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Abstract. We present e�cient new randomized and
deterministic methods for transforming optimal solu-
tions for a type of relaxed integer linear program into
provably good solutions for the corresponding NP-hard
discrete optimization problem. Without any constraint
violation, the �-approximation problem for many prob-
lems of this type is itself NP-hard. Our methods pro-
vide polynomial-time �-approximations while attempt-
ing to minimize the packing constraint violation.

Our methods lead to the �rst known approximation
algorithms with provable performance guarantees for
the s-median problem, the tree pruning problem, and
the generalized assignment problem. These important
problems have numerous applications to data compres-
sion, vector quantization, memory-based learning, com-
puter graphics, image processing, clustering, regression,
network location, scheduling, and communication. We
provide evidence via reductions that our approximation
algorithms are nearly optimal in terms of the packing
constraint violation. We also discuss some recent appli-
cations of our techniques to scheduling problems.
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1 Introduction

We consider the following type of 0-1 integer programs
with mixed covering and packing constraints:

minimize cx (1)

subject to (2)

Ax = 1; (3)

Bx � b; (4)

x 2 P; (5)

xi 2 f0; 1g; i 2 I; (6)

where I is the set of indices for the vector x, c and b

are nonnegative rational vectors, A is a 0-1 matrix, B
is a nonnegative rational matrix, and P is a convex set
that corresponds to other linear constraints. The linear
program relaxation of the above program is to lessen
restriction (6) and allow the xi's to take rational values
between 0 and 1.
Three important problems we consider of the above

type are the s-median problem, the tree pruning prob-

lem, and the generalized assignment problem. These
problems arise directly in data compression, vector
quantization, memory-based learning, computer graph-
ics, image processing, clustering, regression, network lo-
cation, scheduling, and communication.
The �-approximation problem [GaJ, SaG] for a NP-

hard minimization problem is to approximate the opti-
mal solution within a relative factor of � > 0. The �-
approximation problem for many problems of the above
type is NP-hard [SaG]. That is, without any constraint
violation, the �-approximation problem is as hard as
�nding the optimal solution. In this paper, we develop
the �rst known algorithms for �nding �-approximate so-
lutions with minimum packing constraint violation.
Raghavan and Thompson [Rag, RaT] introduce tech-

niques for approximating a 0-1 integer program by �rst
solving its linear program relaxation and rounding the
resulting solution. They successfully apply their round-
ing techniques to several discrete optimization problems
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such as routing problems in VLSI, undirected multi-
commodity 
ow problems, and the k-matching prob-
lem on hypergraphs. However, their techniques depend
on Cherno�-type bounds on the tail of the distribution
of the weighted sum of Bernoulli trials and apply only
to optimization problems with a very special structure.
Furthermore, they require problem parameters to be
within a certain range for their methods to be e�ec-
tive. Their techniques do not appear to apply to our
problems, thus motivating our new approach.
The main results of this paper are new rounding

methods that provide polynomial-time �-approximations
for the above type of problems described in (1){(6) while
trying to minimize the packing constraint violation.
We now give an outline of the techniques. Let � be

a 0-1 program of the given type and let �L be its linear
program relaxation. The basic algorithm consists of the
following three phases:

Phase 1 Solve �L by linear programming tech-
niques [Kar, Kha]; denote the fractional solution
by bx.

Phase 2 [Filter.] Given � > 0 and the fractional solu-
tion bx from the �rst phase, transform � into a 0-1
integer program �(�; bx) of minimizingL, subject to

Ax = 1; (7)

Bx � Lb; (8)

x 2 P; (9)

xi = 0; i 2 Z (10)

xi 2 f0; 1g; i 2 I � Z (11)

where Z � I depends on � and bx. Besides setting
a subset of variables to 0, another e�ect of Z is
that, for each i 2 Z, column i of A and B can be
considered to be zeroed out. This transformation is
said to be valid if any feasible solution x for �(�; bx)
satis�es

cx � (1 + �)cbx � (1 + �)cx�;

where x� is the optimal solution for �. Let �L(�; bx)
be the linear program relaxation of �(�; bx).

Phase 3 [Round.] Solve �(�; bx), that is, minimize the
packing constraint violation, which is represented
by the variable L. We solve �(�; bx) by �rst con-
verting bx into a fractional solution ex for �L(�; bx).
Then we transform ex into a provably good 0-1 so-
lution for �(�; bx) by various techniques.

We call the transformation in the second phase �l-

tering, since this transformation �lters out a subset of
variables, namely fxigi2Z , by setting them to 0. We call
a program decomposable if for any two distinct rows Ar1

and Ar2 of the matrix A, we have Ar1 �Ar2 = 0. As we

shall see later, there is a �ltering process that works
for all decomposable problems. On the other hand, if
the program is not decomposable, the �ltering process
depends heavily on the problem structure. We will re-
fer to �(�; bx) as the �ltered program of � with respect
to � and bx. Phase 2 can be shortcut in practice and
combined with Phase 3. The reason we make Phase 2
explicit is to expose the structure of the problem.

The main idea of Phase 3 is that we can derive from bx
an upper bound for the optimal solution of the relaxed
�ltered program. Therefore, any provably good round-
ing algorithms for transforming a solution for �L(�; bx)
into a 0-1 solution for �(�; bx) will also provide perfor-
mance guarantees for the packing constraint violation.
We do not need to solve �(�; bx) from scratch.

In the next three sections, we provide some direct ap-
plications of our methods by presenting the �rst known
approximation algorithms with provable performance
guarantees for the s-median problem, the tree pruning
problem, and the generalized assignment problem. In
Section 2, we discuss the well-known s-median problem
and demonstrate the basic principles of our techniques.
In Section 3, we apply the method to the tree pruning
problem, which is not decomposable. Section 4 deals
with the generalized assignment problem and the prob-
lem of scheduling unrelated parallel machines. For each
problem, we provide evidence via reductions that our
approximation algorithms are nearly optimal in terms
of the packing constraint violation. Section 5 concludes
with remarks on possible extensions.

2 The s-Median Problem

In this section we illustrate the basic principles of our
methods by means of the (discrete) s-median problem,
which arises directly in applications such as memory-
based learning, network location, clustering, and data
compression.

We are given a complete (directed or undirected)
graph G = (V;E) on n vertices, with vertex set V =
f1; . . . ; ng, edge set E � V �V , and nonnegative cost cij
associated with edges. We refer to (cij) as the cost

matrix. In the network location context, for example,
vertices may represent cities and edge costs may corre-
spond to distances between pairs of cities. The goal is to
choose s vertices as medians so that the sum of distances
from each vertex to its nearest median is minimized.1

The s-median problem can be formulated as an inte-

1Note that the s-median problem is distinctly di�erent from

the s-center problem of choosing s centers that minimize the

worst-case distance from each vertex to its nearest center. For

approximation algorithms for the s-center problem, we refer the

readers to [FeG, Gon, HoSb]



ger linear program of minimizing

X
i2V

X
j2V

cijxij (12)

subject to

X
j2V

xij = 1; i 2 V;

X
j2V

yj � s;

xij � yj ; i; j 2 V;

xij; yj 2 f0; 1g; i; j 2 V;

where yj = 1 if and only if vertex j is chosen as a
median, and xij = 1 if and only if yj = 1 and vertex i

is assigned to vertex j.
The fractional s-median problem, which is the linear

program relaxation of the s-median problem, is to al-
low yj and xij to take rational values between 0 and 1.
Clearly, the optimal solution for the fractional s-median
problem is a lower bound on the solutions of the s-
median problem. The following lemma is useful for the
rest of this section:

Lemma 1 [ACC] Given a solution by = (by1; . . . ; byn) for
the fractional s-median problem, we can determine the

optimal fractional values for xij.

Proof Sketch: Each vertex i is assigned to its near-
est fractional medians at vertices j1; j2; . . . such that
their total \weight" yj1 + yj2 ; � � � reaches 1. More
speci�cally, we sort the values cij , j 2 V , so that
cij1(i) � cij2(i) � . . . � cijn(i), and let p be such thatPp�1

`=1 byj`(i) � 1 �
Pp

`=1 byj`(i). Then we set bxij = byj
for j = j1(i); . . . ; jp�1(i), bxijp(i) = 1�

Pp�1
`=1 byj`(i), andbxij = 0 otherwise. 2

The s-median problem is NP-hard, even in Euclidean
space [GaJ, KaH, MeS, Pap]. Without any probabilistic
assumptions [ACC, FiH, Pap], no approximation algo-
rithms are known. Even if the cost matrix is symmetric,
by similar reasoning as in [KaH, SaG], it is easy to show
the following:

Lemma 2 The �-approximation problem for the s-

median problem is NP-hard even if the cost matrix is

symmetric.

Proof Sketch: We use a reduction from the dominat-
ing set problem, which is de�ned as follows: Given a
positive integer 1 < s < n and an undirected graph
G = (V;E), where V = f1; . . . ; ng and E � V � V ,
does there exists a subset V �

s of at most s vertices such
that each vertex in G is either in V �

s or is adjacent to a
vertex of V �

s ?
Given a graph G as above and � > 0, we construct

another complete undirected graph G0 = (V;E0) with

the same set of vertices. The cost cij is 1 if vertex i

and j are adjacent to each other in G, the cost is 0 for
i = j, otherwise the cost is (1 + �)(n � s) + 1.
If there exists a dominating set for G of size at most s,

then there also exists a set U � V of s-medians such
that

P
i2V minj2Ufcijg = n � s. Furthermore, if there

does not exist a dominating set for G of size at most s,
then

P
i2V minj2Ufcijg � (1 + �)(n � s) + 1 for any

set U � V of s-medians. 2

The main results in this section are stated in the fol-
lowing two theorems, whose proofs are sketched in Sec-
tion 2.2 and Section 2.3, respectively. The �ltered pro-
gram for the s-median problem is given in Section 2.1.

Theorem 1 There exists a randomized approximation

algorithm that, given any � > 0 and 0 < � < 1, outputs
with probability greater than 1�� a median set U of size

at most (1 + 1=�)s ln(n=�) such thatX
i2V

min
j2U

fcijg � (1 + �)
X
i2V

min
j2V �

s

fcijg; (13)

where V �
s � V is a set of optimal s-medians.

Theorem 2 A median set U of size less than

(1 + 1=�)s(ln n+ 1) satisfying (13) can be found deter-

ministically.

We show in Section 2.4 that our approximation algo-
rithms are nearly optimal, unless there exist approxi-
mation algorithms for the dominating set and the set
cover problems with better than logarithmic perfor-
mance guarantees, which seems unlikely.
To the best of our knowledge, the only approx-

imation algorithm for a median problem is due to
Hochbaum [Hoc] for the �xed-cost median problem,
where the objective is to minimize the sum

P
j2U fj +P

i2V minj2Ufcijg; where U is a median set and fj is
a �xed cost for selecting vertex j, and there is no re-
striction on the number of medians chosen. Hochbaum's
heuristic does not seem to be adaptable to the s-median
problem. Our techniques, on the other hand, can be
easily modi�ed to handle the �xed-cost median prob-
lem with performance bound matching, up to a con-
stant factor, the logarithmic performance guarantee
of Hochbaum's algorithm. Details are given in Sec-
tion 2.5.3.

2.1 Filtering

In this section, we present a �ltering procedure for the s-
median problem, which also works for other decompos-
able problems. Given � > 0 and a fractional solution bx,
we construct a collection of sets fVigi2V as follows: LetbCi =

P
j2V cijbxij be the weighted cost of assigning ver-

tex i to its medians in the fractional solution bx. We
de�ne the neighborhood Vi of vertex i to be

Vi = fj 2 V j cij � (1 + �) bCig:



We transform the s-median problem into a 0-1 integer
program of minimizing L subject toX

j2Vi

xij = 1; i 2 V;

X
j2V

yj � Ls;

xij � yj ; i; j 2 V;

xij = 0; i 2 V; j 2 V � Vi;

xij; yj 2 f0; 1g; i 2 V; j 2 Vi:

Each vertex i must be assigned to a median in its neigh-
borhood Vi. It follows from the de�nition of Vi that this
�ltered program is valid:

Theorem 3 Let � > 0 and let bx be a solution for the

fractional s-median problem. If x is a feasible 0-1 solu-

tion for the �ltered program de�ned above, thenX
i2V

X
j2V

xijcij � (1 + �)
X
i2V

X
j2V

bxijcij:

2.2 Rounding by Sampling

In this section, we prove Theorem 1 by using the follow-
ing random sampling technique, which is of independent
interest. The outline of the algorithm is as follows:

1. Solve the linear program relaxation of the s-median
problem by linear programming techniques; denote
the fractional solution by by; bx.

2. Given � > 0 and 0 < � < 1, we select
(1 + 1=�)s ln(n=�) vertices randomly, where ver-
tex j has relative weight byj=s. Let U be the set of
vertices that the sampling algorithm selects. Then
the solution for the �ltered program is obtained
by setting yj = 1 for each j 2 U and yj = 0 for
each j 2 V � U . The values for xij are given by
Lemma 1.

Lemma 3 For each i 2 V and � > 0, we haveX
j2Vi

byj � X
j2Vi

bxij > �

1 + �
;

where Vi is de�ned as in Section 2.1.

Proof Sketch: Suppose
P

j2Vi
bxij � �=(1 + �). Then

bCi =
X
j2V

cijbxij
�

X
j 62Vi

cijbxij
> (1 + �) bCi

X
j 62Vi

bxij

� (1 + �) bCi

�
1�

�

1 + �

�

= bCi;

which is a contradiction. 2

We are now ready to sketch the proof of Theorem 1.
We say that vertex i is \covered" if a vertex j 2 Vi
is selected by the sampling algorithm. By Lemma 3,
the probability that vertex i is covered by a randomly
selected vertex is more than �=s(1 + �). Since the sam-
pling algorithm selects (1 + 1=�)s ln(n=�) vertices, the
probability that vertex i is not covered is less than

�
1�

�

s(1 + �)

�(1+ 1

�
)s ln n

�

<
�

n
:

Since there are only n vertices, then with probability
greater than 1 � � all n vertices will be covered. The
rest of the proof of Theorem 1 follows from Theorem 3.

2.3 Deterministic Greedy Rounding

In this section, we prove Theorem 2 by showing that the
well-known greedy set cover heuristic [Chv, Joh, Lov]
can be adapted to solve the �ltered program for the s-
median problem given in Section 2.1. The algorithm is
outlined as follows:

1. Solve the linear program relaxation of the s-median
problem by linear programming techniques; denote
the fractional solution by by; bx.

2. For each i, compute bCi =
P

j2V cijbxij.
3. Given � > 0, we form the following set cover prob-

lem: for each vertex j such that byj > 0, we con-
struct a set Sj . Vertex i is in Sj if and only if
cij � (1+�) bCi (or equivalently if and only if j 2 Vi).

4. Apply the greedy set cover algorithm [Chv, Joh,
Lov]: At each iteration, we choose the set Sj which
covers the most uncovered vertices. We repeat this
process until all vertices are covered. Let U be the

set of vertices that the greedy algorithm selects.
Then the solution for the �ltered program is ob-
tained by setting yj = 1 for each j 2 U and yj = 0
for each j 2 V �U . The values for xij are given by
Lemma 1.

Now let us prove Theorem 2. By Lemma 1, we can
further simplify the �ltered program as a 0-1 integer
program of minimizing

P
j2V yj , subject to

X
j2Vi

yj � 1; i 2 V;

yj 2 f0; 1g; j 2 V;

where Vi is de�ned as in Section 2.1.
The linear program relaxation of the simpli�ed �l-

tered program is an instance of the fractional set cover
problem [Chv, Lov] with the collection of sets fSjgj2V



de�ned as above. We now show that the size of
the optimal fractional cover is less than (1 + 1=�)s
by converting by to a fractional cover ey of size less
than (1 + 1=�)s. We set eyj = minfbyj=bY ; 1g, wherebY = mini2V f

P
j2Vi

byjg > �=(1 + �). By Lemma 3, we
have

P
j2Vi

eyj � 1. Hence, ey is a valid fractional cover
and its size is

X
j2V

eyj =
X
j2V

minfbyj=bY ; 1g
< (1 + 1=�)

X
j2V

byj
� (1 + 1=�)s:

By the results in [Chv, Lov], the number of sets (me-
dians) selected by the greedy algorithm is less than
(1 + 1=�)s(lnn+ 1). The proof then follows from Theo-
rem 3.

2.4 Hardness Results

In this section, we show the equivalence (up to constant
factors) between the approximabilities of the s-median
problem, dominating set, and set cover problems.

Theorem 4 If there exists an approximation algorithm

for the s-median problem that, given any � > 0, outputs
a median set U of size at most (1+1=�)f(n)s satisfying

X
i2V

min
j2U

fcijg � (1 + �)
X
i2V

min
j2V �

s

fcijg;

where V �
s is a set of optimal s-medians, then there exist

approximation algorithms for both the dominating set

problem and the set cover problem with an O(f(n)) rel-
ative performance guarantee. This is true even if the

cost matrix is required to be symmetric.

Proof Sketch: Let � be a �xed constant. The reduc-
tion from the dominating set problem to the s-median
problem in Lemma 2 preserves approximability, and the
cost matrix is symmetric. It is well-known that the
dominating set problem and the set cover problem can
be reduced to each other with the approximability pre-
served. 2

By the result of Section 2.3, we immediately have the
following corollary:

Corollary 1 The approximabilities of the s-median

problem, the dominating set problem, and the set cover

problem are equivalent up to constant factors.

If the cost matrix must satisfy the triangle inequality,
then Theorem 4 does not hold. In this case, however,
we have a slightly weaker hardness result. We show
that the number of medians can not be approximated

within better than logarithmic factors without violat-
ing the bound on total distance, unless the dominating
set and set cover problems can be approximated within
better than logarithmic factors, which is very unlikely.

Theorem 5 Let f(n) = o(logn). If there exists an ap-

proximation algorithm for the s-median problem in met-

ric spaces that outputs a median set U of size at most

f(n)s satisfying

X
i2V

min
j2U

fcijg �
X
i2V

min
j2V �

s

fcijg;

where V �
s is a set of optimal s-medians, then both the

dominating set problem and the set cover problem can

be approximated within a relative factor of O(f(n)).

Proof Sketch: We use a reduction from the dominating
set problem de�ned in the proof of Lemma 2.
Given graph G, we construct another complete undi-

rected graph G0 = (V;E0) with the same set of vertices.
The distance cij is 1 if vertex i and j are adjacent to
each other in G; otherwise cij is the length of the short-
est path between i and j in the original graph G. This
distance assignment clearly satis�es metric properties.
If there exists a dominating set for G of size at most s,

then there also exists a set U � V of s-medians such
that

P
i2V minj2Ufcijg = n � s: Furthermore, if there

does not exist a dominating set for G of size at most s,
then

P
i2V minj2Ufcijg � n� s + 1 for any set U � V

of s-medians.
Let s be the size of an optimal dominating set for the

dominating set problem. By the performance guarantee,
the approximation algorithm outputs a median set U of
at most f(n)s medians with

P
i2V minj2Ufcijg � n�s.

This implies that the number of non-dominated vertices
is at most (f(n) � 1)s. Otherwise, the total cost will
be at least 2((f(n) � 1)s + 1)+(n� (f(n) � 1)s � 1) =
(f(n) � 1)s+n�s+1 > n�s, which is a contradiction.
Thus we can construct a dominating set of size at most
f(n)s + (f(n) � 1)s = (2f(n) � 1)s. 2

2.5 Generalized Median Problems

2.5.1 Weighted Cost

We can allow the cost to be weighted, that is, we can
replace the objective function (12) by

X
i2V

pi
X
j2V

cijxij;

where fp1; . . . ; png is a set of nonnegative weights rep-
resenting the \importance" of vertices. Since our sam-
pling heuristic and greedy heuristic only require the cost
matrix to be nonnegative, we can solve the weighted-
cost case by simply using the cost matrix (c0ij), where
c0ij = picij.



2.5.2 The Weighted Median Problem

The weighted median problem is similar to the s-median
problem except that we replace constraint (13) by

X
j2V

wjyj �W;

where fw1; . . . ; wng is a set of positive weights and
W > 0 is a bound on the total weight. This problem
is clearly NP-hard. Our greedy heuristic can be easily
adapted for the weighted median problem by using the
weighted set cover algorithm in the fourth step of the
deterministic greedy algorithm:

Theorem 6 There exist a deterministic approximation

algorithm that, given any � > 0, outputs a median set U

of weight less than (1 + 1=�)W (lnn+ 1) such that

X
i2V

min
j2U

fcijg � (1 + �)
X
i2V

min
j2V �

W

fcijg;

where V �
W � V is an optimal median set of weight at

most W .

2.5.3 The Fixed-Cost Median Problem

The integer linear program of the �xed-cost median

problem is to minimize

X
j2V

fjyj +
X
i2V

X
j2V

cijxij

subject to

X
j2V

xij = 1; i 2 V;

xij � yj ; i; j 2 V;

xij; yj 2 f0; 1g; i; j 2 V;

where yj = 1 if and only if vertex j is chosen as a
median, and xij = 1 if and only if yj = 1 and vertex i

is assigned to vertex j.
The weighted greedy heuristic for the weighted me-

dian problem can be easily adapted for the �xed-cost
median problem. The only modi�cation needed is to
use the �xed cost fj as the weight for the set Sj . This
gives us the following result:

Theorem 7 There exists a deterministic approxima-

tion algorithm for the �xed-cost median problem that,

given any � > 0, outputs a median set U such that

X
j2U

fj +
X
i2V

min
j2U

fcijg < (1 + 1=�)(lnn+ 1)
X
j2V �

fj

+(1 + �)
X
i2V

min
j2V �

fcijg;

where V � is an optimal median set.

Theorem 7 matches the logarithmic performance
bound of [Hoc] up to a constant factor. However, whenP

j2V � fj is dominated by
P

i2V minj2V �fcijg, our per-
formance bound is better than that of [Hoc].

3 Approximate Tree Pruning

A tree-structured vector quantizer partitions a signal
space into a hierarchy of regions, each of which is rep-
resented by a representative vector. An input signal
vector is quantized by traversing a root-to-leaf path in
the tree; the vector is then encoded as the representa-
tive vector of the leaf. The central problem for tree-
structured vector quantization is how to �nd a particu-
lar tree subject to some cost constraint (such as a bound
on the average path length) that minimizes the average
distortion. The most popular approach for this prob-
lem, introduced by Breiman, Freidman, Olshen, and
Stone [BFO] in the context of classi�cation and regres-
sion trees, is to �rst build a large initial tree-structured
vector quantizer and then prune back the tree to sat-
isfy the cost requirement. Besides tree-structured vector
quantization, tree pruning algorithms have many appli-
cations such as memory-based learning, regression trees,
decision trees, and computer graphics. For more appli-
cations of the tree pruning problem, we refer the readers
to [BFO, CLG].

In this section we present a provably good approxi-
mate tree pruning algorithm. We also introduce the no-
tion of probability search trees, which have the potential
of outperforming the optimal pruned tree when the cost
of trees is the average path length. Experimental results
on lossy image compression are given in [LiVb].

3.1 De�nitions

We use the notation of [CLG]: A tree T is a �nite set
of nodes t0; t1; . . . ; tn, with a unique root node t0. The
set of leaves of a tree T is denoted by eT . A subtree S of
tree T is a tree rooted at some node root(S) 2 T such
that the following condition holds: For each internal
node t of T , if any of the children of t is in S, then all
the children of t must be in S as well. The leaves eS of a
subtree S are not necessarily a subset of eT ; some leaves
of S may be internal nodes of T . If eS � eT , then S is
called a branch of T and is denoted by Troot(S). We call
a subtree S of T a pruned subtree and write S � T if
the root of S is t0.

For t 6= t0, we denote the parent node of t as parent(t).
For t 2 T � eT , let children(t) be the set of children of
node t. We de�ne path(t) as the set of nodes, including t,
from t0 leading to t.

De�nition 1 Let u(t) � 0 be an arbitrary function on
the nodes of T . A linear tree functional u on subtrees



is de�ned by

u(S) =
X
et2eS

u(et):
Let �u(S) = u(S) � u(root(S)). A tree functional u is
monotonic nondecreasing if and only if for any subtree S
of T we have �u(S) � 0. Similarly, u is monotonic
nonincreasing if and only if �u(S) � 0 for any subtree S
of T .

Let C be a monotonic nondecreasing tree functional
and D be a monotonic nonincreasing tree functional.
We call C the cost functional and D the distortion func-

tional. For example, in vector quantization, we have the
following setting: Let P be a probability function such
that P (t0) = 1 and for all t 2 T � eT we have P (t) =P

t02children(t)P (t
0): Let d be a distortion function on

nodes satisfying P (t)d(t) �
P

t02children(t)P (t
0)d(t0):

Usually we let D(S) be the average distortion of sub-
trees. Possible de�nitions for C(S) include the average
path length, the leaf entropy, or the number of leaves.

De�nition 2 Given a tree T and a bound C on the
cost, the tree pruning problem is to �nd a pruned sub-
tree S of T such that C(S) � C and D(S) is minimized.

Chou, Lookabaugh, and Gray [CLG] proposed a tree
pruning heuristic based on the BFOS algorithm [BFO]
in which a given initial tree is pruned back according
to certain optimization criterion. Their heuristic traces
the lower convex hull of the distortion-cost function and
the �nal pruned subtrees are optimal for their costs.
However, if there is no point (pruned subtree) on the
lower convex hull at the desired cost, it requires time-
sharing between two neighboring points (pruned sub-
trees). Lin, Storer, and Cohn [LSC] show that the tree
pruning problem is NP-hard in general.2

Our main result is the following theorem:

Theorem 8 Given any � > 0, there exist an approxi-

mate tree pruning algorithm that outputs a pruned sub-

tree S satisfying

C(S) < (1 + 1=�)C (14)

and

D(S) � (1 + �) bD � (1 + �)D; (15)

where bD is the distortion of the fractional solution for

the tree pruning problem and D is the optimal distortion

of pruned subtrees with cost at most C.

The algorithm mentioned in Theorem 8 is given in Sec-
tion 3.4 and the proof appears in Section 3.6 and Sec-
tion 3.7.

2On the other hand, Lin, Storer, and Cohn also show that the

tree pruning problem can be solved in polynomial time if the trees

are binary and the cost constraint is the number of leaves. Our

approximate tree pruning algorithm works for general trees and

applies to other cost constraints, such as the average path length

and the leaf entropy.

3.2 The Integer Linear Program

We may formulate the tree pruning problem as the fol-
lowing integer linear program: For each node t 2 T , we
let xt be a decision variable such that xt = 1 if and only
if node t is a leaf in the �nal pruned subtree, and xt = 0
otherwise. The integer linear program for the optimal
tree pruning problem is to minimize the costX

t2T

xtD(t)

subject to X
t2path(et)

xt = 1; et 2 eT ;
X
t2T

xtC(t) � C;

xt 2 f0; 1g; t 2 T:

3.3 The Filtered Program

Since the program is not decomposable, we need a dif-
ferent �ltering procedure: Given any � > 0 and a
fractional solution bx, we de�ne for each leaf et the set
Iet = ft j t 2 path(et) and Pt02path(t) bxt � 1=(1 + �)g. The
�ltered program is to minimize L, subject toX

t2Iet
xt = 1; et 2 eT ;

X
t2T

xtC(t) � L �C;

xt = 0; t 2
[
et2eT

�
path(et)� Iet� ;

xt 2 f0; 1g; t 2 T:

The following theorem shows that the �ltered pro-
gram is valid. The proof is given in Section 3.6.

Theorem 9 Let x be a feasible 0-1 solution for the �l-

tered program de�ned as above. Then we haveX
t2T

xtD(t) � (1 + �)
X
t2T

bxtD(t):

3.4 Deterministic Pruning Heuristic

The following is an outline of the approximate tree prun-
ing algorithm:

1. Solve the linear program relaxation of the tree
pruning problem by linear programming tech-
niques; denote the fractional solution by bx.

2. Given � > 0, in a top-down and breadth-�rst
fashion, we prune the tree at any node t whereP

t02path(t) bxt0 � 1=(1 + �).

The performance guarantee of the pruning heuristic will
be proven in Section 3.6 and Section 3.7.



3.5 Probability Search Trees

Probability search trees are an interesting interpretation
of the fractional solution of the integer linear program
for the tree pruning problem.

De�nition 3 A probability search tree bT = (T; q) is a
tree T with augmented probability function q on tree
nodes, which satis�es

P
t2path(et) q(t) = 1; for all leaveset 2 eT . Let us de�ne

Q(t) = 1�
X

t02path(t)

q(t0):

A search along a path through node t will continue at
node t, assuming the search reaches node t, with prob-
ability Q(t)=Q(parent(t)).

We may use Q(t) as the probability that the search
passes through node t and q(t) as the probability that
the search stops at node t.
We can extend tree functionals to probability search

trees in the following way:

De�nition 4 Let bT = (T; q) be a probability search
tree. Given a linear tree functional u, we de�ne the
probability tree functional u� on subtrees as

u�(S) =
X

t2S�eS
q(t)u(t) +

X
et2eS

Q(parent(et))u(et);

and we de�ne �u�(S) = u�(S) � u�(root(S)): A prob-
ability tree functional u� is monotonic nondecreasing if
and only if for any subtree S of T , we have �u(S) � 0.
Similarly, u� is monotonic nonincreasing if and only if
�u(S) � 0 for any subtree S of T .

Lemma 4 For any subtree S rooted at t of height

greater than 0, we have

�C�(S) = �Q(t)C(t) +
X

t02children(t)

C�(St0):

Proof : By manipulating the sum, we have

�C�(S) = C�(S) � C�(t)

= bxtC(t)� C�(t) +
X

t02children(t)

C�(St0 )

= �Q(t)C(t) +
X

t02children(t)

C�(St0):

2

The following theorem shows the monotonic proper-
ties of probability tree functionals:

Theorem 10 If a linear tree functional u is monotonic

nondecreasing (nonincreasing), then the probability tree

functional u� is also monotonic nondecreasing (nonin-

creasing).

Proof Sketch: By induction on the height of S. If the
subtree S consists of a single node t, then �C�(S) =
C�(t) � C�(t) = 0. Suppose that the theorem is true
for all subtrees of height no greater than k. Let S be
a subtree of height k + 1, and let t = root(S). By
Lemma 4, we may write

�C�(S) = �Q(t)C(t) +
X

t02children(t)

C�(St0 ):

By the induction hypothesis, we have

�C�(S) � �Q(t)C(t) +
X

t02children(t)

C�(t0)

= Q(t)

�
�C(t) +

X
t02children(t)

C(t0)

�

� 0:

The last inequality follows since C is monotonic nonde-
creasing. 2

We can interpret an optimal fractional solution bx
as an augmented probability function q by setting
q(t) = bxt. The resulting probability search tree has the
potential of outperforming the optimal pruned subtree
in terms of the average path length:

Corollary 2 Let bT = (T; q) be a probability search tree

with q(t) = bxt, where bx is an optimal fractional solution

for the tree pruning problem, and let C(S) be the average
path length of subtrees. Then we have

C�( bT ) � C

and

D�( bT ) = bD � D;

where bD is the distortion of the optimal fractional solu-

tion for the tree pruning problem and D is the optimal

distortion of pruned subtrees with cost at most C.

3.6 Bounding the Distortion

We prove Theorem 9 in this section. Let S be the �nal
pruned subtree corresponding to x. We want to show
that X

t2S

bxtD(t) � 1

1 + �
D(S):

Since D is monotonic nonincreasing, for any t 2 S we
have

D(t) �
X
et2eSt

D(et):

Therefore, we have

X
t2S

bxtD(t) �
X
t2S

bxt X
et2eSt

D(et)



�
X
et2eS

D(et) X
t2path(et)

bxt

�
1

1 + �

X
et2eS

D(et):

The last inequality follows from the de�nition of Iet in
the �ltered program.

3.7 Bounding the Cost

In this section we prove Theorem 8. The bound (15)
follows from Theorem 9, so all that remains is to
prove (14). Let S be the �nal pruned subtree. We
prove L < 1 + 1=� by showing that

X
t2eS[(T�S)

bxtC(t) > �

1 + �
C(S):

By expanding the sum, we haveX
t2eS[(T�S)

bxtC(t) =
X
et2eS

bxetC(et) +
X

t2T�S

bxtC(t)

=
X
et2eS

�
Q(parent(et)) �Q(et)� C(et) + X

t2T�S

bxtC(t)

=
X
et2eS

Q(parent(et))C(et)�X
et2eS

Q(et)C(et) + X
t2T�S

bxtC(t):

By Lemma 4, we may writeX
t2eS[(T�S)

bxtC(t) =
X
et2eS

Q(parent(et))C(et)

+
X
et2eS

�C�(Tet):

For any et 2 eS, by Theorem 10, we haveX
et2eS

�C�(Tet) � 0:

Therefore, we haveX
t2eS[(T�S)

bxtC(t) �
X
et2eS

Q(parent(et))C(et)

>
�

1 + �

X
et2eS

C(et);

which implies (14). The last inequality follows from the
way we prune the tree.

4 Other Applications

4.1 Generalized Assignment Problem

Let J = f1; . . . ;Kg be a set of agent indices and
I = f1; . . . ; ng be a set of task indices. We denote the

cost of assigning task i to agent j as cij and the resource
available to agent j as bj > 0. Let 0 < rij � bj be the
resource required of agent j to perform task i. The gen-
eralized assignment problem is formulated as minimizing

X
i2I

X
j2J

cijxij

subject to

X
j2J

xij = 1; i 2 I;

X
i2I

rijxij � bj ; j 2 J;

xij 2 f0; 1g; i 2 I; j 2 J;

where xij is 1 if and only if task i is assigned to agent j,
xij = 0 otherwise.
If rij = 1 for all i 2 I and j 2 J , then the well-

known Hungarian method [Kuh] can be adapted for its
solution [GLS]. On the other hand, Sahni and Gonza-
lez [SaG] show that the �-approximation problem isNP-
hard for the generalized assignment problem.

For simplicity, we assume for the rest of the section
that the generalized assignment problem is feasible. We
remark that we can use the notion of relaxed decision
procedures [HoSa, LST] for checking feasibility approx-
imately.
The �ltering procedure for the generalized assignment

problem is similar to that of the s-median problem.
Given � > 0 and a fractional solution bx for the linear
relaxation of the above program, let bCi =

P
j2J cijbxij.

We de�ne

Ji = fj 2 J j cij � (1 + �) bCig

for each i 2 I, and

Ij = fi 2 I j cij � (1 + �) bCig

for each j 2 J . The �ltered program is to minimize L,
subject to

X
j2Ji

xij = 1; i 2 I;

X
i2Ij

rij

bj
xij � L; j 2 J;

xij = 0; i 2 I; j 2 J � Ji;

xij 2 f0; 1g; i 2 I; j 2 J:

Any feasible solution to the �ltered program provides
�-approximations for the generalized assignment prob-
lem. By our techniques, we can show the following:

Theorem 11 There exists a deterministic approxima-

tion algorithm for the generalized assignment problem



that, given any � > 0, outputs an assignment x such

that X
i2I

X
j2J

cijxij � (1 + �)
X
i2I

X
j2J

cijx
�
ij;

where x� is an optimal assignment, and

X
i2I

rijxij < (2 + 1=�)bj

for all j 2 J:

Recently, since the acceptance of this paper, Shmoys
and Tardos [ShT] have developed an approximation al-
gorithm for the generalized assignment problem that
outputs an assignment x such that

P
i2I

P
j2J cijxij �P

i2I

P
j2J cijx

�
ij; where x� is an optimal assignment,

and
P

i2I rijxij � 2bj for all j 2 J:

We now relate the approximability of the generalized
assignment problem to that of the minimum makespan

problem on unrelated parallel machines (without pre-

emption). The later problem can be formulated as an
integer linear program of minimizing L, subject to

X
j2J

xij = 1; i 2 I;

X
i2I

pijxij � L; j 2 J;

xij 2 f0; 1g; i 2 I; j 2 J;

where J = f1; . . . ;Kg is a set of machines, I =
f1; . . . ; ng is a set of jobs, and pij is a positive integer
representing the processing time for job i on machine j.

Theorem 12 For any 0 < � < 1=2, unless NP = P ,
there does not exist an approximation algorithm for the

generalized assignment problem that, given any � > 0,
outputs an assignment x such that

X
i2I

X
j2J

cijxij � (1 + �)
X
i2I

X
j2J

cijx
�
ij;

where x� is an optimal assignment, and

X
i2I

rijxij � (� + 1 + 1=�)bj;

for all j 2 J .

Proof Sketch: We can show by reductions that if there
exists an approximation algorithm for the generalized
assignment problem that, given any � > 0, outputs an
assignment x such that

X
i2I

X
j2J

cijxij � (1 + �)
X
i2I

X
j2J

cijx
�
ij;

where x� is an optimal assignment, and

X
i2I

rijxij � (� + 1 + 1=�)bj;

where 0 < � < 1; for all j 2 J , then there also exists a
�-approximation algorithm for the minimummakespan
problem on unrelated parallel machines.
By Corollary 2 in [LST], we have proven the hardness

result. 2

4.2 Scheduling of Unrelated Parallel

Machines

One basic question in the scheduling of unrelated par-
allel machines is the relationship between the optimal
makespan with preemption and the optimal makespan
without preemption. Surprisingly, no nontrivial bound
was known for this problem. It is straightforward to use
our techniques to prove the following theorem:

Theorem 13 Let bL be the optimal makespan with pre-

emption and let L� be the optimal makespan without

preemption for scheduling unrelated parallel machines.

Then we have L� < 4bL:
Proof Sketch: Lawler and Labetoulle [LaL] showed the
optimal makespan with preemption is the optimal so-
lution to the following linear program of minimizing L
subject to X

j2J

xij = 1; i 2 I;

X
i2I

pijxij � L; j 2 J;

X
j2J

pijxij � L; i 2 I;

xij � 0; i 2 I; j 2 J;

Given the optimal fractional solution bx and the optimal
makespan with preemption bL, we want to convert it into
a schedule of length less than 4bL.
We �rst form a new fractional solution ex as fol-

lows: for each bxij > 0 with pij > 2bL we set exij
to 0 (�ltering); otherwise, we let exij = bxij= bXi, wherebXi =

P
pij�2bL bxij > 1=2. It is clear that ex is a feasible

solution to the following set of linear constraints:X
j2J

xij = 1; i 2 I;

X
j2J

pijxij < 2bL; i 2 I;

xij 2 f0; 1g; i 2 I; j 2 J;

xij = 0 if pij > 2bL:
By the Rounding Theorem of [LST], we can �nd a non-
preemptive schedule of length less than 4bL in polyno-
mial time. 2

Partially based on our techniques, Shmoys and Tardos
[ShT] developed an O(log2K)-approximation algorithm
for non-preemptive scheduling of unrelated parallel ma-
chines with precedence constraints on the jobs.



5 Conclusions

Our results deal with a class of frequently encountered
0-1 optimization problems whose �-approximation prob-
lems areNP-hard. For each of the problems considered,
we �rst solve its relaxed integer program by linear pro-
gramming techniques. Given the fractional solution and
� > 0, we transform the problem by new �ltering meth-
ods, which we introduce in this paper, into another 0-1
optimization problem, whose feasible solutions insure
�-approximation, of minimizing the packing constraint
violation. Finally we solve the �ltered program by in-
teresting randomized and deterministic techniques.

More speci�cally, we present the �rst known
polynomial-time approximation algorithms with prov-
able performance guarantees for the s-median problem,
the tree pruning problem, and the generalized assign-
ment problem. We also provide evidence that our ap-
proximation algorithms are nearly optimal in terms of
the packing constraint violation. The results in Sec-
tion 4.2 indicate that our methods may have manymore
applications other than �nding �-approximate solutions
with small packing constraint violation forNP-hard op-
timization problems.
Recently, we have developed an alternative approx-

imation algorithm for the median problem when the
goal is to �-approximate the optimal number of medi-
ans given a bound on the cumulative distance (cost)
and the vertices are embedded in metric spaces. Our
algorithm �-approximates the optimal number of me-
dians while bounding the total distance by a factor of
2(1 + 1=�). The transformation technique used is fun-
damentally di�erent from those of randomized and de-
terministic rounding [Rag, RaT] and the methods used
in this paper in the following way: Previous techniques
never set variables with zero values in the fractional so-
lution to 1. Our new algorithm, on the other hand, may
set 0-valued variables to 1.

It is open whether our performance guarantees for
the s-median problem can be tightened for the special
case of Euclidean space. Practical use of our algorithms
for vector quantization, clustering, and memory-based
learning can be found in [LiVa, LiVb].
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