
Fast and E�cient

Lossless Image Compression

Paul G. Howard and Je�rey Scott Vitter

appears in the proceedings of the

IEEE Computer Society/NASA/CESDIS Data Compression Conference,

Snowbird, Utah, March 30{April 1, 1993, pages 351{360.





Fast and Efficient

Lossless Image Compression

Paul G. Howard1

Department of Computer Science

Brown University

Providence, R.I. 02912{1910

Je�rey Scott Vitter2

Department of Computer Science

Duke University

Durham, N.C. 27706{0129

Abstract

We present a new method for lossless image compression that gives compression

comparable to JPEG lossless mode with about �ve times the speed. Our

method, called FELICS, is based on a novel use of two neighboring pixels for

both prediction and error modeling. For coding we use single bits, adjusted

binary codes, and Golomb or Rice codes. For the latter we present and analyze

a provably good method for estimating the single coding parameter.

1Support was provided in part by NASA Graduate Student Researchers Program grant NGT{

50420. Additional support was provided by a Universities Space Research Association/CESDIS

associate membership.
2Work was performed while the author was at Brown University. Support was provided in part

by a National Science Foundation Presidential Young Investigator Award with matching funds from

IBM and by Air Force O�ce of Scienti�c Research grant number F49620{92{J{0515. Additional

support was provided by a Universities Space Research Association/CESDIS associate membership.





1 Introduction

Most lossless image compression methods in the literature consist of four main com-

ponents [6]: a selector to choose the next pixel to be encoded, a predictor to estimate

the intensity of the pixel, an error modeler to estimate the distribution of the pre-

diction error, and a statistical coder to code the prediction error using the error

distribution. By using an appropriate pixel sequence we can obtain a progressive

encoding, and by using sophisticated prediction and error modeling techniques in

conjunction with arithmetic coding we can obtain state-of-the-art compression e�-

ciency [6,7]. These techniques are computation intensive.

In this paper we present a simpler system for lossless image compression that

runs very fast with only minimal loss of compression e�ciency. We call this technique

FELICS, for Fast, E�cient, Lossless Image Compression System. We use raster-scan

order, and we use a pixel's two nearest neighbors to directly obtain an approximate

probability distribution for its intensity, in e�ect combining the prediction and error

modeling steps. We use a novel technique to select the closest of a set of error models,

each corresponding to a simple pre�x code. Finally we encode the intensity using

the selected pre�x code. The resulting compressor runs about �ve times as fast as an

implementation of the lossless mode of the JPEG proposed standard while obtaining

slightly better compression on many images.

2 Description of the method

Proceeding in raster-scan order, we code each new pixel P 3 using the intensities of

the two nearest neighbors of P that have already been coded; except along the top

and left edges, these are the pixel above and the pixel to the left of the new pixel

(see Figure 1). We call the smaller neighboring value L and the larger value H, and

we de�ne � to be the di�erence H � L. We treat � as the prediction context of P ,

used for code parameter selection.

The idea of the coding algorithm is to use one bit to indicate whether P is in the

range from L to H, an additional bit if necessary to indicate whether it is above or

below the range, and a few bits, using a simple pre�x code, to specify the exact value.

This method leads to good compression for two reasons: the two nearest neighbors

provide a good context for prediction, and the image model implied by the algorithm

closely matches the distributions found in real images. In addition, the method is

very fast, since it uses only single bits and simple pre�x codes.

2.1 Intensity distributions

When we examine the distribution of an image's intensity values for each context �,

we �nd that the intensities are generally distributed as shown in Figure 2. Typically

3With a slight abuse of notation, we use symbols P , H, L, N1, and N2 to refer both to pixels

and to their intensity values.

1



PN1

N2

PN1N2

P

N1 N2

Figure 1: Nearest neighbors N1 and N2 used for coding the intensity of pixel

P in FELICS. The \range" used in making the in-range/out-of-range decision is

[minfN1; N2g;maxfN1; N2g], and the \context" used for modeling the probability

distribution is jN1 � N2j. For points in the center of the image (shaded), the pre-

dicting pixels are the pixels immediately to the left of and above P . Along the edges

adjustments must be made, but otherwise the calculations are the same.

L H
below

range

above

range
in range

Intensity of new pixel

probability

Figure 2: Schematic probability distribution of intensity values for a given context

� = H � L.

