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Abstract. Color (or categorical) range reporting is a variant of the or-
thogonal range reporting problem in which every point in the input is
assigned a color. While the answer to an orthogonal point reporting query
contains all points in the query range @, the answer to a color reporting
query contains only distinct colors of points in Q. In this paper we de-
scribe an O(N)-space data structure that answers one-dimensional color
reporting queries in optimal O(k + 1) time, where k is the number of
colors in the answer and N is the number of points in the data structure.
Our result can be also dynamized and extended to the external memory
model.

1 Introduction

In the orthogonal range reporting problem, we store a set of points S in a data
structure so that for an arbitrary range Q = [a1,b1] X ... X [aq, bg] all points from
SN Q can be reported. Due to its importance, one- and multi-dimensional range
reporting was extensively studied in computational geometry and database com-
munities. The following situation frequently arises in different areas of computer
science: a set of d-dimensional objects { (¢1,t2,...,tq) } must be preprocessed
so that we can enumerate all objects satisfying a; < t; < b; for arbitrary a;, b;,
i = 1,...,d. This scenario can be modeled by the orthogonal range reporting
problem.

The objects in the input set can be distributed into categories. Instead of
enumerating all objects, we may want to report distinct categories of objects
in the given range. This situation can be modeled by the color (or categorical)
range reporting problem: every point in a set S is assigned a color (category);
we pre-process S, so that for any Q = [a1,b1] X ... X [ag, bg] the distinct colors
of points in S N @Q can be reported.

Color range reporting is usually considered to be a more complex problem
than point reporting. For one thing, we do not want to report the same color
multiple times. In this paper we show that complexity gap can be closed for one-
dimensional color range reporting. We describe color reporting data structures
with the same space usage and query time as the best known corresponding
structures for point reporting. Moreover we extend our result to the external
memory model.
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Previous Work. We can easily report points in a one-dimensional range Q) = [a, ]
by searching for the successor of a in S, succ(a,S) = min{e € S|e > a}. If
a' = succ(a, S) is known, we can traverse the sorted list of points in S start-
ing at o/ and report all elements in S N [a,b]. We can find the successor of
a in S in O(y/log N/loglog N) time [4]; if the universe size is U, i.e., if all
points are positive integers that do not exceed U, then the successor can be
found in O(loglogU) time [22]. Thus we can report all points in .S N [a,b] in
O(tpred(N) + k) time for tpred(N') = min(y/log N/ loglog N, loglog U). Hence-
forth k denotes the number of elements (points or colors) in the query answer. It
is not possible to find the successor in o(tpred(N)) time unless the universe size
U is very small or the space usage of the data structure is very high; see e.g., [4].
However, reporting points in a one-dimensional range takes less time than search-
ing for a successor. In their fundamental paper [14], Miltersen et al. showed that
one-dimensional point reporting queries can be answered in O(k) time using
an O(N logU) space data structure. Alstrup et al. [I] obtained another sur-
prising result: they presented an O(N)-space data structure that answers point
reporting queries in O(k) time and thus achieved both optimal query time and
optimal space usage for this problem. The data structure for one-dimensional
point reporting can be dynamized so that queries are supported in O(k) time
and updates are supported in O(log® U) time [16]; henceforth ¢ denotes an ar-
bitrarily small positive constant. We refer to [I6] for further update-query time
trade-offs. Solutions of the one-dimensional point reporting problem are based
on finding an arbitrary element e in a query range [a, b]; once such e is found,
we can traverse the sorted list of points until all points in [a, ] are reported.
Therefore it is straightforward to extend point reporting results to the external
memory model.

Janardan and Lopez [10] and Gupta et al. [9] showed that one-dimensional
color reporting queries can be answered in O(log N + k) time, both in the static
and the dynamic scenarios. Muthukrishnan [I7] described a static O(NN) space
data structure that answers queries in O(k) time if all point coordinates are
bounded by N. We can obtain data structures that use O(NN) space and answer
queries in O(loglog U + k) or O(\/log N/loglog N + k) time using the reduction-
to-rank-space technique. No data structure that answers one-dimensional color
reporting queries in o(tpred(N)) + O(k) time was previously known. A dynamic
data structure of Mortensen [I5] supports queries and updates in O(log log N +k)
and O(loglog N) time respectively if the values of all elements are bounded
by N.

