
Performance Potential of Optimization Phase
Selection During Dynamic JIT Compilation

Michael R. Jantz Prasad A. Kulkarni
Electrical Engineering and Computer Science, University of Kansas

{mjantz,kulkarni}@ittc.ku.edu

Abstract
Phase selectionis the process of customizing the applied set of
compiler optimization phases for individual functions or programs
to improve performance of generated code. Researchers havere-
cently developed novel feature-vector based heuristic techniques
to perform phase selection during online JIT compilation. While
these heuristics improve programstartupspeed,steady-stateper-
formance was not seen to benefit over the default fixed single se-
quence baseline. Unfortunately,it is still not conclusively known
whether this lack of steady-state performance gain is due toa fail-
ure of existing online phase selection heuristics, or because there
is, indeed, little or no speedup to be gained by phase selection in
online JIT environments. The goal of this work is to resolve this
question, while examining the phase selection related behavior of
optimizations, and assessing and improving the effectiveness of ex-
isting heuristic solutions.

We conduct experiments to find and understand the potency
of the factors that can cause the phase selection problem in JIT
compilers. Next, using long-running genetic algorithms wedeter-
mine that program-wide and method-specific phase selectionin the
HotSpot JIT compiler can produceideal steady-state performance
gains of up to 15% (4.3% average) and 44% (6.2% average) respec-
tively. We also find that existing state-of-the-art heuristic solutions
are unable to realize these performance gains (in our experimental
setup), discuss possible causes, and show that exploiting knowl-
edge of optimization phase behavior can help improve such heuris-
tic solutions. Our work develops a robust open-source production-
quality framework using the HotSpot JVM to further explore this
problem in the future.

Categories and Subject Descriptors D.3 [Software]: Program-
ming languages; D.3.4 [Programming languages]: Processors—
Compilers, Optimizations; I.2.6 [Artificial intelligence]: Learning—
Induction

General Terms Performance, Experimentation, Languages

Keywords Phase selection, Compiler optimizations, HotSpot

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’13, March 16–17, 2013, Houston, Texas, USA.
Copyright c© 2013 ACM 978-1-4503-1266-0/13/03. . . $15.00

1. Introduction
An optimization phase in a compiler transforms the input pro-
gram into a semantically equivalent version with the goal ofim-
proving the performance of generated code. Quality compilers im-
plement many optimizations. Researchers have found that the set
of optimizations producing the best quality code varies foreach
method/program and can result in substantial performance bene-
fits over always applying any single optimization sequence [5, 12].
Optimization phase selectionis the process of automatically finding
the best set of optimizations for each method/program to maximize
performance of generated code, and is an important, fundamental,
but unresolved problem in compiler optimization.

We distinguish phase selection from the related issue ofphase
ordering, which explores the effect of different orderings of opti-
mization phases on program performance. We find that although
phase ordering is possible in some research compilers, suchas
VPO [17] and Jikes Research Virtual Machine (VM) [19], reorder-
ing optimization phases is extremely hard to support in mostpro-
duction systems, including GCC [8] and the HotSpot VM, due to
their use of multiple intermediate formats and complex inherent
dependencies between optimizations. Therefore, our work for this
paper conducted using the HotSpot JVM only explores the prob-
lem of phase selection by selectively turning optimizationphases
ON and OFF.

The problem of optimization selection has been extensivelyin-
vestigated by the static compiler community [2, 8, 12, 25]. Unfor-
tunately, techniques employed to successfully address this problem
in static compilers (such asiterative compilation) are not always
applicable to dynamic or JIT (Just-in-Time) compilers. Since com-
pilation occurs at runtime, one over-riding constraint fordynamic
compilers is the need to be fast so as to minimize interference with
program execution and to make the optimized code available for
execution sooner. To realize fast online phase selection, researchers
have developed novel techniques that employ feature-vector based
machine-learning heuristics to quickly customize the set of opti-
mizations applied to each method [5, 23]. Such heuristic solutions
perform the time-consuming task ofmodel learningoffline, and
then use the models to quickly customize optimization sets for in-
dividual programs/methods online during JIT compilation.