P lies in the range [L;H] about half the time, requiring one bit to encode, and when

P is out of range, the above-range/below-range decision is symmetrical, so another

one-bit code is appropriate. In-range values of P are almost uniformly distributed,

with a slight crest near the middle of the range, so an adjusted binary encoding gives

nearly optimal compression when P is in range. The probability of out-of-range

values falls o� sharply, so when P is out of range it is reasonable to use exponential

pre�x codes, i.e., Golomb codes or the simpler Rice codes, to indicate how far out

of range the value is. This distribution clearly di�ers from the Laplace distribution

commonly assumed in predictive image coding, but it is consistent with the error

modeling treatment that we presented in [7].

2.2 Adjusted binary codes

To encode an in-range pixel value P , we must encode P � L in the range [0;�]. If

� + 1 is a power of two we simply use a binary code with log
2
(� + 1) bits; this

2



Golomb m = 1 m = 2 m = 3 m = 4 : : : m = 6 : : : m = 8

Rice k = 0 k = 1 k = 2 k = 3

n = 0 0� 0�0 0�0 0�00 0�00 0�000
1 10� 0�1 0�10 0�01 0�01 0�001
2 110� 10�0 0�11 0�10 0�100 0�010
3 1110� 10�1 10�0 0�11 0�101 0�011
4 11110� 110�0 10�10 10�00 0�110 0�100
5 111110� 110�1 10�11 10�01 0�111 0�101
6 1111110� 1110�0 110�0 10�10 10�00 0�110
7 11111110� 1110�1 110�10 10�11 10�01 0�111
8 111111110� 11110�0 110�11 110�00 10�100 10�000
9 1111111110� 11110�1 1110�0 110�01 10�101 10�001
...

...
...

...
...

...
...

Table 1: The beginnings of Golomb and Rice codes for a few parameter values. The

codes can be extended to all non-negative values of n, and codes can be constructed

for all m > 0 and all k � 0. In this table a midpoint (�) separates the high-order

(unary) part from the low-order (binary or adjusted binary) part of each codeword.

works well because the distribution of in-range values is nearly uniform. Otherwise

we can adjust the code in the obvious way, assigning blog
2
(� + 1)c bits to some

values and dlog
2
(� + 1)e bits to others. Because the values near the middle of the

range are slightly more probable, we assign shorter codewords to those values. For

example, if � = 4, we have to allow for coding the �ve values 0, 1, 2, 3, and 4. The

adjusted binary codewords are 00, 01, 10, 110, and 111. We start assigning the

shorter codewords at the middle of the range, that is, at P � L = 2, and arrive at

the following code:

P � L 0 1 2 3 4

codeword 111 10 00 01 110

In passing we note that the number of longer codewords is always even, so the

codeword lengths within each of these codes are always symmetrical with respect to

the range [0;�]. Thus we never encounter the annoying problem present in many

image compression schemes of having to assign di�erent length codewords to values

with theoretically equal probabilities.

2.3 Exponential pre�x codes (Golomb and Rice codes)

When the distribution of values to be encoded is exponential, we can use an ex-

ponential pre�x code, �rst discussed by Golomb [5]. The codes in this family are

parameterized by a positive integer parameter m. Given the value of m, we encode

non-negative integer n by encoding bn=mc in unary, then encoding n mod m using

an adjusted binary code for the range [0;m� 1], as in Section 2.2. It can be shown

3



that the correct choice of the parameter m produces an optimal pre�x code for a

given exponential distribution [4].

Rice [10] independently discovered the special case of Golomb codes wherem = 2k

for some integer k. Restricting m to be a power of 2 leads to exceptionally simple

codes. Given k, the value of the coding parameter, we encode n by �rst removing the

k least signi�cant bits of n and encoding the remaining bits as a unary number. Then

we send the k least signi�cant bits directly. Rice coding has been used as the basis for

a lossless hardware compressor [14]. Its compression e�ectiveness is analyzed in [17].

Both Golomb coding and Rice coding require estimation of the coding parameter.

We present an e�ective technique in Section 3.

Examples of some Golomb and Rice codes are shown in Table 1. Golomb codes

give slightly better compression by providing �ner control in choosing the model.