Recently, the one- and two-dimensional color range reporting problems in the
external memory model were studied in several papers [IT/I8IT2]. Larsen and
Pagh [I1I] described a data structure that uses linear space and answers one-
dimensional color reporting queries in O(k/B + 1) 1/0Os if values of all elements
are bounded by O(N). In the case when values of elements are unbounded the
best previously known data structure needs O(logg N + k/B) I/Os to answer a
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query; this result can be obtained by combining the data structure from [2] and
reduction of one-dimensional color reporting to three-sided] point reporting [@].

In another recent paper [5], Chan et al. described a data structure that sup-
ports the following queries on a set of points whose values are bounded by O(N):
for any query point ¢ and any integer k, we can report the first k£ colors that
occur after ¢. This data structure can be combined with the result from [I] to
answer queries in O(k+1) time. Unfortunately, the solution in [5] is based on the
hive graph data structure [6]. Therefore it cannot be used to solve the problem
in external memory or to obtain a dynamic solution.

Our Results. As can be seen from the above discussion and Table [I], there are
significant complexity gaps between color reporting and point reporting data
structures in one dimension. We show in this paper that it is possible to close
these gaps.

In this paper we show that one-dimensional color reporting queries can be
answered in constant time per reported color for an arbitrarily large size of
the universe. Our data structure uses O(N) space and supports color reporting
queries in O(k + 1) time. This data structure can be dynamized so that query
time and space usage remain unchanged; the updates are supported in O(log® U)
time where U is the size of the universe. The new results are listed at the bottom
of Table [Tl

Our internal memory results are valid in the word RAM model of computation,
the same model that was used in e.g. [IIT6/I7]. In this model, we assume that
any standard arithmetic operation and the basic bit operations can be performed
in constant time. We also assume that each word of memory consists of w >
logU > log N bits, where U is the size of the universe. That is, we make a rea-
sonable and realistic assumption that the value of any element fits into one word
of memory.

Furthermore, we also extend our data structures to the external memory
model. Our static data structure uses linear space and answers color report-
ing queries in O(1 + k/B) I/Os. Our dynamic external data structure also
has optimal space usage and query cost; updates are supported in O(log® U)
I/Os.

In Section 2] we describe a static data structure for color reporting in one
dimension. The key component of our solution is a data structure that supports
highest range ancestor queries. In SectionBlwe show how our static data structure
can be adopted to the external memory model. We show how to dynamize our
data structure in Sections 4] Bl and [l Details of our dynamic solution and its
modification for the external memory model are provided in the full version of
this paper [19].

1 A three-sided range query is a two-dimensional orthogonal range query that is open
on one side. For instance, queries [a,b] x [0,¢] and [a,b] X [c, +00] are three-sdied
queries.



746 Y. Nekrich and J.S. Vitter

Table 1. Selected previous results and new results for one-dimensional color reporting.
The fifth and the sixth row can be obtained by applying the reduction to rank space
to the result from [I7].

Ref.  Query Space Query Universe  Update
Type Usage Cost Cost
[ Point Reporting O(N) O(k+1) static
[I6] Point Reporting O(N) O(k+1) O(log® U)
[9/10] Color Reporting O(N) O(log N + k) O(log N)
[I7]  Color Reporting O(N) Ok+1) N static
[I7]  Color Reporting O(N) O(loglogU + k) U static
[[7]  Color Reporting O(N) O(y/log N/loglog N + k) static
[I5]  Color Reporting O(N) O(loglog N + k) N O(loglog N)
[B]+[I] Color Reporting O(N) O(k+1)
Our  Color Reporting O(N) Ok+1) static
Our  Color Reporting O(N) O(k+1) O(log® U)

2 Static Color Reporting in One Dimension

We start by describing a static data structure that uses O(N) space and answers
color reporting queries in O(k + 1) time.