It has been observed that while such existing online phase se-
lection techniques improve programstartup(application+ compi-
lation) speed, they do not benefit throughput orsteady-stateperfor-
mance (program speed after all compilation activity is complete).
Program throughput is very important to many longer-running ap-
plications. Additionally, with the near-universal availability of in-
creasingly parallel computing resources in modern multi/many-
core processors and the ability of modern VMs to spawn multi-
ple asynchronous compiler threads, researchers expect thecompi-
lation overhead to become an even smaller component of the to-



tal program runtime [16]. Consequently, achieving steady-state or
code-qualityimprovements is becoming increasingly important for
modern systems. Unfortunately, while researchers are still investing
in the development of new techniques to resolve phase selection,
we do not yet conclusively know whether the lack of steady-state
performance gain provided by existing online phase selection tech-
niques is a failure of these techniques, or because there is,indeed,
little or no speedup to be gained by phase selection in onlineen-
vironments. While addressing this primary question, we make the
following contributions in this work.
1. We conduct a thorough analysis to understand the phase selec-

tion related behavior of JIT compiler optimization phases and
identify the potency of factors that could produce the phasese-
lection problem,

2. We conduct long-running (genetic algorithm based) iterative
searches to determine theideal benefits of phase selection in
online JIT environments,

3. We evaluate the accuracy and effectiveness of existing state-
of-the-art online heuristic techniques in achieving the benefit
delivered by (the more expensive) iterative search techniques
and discuss improvements, and

4. We construct a robust open-source framework for dynamic JIT
compiler phase selection exploration in the standard Sun/Oracle
HotSpot Java virtual machine (JVM) [21]. Our framework pre-
pares 28 optimizations in the HotSpot compiler for individual
fine-grain control by different phase selection algorithms.
The rest of the paper is organized as follows. We present related

work in the next section. We describe our HotSpot based experi-
mental framework and benchmark set in Section 3. We explore the
behavior of HotSpot compiler optimizations and present ourobser-
vations in Section 4. We present our results on the ideal caseper-
formance benefits of phase sequence customization at the whole-
program and per-method levels in Section 5. We determine the
effectiveness of existing feature-vector based heuristictechniques
and provide feedback on improving them in Section 6. Finally, we
present our planned future work and the conclusions of this study
in Sections 7 and 8 respectively.

2. Background and Related Work
In this section we provide some overview and describe related
works in the area of optimization phase selection research.Phase
selection and ordering are long-standing problems in compiler op-
timization. Several studies have also discovered that there is no
single optimization set that can produce optimal code for every
method/program [2]. A common technique to address the phase
selection problem in static compilers is to iteratively evaluate the
performance of many/all different phase sequences to find the best
one for individual methods or programs. Unfortunately, with the
large number of optimizations present in modern compilers (say,
n), the search space of all possible combinations of optimization
settings (2n) can be very large. Therefore, researchers have in the
past employed various techniques to reduce the space of potential
candidate solutions. Chow and Wu applied a technique calledfrac-
tional factorial design to systematically design a series of experi-
ments to select a good set of program-specific optimization phases
by determining interactions between phases [6]. Haneda et al. em-
ployed statistical analysis of the effect of compiler options to prune
the phase selection search space and find a single compiler setting
for a collection of programs that performs better than the standard
settings used in GCC [11]. Pan and Eigenmann developed three
heuristic algorithms to quickly select good compiler optimization
settings, and found that their combined approach that first identi-
fies phases with negative performance effects and greedily elimi-
nates them achieves the best result [22]. Also related is thework by

Fursin et al. who develop a GCC-based framework (MILEPOST
GCC) to automatically extract programfeaturesand learn the best
optimizations across programs. Given a new program to compile,
this framework can correlate the program’s features with the clos-
est program seen earlier to apply a customized and potentially more
effective optimization combination [8].

Machine-learning techniques, such as genetic algorithms and
hill-climbing, have been commonly employed to search for the best
set or ordering of optimizations for individual programs/methods.
Cooper et al. were among the first to use machine-learning algo-
rithms to quickly and effectively search the phase selection search
space to find program-level optimization sequences to reduce code-
size for embedded applications [2, 7]. Hoste and Eeckhout de-
veloped a system calledCOLE that uses genetic algorithm based
multi-objective evolutionary search algorithm to automatically find
pareto optimal optimization settings for GCC [12]. Kulkarni et al.
compared the proficiency of several machine-learning algorithms
to find the best phase sequence as obtained by their exhaustive
search strategy [17]. They observed that search techniquessuch as
genetic algorithms achieve benefit that is very close to thatbest
performance.We use this result in our current study to character-
ize the GA-delivered best performance as a good indicator ofthe
performance limit of phase selection in dynamic compilers.

Also related is their more recent work that compares the ability
of GA-based program and function-level searches to find the best
phase sequence, and finds the finer-granularity of function-level
searches to achieve better overall results in their static Ccompiler,
VPO [18]. All these above studies were conducted for static com-
pilers. Instead, in this work, we use the GA searches to determine
the performance limits of phase selection in dynamic compilers.

While program-specific GA and other iterative searches may be
acceptable for static compilers, they are too time-consuming for
use in dynamic compilers. Consequently, researchers have devel-
oped novel techniques to quickly customize phase sequencesto in-
dividual methods in dynamic JIT compilers. Cavazos and O’Boyle
employed the technique of logistic regression to learn a predic-
tive model offline that can later be used in online compilation en-
vironments (like their Jikes Research VM) to derive customized
optimization sequences for methods based on its features [5]. An-
other related work by Sanchez et al. used support vector machines
to learn and discover method-specific compilation sequences in
IBM’s (closed-source) production JVM [23]. This work used adif-
ferent learning algorithm and was conducted in a productionJVM.
While these techniques reduce program startup times due to savings
in the compilation overhead, the feature-vector based online algo-
rithm was not able to improve program steady-state performance
over the default compiler configuration. Additionally, none of the
existing works attempt to determine the potential benefit ofphase
selection to improve code-quality in a dynamic compiler. While re-
solving this important question, we also evaluate the success of ex-
isting heuristic schemes to achieve this best potential performance
benefit in the HotSpot production JVM.

In this paper, we also investigate the behavior of optimizations
to better understand the scope and extent of the optimization se-
lection problem in dynamic compilers. Earlier researchershave at-
tempted to measure the benefit of dynamic optimizations, forexam-
ple, to overcome the overheads induced by the safety and flexibility
constraints of Java [14], in cross-platform implementations [15],
and to explore optimization synergies [20]. However, none of these
works perform their studies in the context of understandingthe op-
timization selection problem for JIT compilers.

3. Experimental Framework
In this section, we describe the compiler and benchmarks used, and
the methodology employed for our experiments.



Optimization Phase Description

aggressive copy coalescing Perform aggressive copy coalescing after coming out of SSA form (before register allocation).
block layout by frequency Use edge frequencies to drive block ordering.
block layout rotate loops Allow back branches to be fall through when determining block layout.
conditional constant prop. Perform optimistic sparse conditional constant propagation until a fixed point is reached.
conservative copy coalescing Perform conservative copy coalescing during register allocation (RA). Requires RA is enabled.
do escape analysis Identify and optimize objects that are accessible only within one method or thread.
eliminate allocations Use escape analysis to eliminate allocations.
global code motion Hoist instructions to block with least execution frequency.
inline Replace (non accessor/mutator) method calls with the body of the method.
inline accessors Replace accessor/mutator method calls with the body of the method.
instruction scheduling Perform instruction scheduling after register allocation.
iterative global value numbering
(GVN)

Iteratively replaces nodes with their values if the value has been previously recorded (applied in several places after
parsing).

loop peeling Peel out the first iteration of a loop.
loop unswitching Clone loops with an invariant test and insert a clone of the test that selects which version to execute.
optimize null checks Detect implicit null check opportunities (e.g. null checkswith suitable memory operations nearby use the memory

operation to perform the null check).
parse-time GVN Replaces nodes with their values if the value has been previously recorded during parsing.
partial loop peeling Partially peel the top portion of a loop by cloning and placing one copy just before the new loop head and the other

copy at the bottom of the new loop (also known as loop rotation).
peephole remove copies Apply peephole copy removal immediately following register allocation.
range check elimination Split loop iterations to eliminate range checks.
reassociate invariants Re-associates expressions with loop invariants.
register allocation Employ a Briggs-Chaitin style graph coloring register allocator to assign registers to live ranges.
remove useless nodes Identify and remove useless nodes in the ideal graph after parsing.
split if blocks Folds some branches by cloning compares and control flow through merge points.
use loop predicate Generate a predicate to select fast/slow loop versions.
use super word Transform scalar operations into packed (super word) operations.
eliminate auto box∗ Eliminate extra nodes in the ideal graph due to autoboxing.
optimize fills∗ Convert fill/copy loops into an intrinsic method.
optimize strings∗ Optimize strings constructed by StringBuilder.

Table 1. Configurable optimizations in our modified HotSpot compiler. Optimizations marked with∗ are disabled in the default compiler.

3.1 Compiler and Benchmarks

We perform our study using the server compiler in Sun/Oracle’s
HotSpot Java virtual machine (build 1.6.025-b06) [21]. Similar
to many production compilers,HotSpot imposes a strict ordering
on optimization phasesdue to the use of multiple intermediate
representations and documented or undocumented assumptions and
dependencies between different phases. Additionally, theHotSpot
compiler applies a fixed set of optimizations to every methodit
compiles. The compilation process parses the method’s bytecodes
into a static single assignment (SSA) representation knownas the
ideal graph. Several optimizations, including method inlining, are
applied as the method’s bytecodes are parsed. The compiler then
performs a fixed set of optimizations on the resultant structure
before converting to machine instructions, performing scheduling
and register allocation, and finally generating machine code.

The HotSpot JVM provides command-line flags to optionally
enable or disable several optimizations. However, many optimiza-
tion phases do not have such flags, and some also generate/update
analysis information used by later stages. We modified the HotSpot
compiler to provide command-line flags for most optimization
phases, and factored out the analysis calculation so that itis com-
puted regardless of the optimization setting. Some transformations,
such asconstant foldingand instruction selection, are required by
later stages to produce correct code and are hard to effectively
disable. We also do not include a flag fordead code elimination,
which is performed continuously by the structure of the intermedi-
ate representation and would require much more invasive changes
to disable. We perform innovative modifications to deactivate the
compulsory phases ofregister allocation(RA) and global code
motion(GCM). The disabled version of RA assumes every register
conflicts with every live range, and thus, always spills liveranges to

memory. Likewise, the disabled version of GCM schedules allin-
structions to execute as late as possible and does not attempt to hoist
instructions to blocks that may be executed much less frequently.
Finally, we modified the HotSpot JVM to accept binary sequences
describing the application status (ON/OFF) of each phase atthe
program or method-level. Thus,while not altering any optimiza-
tion algorithm or the baseline compiler configuration, we made
several major updates to the HotSpot JIT compiler to facilitate its
use during phase selection research.Table 1 shows the complete
set of optimization phases that we are now able to optionallyenable
or disable for our experiments.

Our experiments were conducted over applications from two
suites of benchmarks. We use all SPECjvm98 benchmarks [24]
with two input sizes (10 and 100), and 12 (of 14) applicationsfrom
the DaCapo benchmark suite [4] with the small and default inputs.
Two DaCapo benchmarks,tradebeansandtradesoap, are excluded
from our study since they do not always run correctly with our
defaultHotSpot VM.

3.2 Performance Measurement

One of the goals of this research is to quantify the performance
benefit of optimization phase selectionwith regards to generated
code qualityin a production-grade dynamic compiler. Therefore,
the experiments in this study discount compilation time andmea-
sure thesteady-stateperformance. In the default mode, the VM
employsselective compilationand only compiles methods with ex-
ecution counts that exceed the selected threshold. Our experimental
setup first determines this set of (hot) methods compiled during the
startupmode for each benchmark. All our steady-state experiments
only compile this hot method set for all its program runs. Both the
SPECjvm98 and DaCapo harness allow each benchmark to be it-



erated multiple times in the same VM run. During our steady-state
program runs we disable background compilation to force allthese
hot methods to be compiled in the first program iteration. We mod-
ify our VM to reset execution counts after each iteration to prevent
methods from becoming hot (and getting compiled) in later iter-
ations. We allow each benchmark to iterate five more times and
record the median runtime of these iterations as the steady-state
program run-time. To account for inherent timing variations dur-
ing the benchmark runs,all the performance results in this paper
report the average and 95% confidence intervals overten steady-
state runsusing the setup described by Georges et al. [9].

All experiments were performed on a cluster of Dell PowerEdge
1850 server machines running Red Hat Enterprise Linux 5.1 asthe
operating system. Each machine has four 64-bit 2.8GHz IntelXeon
processors, 6GB of DDR2 SDRAM, and a 4MB L2 cache. Our
HotSpot VM uses the stand-alone server compiler and the default
garbage collector settings for “server-class” machines [13] (“par-
allel collector” GC, initial heap size is 96MB, maximum is 1GB).
We make no attempt to restrict or control GC during our exper-
iments. Finally, there are no hyperthreading or frequency scaling
techniques of any kind enabled during our experiments.

4. Analyzing Behavior of Compiler
Optimizations for Phase Selection

Compiler optimizations are designed to improve program perfor-
mance. Therefore, it is often (naı̈vely) expected that always apply-
ing (turning ON) all available optimizations to all programregions
should generate the best quality code. However, optimizations op-
erating on the same program code and competing for finite machine
resources (registers) may interact with each other. Such interactions
may remove opportunities for later optimizations to generate even
better code. Additionally, program performance is often very hard
for the compiler to predict on the current generation of machines
with complex architectural and micro-architectural features. Con-
sequently, program transformations performed by an optimization
may not always benefit program execution speed. The goal of effec-
tive phase selection is to find and disable optimizations with neg-
ative effects for each program region. In this section we conduct
a series of experiments to explore important optimization selection
issues, such as why and when is optimization selection effective for
standard dynamic JIT compilers. We are also interested in finding
indicators to suggest that customizing optimization selections for
individual programs or methods is likely to benefit performance.
We report several interesting observations that help explain both
the prior as well as our current results in phase selection research
for dynamic JIT compilers.

4.1 Experimental Setup

Our setup to analyze the behavior of optimization phases is in-
spired by Lee et al.’s framework to determine the benefits and
costs of compiler optimizations [20]. Our experimental configura-
tion (defOpt) uses the default HotSpot server compilation sequence
as baseline. The execution time of each benchmark with this base-
line (T (OPT < defOpt >)) is compared with its time obtained
by a JIT compiler that disables one optimization (x) at a time
(T (OPT < defOpt − x >)). We use the following fraction to
quantify the effect of HotSpot optimizations in this configuration.

T (OPT < defOpt − x >) − T (OPT < defOpt >)

T (OPT < defOpt >)
(1)

Each experimental run disables only one optimization (out of
25) from the optimization set used in the default HotSpot compiler.
Equation 1 computes a negative value if removing the correspond-
ing optimization,x, from the baseline optimization set improves

performance (reduces program runtime) of the generated code. In
other words, a negative value implies that including that optimiza-
tion harms performance of the generated code. The HotSpot JIT
compiler uses an individual method for its compilation unit. There-
fore, in this section we evaluate the effect of compiler optimizations
over distinct program methods.

Our experiments in this section are conducted over 53hot focus
methods over all the programs in our benchmark suite. These focus
methods are selected because each comprisesat least10% of its
respective benchmark run-time. More details on the rationale and
selection of focus methods, as well as a complete list of these
methods, are provided in Section 5.3.1.

4.2 Results and Observations

Figure 1 (left Y-axis, bar-plot) illustrates theaccumulatedneg-
ative and positive impact of each optimization calculated using
Equation 1 over all our 53 individual program methods. For each
HotSpot optimization, Figure 1 (right Y-axis, line-plot) also shows
the number of program methods that witness a negative or positive
impact. These results enable us to make several important obser-
vations regarding the behavior of optimizations in the HotSpot JIT
compiler.First , the results validate the claims that optimizations
are not always beneficial to program performance. This observa-
tion provides the motivation and justification for further develop-
ing and exploring effective phase selection algorithms to enable
the JIT compiler to generate the best possible output code for each
method/program.Second, we observe thatmostoptimizations in
the HotSpot JIT compiler produce, at least occasional, negative ef-
fects. This observation indicates that eliminating the optimization
phase selection issue may require researchers to understand and up-
date several different compiler optimizations, which makes a com-
piler design-time solution very hard.Third , most optimizations do
not negatively impact a large number of program methods, andthe
typical negative impact is also not very high. However, we also find
optimizations, includingAggressiveCoalesce, IterGVN, andSplitIf-
Blocks, that, rather than improving, show a degrading performance
impact more often. This result is surprising since dynamic com-
pilers generally only provide the more conservative compiler opti-
mizations.1 Thus, this study finds optimizations that need to be ur-
gently analyzed to alleviate the optimization selection problem in
HotSpot.Fourth , we unexpectedly find that most of the optimiza-
tions in the HotSpot JIT compiler only have a marginal individual
influence on performance. We observe thatmethod inliningis by
far the most beneficial compiler optimization in HotSpot, followed
by register allocation.2

Figure 2 plots the accumulated positive and negative optimiza-
tion impact (on left Y-axis, bar-plot) and the number of optimiza-
tions that impact performance (on right Y-axis, line-plot)for each
of our focus methods represented along the X-axis. These results
allow us to make two other observations that are particularly en-
lightening.First , there are typically not many optimizations that

1 Compare the 28 optimization flags in HotSpot with over 100 such flags
provided by GCC.
2 Method inlining is a difficult optimization to control. Our experimental
setup, which uses a fixed list of methods to compile, may slightly exaggerate
the performance impact of disabling method inlining because some methods
that would normally be inlined may not be compiled at all if they are not
in the hot method list. To avoid such exaggeration, one possibility is to
detect and compile such methods when inlining is disabled. However, an
inlined method (say, P) that is not otherwise compiled spends its X inlined
invocations in compiled code, but other Y invocations in interpreted code.
With inlining disabled for the focus method, if P is compiledthen it will
spend all ‘X+Y’ invocations in compiled code. We chose the exaggeration
because we found that it was very uncommon for methods not in the fixed
list to still be inlinable.
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Figure 2. Left Y-axis: Accumulated positive and negative impact of the 25 HotSpot optimizations for each focus method (non-scaled).
Right Y-axis: Number of optimizations that positively or negatively impact each focus method.

degrade performance for any single method (2.2 out of 25, on av-
erage). More importantly, even for methods with several individual
degrading optimizations, the accumulated negative impactis never
very high. This result, in a way, tempers the expectations ofperfor-
mance improvements from ideal phase selection in JIT compilers
(particularly, HotSpot). In other words, we can only expectcus-
tomized phase selections to provide modest performance benefits
for individual methods/programs in most cases.Second, for most
methods, there are only a few optimizations (4.36 out of 25, on av-
erage) that benefit performance. Thus, there is a huge potential for
saving compilation overhead during programstartupby disabling
theinactiveoptimizations. It is this, hitherto unreported, attributeof
JIT compilers that enables the online feature-vector basedphase se-
lection algorithms to improve program startup performancein ear-
lier works [5, 23].

Finally, we note that although this simple study provides useful
information regarding optimization behavior, it may not capture all
possible optimization interactions that can be simultaneously active
in a single optimization setting for a method. For example, phase
interactions may cause compiler optimization phases that degrade
performance when applied alone to improve performance when
combined with other optimizations. However, these simple exper-
iments provided us with both the motivation to further explore the
potential of phase selection for dynamic compilers, while lowering
our expectations for large performance benefits.

5. Limits of Optimization Selection
Most dynamic JIT compilers apply the same set of optimization
phases to all methods and programs. