lexicographic comparison can be performed
in O(M) time. With this modi�cation, we can �nd a lexicographically optimal
bit allocation sequence in O(M2BN) time.

References

1. V. R. Algazi, Y. Kato, M. Miyahara, and K. Kotani. Comparison of
image coding techniques with a picture quality scale. In Proceedings of

the SPIE International Symposium on Electronic Imaging Science and

Technology|Visual Communications and Image Processing, volume 1771,
pages 396{405, San Diego, July 1992.

2. V. Bhaskaran and K. Konstantinides. Image and Video Compression

Standards. Kluwer Academic Publishers, Boston, 1995.

3. ITU-R Recommendation BT.601-5. Studio encoding parameters of digital
television for standard 4:3 and wide-screen 16:9 aspect ratios, 1995.

4. CCITT. Description of reference model 8 (RM8), June 1989. Study Group
XV|Document 525.

5. J.-J. Chen and H.-M. Hang. A transform video coder source model and
its application. In Proceedings of the IEEE International Conference on

Image Processing, volume 2, pages 967{971, 1994.

6. J.-B. Cheng and H.-M. Hang. Adaptive piecewise linear bits estimation
model for MPEG based video coding. In Proceedings of the IEEE In-

ternational Conference on Image Processing, volume 2, pages 551{554,
1995.

157

158 REFERENCES

7. J. Choi and D. Park. A stable feedback control of the bu�er state using
the controlled lagrange multiplier method. IEEE Transactions on Image

Processing, 3(5):546{557, September 1994.

8. P. A. Chou, T. Lookabaugh, and R. M. Gray. Entropy-constrained vec-
tor quantization. IEEE Transactions on Signal Processing, 37(1):31{42,
January 1989.

9. K.-W. Chow and B. Liu. Complexity based rate control for MPEG en-
coder. In Proceedings of the IEEE International Conference on Image

Processing, volume 1, pages 263{267, Austin, TX, November 1994.

10. K. W. Chun, K. W. Lim, H.D. Cho, and J. B. Ra. An adaptive perceptual
quantization algorithm for video coding. IEEE Transactions on Consumer

Electronics, 39(3):555{558, August 1993.

11. T.-Y. Chung, K.-H. Jung, Y.-N. Oh, and D.-H. Shin. Quantization con-
trol for improvement of image quality compatible with MPEG2. IEEE

Transactions on Consumer Electronics, 40(4):821{825, November 1994.

12. G. Cicalini, L Favalli, and A. Mecocci. Dynamic psychovisual bit allo-
cation for improved quality bit rate in MPEG-2 transmission over ATM
links. Electronic Letters, 32(4):370{371, February 1996.

13. W. Ciciora, J. Farmer, and D. Large. Modern Cable Television Technol-

ogy: Video, Voice, and Data Communications. Morgan Kaufman, San
Francisco, 1999.

14. T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-
Interscience, New York, 1991.

15. W. Ding. Joint encoder and channel rate control of VBR video over
ATM networks. IEEE Transactions on Circuits and Systems for Video

Technology, 7(2):266{278, April 1997.

16. W. Ding and B. Liu. Rate control of MPEG video coding and recording by
rate-quantization modeling. IEEE Transactions on Circuits and Systems

for Video Technology, 6(1):12{20, February 1996.

17. H. Everett. Generalized langrange multiplier method for solving problems
of optimum allocation of resources. Operation Research, 11:399{417, 1963.

18. G. D. Forney. The Viterbi algorithm. Proceedings of the IEEE, 61:268{
278, March 1973.

19. J. E. Fowler and S. C. Ahalt. Di�erential vector quantization of real-time
video. In Proceedings of the IEEE Data Compression Conference, pages
205{214, Snowbird, UT, March 1994. IEEE Computer Society Press.

REFERENCES 159

20. J. Friedman, J. Hershberger, and J. Snoeyink. E�ciently planning com-
pliant motion in the plane. SIAM Journal on Computing, 25(3):562{599,
June 1996.