All elements of a set S are stored in a balanced binary tree 7. Every leaf
of T, except for the last one, contains log N elements, the last leaf contains at
most log N elements, and every internal node has two children. For any node
w € T, S(u) denotes the set of all elements stored in the leaf descendants of
u. For every color z that occurs in S(u), the set Min(u) (Maz(u)) contains
the minimal (maximal) element e € S(u) of color z. The list L(u) contains the
log N smallest elements of Min(u) in increasing order. The list R(u) contains
the log N largest elements of Maxz(u) in decreasing order. For every internal
non-root node u we store the list L(u) if u is the right child of its parent; if u is
the left child of its parent, we store the list R(u) for u. All lists L(u) and R(u),
u € T, contain O(N) elements in total since the tree has O(N/log N) internal
nodes.

We define the middle value m(u) for an internal node u as the minimal value
stored in the right child of w, m(u) = min{e|e € S(u,)} where u, is the right
child of w. The following highest range ancestor query plays a crucial role in
the data structures of this and the following sections. The answer to the highest
range ancestor query (v, a, b) for a leaf v; and values a < b is the highest ancestor
w of v, such that a < m(u) < b; if SN a,b] = 0, the answer is undefined. The
following fact elucidates the meaning of the highest range ancestor.

Fact 1. Let v, be the leaf that holds the smallest e € S, such that e > a;
let vy be the leaf that holds the largest e € S, such that e < b. Suppose that
S(v) N [a,b] # O for some leaf v; and w is the answer to the highest range
ancestor query (v, a,b). Then u is the lowest common ancestor of v, and vp.
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Proof: Let w denote the lowest common ancestor of v, and v,. Then v, and vy
are in w’s left and right subtrees respectively. Hence, a < m(w) < b and w is
not an ancestor of u. If w is a descendant of u and w is in the right subtree of
u, then m(u) < a. If w is in the left subtree of u, then m(w) > b. O

We will show that we can find u without searching for v, and v, and answer
highest range ancestor queries on a balanced tree in constant time.

For every leaf v;, we store two auxiliary data structures. All elements of S(v;)
are stored in a data structure D(v;) that uses O(]|S(v;)|) space and answers color
reporting queries on S(v;) in O(k+1) time. We also store a data structure F(v;)
that uses O(log N) space; for any a < b, such that S(v;) N [a,b] # 0, F(v)
answers the highest range ancestor query (v;,a,b) in O(1) time. Data structures
D(v;) and F(v;) will be described later in this section. Moreover, we store all
elements of S in the data structure described in [I] that supports one-reporting
queries: for any a < b, some element e € S N [a,b] can be found in O(1) time;
if SN a,b] = 0, the data structure returns a dummy element L. Finally, all
elements of S are stored in a slow data structure that uses O(N) space and
answers color reporting queries in O(logn + k) time. We can use e.g. the data
structure from [10] for this purpose.

Answering Queries. All colors in a query range [a, b] can be reported with the
following procedure. Using the one-reporting data structure from [I], we search
for some e € SN Ja,b] if at least one such e exists. If no element e satisfying
a < e < bis found, then S N [a,b] = 0 and the query is answered. Otherwise,
let v, denote the leaf that contains e. Using F'(v.), we search for the highest
ancestor u of v, such that a < m(u) < b. If no such u is found, then all e,
a < e <b,arein S(v.). We can report all colors in S(v.) N [a,b] using D(v.).
If F(ve) returned some node u, we proceed as follows. Let u; and w, denote
the left and the right children of u. We traverse the list L(u,) until an element
e’ > b is found or the end of L(u,) is reached. We also traverse R(u;) until an
element e’ < a is found or the end of R(u;) is reached. If we reach neither the
end of L(u,) nor the end of R(u;), then the color of every encountered element
e € L(uy), e < b, and e € R(u;), e > a, is reported. Otherwise the range [a, ]
contains at least log N different colors. In the latter case we can use any data
structure for one-dimensional color range reporting [10l9] to identify all colors
from SN [a,b] in O(logn + k) = O(k + 1) time.