On the other hand, Rice codes are somewhat simpler to implement and run slightly

faster; parameter estimation is faster for Rice codes because there are fewer rea-

sonable parameters from which to choose; and the analysis of Rice codes is more

straightforward. In this paper we focus on Rice codes, but most of our work applies

to Golomb codes as well. We use the term Golomb-Rice code when either may be

used.

2.4 Formal description of algorithm

To encode an image, we output the �rst two pixels without coding, then repeat the

following steps:

1. We select the next pixel P and �nd its two nearest neighbors N1 and N2.

2. We compute L = min(N1; N2), H = max(N1; N2), and � = H � L.

3. (a) If L � P � H, we use one bit to encode IN-RANGE; then we use an

adjusted binary code to encode P � L in [0;�].

(b) if P < L, we use one bit to encode OUT-OF-RANGE, and one bit to

encode BELOW-RANGE. Then we use a Golomb-Rice code to encode the

non-negative integer L� P � 1.

(c) if P > H, we use one bit to encode OUT-OF-RANGE, and one bit to

encode ABOVE-RANGE. Then we use a Golomb-Rice code to encode the

non-negative integer P �H � 1.

The decoding algorithm involves simply reversing step 3, decoding the in-range/out-

of-range and above-range/below-range decisions, branching accordingly, and adjust-

ing the decoded numbers to obtain the value of P .

2.5 Example

In this example we use 1 to encode IN-RANGE, 0 to encode OUT-OF-RANGE, 0 to

encode BELOW-RANGE, and 1 to encode ABOVE-RANGE. Suppose we are wish to

4



30

20

14 P

Figure 3: FELICS example.

encode the intensity of pixel P in Figure 3; its value is 14. The nearest neighbors

have intensities N1 = 30 and N2 = 20, so L = 20 and H = 30. Since P < L, we

output 0 for OUT-OF-RANGE and another 0 for BELOW-RANGE. The context for

pixel P is the di�erence � = H � L = 10. For the example we assume that we

estimate the Rice coding parameter for context � = 10 to be k10 = 2. Since Rice

codes are used to encode non-negative integers, we encode n = 0 for a value just out

of range (in this case, P = 19 would be encoded as n = 0), n = 1 for the next value,

and so on. The value P = 14 is encoded as n = 5. To encode with the Rice code

with k = 2, we divide n = 510 = 1012 into two parts, 1 �01, the low-order part having
k = 2 bits. Then we output the high-order part 1 in unary, giving 10, and the k

low-order bits, 01, directly. Thus the output for this pixel is 001001.

3 Selection of Rice-Golomb Coding Parameter

To complete the description of the algorithm in Section 2.4, we must specify the

parameter of the pre�x codes used in steps 3(b) and 3(c). In this section we describe

an on-line algorithm for parameter estimation and prove a bound on its e�ectiveness.

3.1 Selection algorithm

A common method of obtaining and transmitting coding parameters in similar al-

gorithms [11] is to divide the image into blocks and compute the code lengths that

would be obtained using each of a set of reasonable parameter values. The problems

with this approach are the delay at the start of each block, the need to send the

block parameter value as side information, and the failure to use any pixel-speci�c

context information.

Rather than assuming that the parameter is constant over a block of pixels, we

make the more reasonable assumption that it is the same for pixels in regions of

similar image activity levels; we take the image activity at a pixel to be simply the

range � of its two predictors. It might be possible to adaptively estimate the mean

and variance of the distribution of encoded values and then to select the best-�tting

exponential distribution, but we have found a more straightforward method.

For each context � we maintain a cumulative total, for each reasonable Rice

parameter value k, of the code length we would have if we had used parameter k to

encode all values encountered so far in the context. Then we simply use the parameter

with the smallest cumulative code length to encode the next value encountered in

5



the context. Both in theory and in practice we quickly converge to good parameter

estimates.

3.2 Analysis

In this section we analyze the code lengths obtained by using our parameter esti-

mation method. We assume the use of Rice coding because it is easier to analyze

and implement than Golomb coding; the extra code length involved is very small.

We assume that the source probabilities follow a geometric distribution, given by

pn = p0(1� p0)
n, where p0 is the probability that symbol n = 0 occurs. We assume

that p0 has a �xed but unknown value. For each non-negative integer value k of the

coding parameter, we de�ne

�k = (1 � p0)
2
k

:

We de�ne random variable lk to be the code length for one symbol encoded using

parameter value k, and we de�ne random variable dk to be lk+1 � lk. When we are

using parameter k, the 2k smallest values (0 to 2k � 1) require k + 1 bits each to

encode, the next 2k values require k+2 bits, and so on, the number of bits increasing

by 1 every 2k values. From this we can �nd the values of dk(n), the code length

di�erence for encoding symbol n. The value of dk(n) is 1 for 0 � n < 2k; it is 0 for

the next 2k+1 values of n; then it decreases by 1 every 2k+1 values. The aggregate

probability of the symbols for which dk = 1 can be shown to be 1��k; for dk = � � 0

the probability is ��2�+1k (1��2k). Using these probabilities, we �nd that the expected
value of dk, denoted by dk, is given by

dk = E(dk) = 1� �k

1 � �2k
;

and that the variance of dk is given by

Var(dk) =
�k(1� �k + �2k)

(1� �2k)
2

:

For a given value of p0, we �nd that E(lk) = E(lk+1) (that is, E(dk) = 0) when

�k = (
p
5 � 1)=2 � 0:618. (This value, (

p
5 � 1)=2, denoted by '̂, is ' � 1 = 1=',

where ' is the golden ratio.) The critical values of p0, where the best parameter

choice changes from k to k + 1, are those that make �k = '̂. It is remarkable that

this analysis holds for all values of k.

For now we restrict our choice to two parameter values, k and k + 1, presumed

to be the two best choices for the current value of p0. We assume that k is the best

choice; similar reasoning applies if k+1 is optimal. At any point our algorithm may

choose the worse of the parameter values, but we now show that in coding a sequence

of N symbols, we use on average at most O(
p
N) bits more than the average number

used by the best parameter.

We note that since �k+1 = �2k and �k�1 =
q
�k, the value of �k satis�es the

relation '̂2 � �k �
p
'̂ when k is the optimal parameter value. Throughout this

6



range, the standard deviation of dk is bounded by a small constant s � 2:117, the

value when �k =
p
'̂.

As we proceed in the coding, the average value of the cumulative di�erence Dt

between the code lengths for the two candidate parameters will increase linearly.

At �rst, when its expected value is not large (up to O(
p
N)), the actual value will

sometimes be negative, causing our algorithm to select the wrong parameter; but

in this case the average excess code length is only O(
p
N). Eventually the average

di�erence becomes large enough that choosing the wrong parameter becomes very

unlikely, the low probability canceling the potentially higher cost of an incorrect

choice. The net e�ect is an excess of O(
p
N) bits. We formalize this reasoning in

the following theorem.

Theorem 1 For a stationary source whose probability distribution is given by pn =

p0(1� p0)
n, using our parameter selection algorithm in conjunction with Rice coding

gives an expected code length that exceeds the expected code length given by the optimal

parameter by at most O(
p
N) bits.

Proof : We de�ne Dt to be the cumulative sum of random variable dk up to time t.

We let � = s
p
N , where s is the maximum standard deviation of dk in the range

of interest, and we let T be the number of symbols needed until E(DT ) = Tdk
becomes �. Up to symbol T , even if we always choose the wrong parameter the total

expected excess code length is only s
p
N , by de�nition.

We divide the remaining symbols into intervals of length T . In the interval

from rT to (r + 1)T , we will choose the wrong parameter only when Dt < 0. Since

the expected di�erence is r� at the beginning of the interval and increases within

the interval, and the standard deviation of Dt throughout the interval is less than

s
p
(r + 1)T � s

p
N = �, we see that Dt becomes negative only if its value is more

than r�=� = r standard deviations away from its mean. By Chebyshev's inequality,

the probability of this happening is at most 1=r2. Hence the expected number of

times we choose the wrong parameter in the interval is at most T=r2. The average

excess code length when we choose the wrong parameter is dk = �=T , so the expected

excess for the interval is at most �=r2. We sum this excess over all intervals, and �nd

the total to be
N=TX
r=1

�

r2
< �

1X
r=1

1

r2
= �

�2

6
=

�2

6
s
p
N:

Including the excess for the �rst interval, we see that the total expected number of

excess bits over all N input symbols is less than

s
p
N

 
1 +

�2

6

!
= O(

p
N):

2

The constant factor on the bound can be improved by better tail estimates. In this

shortened version of the paper we omit the proof that parameters other than the two

closest to optimal contribute a negligible amount to the excess code length.

7



Our theorem bounds the average excess code length used by our algorithm. We

expect that it can be extended by an introduction of randomness to arbitrary indi-

vidual sequences, showing that with high probability our method gives a code length

for a sequence within O(
p
N ) bits of that produced by using the best value of the

parameter on that sequence.

3.3 Extensions

The parameter estimation technique described here makes the use of Golomb-Rice

coding feasible in the algorithm in Section 2.4. Its use can also be extended in two

di�erent directions.

First, it is now possible to use Golomb-Rice coding as an alternative to arithmetic

or Hu�man coding in almost any setting requiring adaptive modeling. All that is

required is that the events to be encoded be arranged in approximately descending

order of probability. In the image compression system described here, the ordering is

the natural one due to the exponential distribution of prediction errors, but in other

applications the ordering can be achieved by maintaining event frequency counts

or by using heuristics such as move-to-front (move an event to the head of the list

whenever it occurs) or transpose (move an event up one place in the list whenever it

occurs). The only extra storage required is that needed for the cumulative counts for

the possible parameter values. The lists and cumulative counts can be maintained

for each of a number of contexts. Here the contexts are the intensity ranges, but

we have also successfully applied the method to text compression using groups of

preceding symbols as the contexts [8].

Golomb-Rice coding gives the fast, exible modeling obtained with arithmetic

coding without the time-consuming arithmetic. It gives faster coding even than

Hu�man coding because of the especially simple pre�x codes involved, and adaptive

modeling is possible without the complicated data structure manipulations required

in dynamic Hu�man coding [2,3,9,15,16]. The main drawback to Golomb-Rice coding

is the limited class of distributions that can be modeled exactly, but even this is not a

serious problem (unless one event's probability is close to 1) because the probabilities

of the more probable events will be estimated fairly well. The idea of using a simple

code in conjunction with ordered distributions is similar in spirit to the universal

coding methods developed by Elias [1] and Rissanen [12], although their work involves

�nding a single universal code, not a family. Rissanen [13] presents a parameterized

method for �nite alphabets, the parameter being the reciprocal of the most probable

event.

The second extension is to more general parameter estimation. Here we applied

the technique to the estimation of the Golomb-Rice coding parameter m or k, but

in fact we can adaptively estimate any modeling parameter. Most compression tech-

niques can be improved by allowing tweaking of modeling parameters, but end users

(and researchers) can be confused by a multiplicity of choices. Our technique permits

hiding the tweaking within the program, and gives rapid convergence to good pa-

rameter values, at least for sources that can be modeled by stationary distributions.

8



4 Implementation and re�nements

The basic algorithm of Section 2.4 is very easy to implement. As described it encodes

and decodes very quickly and gives good compression. The implementation requires

very little memory, only enough to store one scan line of input data and a few counts

for each of the few hundred possible contexts.

In this section we describe several enhancements that can be made to improve

speed and compression. One possibility is to freeze the parameter choice for a context

after a number of symbols have been encoded. This saves the time needed to maintain

the cumulative counts, and does not hurt compression much since in practice the

parameter selection algorithm converges quickly to the best value.

A second enhancement is to adjust the range [L;H] when L = H. In this special

case, the in-range probability tends to be somewhat smaller than 1=2, and it makes

sense to use the range [L�1;H+1]. We can do this either unconditionally or based on

the number of times that the value to be encoded is equal to L (and H) when � = 0.

We choose the second possibility, adjusting the interval when the values encoded

have fallen out of the one-value \range" more than 2=3 of the time. We might also

consider balance coding, adjusting the range for each context to adaptively balance

the in-range and out-of-range probabilities. We can use the parameter estimation

algorithm of Section 3 to choose the amount of adjustment.

One �nal useful re�nement is to assign a small initial penalty to the cumulative

code lengths for small values of the parameter k in each context, to prevent their

accidental use in contexts where the probability distribution is at; such use can

greatly increase the code length for a single pixel.

To further improve compression, we consider periodic count scaling to exploit

locality of reference within an image. We tried applying it to the cumulative code

lengths in each context. Halving all code lengths when the smallest one reaches

1024 can improve compression by up to 0:3 percent, but encoding time increases by

about 10 percent, too much of a time penalty to pay for such a small increase in

compression.

Finally, we note that Golomb coding gives only a marginal improvement over Rice

coding despite the wider range of model parameters available. The extra compression

is typically less than one percent, and the time required almost doubles. Therefore

we use Rice coding in our implementation. In practice, it is seldom necessary to

allow any value of the Rice coding parameter k above 3.

5 Experimental results

We compare FELICS with an implementation of the lossless mode of the JPEG

proposed standard for image compression (using two-pixel prediction) and with the

Unix compress program. Our test �les were 21 Landsat Thematic Mapper images

and 7 other images widely used in compression studies. Three of the Landsat images

(W6, D6, and R7) are highly compressible images with very little detail and few

features. All runs were made on a Sun Sparcstation1GX.

9



Compressed size Encoding throughput

FELICS FELICS

Plain Adjusted
JPEG compress

Plain Adjusted
JPEG compress

W1 2.10 2.10 2.07 1.70 78.5 87.7 16.3 93.6

W2 2.63 2.63 2.67 2.21 87.1 92.6 21.0 93.6

W3 2.31 2.31 2.28 1.92 82.2 90.1 17.8 77.1

W4 1.83 1.83 1.81 1.46 75.8 85.4 14.2 70.8

W5 1.70 1.70 1.68 1.34 73.6 83.5 13.2 70.8

W6 3.78 4.92 7.92 5.36 107.9 98.6 48.5 163.8

W7 2.11 2.12 2.10 1.70 79.0 87.7 16.5 63.9

D1 2.30 2.29 2.26 1.79 81.7 90.7 17.7 84.6

D2 2.84 2.84 3.07 2.36 92.6 93.0 23.6 100.8

D3 2.47 2.47 2.58 1.99 87.7 90.1 20.0 79.4

D4 1.86 1.86 1.85 1.34 76.9 84.6 14.6 81.9

D5 1.84 1.84 1.82 1.34 77.6 85.1 14.4 84.6

D6 3.84 5.32 9.25 6.14 107.0 98.2 53.5 154.2

D7 2.18 2.18 2.17 1.65 81.2 88.9 17.1 69.0

R1 2.34 2.34 2.28 1.79 80.9 89.2 17.9 101.3

R2 2.83 2.83 2.94 2.26 90.6 93.6 22.7 107.6

R3 2.47 2.47 2.45 1.86 86.1 90.6 19.4 95.7

R4 2.28 2.28 2.24 1.76 82.8 87.4 17.8 90.6

R5 1.84 1.84 1.78 1.34 76.2 80.9 14.0 71.8

R6 2.13 2.13 2.08 1.58 79.7 85.7 16.4 74.9

R7 3.82 5.01 7.43 5.50 105.0 97.9 46.5 143.5

couple 1.61 1.61 1.54 1.17 74.9 84.6 12.2 84.6

crowd 1.80 1.79 1.87 1.31 79.4 86.2 14.8 87.4

lax 1.35 1.35 1.31 1.04 68.4 79.9 10.4 61.0

lena 1.75 1.72 1.72 1.14 73.4 83.8 13.9 81.9

man 1.68 1.67 1.64 1.15 75.1 84.6 13.2 77.1

woman1 1.62 1.61 1.58 1.30 74.3 83.8 12.7 72.8

woman2 2.23 2.23 2.28 1.40 82.2 89.8 18.1 72.8

Table 2: Compression ratios and encoding throughput. The compression ratios are

expressed as original size divided by compressed size. The encoding throughput

is expressed as thousands of pixels encoded per second on a Sun SPARCstation1.

Files W1{W7 are the Washington, D.C., Landsat Thematic Mapper images, �les

D1{D7 are the Donaldsonville, Louisiana, images, and �les R1-R7 are the Ridgely,

Maryland, images. All images are 512� 512 pixels except the Ridgely images, which

are 368 � 468.

10



In Table 2 we see that except for the three highly compressible images (which we

shall henceforth ignore), FELICS compresses as well as JPEG lossless mode, with

about �ve times the throughput. In fact, FELICS is about as fast as compress, and

gives much better compression, not surprising since compress is designed for text, not

images. The \plain" FELICS �gures refer to a version with none of the re�nements

mentioned in Section 4; the \adjusted" FELICS �gures include freezing when the

smallest code length for a context reaches 1024, adjusting the range when � = 0,

and assigning small initial penalties to the cumulative counts for small parameter

values. Note that the re�nements seldom have much e�ect on compression, and they

increase throughput by roughly 5 to 20 percent.

6 Conclusion

We have presented a very fast and very simplemethod for lossless image compression,

called FELICS, based on prediction with a two-neighboring-pixel context and coding

with single bits and pre�x codes. Some of the pre�x codes are Golomb-Rice codes,

which are easy to implement and use and very fast in operation. Use of Golomb-

Rice codes requires choosing a single integer parameter; we present a very general

parameter estimation technique and prove bounds on its e�ectiveness. We have

implemented the FELICS system, including some re�nements that give even more

speed, and we show experimentally that FELICS gives about the same compression

as the JPEG lossless mode, while running about �ve times as fast.

FELICS is based on a raster-scan pixel sequence. We expect in the future to

extend the FELICS system to a hierarchical pixel sequence as in [6,7] to allow pro-

gressive coding.

Acknowledgment. We wish to thank Allan R. Moser of E. I. duPont de Nemours

and Company (Inc.) for his assistance in obtaining compression and timing data for

JPEG lossless mode.

References

[1] P. Elias, \Universal Codeword Sets and Representations of Integers," IEEE Trans.

Inform. Theory IT{21 (Mar. 1975), 194{203.

[2] N. Faller, \An Adaptive System for Data Compression," Record of the 7th Asilo-

mar Conference on Circuits, Systems, and Computers, 1973.

[3] R. G. Gallager, \Variations on a Theme by Hu�man," IEEE Trans. Inform. Theory

IT{24 (Nov. 1978), 668{674.

[4] R. G. Gallager & D. C. Van Voorhis, \Optimal Source Codes for Geometrically

Distributed Integer Alphabets," IEEE Trans. Inform. Theory IT{21 (Mar. 1975),

228{230.

11



[5] S. W. Golomb, \Run-Length Encodings," IEEE Trans. Inform. Theory IT{12

(July 1966), 399{401.

[6] P. G. Howard & J. S. Vitter, \New Methods for Lossless Image Compression Using

Arithmetic Coding," Information Processing and Management 28 (1992), 765{779.

[7] P. G. Howard & J. S. Vitter, \Error Modeling for Hierarchical Lossless Image

Compression," in Proc. Data Compression Conference, J. A. Storer & M. Cohn,

eds., Snowbird, Utah, Mar. 24-26, 1992, 269{278.

[8] P. G. Howard & J. S. Vitter, \Design and Analysis of Fast Text Compression

Based on Quasi-Arithmetic Coding," in Proc. Data Compression Conference, J.

A. Storer & M. Cohn, eds., Snowbird, Utah, Mar. 30-Apr. 1, 1993, 98{107.

[9] D. E. Knuth, \Dynamic Hu�man Coding," J. Algorithms 6 (June 1985), 163{180.

[10] R. F. Rice, \Some Practical Universal Noiseless Coding Techniques," Jet Propul-

sion Laboratory, JPL Publication 79{22, Pasadena, California, Mar. 1979.

[11] R. F. Rice, \Some Practical Universal Noiseless Coding Techniques|Part III,

Module PSI14,K+," Jet Propulsion Laboratory, JPL Publication 91{3, Pasadena,

California, Nov. 1991.

[12] J. Rissanen, \A Universal Prior for Integers and Estimation by MinimumDescrip-

tion Length," Ann. Statist. 11 (1983), 416{432.

[13] J. Rissanen, \Minimax Codes for Finite Alphabets," IEEE Trans. Inform. Theory

IT{24 (May 1978), 389{392.

[14] J. Venbrux, N. Liu, K. Liu, P. Vincent & R. Merrell, \A Very High Speed Lossless

Compression/Decompression Chip Set," Jet Propulsion Laboratory, JPL Publica-

tion 91{13, Pasadena, California, July 1991.

[15] J. S. Vitter, \Dynamic Hu�man Coding," ACM Trans. Math. Software 15 (June

1989), 158{167, also appears as Algorithm 673, Collected Algorithms of ACM,

1989.

[16] J. S. Vitter, \Design and Analysis of Dynamic Hu�man Codes," Journal of the

ACM 34 (Oct. 1987), 825{845.

[17] P.-S. Yeh, R. F. Rice & W. Miller, \On the Optimality of Code Options for a

Universal Noiseless Coder," Jet Propulsion Laboratory, JPL Publication 91{2,

Pasadena, California, Feb. 1991.

12