21. A. Gersho and R. M. Gray. Vector Quantization and Signal Compression.
Kluwer Academic Press, Boston, 1992.

22. J. B. Ghosh. Siting facilities along a line when equity of service is desirable.
Journal of Operation Research Society, 47(3):435{445, March 1996.

23. ITU-T Recommendation H.261. Video codec for audiovisual services at
p� 64 kbit/s, 1990. Revised at Helsinki, March 1993.

24. ITU-T Recommendation H.262 j ISO/IEC 13818-2. Generic coding of
moving pictures and associated audio information: Video, 1995.

25. ITU-T Recommendation H.263. Video coding for low bit rate communi-
cation, 1996. Revised 1998.

26. B. G. Haskell, A. Puri, and A. N. Netravali. Digital Video: An Introduction
to MPEG{2. Chapman & Hall, New York, 1997.

27. B. G. Haskell and A. R. Reibman. Multiplexing of variable rate encoded
streams. IEEE Transactions on Circuits and Systems for Video Technol-

ogy, 4(4):417{424, August 1994.

28. J. Hershberger and S. Suri. O�-line maintenance of planar con�gurations.
Journal of Algorithms, 21(3):453{475, November 1996.

29. D. T. Hoang, E. Linzer, and J. S. Vitter. Lexicographic bit allocation for
MPEG video. Journal of Visual Communication and Image Representa-

tion, 8(4):384{404, December 1997. Special issue on high-�delity media
processing.

30. D. T. Hoang and E. N. Linzer. Motion Video Compression System with

Bu�er Empty/Fill Look-Ahead Bit Allocation. United States Patent No.
5,719,632, IBM, February 17, 1998.

31. D. T. Hoang and J. S. Vitter. Multiplexing VBR video sequences onto a
CBR channel with lexicographic optimization. In Proceedings of the IEEE
International Conference on Image Processing, volume 4, pages 101{110,
Santa Barbara, CA, October 1997.

32. C.-Y. Hsu, A. Ortega, and A. R. Reibman. Joint selection of source and
channel rate for VBR video transmission under ATM policing constraints.
IEEE Journal on Selected Areas in Communications, pages 1016{1028,
August 1997.

33. T. Ibaraki and N. Katoh. Resource Allocation Problems. MIT Press,
Cambridge, MA, 1988.

160 REFERENCES

34. ISO-IEC/JTC1/SC29/WG11/N0400. Test model 5, April 1993. Docu-
ment AVC-491b, Version 2.

35. ISO/IEC 11172-2. Coding of moving pictures and associated audio for
digital storage media at up to about 1.5 mbits/s, 1993.

36. ISO/IEC 14496-2. Generic coding of audio-visual objects: Part 2|Visual,
1995.

37. A. K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall,
Englewood Cli�s, NJ, 1989.

38. J. R. Jain and A. K. Jain. Displacement measurement and its application
in interframe coding. IEEE Transactions on Communications, COM-
29(12):1799{1808, 1981.

39. N. S. Jayant, J. Johnson, and R. Safranek. Signal compression based
on models of human perception. Proceedings of the IEEE, 81:1385{1422,
October 1993.

40. R. S. Klein, H. Luss, and D. R. Smith. Lexicographic minimax algo-
rithm for multiperiod resource allocation. Mathematical Programming,
55(2):213{234, June 1992.

41. D. Le Gall. MPEG: A video compression standard for multimedia appli-
cations. Communications of the ACM, 34(4):46{58, April 1991.

42. D. T. Lee and F. P. Preparata. Euclidean shortest paths in the presence
of rectilinear barriers. Networks, 14(3):393{410, 1984.

43. D. W. Lin and J.-J. Chen. E�cient bit allocation under multiple con-
straints on cumulated rates for delayed video coding. In J. Biemond and
E. J. Delp, editors, Proceedings of the SPIE International Symposium on

Electronic Imaging Science and Technology|Visual Communications and

Image Processing, volume 3024, pages 1370{1381, February 1997.

44. F.-H. Lin and R. M. Mersereau. An optimization of MPEG to maximize
subjective quality. In Proceedings of the IEEE International Conference

on Image Processing, volume 2, pages 547{550, 1995.