Leaf Data Structures. A data structure D(v;) answers color reporting queries on
S(v;) as follows. In [9], the authors show how a one-dimensional color reporting
query on a set of m one-dimensional elements can be answered by answering a
query [a,b] x [0,a] on a set of m uncolored two-dimensional points. A standard
priority search tree [I3] enables us to answer queries of the form [a, b] X [0, a] on m
points in O(logm) time. Using a combination of fusion trees and priority search
trees, described by Willard [23], we can answer queries in O(log m/ loglog N) time.
The data structure of Willard [23] uses O(m) space and a universal



748 Y. Nekrich and J.S. Vitter

Fig.1. Answering a color reporting query Q = [a,b]: e is an arbitrary element in
S NJa,b], u is the highest range ancestor of the leaf that contains e, the path from
e to u is indicated by a dashed line. We assume logn = 5, therefore L(u,) contains
5 elements and the yellow point is not included in L(u,). To simplify the picture, we
assumed that each leaf contains only one point; only relevant parts of 7 are on the
picture.

look-up table of size O(log® N) for an arbitrarily small e. Updates are also sup-
ported in O(logm/loglog N) time.

Since S(v;) contains m = O(log N) elements, we can answer colored queries
on S(v;) in O(logm/loglog N) = O(1) time. Updates are also supported in O(1)
time; this fact will be used in Section @l

Now we describe how F(v;) is implemented. Suppose that S(v;) N [a,b] # 0
for some leaf v;. Let 7 be the path from v; to the root of 7. We say that a node
u € 7 is a left parent if u; € 7 for the left child u; of u; a node v € 7 is a right
parent if u, € m for the right child u, of u. If S(v;) contains at least one e € [a, b],
then the following is true.

Fact 2. Ifu € 7 is a left parent, then m(u) > a. If u € 7 is a right parent, then
m(u) <b.

Proof: If u € 7 is a left parent, then S(v;) is in its left subtree. Hence, m(u) is
greater than any e € S(v;) and m(u) > a. If u is the right parent, than S(v;) is
in its right subtree. Hence, m(u) is smaller than or equal to any e € S(v;) and
m(u) <b. O

Fact 3. Ifuy € 7 is a left parent and uy is an ancestor of us € m, then m(uy) >
m(uz2). If uy € 7 is a right parent and uy is an ancestor of us € w, then m(ug) >
m(uy).

Proof : If uy is a left parent, then ug is in its left subtree. Hence, m(u1) > m(uz)
by definition of m(u). If us is a right parent, then uy is in its right subtree.
Hence, m(u1) < m(ug) by definition of m(u). O

2 In [23], Willard only considered queries on N points, but extension to the case of
any m < N is straightforward.



Optimal Color Range Reporting in One Dimension 749

Suppose that we want to find the highest range ancestor of v; for a range [a, ]
such that S(v;) N [a,b] # 0. Let K1(7) be the set of middle values m(u) for left
parents u € 7 sorted by height; let ICa(7) be the set of m(u) for right parents
u € m sorted by height. By Fact Bl elements of Ky (K3) increase (decrease)
monotonously. By Fact 2 m(u) > a for any m(u) € K1 and m(u) < b for any
m(u) € KCa. Using fusion trees [7], we can search in K; and find the highest node
uy € 7 such that uy is a left parent and m(uy) < b. We can also search in Ky
and find the highest node uz € 7 such that us is a right parent and m(usz) > a.
Let u denote the higher node among w1, us. Then u is the highest ancestor of v;
such that m(u) € [a + 1,b].

Removing Duplicates. When a query is answered, our procedure returns a color
z two times if z occurs in both S N [a,m(u) — 1] and S N [m(u),b]. We can
easily produce a list without sorting in which each color occurs exactly once.
Let Col denote an array with one entry for every color that occurs in a data
structure. Initially Col[i] = 0 for all i. We traverse the list of colors £ produced
by the above described procedure. Every time when we encounter a color z in
L such that Col[z] = 0, we set Col[z] = 1; when we encounter a color z such
that Col[z] = 1, we remove the corresponding entry from £. When the query is
answered, we traverse £ once again and set Col[z] = 0 for all z € L.

Theorem 1. There exists an O(N)-space data structure that supports one-
dimensional color range reporting queries in O(k + 1) time.

3 Color Reporting in External Memory

The static data structure of Section ] can be used for answering queries in
external memory. We only need to increase the sizes of S(v;), R(u), and L(u)
to Blogg N, and use an external memory variant of the slow data structure
for color reporting [2]. This approach enables us to achieve O(1 + k/B) query
cost, but one important issue should be addressed. As explained in Section 2]
the same color can be reported twice when a query is answered. However, we
cannot get rid of duplicates in O(1 + k/B) I/Os using the method of Section
because of its random access to the list of reported colors. Therefore we need to
make further changes in our internal memory solution. For an element e € S, let
prev(e) denote the largest element e’ < e of the same color. For every element e
in L(u) and any u € T, we also store the value of prev(e).

