
Dynamic Generation of Discrete Random Variates1

Yossi Matias2

Department of Computer Science

Tel Aviv University

Tel Aviv 69978

Israel

Je�rey Scott Vitter 3

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907{2066

U.S.A.

Wen-Chun Ni4

TBCommerce Network Corporation

3191 Temple Ave, #210

Pomona, CA 91768

U.S.A.

May 16, 2003

1This paper is a combination of two independent works [17] and [24] and collaborative work. A summary
appears in [19].

2Support was provided in part by National Science Foundation grants CCR{8906949 and CCR{9111348.
Part of the work was done while the author was at University of Maryland, Institute for Advanced Computer
Studies. Email: matias@math.tau.ac.il. URL: www.math.tau.ac.il/~matias/.

3Support was provided in part by a National Science Foundation Presidential Young Investigator
Award with matching funds from IBM, by NSF research grants CCR{9007851 and CCR{9522047, and
by Army Research OÆce grants DAAL03{91{G{0035 and DAAH04{96{1{0013. Part of the work was
done while the author was at Brown University and Duke University. Email: jsv@purdue.edu. URL:
www.science.purdue.edu/jsv/

4Support was provided in part by the OÆce of Naval Research and the Defense Advanced Research
Projects Agency under contract N00014{91{J{4052, ARPA order 8225. Part of the work was done while the
author was at Brown University. Email: wcn@tbcommerce.com

Abstract

We present and analyze eÆcient new algorithms for generating a random variate distributed accord-

ing to a dynamically changing set of N weights. The base version of each algorithm generates the

discrete random variate in O(log�N) expected time and updates a weight in O(2log
�N) expected

time in the worst case. We then show how to reduce the update time to O(log�N) amortized

expected time. We �nally show how to apply our techniques to a lookup-table technique in order

to obtain expected constant time in the worst case for generation and update. We give parallel

algorithms for parallel generation and update having optimal processor-time product.

Besides the usual application in computer simulation, our method can be used to perform

constant-time prediction in prefetching applications. We also apply our techniques to obtain an

eÆcient dynamic algorithm for maintaining an approximate heap ofN elements, in which each query

is required to return an element whose value is within an � multiplicative factor of the maximal

element value. For � = 1=polylog(N), each query, insertion, or deletion takes O(log log logN) time.

Keywords: random-number generator, random variate, alias, bucket, rejection, dynamic data

structure, update, approximate priority queue.

2 1 INTRODUCTION

1 Introduction

The generation of random variates based on arbitrary �nite distributions has long been a key

component of many computer simulations [1],[7], [14], [25]. Given elements 1, 2, . . . , N and their

respective weights w1, w2, . . . , wN � 0, we want to design an algorithm to generate a random

variate that has value j with probability wj=
P

1�i�N wi. In the static case, when the N weights

are �xed, we can utilize the clever algorithm by Walker, commonly called the alias method ; the

time to generate a random variate is constant and the preprocessing cost is O(N) [14], [25], which

is clearly optimal.

In this paper we consider the problem in the important and more challenging dynamic case,

in which the weights of the elements can be updated dynamically. The relevant measures of eÆ-

ciency are the generation time and the update time. We can rerun Walker's algorithm each time

a weight is updated, but the update cost O(N) is too high. Until this work, the best known al-

gorithm for the dynamic problem in the general case was the binary tree-based scheme developed

by Wong and Easton [26], whose generation and update times are both O(logN). Each generation

requires one call to a random-number generator that provides a uniform random integer in the

range [0;
P

1�i�N wi).

Rajasekaran and Ross [21] and Greenberg and Vitter [12] developed di�erent algorithms for the

dynamic case that do generation and update in constant expected time for various restricted classes

of updates. After the submission of the conference version of this paper [19], the authors learned

of an interesting recent algorithm due to Hagerup, Mehlhorn, and Munro [13] that does generation

and update in constant expected time and linear space when the weights are nonnegative integers

and the maximum weight is bounded by a polynomial in N .

In this paper, we introduce eÆcient randomized algorithms for the general dynamic case that

perform generation in O(log�N) expected time and update in O(2log
�N) time.1 Our algorithms,

presented in Sections 2 and 3, are conceptually simple and recommended for general use, with small

constant factors implicit inthe big-oh terms. In Section 4 we show how to use a more sophisticated

approach to achieve O(log�N) amortized expected update time; that is, if the total number of

updates is t � 0, the expected total time to do all the updates is O(t log�N). In Section 5,

we use the lookup-table technique of [13] to further improve our algorithms and obtain expected

constant time for generation and update, without the primary restrictions required in [13]. In

all our algorithms, no assumption is being made about the distributions of the input values and

operations. The expectations are over the randomness in the algorithm itself.

In Section 6, we consider dictionary issues for eÆcient space utilization. In Section 7, we

consider the parallel version of the problem, where a batch of operations are given and we would

like to process them in parallel. We give parallel algorithms with optimal processors-time product.

In particular, a batch of m generations or updates can be processed on an m-processor crcw

pram with optimal speedup, with respect to the algorithms mentioned above. The parallel update

algorithm requires the (nonstandard) Fetch&Add pram [11]; it can be processed with a slow-down

of t = �(logm= log logm), with high probability, on a (standard) crcw pram withm=t processors,

yielding optimal speedup.

In Section 8, we give an eÆcient dynamic method for an \approximate" version of the well-

known priority queue data type. Priority queues support the operations of insert, delete, and

�ndmax; a �ndmax query returns an element having the maximum value of all the stored ele-

ments. The operations can be implemented in O(logN) time on the standard heap (see, e.g., [15]),

in O(logN= log logN) time when some of the time bounds are allowed to be amortized [8], in

1We use the standard terminology that log� n is the smallest integer k such that k applications of the binary

logarithm function applied to n, namely, lg(lg(: : : lg(n))), is at most 1. For N � 65536, we have log�N � 4; for

N � 265536 , we have log�N � 5.

3

O(
p
logN) amortized expected time when randomization is allowed [8], and in O(log log u) time

when the element values are integers in the universe [1; u] [23]. The �-heap we construct supports

the more relaxed query �-�ndmax, in which the element returned must have a value within an �

multiplicative factor of the maximum element value. For � = 1=polylog(N), each query, insertion,

or deletion takes O(log log logN) time; for � = N�polylog(N), each query, insertion, or deletion takes

O(log logN) time.

In Section 9 we draw conclusions and comment on future work. We also mention an application

of our method to prefetching and other sorts of universal sequence prediction; the prediction of

each element can be done in constant time based on preceding elements in the sequence [16].

2 First Algorithm

In this section, we describe the basic idea of our �rst algorithm; the analysis and more subtle

aspects of it are discussed in later sections. For completeness, we have included in Section B of the

Appendix background information on three important techniques used by our algorithm, namely,

the rejection method, table doubling, and dynamic hashing.

Let the total weight of the N elements be W =
P

1�i�N wi. We assume the RAM model of

computation, in which the standard arithmetic operations on integers of value O(W) (or �xed

precision quantities with O(logW) bits) take constant time. Such operations include the discrete

(truncated binary) logarithmic function and generating random integers.

We regard each of the N elements as a \zeroth-level" element. The idea of our algorithm is

to construct a tree data structure of height log�N that can be used to generate random variates.

We partition the zeroth-level elements by weight into ranges R
(1)

j , for j � lgW , such that R
(1)

j

is associated with the half-closed interval [2j�1; 2j). We call j the \range number." Note that j

may be negative, since we do not restrict the elements' weights to be integers. There may be more

than one element falling into a range R
(1)

j , and their total weight, written as weight(R
(1)

j) is in the

interval [2j
0�1; 2j

0

), for some j0 > j. We can treat the range R
(1)

j as a new \�rst-level" element

with weight weight(R
(1)

j) and put it into the second-level range R
(2)

j0 , associated with the interval

[2j
0�1; 2j

0

). For those ranges containing only one element, we put them into a level table T1 rather
than into a second-level range.

Given a list of ranges R
(2)

j1
; R

(2)

j2
; : : : ; R

(2)

jn
each containing at least two elements, we repeat

the same partition process using R
(2)

j1
; R

(2)

j2
; : : : ; R

(2)

jn
as second-level elements. More generally, by

applying the same process to each range R
(`)
j containing at least two elements, for j � lgW and

` � 1, we can build the level-(` + 1) range R
(`+1)

k , associated with the interval [2k�1; 2k) for some

k � lgW . The process repeats until there is no range containing at least two elements.