45. L.-J. Lin, A. Ortega, and C.-C. J. Kuo. Gradient-based bu�er control tech-
niques for MPEG. In Proceedings of the SPIE International Symposium

on Electronic Imaging Science and Technology|Visual Communications

and Image Processing, Taipei, Taiwan, May 1995.

46. L.-J. Lin, A. Ortega, and C.-C. J. Kuo. A gradient-based rate control
algorithm with applications to MPEG video. In Proceedings of the IEEE

International Conference on Image Processing, volume 2, Washington,
D.C., October 1995.

REFERENCES 161

47. L.-J. Lin, A. Ortega, and C.-C. J. Kuo. Cubic spline approximation of
rate and distortion functions for MPEG video. In V. Bhaskaran, F. Sijs-
termans, and S. Panchanathan, editors, Proceedings of the SPIE Interna-

tional Symposium on Electronic Imaging Science and Technology|Digital

Video Compression, volume 2668, pages 169{180, February 1996.

48. L.-J. Lin, A. Ortega, and C.-C. J. Kuo. Rate control using spline-
interpolated R-D characteristics. In Proceedings of the SPIE Interna-

tional Symposium on Electronic Imaging Science and Technology|Visual

Communications and Image Processing, 1996.

49. M. Liou. Overview of the p� 64 kbit/s video coding standard. Commu-
nications of the ACM, 34(4):60{63, April 1991.

50. M. Luptacik and F. Turnovec. Lexicographic geometric programming.
European Journal of Operational Research, 51(2):259{269, March 1991.

51. H. Luss and S. K. Gupta. Allocation of e�ort resources among competitive
activities. Operation Research, 23:360{366, 1975.

52. E. Marchi and J. A. Oviedo. Lexicographic optimality in the multiple
objective linear programming. The nucleolar solution. European Journal

of Operational Research, 57(3):355{359, March 1992.

53. A. W. Marshall and I. Olkin. Inequalities: Theory of Majorization and its

Applications. Academic Press, New York, 1979.

54. A. A. Melkman. On-line construction of the convex hull of a simple
polyline. Information Processing Letters, 25(1):11{12, April 1987.

55. J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall, editors.
MPEG Video Compression Standard. Chapman & Hall, New York, 1997.

56. MPEG Software Simulation Group. MPEG-2 encoder/decoder version
1.2, July 19 1996. URL: http://www.mpeg.org/MSSG.

57. A. N. Netravali and B. G. Haskell. Digital Pictures: Representation, Com-
pression, and Standards. Plenum Press, New York, second edition, 1995.

58. W. Ogryczak. On the lexicographic minimax approach to location{
allocation problems. Technical Report IS - MG 94/22, Universit�e Libre
de Bruxelles, December 1994.

59. L. A. Olzak and J. P. Thomas. Seeing spatial patterns. In K. Bo�,
L. Kaufman, and J. Thomas, editors, Handbook of Perception and Human

Performance. Wiley, New York, 1986.

60. A. Ortega, K. Ramachandran, and M. Vetterli. Optimal trellis-based
bu�ered compression and fast approximations. IEEE Transactions on

Image Processing, 3(1):26{40, January 1994.

162 REFERENCES

61. D. Park and K. Kim. Bu�ered rate-distortion control of MPEG com-
pressed video channel for DBS applications. In Proceedings of the In-

ternational Conference on Communications, volume 3, pages 1751{1755,
1995.

62. W. B. Pennebaker and J. L. Mitchell. JPEG|Still Image Data Compres-

sion Standard. Van Nostrand Reinhold, New York, 1993.

63. M. R. Pickering and J. F. Arnold. A perceptually e�cient VBR rate
control algorithm. IEEE Transactions on Image Processing, 3(5):527{
532, September 1994.

64. A. Premoli and W. Ukovich. Piecewise lexicographic programming. A new
model for practical decision problems. Journal of Optimization Theory

and Applications, 72(1):113{142, January 1992.

65. A. Puri and R. Aravind. Motion-compensated video coding with adaptive
perceptual quantization. IEEE Transactions on Circuits and Systems for

Video Technology, 1(4):351{361, December 1991.