We define each set S(v;) for a leaf v; to contain Blogy N points. Lists L(v)
and R(v) for an internal node v contain Blogg N leftmost points from Min(v)
(respectively, Blogg N rightmost points from Max(v)). Data structures F'(v;)
are implemented as in Section2l A data structure D(v;) supports color reporting
queries on S(v;) and is implemented as follows. We can answer a one-dimensional
color reporting query by answering a three-sided point reporting query on a set A
of |S(v;)| two-dimensional points; see e.g., [9]. If B > log, N, S(v;) and A contain
O(B?) points. In this case we can use the data structure from [2] that uses linear
space and answers three-sided queries in O(logg |S(v;)| + k/B) = O(1 + k/B)
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I/Os. If B < logN, S(v;) and A contain O(log> N) points. Using the data
structure from [7], we can find the predecessor of any value v in a set of O(log? N)
points in O(1) I/Os. Therefore we can apply the rank-space technique [§] and
reduce three-sided point reporting queries on A to three-sided point reporting
queries on a grid of size |A| (i.e., to the case when coordinates of all points are
integers bounded by |A|) using a constant number of additional I/Os. Larsen
and Pagh [I1] described a linear-space data structure that answers three-sided
point reporting queries for m points on an m x m grid in O(1 + k/B) I/Os.
Summing up, we can answer a three-sided query on a set of Blogyz N points in
O(1+k/B) 1/0s. Hence, we can also answer a color reporting query on S(v;) in
O(1 + k/B) I/Os using linear space.

A query Q = [a, b] is answered as follows. We find the highest range ancestor
u for any e € SN [a,b] exactly as in Section 2l If u is a leaf, we answer the query
using D(u). Otherwise the reporting procedure proceeds as follows. We traverse
the list R(w;) for the left child u; of w until some point p < a is found. If ¢ > a for
all e € R(uy), then there are at least Blogg N different colors in [a, b] and we can
use a slow data structure to answer a query in O(logg N+ &) = O(1+ &) 1/Os.
Otherwise we traverse L(u,) and report all elements e such that prev(e) < a.
If prev(e) > a for e € L(u), then an element of the same color was reported
when R(u;) was traversed. Traversal of L(u,) stops when an element e > b is
encountered or the end of L(u,) is reached. In the former case, we reported
all colors in [a,b]. In the latter case the number of colors in [a,b] is at least
Blogg N. This is because every element in L(u,) corresponds to a distinct color
that occurs at least once in [a, b]. Hence, we can use the slow data structure and
answer the query in O(logg N + 1) = O(k +1) 1/Os.

Theorem 2. There exists a linear-space data structure that supports one-
dimensional color range reporting queries in O(k/B + 1) 1/0Os.

4 Base Tree for Dynamic Data Structure

In this section we show how the base tree and auxiliary data structures of the
static solution can be modified for usage in the dynamic scenario. To dynamize
the data structure of Section Bl we slightly change the balanced tree 7 and
secondary data structures: every leaf of 7 now contains (9(10g2 N) elements of
S and each internal node has ©(1) children. We store the lists L(u) and R(u)
in each internal non-root node of u. We associate several values m;(u) to each
node u: for every child u; of u, except the leftmost child uy, m;(u) = min{e|e €
S(u;) }. The highest range ancestor of a leaf v; is the highest ancestor u of v;
such that @ < m;(u) < b for at least one ¢ # 1. Data structures D(v;) and F(v;)
are defined as in Section[2l We also maintain a data structure of [I6] that reports
an arbitrary element e € SN |a,b] if the range [a,b] is not empty.

We implement the base tree T as the weight-balanced B-tree [3] with the
leaf parameter log? N and the branching parameter 8. This means that every
internal node has between 2 and 32 children and each leaf contains between
2 log2 N and log2 N elements. Each internal non-root node on level £ of 7 has
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between 2 - 8¢ log? N and (1/2) - 8/ log? N elements in its subtree. If the number
of elements in some node u exceeds 2 - 8¢ log2 N, we split u into two new nodes,
v’ and w”. In this case we insert a new value m;(w) for the parent w of u. Hence,
we may have to update the data structures F'(v;) for all leaf descendants of w.
A weight-balanced B-tree is engineered in such a way that a split occurs at most
once in a sequence of £2(8¢log® N) insertions (for our choice of parameters).
Since F'(v;) can be updated in O(1) time, the total amortized cost incurred by
splitting nodes is O(1). When an element e is deleted, we delete it from the set
S(vy). If e = m;(u) for a deleted element e and some node u, we do not change
the value of m;(u). We also do not start re-balancing if some node contains
too few elements in its subtree. But we re-build the entire tree 7 if the total
number of deleted elements equals ng/2, where ng is the number of elements that
were stored in 7 when it was built the last time. Updates can be de-amortized
without increasing the cost of update operations by scheduling the procedure of
re-building nodes (respectively, re-building the tree) [3].

Auziliary Data Structures. We implement D(v;) in the same way as in Section 21
Hence color queries on S(v;) are answered in O(log |S(v;)|/loglog N) = O(1)
time and updates are also supported in O(1) time [23].

We need to modify data structures F(v;), however, because T is not a binary
tree in the dynamic case. Let m denote a path from v; to the root for some leaf
v;. We say that a node u is an i-node if u; € 7 for the i-th child u; of u.

Fact 4. Suppose that S(v;) N[a,b] # 0 and 7 is the path from v, to the Toot. If
u € 7 is an i-node, then mj(u) < b for 1 < j <i and m;(u) > a for j > i.

We say that a value m;(u) for u € 7 is a left value if j < i and u is an i-node.
A value m;(u) for v € 7 is a right value if j > ¢ and u is an i-node.

Fact 5. If m;(u1) is a left value and w1 € ™ is an ancestor of us € m, then
mj(ur) < my(ug) for any f. If m;(u1) is a right value and uq € m is an ancestor
of ug € m, then mj(u1) > mys(usz) for any f.

It is easy to check Facts Ml and Bl using the same arguments as in Section

We store all left values m;(u), u € w, in a set K1; m;(u) in Ky are sorted by
the height of u. We store all right values m;(u), v € 7, in a set [Co; m;(u) in
ICo are also sorted by the height of u. Using fusion trees on &y, we can find the
highest node u1, such that at least one left value my(u1) > a. We can also find
the highest us such that at least one right value my(ug) < b. Since Ky and Ko
contain O(log N) elements, we can support searching and updates in O(1) time;
see [721]. By Fact @ a < mg(u1) < b and a < myg(ug) < b. If u is the higher
node among w1, ug, then u is an answer to the highest range ancestor query [a, ]
for a node v;.

5 Fast Queries, Slow Updates

In this section we describe a dynamic data structure with optimal query time.
Our improvement combines an idea from [I5] with the highest range ancestor
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approach. We also use a new solution for a special case of two-dimensional point
reporting problem presented in the full version of this paper [19] in Section A.1.

Let height(u) denote the height of a node u. For an element e € S let hmin(e) =
height(u’), where v’ is the highest ancestor of the leaf containing e, such that
e € Min(u'). We define hmax(€e) in the same way with respect to Max(u).
All colors in a range [a,b] can be reported as follows. We identify an arbitrary
e € SN Ja,b]. Using the highest range ancestor data structure, we can find the
lowest common ancestor u of the leaves that contain the successor of a and the
predecessor of b. Let uy and ug, be the children of u that contain the successor
of a and the predecessor of b. Let ay = a, by = b; let a; = m;(u) for f <i<yg
and b; = m;q1(u) — 1 for f < i < g. We can identify unique colors of relevant
points stored in each node u;, f < j < g, by finding all e € [a;, b;] such that
e € Min(u;). This condition is equivalent to reporting all e € [a;, b;] such that
hmin(€) > height(u;). We can identify all colors of relevant points in uy by
reporting all e € [ay, by] such that hmax(e) > height(uy). Queries of the form
e € [a,b], hmin(e) > ¢, (respectively e € [a,b], hmax(€) > ¢) can be supported
using Lemma 1 (see Section A.1 in [19]). While the same color can be reported
several times, we can get rid of duplicates as explained in Section 2

When a new point is inserted into S or when a point is deleted from S, we
can update the values of hmin(e) and hmax(e) in O(loglogU) time. We refer
to [I520] for details.

While updates of data structures of Lemma 1 are fast, re-balancing the base
tree can be a problem. As described in Section [, when the number of points in
a node u on level ¢ exceeds 2 - 8¢ log N, we split it into two nodes, u’ and u”. As
a result, the values hp,in(e) for e stored in the leaves of u” can be incremented.
Hence, we would have to examine the leaf descendants of u” and recompute
their values for some of them. Since the height of 7 is logarithmic, the total
cost incurred by re-computing the values hpin(€) and hmax(e) is O(log N). The
problem of reducing the cost of re-building the tree nodes is solved as follows. In
Appendix A.2 in [I9] we describe another data structure that supports fast up-
dates but answering queries takes polynomial time in the worst case. In Section[d]
we show how the cost of splitting can be reduced by modifying the definition of
hmin(€), hmax(€) and using the slow data structure from [19] when the number
of reported colors is sufficiently large.

6 Fast Queries, Fast Updates

Let n(u) denote the number of leaves in the subtree of a node u. Let Left(u)
denote the set of (n(u))'/? smallest elements in Min(u); let Right(u) denote
the set of (n(u))l/2 largest elements in Maz(u). We maintain the values hpin(€)
and hpax(e) for e € S, such that for any v € T we have: Amin(€) = hmin(e) if
e € Left(u) and hmin(€e) < hmin(e) if e € S(u) \ Left(u); hmax(€) = hmax(e) if
e € Right(u) and hpmax(e) < hmax(e) if e € S(u) \ Right(u). We keep hmin(e)
and hmax(e) in data structures of Lemma 1. We also maintain the data structure
described in Section A.2 in [19]. This data structure is used to answer queries
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when the number of colors in the query range is large. It is also used to update
the values of hAmin(e) and hmax(e) when a node is split.

To answer a query [a,b], we proceed in the same way as in Section [l Let
u, uf, Ug, and a;, b;, f < i < g be defined as in Section Distinct colors in
each [a;, b;], f <1 < g, can be reported using the data structure of Lemma 1.
If the answer to at least one of the queries contains at least (n(u;))'/? elements,
then there are at least (n(u;))!/? different colors in [a,b]. The total number of
elements in [a,b] NS does not exceed n(u) = 16n(u;). Hence, we can employ
the data structure from Section A.2 in [I9] to report all colors from [a,b] in
O(([a,b] N 8)Y/2 + k) = O(k) time. If answers to all queries contain less than
(n(u;))*/? elements, then for every distinct color that occurs in [a, b] there is an
element e such that e € Left(u;) N[a;, bi], f < i< g, or e € Right(ug) N [ag, by].
By definition of Ay, and hyax we can correctly report up to (n(uz))l/ 2 leftmost
colors in Left(u;) or up to (n(u;))*/? rightmost colors in Right(u;).

When a new element e is inserted, we compute the values of hyin(€), Amax(€)
and update the values of hyin(€en), Amax(€n), where e, is the element of the same
color as e that follows e. This can be done in the same way as in Section[Bl When
a node u on level £ is split into «’ and u”, we update the values of hmin(e) and
hmax(e) for e € S(u')U S(u”). If £ < loglog N, we examine all e € S(u') U S(u")
and re-compute the values of prev(e), hmin(€), and hmax(e). Amortized cost of re-
building nodes u on loglog N lowest tree levels is O(loglog N). If £ > loglog N,
S(u) contains 2(log® N) elements. We can find (n(u’))"/? elements in Left(u’),
Left(u"), Right(u'), and Right(u”) using the data structure from Lemma 3
in [I9]. This takes O((n(u)'/?)log N + log Nloglog N) = O(((n(u))™/1%) time.
Since we split a node u one time after ©(n(u)) insertions, the amortized cost
of splitting nodes on level ¢ > loglog N is O(1). Thus the total cost incurred
by splitting nodes after insertions is O(loglog N). Deletions are processed in a
symmetric way. We obtain the following result

Theorem 3. There exists a linear-space data structure that supports one-
dimensional color range reporting queries in O(k + 1) time and updates in
O(log® U) amortized time.

In [19] we also show how the result of Theorem [3can be extended to the external
memory model.
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