The process is best viewed as a level-by-level, bottom-up construction of a forest of trees. The

elements 1, 2, . . . , N , are implicit leaves in the trees being built and can be regarded as comprising

the implicit level 0. Any range (node) on some level ` � 1 is called internal in the collection of

trees. More importantly, there is no distinction between the elements and the nonempty ranges

from this viewpoint: they are all treated as nodes in a tree or elements in a set. For ` � 1, if

R
(`)
i has at least two elements and its total weight is in the interval [2j�1; 2j), then R

(`)
i is a child

of range R
(`+1)

j ; conversely, R
(`+1)

j is the parent of R
(`)
i . A range with only one child (element) is

said to be a root range and has no parent. We de�ne the degree of range R
(`)
j to be the number of

children it has; the degree of a root range is 1. The relation between a range and its parent range

is illustrated in Figure 1.

Figure 2 gives a view of the trees built. Each level table T`, for ` � 1, contains the nonempty

root ranges on level `, which were created during the `th iteration of the tree-building process.

Each nonempty root range R
(`)
j is stored in a dynamic hash table, indexed by j and `, so that the

total space to store all the root ranges is linear. When we insert the level-` roots into T`, we also

4 2 FIRST ALGORITHM

m

Level

Level

l+1

l

Figure 1: A range R
(`)
i with degree m on level ` and its parent range R

(`+1)

j on level ` + 1. Each

element in R
(`)
i has weight in the interval [2i�1; 2i). The total weight weight(R

(`)
i) of all the elements

in R
(`)
i is in the interval [2j�1; 2j) associated with the parent range R

(`+1)

j .

1

2

3

4

5

Figure 2: A forest of trees built, with L = 5 levels. The horizontal dashed lines mark the levels.

Root nodes (root ranges), which have only one child, are denoted by solid circles.

compute the total weight of these roots, denoted weight(T`). In general, we have a forest of trees

whose roots may be on di�erent levels. We denote by L the maximum level number of a root. The

data structure consists of levels 1, 2, . . . , L.

The remaining question is how to store the children for a given internal range R
(`)
j . Within each

range R
(`)
j , for ` � 1, we keep a dynamic table of buckets. Insertions and deletions of ranges are

handled by a worst-case adaptation of the well-known amortized table-doubling technique (see, e.g.,

Appendix B.2). Each bucket corresponds to some rangeR
(`�1)

i such that weight(R
(`�1)

i) 2 [2j�1; 2j).

The total weight weight(R
(`)
j) is de�ned to be

P
i weight(R

(`�1)

i), where the summation is taken

over the children R
(`�1)

i of R
(`)
j .

2.1 Preprocessing 5

1

2

3

4

5

 wi

Figure 3: Generating a random variate from level ` = 4.

2.1 Preprocessing

In Appendix A, we show how to preprocess an initial set of N weights by means of a bottom-up

level-by-level insertion method in order to construct the forest of trees in batched mode. During

the insertion process, we use a queue at each node on the next upper level to store the elements

that will be inserted there. Details appear in Appendix A, where the following expected linear

expected time bound is proved:

Theorem 1 The preprocessing to build the initial forest of trees requires O(N) expected time.

2.2 Generating a Random Variate

Now we turn our attention to generating random variates using the forest of tree data structure.

We generate a random variate according to the current distribution of weights w1, w2, . . . , wN

using the following three-step procedure:

Step 1. We choose some T`, where 1 � ` � L, based on the weights of the level tables. In

particular, we choose one of the levels T` by generating a uniform random variate U 2 [0; 1)

and setting ` to the minimum positive integer such that U < 1
W

P
1�k�` weight(Tk), where W

is the total sum of weights
P

1�i�N wi. The value of ` is found by a sequential search using

values ` = 1, 2,

Step 2. We choose one root range R
(`)
j on level ` according to the weight distribution of the

ranges. In particular, we process the nonempty root ranges R
(`)
j1
, R

(`)
j2
, . . . R

(`)
js

in sequence,

where j1 > j2 > � � � > js, until we �nd the minimum value 1 � j � s such that U �
1
W

P
1�k�j weight(R

(`)

k). The �rst (largest) index j1 can be computed easily, for example,

as blg roots(T`)c + 1, where roots(T`) =
P
2ji , with the summation taken over all nonempty

root ranges ji on level `. The successive indices j2, j3, . . . can be obtained by iteratively

subtracting 2j1 and taking the discrete log function again. Alternatively, it suÆces to step

down iteratively from j1 until we �nd the values ji for which R
(`)
ji

is nonempty.

Step 3. Within R
(`)
j , we use the rejection method (see, e.g., Appendix B.1) to choose one of its

children according to their weight distribution. We repeat the process until we reach level 1,

where the chosen child is one of the N elements. We output the chosen element.

Steps 2 and 3 are explained pictorially in Figure 3.

6 2 FIRST ALGORITHM

Theorem 2 The expected cost of the above algorithm for generating a random variate distributed

according to the current weights is O(log�N), where N is the number of elements.

Proof : The cost of Step 1 is O(L), since there are L levels to choose from. We show in Theorem 4

that L � log�N + 1 in the worst case (although it is typically even smaller). In Step 2, generating

one root range R
(`)
j on level ` may cost time linear in the number of nonempty root ranges on

level `. Fortunately, the expected time is constant, since the range weights decrease exponentially.

Let R
(`)
j1
, R

(`)
j2
, . . . , R

(`)
js

be the set of nonempty root ranges on level `, where j1 > j2 > � � � > js.

The expected cost of Step 2 X
1�k�s

k � weight(R(`)
jk
)=weight(T`):

This expression can be simpli�ed using the facts that 2jk�1 � weight(R
(`)
jk
) < 2jk and weight(T`) �P

1�k�n 2
jk�1 � 2j1�1 to yield the following upper bound on the expected Step 2 cost:

X
1�k�s

k � 2jk�j1+1 �
X

1�k�s

k2�k < 2:

In Step 3 we walk down the levels from R
(`)
j in constant expected time per level, using the rejection

method, using a total of O(log�N) expected time.

The dynamic scheme of Wong and Easton [26] uses O(logN) time per generation, but it re-

quires only one call to a random-number generator that outputs a uniform number in the range

[0;
P

1�i�N wi). Our algorithm uses an average of at most about 2L calls to a uniform random-

number generator, primarily due to Step 3. It may be possible to use a faster uniform random-

number generator or to \share" random numbers: The random numbers needed in Step 3 do not

usually require the precision of those needed for Wong and Easton's algorithm, especially whenP
1�i�N wi is large; the maximum precision needed is proportional to the degree of the current

node in the tree, which is at most N but is typically very small.

2.3 Updating the Weights Dynamically|Basic Approach

The weights of any element may be modi�ed in an on-line manner, as follows: When the weight wi

in range R
(1)

j is changed to wi+�, we must move the corresponding element i to another range R
(1)

k

if wi + � 62 [2j�1; 2j), in which case we say that element i \changes its parent." A change of an

individual weight may thus cause the total weights of two level-1 ranges R
(1)

j and R
(1)

k to change,

which may cause further parent changes higher in the trees.

Coordinating the updates from the bottom up is achieved by associating to each level a queue,

as we do in the preprocessing stage, as described in Appendix A. Once the weight of a range has

been changed on level `, we reect the required update to level `+ 1 by putting the value changed

and the range into the queue. We can view the e�ect by looking at Figure 4. In Figure 4b, the

node v changes its parent node from w to w0 because of weight increase. (We can use the table

doubling technique of Section B.2 to organize the buckets in each range.) The paths upward from

w and w0 should be updated accordingly.

The number of ranges a�ected on level ` is no more than 2`, since each update along an upward

path in the data structure spawns at most one new upward update path. In Theorem 4, we show

that there are at most log�N + 1 levels, and hence the total number of ranges a�ected is bounded

by 2log
�N+1. By using dynamic hashing, we are able to insert new ranges and delete old ranges in

constant expected time. This means that each update takes O(2log
�N) expected time:

Theorem 3 Updating the weight of any element can be performed in O(2log
�N) expected time in

the worst case.

2.4 Properties of the Data Structure 7

(a)

v v

w
w’

(b)

Figure 4: Two views of the update operation. (a) Moving one bucket from one range to another.

(b) The tree view: changing the parent of v from w to w0.

2.4 Properties of the Data Structure

In this section we derive some important invariants that are crucial to the analysis of the size and

height of the data structure. Fo range R
(`)
j , we use \level" to refer to ` and \level number" to refer

to j.

Lemma 1 If the degree of range R
(`)
j is m � 2, then weight(R

(`)
j) is in the range [2j

0�1; 2j
0

), where

lgm� 1 < j0 � j < lgm+ 1.

Proof : Since every bucket in R
(`)
j represents an element with weight in the range [2j�1; 2j), we have

weight(R
(`)
j) 2 [m2j�1;m2j). If weight(R

(`)
j) falls into R

(`+1)

j0 , then 2j
0�1 � weight(R

(`)
j) < m2j and

m2j�1 � weight(R
(`)
j) < 2j

0

. The result follows by taking logarithms.

Lemma 2 For ` � 2, if the degree of range R
(`)
j is m � 2, then one of its children has degree at

least 2m�1 + 1; moreover, the number of R
(`)
j 's grandchildren is at least 2m +m� 1.

Proof : Figure 5 demonstrates the relations between a degree-m node and its children and grand-

children. Let the children of R
(`)
j be R

(`�1)

j1
, R

(`�1)

j2
, . . . , R

(`�1)

jm
, where the range numbers are in

sorted order j > j1 > j2 > � � � > jm. By Lemma 1 and the fact that ji � j � i, it follows that

R
(`�1)

ji
has at least 2j�ji�1 + 1 � 2i�1 + 1 children. The total number of grandchildren of R

(`)
j is

thus at least
P

1�i�m

�
2i�1 + 1

�
= 2m +m� 1.

Lemma 3 For ` � k � 3, if the degree of range R
(`)
j is m � 2, then the di�erence in range numbers

between the smallest-numbered range on level `�k and the smallest-numbered range on level `�k+1
among the descendants of R

(`)
j is greater than the tower expression

2
2�
�

�

2m
�
k

; (1)

8 2 FIRST ALGORITHM

m

2 + 12
m−1

+ 1
m −2 2

Figure 5: A typical tree built.

which is 22
m

and 22
2
m

for k = 3 and k = 4, respectively. In addition, the number of descendants

of R
(`)
j on level `� k is greater than the tower expression (1).

Proof : By induction on k. We shall demonstrate that the inductive hypothesis is true for either

k = 2 or k = 3. Let us assume that the inductive hypothesis does not hold for the smaller value

k = 2. Range R
(`)
j 's m children at level `� 1 occupy contiguous ranges R

(`�1)

j1
, R

(`�1)

j2
, . . . , R

(`�1)

jm
,

where ji = j � i; otherwise, we have jm � j �m � 1, and by Lemma 1, the number of R
(`�1)

jm
's

children on level `� 2 is at least 2m + 1, in which case the inductive hypothesis holds for k = 2.

Now suppose that the inductive hypothesis does not hold for the value k = 3. There are exactly

2m +m� 1 grandchildren of range R
(`)
j on level `� 2 occupying contiguous ranges R

(`�2)

j�2 , R
(`�2)

j�3 ,

. . . , R
(`�2)

j�m�2m ; otherwise by Lemma 1, the number of children of the smallest-numbered range on

level `� 2 is greater than 22
m

, in which case the base case holds for k = 3.

The number of ranges on level `� 3 can be minimized if the ranges on level `� 2 are ordered

by the range numbers of their parents on level ` � 1, so we assume that such an ordering occurs.

The 2i�1+1 children of R
(`�1)

j�i on level `� 2 occupy contiguous ranges R
(`�2)

j�2i�1�i
, . . . , R

(`�2)

j�2i�i
. By

Lemma 1, the number of R
(`�1)

j�i 's grandchildren on level `� 3 is at least

�
22

i�1�1 + 1
�
+ � � �+

�
22

i�1 + 1
�
= 22

i � 22
i�1�1 + 2i�1 + 1:

Hence, the number of R
(`)
j 's great grandchildren on level `� 3 is at least

X
1�i�m

�
22

i � 22
i�1�1 + 2i�1 + 1

�
= 22

m

+
1

2

X
1�i<m

22
i

+ 2m +m� 2: (2)

The number of the smallest-numbered range on level `� 3 among the great grandchildren of R
(`)
j

is thus at most

(j � 2)�
�
22

m

+
1

2

X
1�i<m

22
i

+ 2m +m� 2

�
= j �m� 2m � 22

m � 1

2

X
1�i<m

22
i

:

The resulting di�erence between the smallest range number on level ` � 3 and the smallest range

number j �m� 2m on level `� 2 among the descendants of R
(`)
j is at least

22
m

+
1

2

X
1�i<m

22
i � 22

m

+ 2:

The inductive hypothesis therefore holds for the base case k = 3.

For the inductive step, for k � 2, suppose that the di�erence in range numbers between the

smallest-numbered range on level `� k and the smallest-numbered range on level `� k + 1 among

9

the descendants of R
(`)
j is greater than

2
2�
�

�

2m
�
k

:

By Lemma 1, the smallest-numbered range on level `� k has more than

2
2�
�

�

2m
�
k+1

children, and the inductive hypothesis holds for k + 1.

Each range in the topmost level must be a root and can have degree 1, but all its descendants

must have degree � 2. Let us choose ` to be one less than the topmost level number; the degree

of each non-root range in level ` is therefore � 2. Since there are only N elements in the data

structure, Lemma 3 implies the following bound on the height of the data structure:

Theorem 4 The maximum number of levels L in the trees is � log�N +1, where N is the number

of elements.

The space requirement of the algorithm depends on the number of ranges actually put into the

table.

Lemma 4 The total number of nonempty ranges is O(N), where N is the number of elements,

and the total storage space used by the data structure is O(N).

Proof : Each tree constructed by the algorithm is height-balanced. With the exception of root

ranges, every range in the trees has degree at least 2. This means that the total number of nodes in

each height-balanced tree is of the same order as the number of the leaves of the tree, which is N .

The dynamic hash tables used to store the ranges for each level occupy O(N) space collectively.

The universal hashing schemes of Section B.3 can be bypassed in favor of simple table lookup

at the cost of a superlinear bound on storage space.

3 Second Algorithm

In this section, we present another algorithm with the same performance bounds as the one pre-

sented in the preceding section. In Section 4, we show how to improve the expected update time

of both algorithms to O(log�N). The second algorithm (the one we present in this section) can be

further improved to operate in constant expected time per operation, as we show in Section 5.

The idea of the second algorithm is to reduce the problem size recursively from N to logN .

As in the algorithm of Section 2, we regard the N elements as \zeroth-level" elements, and we

use a similar partitioning. The zeroth-level elements are partitioned by weight into ranges Rj ,

such that Rj is associated with the range [2j�1; 2j); we again denote by weight(Rj) the total

weight of elements in the range Rj. We can treat the range Rj as a new \�rst-level" element

with weight weight(Rj) 2 [2j
0�1; 2j

0

), for some j0 � j. However, before putting the ranges Rj

into the next-level ranges we partition them into intervals. We consider the logN sized integer

intervals It = [tdlogNe; : : : ; (t + 1)dlogNe � 1], for each integer t, and we assign each range Rj to

the interval Itj that contains j. We continue constructing the data structure within each interval

separately. For each range Rj in Itj , we have

2tjdlogNe � weight(Rj) � N � 2(tj+1)dlogNe�1:

10 3 SECOND ALGORITHM

We normalize the weights of all ranges in interval It by dividing their value by 2tdlogNe; that

is, the weight of each range Rj is normalized to be weight 0(Rj) = weight(Rj) � 2�tjdlogNe. We now

have

1 � weight 0(Rj) � N � 2dlogNe�1 < N2:

Each element therefore belongs to some range Rj which belongs to an interval Itj and has

a normalized weight weight 0(Rj). The total weight of ranges in an interval It is denoted as the

interval's weight weight(It). The weight of each nonempty interval is kept as part of the data

structure.

For each interval It that contains at least two ranges, we can treat its ranges Rj , where

j 2 [tdlogNe; : : : ; (t + 1)dlogNe � 1], as new \�rst-level" elements with weights weight 0(Rj) and

construct the data structure recursively. In the recursive data structure, the ranges of elements in

the `th level are the elements of the (`+ 1)st level.

Lemma 5 The recursive data structure is of size O(N) and of depth at most log�N .

Proof : Each element in the (` + 1)st recursive level contains (as a range) at least two elements

from the `th recursive level. Therefore, the number of elements in the (` + 1)st recursive level is

at most half the number of elements in the `th level, which implies a total of at most 2N elements

at all levels of the data structure. The size of the data structure is clearly linear in the number of

elements it contains at all levels.

The number of ranges within an interval in the �rst level is at most logN . By induction, the

number of elements in an interval in the `th level is at most log(`)N ; therefore, each interval in the

(log�N)th level contains at most one element.

The data structure is stored in a similar manner as the data structure of the �rst algorithm,

using dynamic hashing.

We will use only a portion of the data structure for the generation procedure. More speci�cally,

in the recursive data structure at most four intervals are used; these intervals are called the \signif-

icant" intervals. Let Ir be the rightmost nonempty interval, and Ir�1 and Ir�2 be the two smaller

(possibly empty) intervals next to it. The four signi�cant intervals include Ir, Ir�1, and Ir�2; the

exact de�nition will be given later. The signi�cant intervals are so named because of the following

property:

Lemma 6 The total weight of the non-signi�cant intervals is at most a 1=N fraction of the total

weight of the signi�cant intervals.

Proof : Consider a range Rj that belongs to a non-signi�cant interval Itj . We have tj < r � 2 and

thus j < rdlogNe � 2dlogNe. The total weight of the non-signi�cant intervals is therefore at most

N � 2(r�2)dlogNe � 1

N
� 2rdlogNe

while the total weight of the signi�cant intervals is at least 2rdlogNe:

The generation of a random variate according to the current distribution of weights w1, w2,

. . . , wN is done as follows:

Step 1. We choose between the signi�cant intervals and the non-signi�cant intervals with the

appropriate probabilities.

Step 2. If the non-signi�cant intervals are chosen, then we generate a random variate from the

elements in the non-signi�cant intervals by applying any linear time algorithm (e.g., [26]),

and halt.

11

Step 3. If the signi�cant intervals are chosen, we choose one of them, say, It, with the appropriate

probability, and proceed to the next step.

Step 4. Within It, we choose a range Rj according to the weight distribution of the ranges by

applying the generation procedure recursively.

Step 5. Within Rj, we use the rejection method (see, e.g., Appendix B.1) to choose one of the

elements according to their weight distribution.

As mentioned above, the generation algorithm uses only the recursive data structures that are

constructed on the signi�cant intervals. The dynamic nature of the problem may cause a nonempty

interval to become empty at some future point, thereby causing a non-signi�cant interval to become

signi�cant. The complete construction guarantees that when this happens, the appropriate data

structure is available.

Step 1 takes constant expected time, given the total weight of the signi�cant intervals. By

Lemma 6, the contribution of Step 2 to the expected generation time is O(1). We will show in

Lemma 7 that the signi�cant intervals can be found in Step 3 in constant expected time. The

rejection method in Step 5 takes constant expected time. Let G(N) be the expected generation

time. Steps 1{3 and 5 take constant expected time and Step 4 takes G(logN) expected time. Thus,

G(N) can be expressed by the relation G(N) = G(logN) +O(1); implying G(N) = O(log�N).

There is one issue still to be resolved, namely, to justify the assumption that the signi�cant

intervals can be found in Step 3 in constant expected time. It turns out that keeping the sum of

weights is suÆcient to �nd the rightmost nonempty interval Ir and thereby the signi�cant interval.

This summation trick is also used in Step 2 of Section 2 and in Section 8 and is based on the

following observation:

Lemma 7 We have

rdlogNe � log
X

1�i�N

wi < (r + 2)dlogNe:

Proof : Let j1 be the maximum j so that Rj is a nonempty range. It is easy to verify that

2j1 � P
1�i�N wi � N � 2j1 : By taking logarithms we have j1 � dlogP1�i�N wie � j1 + dlogNe:

Since rdlogNe � j1 � (r + 1)dlogNe � 1 the result follows.

Let t1 = blogP1�i�N wi=dlogNec. By Lemma 7 either t1 = r or t1 = r + 1. We de�ne the

signi�cant intervals as SI = fIt : t = t1 + 1; t1; t1 � 1; t1 � 2g. The intervals Ir, Ir�1 and Ir�2

are in SI, as required. (Note that the fourth signi�cant interval may be either Ir�3 or Ir+1.)

The summation trick lets us �nd SI in constant expected time, by only keeping track of the sumP
1�i�N wi, and by computing t1.

On-line update of the weight of any element is similar to what is done in the �rst algorithm.

An updated weight wi of an element in range Rj requires the updates of weight(Rj), weight
0(Rj),

weight(Itj), and the total weight
P

1�i�N wi. If an update moves an element from one range to a

di�erent range, then it implies two updates in the next recursive level, implying a total of O(2log
�N)

updates. This gives us the following theorem:

Theorem 5 The expected cost for generating a random variate according to the current weights is

O(log�N), where N is the number of elements. Updating the weight of any element can be done in

O(2log
�N) expected time in the worst case.

4 Modi�cation to Achieve O(log�N) Update Time

In this section we show how to modify our basic algorithms in order to achieve the desired O(log�N)

expected update time when amortized over the sequence of updates. That is, if there are t updates,

12 4 MODIFICATION TO ACHIEVE O(LOG�
N) UPDATE TIME

for any t � 0, the expected time to complete all t updates is O(t log�N). In contrast, the expected

update time for the basic algorithms derived in Sections 2 and 3 is �(2log
�N) in the worst case.

The approach can be generalized to reduce the amortized expected update time from O(log�N) to

O(1) at the expense of increasing the expected generation time from O(log�N) to O(alog
�N), for

some constant a > 2.

For simplicity, we restrict our attention to the �rst algorithm, from Section 2; the techniques

can be adapted equally well to the second algorithm, of Section 3.

The key to achieving this better amortized bound is by considering the following parameters:

1. We introduce \tolerance" into the ranges to allow \lazy updating." We choose a tolerance

factor 0 � b < 1. For convenience, we choose b so that 2+b
1�b is power of 2. (Previously we used

b = 0.) We relax the range of weights that can be stored in the range R
(`)
j associated with the

interval [2j�1; 2j) by tolerating weights in the interval [(1 � b)2j�1; (2+ b)2j�1). We associate

range R
(`)
j with the tolerated interval [(1� b)2j�1; (2 + b)2j�1). Note that the resulting set of

tolerated ranges overlap. However, when an element with weight w is inserted into a level-`

range, it is inserted into the unique range R
(`)
j where 2j�1 � w < 2j . The element must

change its weight by at least the tolerance b2j�1 of range R
(`)
j before it is moved to another

range.

2. We modify the criteria de�ning roots and require that each non-root node have degree at least

d = 1
2
(2+b
1�b)

22c, where c is a nonnegative integer to be speci�ed later. (Previously we used

d = 2.) The number d is the minimally allowable number of buckets in a non-root range; from

the graph-theoretic viewpoint, it is the minimal degree of the non-root nodes in the trees we

build.

4.1 Properties of the Modi�ed Data Structure

In this more general setting, we must modify Lemmas 1{3 and Theorem 4 in order to take into

account the tolerance b and degree bound d. In this section we derive new versions, which we call

Lemmas 10{30 and Theorem 40. Using a larger value of d slightly decreases the worst-case bound

on the number L of levels from that of Theorem 4. For example, if we take b = 0:4 and c � 1,

Theorem 40 shows that the maximum height L of the trees is � log�N � 1.

For conciseness, we refer to the expanded ranges in the modi�ed algorithm simply as ranges; they

have tolerance factor 0 < b < 1 and all ranges except the roots have degree at least d = 1
2
(2+b
1�b)

22c,

for nonnegative integer c. With these modi�cations, Lemma 1 takes the following form:

Lemma 10 If the degree of range R
(`)
j is m � d, then weight(R

(`)
j) is in the range R

(`+1)

j0 , where

lgm� lg(2+b
1�b) < j0 � j < lgm+ lg(2+b

1�b).

Proof : Each of them children of R
(`)
j has weight in the range [(1�b)2j�1; (2+b)2j�1), so weight(R

(`)
j)

must be in the range [m(1�b)2j�1;m(2+b)2j�1). If weight(R
(`)
j) falls into [(1�b)2j0�1; (2+b)2j

0�1),

then (1 � b)2j
0�1 � weight(R

(`)
j) < m(2 + b)2j�1 and m(1 � b)2j�1 � weight(R

(`)
j) < (2 + b)2j

0�1.

The inequality follows by taking logarithms.

We can use Lemma 10 to get the following modi�cation of Lemma 2:

Lemma 20 For ` � 2, if the degree of range R
(`)
j is m � d, then one of its children has degree at

least 2m�1+c; moreover, the number of R
(`)
j 's grandchildren is at least 2m+c � 2c +m.

Proof : Let the children of a range R
(`)
j be R

(`�1)

j1
; R

(`�1)

j2
; : : : ; R

(`�1)

jm
, for j > j1 > j2 > � � � > jm.

By Lemma 10, we have j1 � j � lg(2+b
1�b) � c, ji � j � i + 1 � lg(2+b

1�b) � c, and the number of

children of R
(`�1)

ji
is at least maxfd; 2i�1+c + 1g. Thus, the total number of grandchildren of R

(`)
j

is �P
1�i�m(2

i�1+c + 1) = 2m+c � 2c +m.

4.2 Amortized Analysis of the Modi�ed Algorithm 13

As before, we refer to j as the \range number" of range R
(`)
j . We get the following analog of

Lemma 3:

Lemma 30 For ` � k � 3, if the degree of range R
(`)
j is m � d, then the di�erence in range

numbers between the smallest-numbered range on level ` � k and the smallest-numbered range on

level `� k + 1 among the descendants of R
(`)
j is at least

2
2�
�

�

2m
�
k

+ lg

�
2 + b

1� b

�
+ 1:

In addition, the number of descendants of R
(`)
j on level `� k is at least

2
2�
�

�

2m
�
k

:

Proof : The full proof is similar to that of Lemma 3, except that the minimum di�erence of range

numbers between a parent node and its largest-numbered child is c + lg(2+b
1�b) rather than 1. This

enlarges the di�erences between the smallest-numbered ranges on adjacent levels and introduces

the term lg(2+b
1�b). The details are suppressed for brevity.

The lower bounds in Lemma 30 can be strengthened, but they suÆce for our purposes. As

before, we choose ` to be one below the topmost level number; the degree of each non-root range

in level ` is � d. Let us suppose that d � 16 = 22
2

. Since there are only N elements in the data

structure, Lemma 30 implies the following improved bound on the height of the data structure (see

Theorem 4):

Theorem 40 The maximum number of levels L of the trees is � log�N�1, where N is the number

of elements.

4.2 Amortized Analysis of the Modi�ed Algorithm

When a node w is made a child of range R
(`)
j represented by node x, node w must later change

its weight by at least x's tolerance b2j�1 in order for it to \change its parent." This tolerance

prevents too many insertions and deletions from occurring. When w changes its parent, x loses

weight and w's new parent gains weight; two paths of nodes need to be updated: the one upward

from node x and the one upward from w's new parent. All the nodes on the two paths should

revise their weights to reect the changes.

To facilitate the amortized analysis, we use an accounting method [22], where we charge C`

units of cost to a level-` node w that changes its parent. Since we only change the weights of one

of the N bottom-level elements on level 0, and in the worst case the element will change its parent,

we charge C0 to each dynamic weight update operation. The credits accumulated at each node

must pay for the cost of a parent change for that node, when it occurs, plus the cost of processing

the resulting two upward update paths.

Suppose that node w changes its parent from x1 to y1 during an update. The update path

starting from w is de�ned to be w ! x1 ! x2 ! � � � ! xm, where xm is a root, and we call this

path the old ancestor path of w. The new ancestor path of w is w ! y1 ! y2 ! � � � ! yn, where

yn is a root.

We consider for reasons of brevity only the case in which w is decremented in weight by � and

changes its parent from x1 to y1, and we restrict ourselves to the analysis of the old ancestor path

w ! x1 ! x2 ! � � � ! xm. Node w is on level `, and node xj is on level ` + j. Let node xj
correspond to the range R

(`)
ij+1, for 1 � j � m.

14 4 MODIFICATION TO ACHIEVE O(LOG�
N) UPDATE TIME

Suppose that the nodes x1, x2, . . . xj�1 do not change their parents or become roots as a

result of the parent change of w. The change of weight of node xj due to the update of w is

weight(w) � (2+ b)2i1 . We de�ne Æ(xj ; xj+1) = weight(xj)� (1� b)2ij to be the di�erence between

the weight of xj and the lower boundary of the range R
(`)
ij+1+1 represented by xj+1 at the time when

xj was last inserted into one of xj+1's buckets (or, equivalently, when xj changed its parent to

xj+1). We have Æ(xj ; xj+1) � b2ij+1 . By Lemma 10, we have 2ij+1 � 2i1((2+b
1�b)2

c)j , which gives us

Æ(xj ; xj+1) � b((2+b
1�b)2

c)j2i1 . Therefore, the ratio fj between xj's weight change and the tolerated

weight change Æ(xj ; xj+1) satis�es

fj � (2 + b)2i1

b
�
(2+b
1�b)2

c
�j
2i1

=

�
2

b
+ 1

���
2 + b

1� b

�
2c
��j

:

Since the weight change of xj is at most fj of the total weight change needed to cause a parent

change, it suÆces to deposit fjC`+j credits on node xj during the processing of w's parent change.

Next we consider the case in which nodes x1, x2, . . . xj�1 do not change their parents, but

nodes x1, x2, . . . xk become roots, for k � j � 1, as a result of the parent change of w. Nodes

x1, x2, . . . xk do not need credits deposited on them, since they no longer have parents, and the

credits can be deferred instead to xk+1, By similar reasoning to above, the ratio fj between

xj's weight change and the tolerated weight change Æ(xj ; xj+1) satis�es

fj �
�
2

b
+ 1

���
2 + b

1� b

�
2c
��j+k

;

and it suÆces to deposit fjC`+j credits on node xj during the processing of w's parent change.

The number of credits deposited on node xj is at least C`+j times the fraction of the tolerance

represented by xj 's weight change. Thus, at the future time when the weight of node xj is out of

the range of node xj+1 and xj changes parent, there will be at least C`+j credits on xj to pay for

the required updating.

The other cases to consider, such as consideration of the new update path and the case in which

w is incremented in weight, are analogous to the ones discussed above and are left to the reader.

This gives us the following lemma:

Lemma 8 The total number of credits allocated to a level-` node between two times it changes

parent is at least C`.

By the above reasoning, we get the following recurrence on the number of credits C` needed to

perform a parent change of a node on level `:

C` � 2(L� `+ 1) + 2
X

1�j�L�`

�
2
b
+ 1

�
�
(2+b
1�b)2

c
�jC`+j

� 2(L� `+ 1) +
2
�
2
b
+ 1

�

(2+b
1�b)2

c � 1
C`+1 (3)

where CL = 1. The �rst term on the right-hand side corresponds to the minimum cost needed to

process the two update paths of length � L � ` + 1 caused by the parent change. The jth term

in the summation represents the credits needed for the two level-(`+ j) nodes on the old ancestor

path and the new ancestor path. If 2(2
b
+ 1) < (2+b

1�b)2
c � 1, the solution to (3) is C` = O(L� `).

Lemma 9 If c > lg((2
b
+ 1)(1 � b)), then C` = O(L � `), where L � log�N � 1 is the number of

levels in the trees.

4.3 Tradeo�s between Update and Generation 15

We can choose the constants b and c (and thus d) so that the conditions of Theorem 40 and

Lemma 9 are satis�ed. For example, we can choose b = 0:4 and d = 32. The number of credits we

need to allocate for the update of an element's weight is thus C0 = O(L) = O(log�N). This gives

us our main result:

Theorem 6 The amortized expected cost for each update operation is O(log�N), where N is the

number of input elements.

With the modi�cation discussed above, the time to implement Steps 1{3 for generating a random

variate increases by a multiplicative factor of 1=b (because of the e�ect on the rejection method in

Step 3) and an additive factor of log d (because of the e�ect on the the weights of the roots in the

level table in Step 2). Since 1=b and d can be chosen to be to be reasonably small constants, the

resulting increase in generation time is not much. A bene�cial e�ect of the modi�cation, which we

mentioned above, is that the worst-case bound on the number of levels L decreases slightly as d

gets larger. In practice, we can probably avoid this modi�cation and keep b = 0 and d = 2, or else

use a partially modi�ed algorithm with a larger d, but for theoretical and worst-case purposes, the

full modi�cation is needed in order to get the O(log�N) time bound for generation and update.

4.3 Tradeo�s between Update and Generation

We can make the expected amortized update time O(k), k � 1, by not propagating weight infor-

mation above the kth level. We instead assign the \approximate weight" degree(R
(`)
j)� (2+ b)2j�1

to range R
(`)
j . We modify Step 3 so that whenever a rejection test fails at level ` � k, we restart

the entire process with Step 1. The resulting random variate is generated with the correct dis-

tribution, but in a backtracking manner, which results in an exponential increase in generation

time. Concerning update time, there is no propagation of weight information. The only extra time

needed is for changing parents, which happens at most a constant number of times per update, in

the amortized sense, because of the use of tolerance and the minimum degree bound.

Theorem 7 The amortized expected cost for update can be reduced to O(k), 1 � k � log�N , at

the cost of O(k + alog
�N�k) expected generation time, for some constant a > 2.

5 Expected Constant-Time Updates and Generation

A simple lookup-table technique for dynamic random variate generation was recently developed by

Hagerup, Mehlhorn, and Munro [13]. Their use of the technique provides a constant-time algorithm

for generation and update, but only when the weights are integral and bounded by a polynomial

in N . In this section we show how to use table lookup with our algorithms to do generation and

updates in constant expected time, without any restrictions on the weights. We �rst give a brief

description of the lookup-table technique and then show how to incorporate it with our algorithms.

A simple approach for the basic generation problem, already used in [26], is based on maintaining

an array of pre�x sums Wi of the weights wi; that is, Wi =
P

1�j�iwj , for each 1 � i � N . A

random variate is generated by �rst selecting uniformly at random a number r 2 [0;WN], and then

choosing i = i(r) such that Wi�1 < r �Wi. It is easy to verify that if the weights are nonnegative

integers then r can be restricted to being an integer (within the same range). When both N and

WN are suÆciently small, the outcomes for all possible values of r can be precomputed and stored

in a lookup table. Subsequently, for a given r the appropriate index i = i(r) can be found in

constant time. The size of the lookup table, as well as the time it takes to precompute it, are

O(WN). If the weights wi are integers from the range [1;m], then WN � mN .

To handle updates, we need to precompute a lookup table for each possible set of weights.

Since each of the N weights can have m possible values, there are at most mN lookup tables to

16 6 DICTIONARY ISSUES

precompute. Each lookup table is of the type described above, and in addition it stores for each

possible update a pointer to the lookup table that corresponds to the updated set of weights. There

are mN possible updates, since each update involves selecting one of the N weights and changing

its value to one of at most m possible values. Hence, the extra pointers increase the size of each

lookup table by only a constant factor, to O(mN). The total space S required for storing all the

lookup tables is therefore

S = O(NmN+1); (4)

and it takes O(S) time to construct them. The full details of the construction appear in [13].

We apply the lookup table technique as follows. The idea is to use only two levels of recursion of

the data structure of Section 3. After two levels of recursion we are left with subproblems consisting

of O(log logN) ranges Rj, and we have 1 � weight(Rj) � m, for m = (logN)O(1). The weight of

each range at this level of recursion is rounded to the next larger integer. We refer to subproblems

with these parameters as compact.

We precompute lookup tables for all possible compact problems. By replacing N by log logN

and substituting m = (logN)O(1) in (4), we �nd that the total space for the lookup tables of the

compact subproblems is S = (logN)O(log logN), which is o(N). Thus, storage space remains linear,

and precomputation time is o(N).

The generation of a random variate is done as in Section 3, except for the following modi�ca-

tion. The data structures for the intervals It after two levels of recursion correspond to compact

subproblems and are replaced by a pointer to the appropriate lookup table. Whenever we execute

Step 4 after two levels of recursion, we generate the range Rj in constant time by lookup in the

table for It. (Because the range weights are rounded after two levels of recursion, we must use

the rejection method to determine whether to actually generate the range; acceptance occurs with

probability at least 1/2.) It is easy to verify that the generation takes expected constant time.

Inserts and deletes to the It data structures can be done by updating pointers in constant time.

We have proved the following theorem:

Theorem 8 The operations of update and generation can be done in expected constant time and

linear space, with no restriction made on the input weights.

6 Dictionary Issues

In the algorithms described so far we have indicated that we use dynamic hashing for time and

space eÆciency, without elaborating. To be more speci�c, we use a dictionary data structure that

supports the operations of insert, delete, and lookup. We use dictionary algorithms that support

each of these operations in constant time, with high probability [6, 4].

Because of the varying sizes of the weights, we may have to reinitialize dictionaries from time to

time when we need to insert a weight that is too large and does not belong to the universe handled

by the dictionary. We can do the reinitialization, assuming constant-time access to weights, by

maintaining a linked list of dictionaries in the order of increasing universe size U1, U2, . . . , Ut.

Insertions are always made into Ut for the current value of t, and when the universe size of Ut

is not large enough for an insertion, we set t := t + 1 and append an empty dictionary with a

larger universe. This data structure supports constant-time operations, since lookup is not actually

required in our application; we have a direct pointer, when needed, to the location of the ith element

in the data structure. The only purpose of the dictionary is to limit the total storage required to

be linear.

The dictionary algorithms quoted above are based on polynomials over a �nite �eld Fp where

p is a prime. This imposes a problem of �nding a new prime that is suÆciently large when the

universe size increases. To get around it, we reduce the universe size of each element to O(K3)

17

�rst, where K is a tentative upper bound on the length of the future update sequence, and then

use a dictionary over Fp, where p = O(K3) is independent of the universe size.

To reduce the universe, it is suÆcient to use a 2-universal hash function [2], which will enable

injective universe reduction with high probability. We must �nd a family of classes of 2-universal

hash functions that are easy to compute without a priori knowledge about the universe size.

Dietzfelbinger et al. [5] developed such a scheme that allows hash functions to be selected in

constant time. Using their scheme, we do not need to have any a priori knowledge about the

universe size, and we still obtain constant-time algorithms.

7 Parallel Algorithms

In this section we parallelize the previous algorithms in order to performm updates orm generations

in parallel.

The generation procedures do not change the data structure. Therefore, m generations can be

done in parallel, if concurrent read is allowed. In the updating procedures, the e�ect of having

several updates in parallel is that several processors may want to update the weight of the same

element or range in parallel. Note that even if all parallel updates are assumed to be for distinct

elements, at higher levels in the data structure we may have concurrent updates for the same

range. In such case, we need to update the range by the sum of these updates. This can be done

in constant time on a Fetch&Add pram [11].2 This model is a powerful and nonstandard model

of a crcw pram. However, each step of an m-processor Fetch&Add pram can be simulated on

standard crcw models (e.g., on Arbitrary, Priority, Collision, or Tolerant) in O(logm= log logm)

time, O(m) space, and O(m) operations, with high probability [9]. As in the sequential case, the

memory is managed through a dictionary algorithm: we use a parallel dictionary algorithm which

with linear space supports each instruction in O(log�m) time and O(m) operations, with high

probability [18, 10].

Theorem 9 The expected cost for generating m random variates according to the current weights is

O(log�N), using m processors on a crcw pram, where N is the number of elements. Updating the

weight of m elements can be done in O(log�N) amortized expected time and in O(2log
�N) expected

time in the worst case, using m processors on a Fetch&Add pram. It can be done with a slow-down

of t = O(logm= log logm) on a (standard) crcw pram with m=t processors (optimal speedup).

8 An Application: �-Heaps

In this section we show how to apply our techniques to a di�erent problem, namely, how to obtain

an eÆcient dynamic algorithm for maintaining approximate priority queues. Given an arbitrary

� > 0, we construct an �-heap, so that each query returns an element whose value is within a 1 + �

multiplicative factor of the current maximal element value. In particular, if the maximal element

has value x, the �-heap returns an �-maximum, whose value is in the range [(1 � �)x; x].

Our heap data structure is related to the data structure of Section 3. For consistency we denote

the value of an element as its weight. The input elements are partitioned by weight into ranges

Rj , such that Rj is associated with the range [(1 + �)j�1; (1 + �)j). Note that all elements in a

range are within an � multiplicative factor from each other. The elements of each range are kept

in an arbitrary data structure (e.g., a list, an array). To �nd an �-maximum, it suÆces to �nd

2In this model, if two or more processors attempt to write to the same cell in a given step, then their values are

added to the value already written in the shared memory location and all pre�x sums obtained in the (virtual) serial

process are recorded.

18 9 CONCLUSIONS

the maximal nonempty range. Then, an arbitrary element from the range can be taken to be an

�-maximum.

Each range Rj is now represented by the weight w(Rj) = j. The ranges are partitioned into

integer intervals of size blogN= log(1 + �)c = O((1=�) logN). We consider the integer interval

It = [tblog1+�Nc; : : : ; (t+ 1)blog1+�N � 1], for each integer t, and we assign each range Rj to the

interval Itj that contains j. The weights of each range Rj in interval It are now normalized to

~w(Rj) = j � tblog1+�Nc 2 [1; : : : ; blog1+�Nc]. For each interval, we keep a separate priority queue

of van Emde Boas et al. [23]. In addition to the data structure described above, we keep record ofP
(1 + �)j, where the summation is over the nonempty ranges Rj .

To implement an update operation for an element of weight wi, we �rst compute its range Rj, by

j = dlog1+�wie. The data structure for the elements of Rj is then updated. Now the interval Itj is

computed by tj = j div blog1+�Nc, and the update is done in the priority queue of the interval Itj .
To �nd the maximal nonempty range (and thereby an �-maximum) we �rst �nd the maximal

nonempty interval Ir, and then use the priority queue of Ir to �nd the maximal range in Ir. To

�nd the maximal interval we use a summation trick similar to the one used in Section 3, based on

the following lemma:

Lemma 10 We have

r
�
log1+�N

� � log1+�
X

(1 + �)j < (r + 2)
�
log1+�N

�
:

Proof : Let j1 be the maximum j so that Rj is a nonempty range. It is easy to verify that (1+�)
j1 �P

(1 + �)j < N � (1 + �)j1 : By taking logarithms we have j1 � log1+�
P
(1 + �)j < j1 + dlog1+�Ne:

Since rdlog1+�Ne � j1 � (r + 1)dlog1+�Ne � 1 the result follows.

Let t1 = blog1+�
P
(1 + �)j=dlog1+�Nec. By Lemma 10 either t1 = r or t1 = r + 1. In this

analysis we must relax our computational model to allow truncated logarithms to an arbitrary

base, such as 1 + �, to be done in constant time; this issue is discussed further in Section 9.

The only nonconstant time operations are therefore the operations on the priority queues on each

interval, which take O(log logblog1+�Nc) = O(log log(1
�
logN)) time. For � = N�polylog(N) we get

O(log logN) time. For � = 1=polylog(N) we get O(log log logN) time. Implementation in linear

space can be done using dynamic hashing, as for the generation algorithms.

9 Conclusions

We have presented two eÆcient randomized algorithms for generating a random variate according

to a set of weights that can vary dynamically. For simplicity our algorithms are expressed for the

case in which the range of the random variate is the set S = f1, 2, . . . , Ng for some N , but a

simple modi�cation allows S to be any dynamically varying set of cardinality N .

The two algorithms of Sections 2 and 3 use tree-based data structures of height O(log�N). In

each case, the expected time to generate the random variate is O(log�N), and the expected time

to update a weight value is O(2log
�N). Our modi�cations in Sections 4 and 5 reduce generation

and update times to constant expected time. The expectations in each algorithm are over the

randomness in the algorithms; we make no assumptions about the weight updates or weight values..

The variance of the running times of our algorithms can also be made to be o(1) so as to get

good tail bounds.

Our constant-time algorithm has been applied in [16] to the universal prediction techniques

developed in [16]; the resulting prediction algorithm runs in constant expected time. In that ap-

plication, prediction is done by generating a random variate in which the weights are exponential

quantities of the form wi = (fi)
r, where fi is an integer frequency and r can be regarded as an

19

�xed integer, both of size O(N). The generation and updates can be done in constant time even

when arithmetic operations must be done on �xed-precision O(logN)-sized arguments. Element i's

weight wi is approximated from above by 2dr lg fie, and the �rst level of the algorithm in Section 3

is applied to these approximated weights, using �xed-precision arithmetic on the exponents. The

resulting subproblems have polynomially sized weights, and the construction continues as in Sec-

tion 5. Because of the initial approximation by a power of 2, if element i is selected for generation,

a �nal acceptance-rejection test must be done before actually generating element i; in the test,

element i is accepted with probability (fi)
r=2dr lg fie � 1=2. That test can be done in constant

expected time using �xed precision by generating an exponentially distributed random variate [16].

All our algorithms are implemented in linear space, by using dynamic hashing algorithms. In

the course of this application we were led to consider the diÆculty of having varying universe, and as

a result de�ned the abstract dictionary problem of supporting the operations of insert, delete, and

lookup for the case in which there is no a priori known bound on the universe size. The diÆculty

is how to �nd quickly the hashing parameters needed for the dynamic hashing. We have assumed

that standard operations take constant time on arguments proportional to the maximum weight

encountered so far. In our applications for dynamically generating random variates, a simpler

version of the dictionary problem arose in Section 6, in which lookup operations are not required

by the data structure, and we have an expected constant-time solution, using a new class of hash

functions of Dietzfelbinger et al. [5]; the main purpose of the dictionary is merely to obtain linear

storage space.

For normal use in practice, the basic algorithms we have developed may be preferable to our

more sophisticated modi�ed algorithms, especially if there are a priori upper and lower bounds

on the weights, and if the dynamic hashing technique is removed in favor of simple table lookup.

However, it may be better to use degree bound d > 2 because of its e�ect on lessening the height

of the data structure. Experimentation is needed.

Subsequently to our work on �-heaps in Section 8, two of the coauthors and a colleague have de-

veloped several improvements, including other �-data structures with operations such as �-�ndmin

and �-successor. They also develop an algorithm that maintains an �-heap in O(1) time per opera-

tion, for � = 1=polylog(n), in which the use of truncated logarithms is restricted to the reasonable

class of binary logarithms [20].

Acknowledgments

We thank Albert Greenberg and Sanguthevar Rajasekaran for bringing the problem to our attention

and for helpful discussions, and also Kurt Mehlhorn and the anonymous referees for several helpful

comments.

20 9 CONCLUSIONS

References

[1] P. Bratley and B. L. Fox and L. E. Schrage, A Guide to Simulation. Springer-Verlag, Second

Edition, 1987.

[2] J. L. Carter and M. N. Wegman. Universal Classes of Hash Functions, Journal of Computer

and System Sciences, 18: 143{154, April 1979.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. McGraw-Hill,

New York, NY, second edition 2001

[4] M. Dietzfelbinger, J. Gil, Y. Matias, and N. Pippenger. Polynomial Hash Functions are Reli-

able. Proceedings of the 19th Annual International Colloquium on Automata, Languages, and

Programming, Springer LNCS 623, 235{246, 1992.

[5] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M. Penttonen. A Reliable Randomized

Algorithm for the Closest-Pair Problem. Journal of Algorithms, 25(1):19{51, October 1997.

[6] M. Dietzfelbinger and F. Meyer auf der Heide. A New Universal Class of Hash Functions and

Dynamic Hashing in Real Time, Proceedings of the 17th Annual International Colloquium on

Automata, Languages, and Programming, Springer LNCS 443: 6{19, July 1990.

[7] B. L. Fox. Simulated Annealing: Folklore, Facts, and Directions, Monte Carlo and Quasi-

Monte Carlo Methods in Scienti�c Computing (H. Niederreiter and P.J.-S. Shiue, eds.), Lec-

ture Notes in Statistics. Springer-Verlag, 1995.

[8] M. L. Fredman and D. E. Willard. Trans-Dichotomous Algorithms for Minimum Spanning

Trees and Shortest Paths. Journal of Computer and System Sciences, 48(3):533{551, June

1994.

[9] J. Gil and Y. Matias. Fast and EÆcient Simulations among CRCW PRAMs. J. of Parallel

and Distributed Computing, 23(2):135{148, 1994.

[10] J. Gil, Y. Matias, and U. Vishkin. Towards a Theory of Nearly Constant Time Parallel

Algorithms. Proceedings of the 32nd Annual IEEE Symposium on Foundations of Computer

Science, 698{710, October 1991.

[11] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P. McAulife, L. Rudolph, and M. Snir. The

NYU Ultracomputer|Designing an MIMD Shared Memory Parallel Machine. IEEE Trans.

on Comp, C-32:175{189, 1983.

[12] A. Greenberg and J. S. Vitter. Constant-Time Generation of Dynamic Random Variates, Notes,

June 1990.

[13] T. Hagerup, K. Mehlhorn, and I. Munro. Optimal Algorithms for Generating Time-Varying

Discrete Random Variates, Proceedings of the 20th Annual International Colloquium on Au-

tomata, Languages, and Programming, Springer LNCS 700: 253{264, July 1993.

[14] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algorithms. Ad-

dison Wesley, Reading, MA, second edition 1998.

[15] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching. Addison

Wesley, Reading, MA, second edition 1998.

21

[16] P. Krishnan and J. S. Vitter. Optimal Prediction for Prefetching in the Worst Case, SIAM

Journal on Computing, 27(6):1617{1636, December 1998.

[17] Y. Matias. Rolling a Dice with Varying Biases. Manuscript, July 1992.

[18] Y. Matias and U. Vishkin. Converting High Probability into Nearly-Constant Time|with

Applications to Parallel Hashing. Proceedings of the 23rd Annual ACM Symposium on Theory

of Computing, 307{316, 1991.

[19] Y. Matias, J. Vitter, and W. C. Ni. Dynamic Generation of Discrete Random Variates,

Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, TX,

January 1993, 361{370.

[20] Y. Matias, J. Vitter, and N. Young. Approximate Data Structures with Applications. Pro-

ceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms, Alexandria, VA,

January 1994, 187{194.

[21] S. Rajasekaran and K. W. Ross. Fast Algorithms for Generating Discrete Random Variates

with Changing Distributions, ACM Transactions on Modeling and Computer Simulation,

3(1):1{19, 1993.

[22] R. E. Tarjan. Amortized Computational Complexity, SIAM Journal on Algebraic and Discrete

Methods, 6(2): 306{318, 1985.

[23] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and Implementation of an EÆcient Priority

Queue. Math. Systems Theory, 10:99{127, 1977.

[24] J. S. Vitter andW.-C. Ni. Dynamic Generation of Discrete Random Variates, Brown University

Technical Report CS{92{36, August 1992.

[25] A. J. Walker. New Fast Method for Generating Discrete Random Numbers with Arbitrary

Distributions, Electronic Letters, 10(8):127{128, 1974.

[26] C. K. Wong and M. C. Easton. An EÆcient Method for Weighted Sampling without Replace-

ment, SIAM Journal on Computing, 9(1):111{114, 1980.

22 A PREPROCESSING AND PROOF OF THEOREM 1

Appendix

In the Appendix we give describe the preprocessing algorithm and give some background on the

rejection method, table doubling, and universal hashing, which are used by our algorithm.

A Preprocessing and Proof of Theorem 1

In this section we give a detailed description and the analysis of the expected linear-time prepro-

cessing stage for the �rst algorithm, described in Section 2, which is used if some of the N weights

are initially nonzero.

A.1 Preprocessing Algorithm

Algorithm preprocess partitions the elements into ranges R
(1)

j = [2j�1; 2j), for integer j, and calls

algorithm construct level to build the trees from the �rst level constructed. We use a list of queues

to coordinate the events like insertions and deletions. The function �nd range(i; `) is used to

search for the range R
(`)
i in the level-` hash table organized using universal hashing, as mentioned

in Section B.3. If it does not exist, we create one and make R
(`)
i an empty range. Only level-`

ranges containing at least one element are created and put into a level-` hash table. We prove later

that the number of ranges created during the execution of the algorithm is O(N). The algorithm

insert bucket(source ; destination) is used to insert a range or element called source into the range

de�ned by destination. It also updates the current total weight in the range destination. Since we

use an array of buckets in each range to hold the children of the range, generation of one bucket

in the range is done by indexing into the array. The insertion and deletion of buckets can be

handled by table doubling techniques mentioned in Section B.2. The use of queues Q` is to avoid

the searching of nonempty ranges on the next level.

algorithm preprocess;

input weights w1; w2; : : : ; wN ;

begin

Q1 := ;;
for i := 1 to N do

begin

j := blgwic+ 1; f wi 2 [2j�1; 2j) g
R

(1)

j := �nd range(j; 1);

insert bucket(i; R
(1)

j);

if R
(1)

j 62 Q1 then insert queue(R
(1)

j ; Q1)

end;

construct level(1)

end;

We construct a level structure recursively until there are only one-element ranges left. The

level weight weight(T`) is the summation of weights of the root ranges on level `. The method of

algorithm construct level is basically the same as that of algorithm preprocess. We use the queue Q`

passed from the previous level ` to construct the new level `+1. For any range R
(`)
i in Q` containing

more than one element, we insert R
(`)
i into the appropriate range R

(`+1)

j on level ` + 1 by calling

insert bucket(R
(`)
i ; R

(`+1)

j), which also deletes R
(`)
i from the level table T`. For any range in Q` that

has only one element left, we put it into the level table T`. We also maintain a variable roots(T`)
whose bit positions indicate the existence of these root ranges. For example, if the range R

(`)
i is

A.2 Proof of Theorem 1 23

a root, we just add 2i to roots(T`). The procedures insert queue and delete queue are trivial to

implement such that the cost per call is constant.

algorithm construct level(`)

begin

weight(T`) := 0;

roots(T`) := 0;

Q`+1 := ;;
more than one := false;

while Q` 6= ; do
begin

R
(`)
i := delete queue(Q`);

w�
i := weight(R

(`)
i);

if there are more than one element in R
(`)
i then

begin

Let j be the integer such that w�
i 2 [2j�1; 2j);

R
(`+1)

j := �nd range(j; `+ 1);

if R
(`+1)

j 62 Q`+1 then insert queue(R
(`+1)

j ; Q`+1);

insert bucket(R
(`)
i ; R

(`+1)

j);

delete range(R
(`)
i);

more than one := true

end

else begin

weight(T`) := weight(T`) + w�
i ;

roots(T`) := roots(T`) + 2i

end

end;

if more than one then construct level(`+ 1)

end;

After we construct each level, the total weight of each range is known. Moreover, those ranges

containing more than one element will be deleted from the current level; the remaining elements in

the table T` should be the roots of the trees rooted at that level.

A.2 Proof of Theorem 1

To get the linear-time expected bound on the preprocessing, we note that we put each range into

a queue when it needs to be inserted into the level table T`. When we process ranges on level `,

we just pick the elements from the queue and insert them in constant time using dynamic hashing.

Hence, the cost is proportional to the number of nonempty ranges on the level, rather than the

number of entries on each level.

B Three Background Techniques

To make the paper self-contained, we review three important techniques whose ideas come into

play in our algorithm: the rejection method, table doubling, and dynamic hashing.

24 B THREE BACKGROUND TECHNIQUES

1/2

Figure 6: Rejection Method

B.1 Rejection Method.

The rejection method is described in, e.g., [14]. If we want to generate a random variate X with

density f(t), we can �nd another density function g(t) such that f(t) � cg(t) for all t, where c is

a constant. The function g is selected so that it is relatively easy to compute g(t) and to generate

a random variate with density g(t), and the selected constant c is small. The algorithm works as

follows:

algorithm rejection method

begin

repeat

Generate uniform random number U 2 [0; 1);

Generate X according to density g(t)

until U < f(X)=cg(X);

return(X)

end;

Proposition 1 The expected number of iterations to generate X by the rejection method shown

above is c.

We specialize the algorithm to handle the case in which f(t) corresponds to discrete weights

w1, w2, . . . , wn, where 1=2 � f(i) = wi � 1 and cg(i) = 1, for all 1 � i � n. The probability of

generating value j equals wj=
P

1�i�nwi.

algorithm bucket rejection(T)

begin

repeat

Generate uniform random number U 2 [0; 1);

I = bUnc
until Un� I < w[I + 1];

return(I + 1)

end;

Figure 6 gives a graphical view of the rejection method. First we randomly select the table

entry and then randomly select a real number between 0 and 1. If the selected number lies in the

shaded area, we mark it a \hit"; otherwise, we repeat the process.

B.2 Table Doubling Technique. 25

Corollary 1 The expected number of iterations in algorithm bucket rejection is 2.

B.2 Table Doubling Technique.

A comprehensive treatment of table doubling can be found in [3]. Suppose we want to implement

a dynamic table that supports insertion and deletion. In order to use the power of the random-

access model, the table is implemented as an array. The size of the table cannot be determined

in advance, so dynamic allocation and deallocation of the array is necessary. A trivial algorithm

allocates an (n + 1)-element array when an element is inserted into an n-element array, but this

causes worst-case update cost proportional to the size of the array. Since the number of elements

in the table is not necessarily the same as the size of the table, let us use � to denote the load

factor of the table, or its fraction of occupancy. Initially, the table T has size zero. The size of the

empty table T becomes 1 when we insert an element into it. Inserting an element into a nonempty

table T results in two cases:

1. If � < 1, we just insert the new element into one of the free slots.

2. If � = 1, the table is full, and we expand the size of the table to twice its original size.

Deleting an element from the table is handled in an analogous way, except that we do not contract

the table until � < 1=4. The cost for either table expansion or contraction is linear in the size of

the table, but the amortized cost for each insertion or deletion is constant.

Proposition 2 A sequence of m insertion and deletion operations on a dynamic table using the

table-doubling method requires O(m) time.

This algorithm can be modi�ed to run in constant time per operation in the worst case, as

follows: In addition to the current table of size n, we also maintain two tables T+ of size 2n

and T� of size n=2. If the table T overows because of insertions, we just reassign T+ to be the

new T , make the old T the new T�, and deallocate the old T�. We make the new T+ initially

empty, but we �ll it up twice as fast as T �lls, so that if T overows again, T+ will once again be

up to date. For example, each time we insert an element into T , we insert the element into T+ and

in addition we copy one missing element from T to T+. Deletion can be handled analogously.

B.3 Dynamic Hashing

Any single hash function chosen can encounter some bad worst-case inputs that cause linear-time

rather than constant-time performance. The remedy devised by Carter and Wegman [2] is to choose

a hash function randomly from a good collection H of hash functions and get constant expected

performance independent of any particular input sequence.

Let H = fh1; h2; : : : ; htg be a set of hash functions; each hi is a mapping from f0; : : : ; n� 1g to
f0; : : : ;m� 1g. We say that H is c-universal if for every pair of inputs x 6= y in f1; 2; : : : ; n� 1g
the total number of h 2 H such that h(x) = h(y) is no more than c � jHj =m; that is, only a fraction

of c=m of the hash functions in H cause a collision on any pair of inputs.

Proposition 3 Let H be a c-universal class of hash functions. The expected cost of an insert,

delete, or access operation is O(1 + c�), where � is the load factor of the table.

We can use the c-universal class of hash functions

H = fha;b j ha;b(x) = ((ax+ b) mod n) mod m; a; b 2 f0; : : : ; n� 1gg ;

26 B THREE BACKGROUND TECHNIQUES

where (dn=me=(n=m))2 = O(1). When the number of elements changes dynamically, the table

may have to be expanded or contracted from time to time, but the cost of the rebuilding can be

amortized so that the operations still run in amortized constant expected time.

More complicated techniques for implementing the table lookup method in constant expected

time are dynamic perfect hashing and its variants [4, 5, 6].