66. K. Ramachandran, A. Ortega, and M. Vetterli. Bit allocation for depen-
dent quantization with applications to multiresolution and MPEG video
coders. IEEE Transactions on Image Processing, 3(5):533{545, September
1994.

67. R. K. Rao and Z. S. Bojkovic. Packet Video Communications over ATM

Networks. Prentice Hall PTR, Upper Saddle River, NJ, 2000.

68. A. R. Reibman and B. G. Haskell. Constraints on variable bit-rate video
for ATM networks. IEEE Transactions on Circuits and Systems for Video

Technology, 2(4):361{372, December 1992.

69. J. D. Salehi, Z.-L. Zhang, J. F. Kurose, and D. Towsley. Supporting
stored video: Reducing rate variability and end-to-end resource require-
ments through optimal smoothing. In Procedings of ACM SIGMETRICS

Joint International Conference on Measurement and Modeling of Com-

puter Systems, pages 222{231, Philadelphia, May 1996.

70. G. M. Schuster and A. K. Katsaggelos. Rate-Distortion Based Video

Compression: Optimal Video Frame Compression and Object Boundary

Encoding. Kluwer Academic Publishers, Boston, 1997.

71. C. E. Shannon. A mathematical theory of communication. Bell System

Technical Journal, 27:379{423, July 1948.

72. Y. Shoham and A. Gersho. E�cient bit allocation for an arbitrary set of
quantizers. IEEE Transactions on Acoustics, Speech and Signal Process-

ing, 36(9):1445{1453, September 1988.

REFERENCES 163

73. M.-T. Sun and A. R. Reibman, editors. Compressed Video over Networks.
Marcel Dekker, New York, 2001.

74. D. Turaga and T. Chen. Fundamentals of video compression: H.263 as an
example. In M.-T. Sun and A. R. Reibman, editors, Compressed Video

over Networks. Marcel Dekker, New York, 2001.

75. K. M. Uz, J. M. Shapiro, and M. Czigler. Optimal bit allocation in the
presence of quantizer feedback. In Proceedings of the IEEE International

Conference on Acoustics Speech and Signal Processing, volume 5, pages
385{388, 1993.

76. E. Viscito and C. Gonzales. A video compression algorithm with adaptive
bit allocation and quantization. In Proceedings of the SPIE International

Symposium on Electronic Imaging Science and Technology|Visual Com-

munications and Image Processing, volume 1605, pages 205{216, Novem-
ber 1991.

77. A. J. Viterbi and J. K. Omura. Principles of Digital Communication and

Coding. McGraw-Hill, New York, 1979.

78. X. Wang, S. M. Shende, and K. Sayood. Online compression of video se-
quences using adaptive VQ codebooks. In Proceedings of the IEEE Data

Compression Conference, pages 185{194, Snowbird, UT, March 1994.
IEEE Computer Society Press.

79. S. J. P. Westen, R. L. Lagendijk, and J. Biemond. Perceptual optimization
of image coding algorithms. In Proceedings of the IEEE International

Conference on Image Processing, volume 2, pages 69{72, 1995.

About the Authors

Dzung Tien Hoang was born on April 20, 1968, in Nha Trang, Vietnam.
He immigrated to the United States in 1975 with his family and settled in
New Orleans, Louisiana.

After graduating in 1986 from the Louisiana School for Math, Science and
the Arts, a public residential high school in Natchitoches, Louisiana, he at-
tended Tulane University in New Orleans with a Dean's Honor Scholarship
and graduated in 1990 with Bachelor of Science degrees in Electrical Engi-
neering and Computer Science, both with Summa Cum Laude honors.

He joined the Department of Computer Science at Brown University in
Providence, Rhode Island, in 1990 under a University Fellowship and later
under a National Science Foundation Graduate Fellowship. He received a
Master of Science in Computer Science from Brown in 1992 and a Doctor of
Philosophy in Computer Science from Brown in 1997. From 1993 to 1996, he
was a visiting scholar and a research assistant at Duke University in Durham,
North Carolina. From 1991 to 1995, he spent summers working at the Freder-
ick National Cancer Research Facility, the Supercomputing Research Center,
and the IBM T. J. Watson Research Center.

In August 1996, he joined Digital Video Systems, in Santa Clara, Califor-
nia, as Senior Software Engineer, where he developed algorithms for video
compression. From October 1997 to May 2000, he served as Senior Software
Systems Engineer and System-On-Chip Software Manager in the Semiconduc-
tor Business Division of Sony Electronics, Inc. He is currently Video Algo-
rithm Development Manager at iCompression, a subsidiary of GlobeSpan.

165

166 ABOUT THE AUTHORS

Je�rey Scott Vitter was born on November 13, 1955, in New Orleans,
Louisiana. He received a Bachelor of Science degree with Highest Honors in
Mathematics from the University of Notre Dame in 1977, and a Doctor of
Philosophy degree in Computer Science from Stanford University in 1980. He
was on the faculty at Brown University from 1980 until 1993. He is currently
the Gilbert, Louis, and Edward Lehrman Professor of Computer Science at
Duke University, where he served during 1993{2001 as Chair of the Depart-
ment of Computer Science. He is also Co-Director and a Founding Member
of the Center for Geometric and Biological Computing at Duke.

Prof. Vitter is a Guggenheim Fellow, an ACM Fellow, an IEEE Fellow, an
NSF Presidential Young Investigator, a Fulbright Scholar, and an IBM Faculty
Development Awardee. He is co-author of the book Design and Analysis of

Coalesced Hashing, co-editor of the collections External Memory Algorithms

and Algorithm Engineering, and is co-holder of patents in the areas of ex-
ternal sorting, prediction, and approximate data structures. He has written
numerous articles and has consulted frequently. He serves or has served on the
editorial boards of Algorithmica, Communications of the ACM, IEEE Trans-

actions on Computers, Theory of Computing Systems (formerlyMathematical

Systems Theory: An International Journal on Mathematical Computing The-

ory), and SIAM Journal on Computing, and has been a frequent editor of
special issues.

Prof. Vitter is on the Board of Directors of the Computing Research As-
sociation, where he co-chairs the Government A�airs Committee. He has
served as Chair of ACM SIGACT, the Special Interest Group on Algorithms
and Computation Theory of the world's largest computer professional or-
ganization, the Association for Computing Machinery, and as a member of
the Executive Council of the European Association for Theoretical Computer
Science (EATCS). He has spent sabbaticals at the the Mathematical Sciences
Research Institute in Berkeley, at Institut National de Recherche en Infor-
matique et en Automatique (I.N.R.I.A.) in Rocquencourt, France, at Ecole
Normale Sup�erieure in Paris, at Lucent Technologies Bell Laboratories in
Murray Hill, New Jersey, and most recently at I.N.R.I.A. in Sophia Antipolis,
France. He is an associate member of the Center of Excellence in Space Data
and Information Sciences and an adjunct professor at Tulane University in
New Orleans.

Index

16CIF, 31

4:2:0 chroma format, 7{8, 18

4:2:2 chroma format, 6{7

4CIF, 31

Activity factor, 141

Allocation sequence, 45

Arithmetic coding, 31

Bit allocation, 28

budget-constrained, 37

bu�er-constrained, 49

constant-Q, 51

discrete quantizers, 155

legal, 49

lexicographically optimal, 50, 76, 154, 156

optimal, 50

target, 28{29

Bit budget, 138

Bit rate

constant (CBR), 26, 45, 55, 154

control, 18, 22, 28{30, 41

variable (VBR), 26, 47, 71

Bit-production model, 44, 86

generalized hyperbolic, 87

hyperbolic, 67, 86

hyperbolic-spline interpolation, 90

linear-spline interpolation, 88

Block, 18, 24

group (GOB), 18

macro (MB), 18, 24

matching, 17

transform, 10

translation model, 14

Boundary state, 64, 125

Bu�er

constraints, 45

decoder, 26, 48

double, 27

empty, 57, 64, 125

encoder, 27, 48

full, 57, 64, 125

fullness, 45

guard zone, 94

lexicographically optimal, 60

overow, 46

underow, 46

virtual overow, 48

CCIR-601, 5

CCITT, 17

Chrominance, 2, 6{7

CIF, 7, 18, 31, 33

Codebook, 9

Codeword, 9

Coding

dependent, 114

independent, 106

interframe, 14, 18

intraframe, 12, 18

Color representation, 2

CMY, 2

RGB, 2

167

168 INDEX

YCrCb, 5

YDbDr, 3

YIQ, 2

YUV, 3

Compression

lossy, 34

video, 1

Constant-Q, 51, 65

Counterclockwise order, 126

Di�erential pulse code modulation

(DPCM), 12

Digital video disk (DVD), 8

Digitization, 3

Discrete cosine transform (DCT), 10

Distortion, 9, 34, 41, 43

perceptual, 42{43

Dynamic programming, 64, 123

forward algorithm, 64

reverse algorithm, 92, 123

Viterbi algorithm, 37, 156

Fork point, 126

Format

CIF, 7, 18

QCIF, 8, 18

SIF, 6

Frame, 4

bidirectionally predicted, 13

di�erencing, 12

intercoded, 14, 18

intracoded, 12, 18

PB, 32

predicted, 13

H.261, 10, 18

Reference Model 8 (RM8), 20

H.263, 10, 31

Hu�man code, 19, 32

Human visual system, 2, 4, 6, 11, 35, 42

Hypothetical Reference Decoder (HRD),

20, 26, 33

ITU-R, 5

ITU-T, 17

JPEG, 10

Lagrange optimization, 38

Lookahead, 114

Loop �lter, 20, 31

Luminance, 2

Macroblock (MB), 18, 24

Monotonicity, 44

Motion compensation, 13{14, 18, 45

block matching (BMMC), 17{18

overlapped block (OBMC), 32

prediction, 13

Motion estimation, 13, 18

Motion vector, 17{18, 20{21

unrestricted, 31

MPEG, 23

layer, 24

group of pictures (GOP), 24

picture, 24

sequence, 24

MPEG-1, 8, 10, 23

MPEG-2 Test Model 5 (TM5), 28, 85

MPEG-2, 8, 10, 23

MPEG-4, 10, 14

Multiplexing, 150

gain, 150

model, 152

NTSC, 2, 6

Optimality

lexicographic, 50, 52, 60, 76, 156

minimax, 52

PAL, 3, 6

Pel, 5

Picture

easy, 55, 72, 81

group (GOP) layer, 24

hard, 55, 81

layer, 24

slice, 24

Pixel, 5

Prediction

advanced, 32

backward, 13

bidirectional, 13, 18

error, 12{14

forward, 13, 18

motion compensated, 13

Pulse code modulation (PCM), 5

di�erential (DPCM), 12

QCIF, 8, 18, 31, 33

Quantization, 5, 11

adaptive, 29{30, 42

matrix, 11, 14{16, 24

nominal, 42

perceptual, 42, 85

scale, 11, 22, 41{42, 44, 85

step size, 5

uniform, 5

vector (VQ), 9

Raster scan, 4

interlaced, 4

progressive, 4

Rate control, 18, 22, 28{30, 41

closed loop, 91

hybrid, 93

open loop, 92

picture-level, 91

real time, 137

Rate-distortion

curve, 42

function, 34

operational, 34

INDEX 169

Redundancy

interframe, 9

intraframe, 9

spatial, 9

temporal, 12

Reference Model 8 (RM8), 20

Reverse structure, 124

preprocesing algorithm, 128

rollback algorithm, 132

Sampling

spatial, 4

temporal, 4

SECAM, 3

Segment

constant-Q, 65

SIF, 6

Simulation, 94, 141

dependent coding, 114

independent coding, 106

Stream, 149

Sub-QCIF, 31

Switching conditions, 56, 60, 74, 76

Test Model 5 (TM5), 28, 85

Transform

block, 10

DCT, 10

forward, 10

inverse, 11

Trellis, 37, 156

VBR algorithm, 80

Vector quantization (VQ), 9

Video Bu�ering Veri�er (VBV), 26, 30, 41

Video conferencing, 8, 14, 18

Viterbi algorithm, 37, 156

Zig-zag scan, 11

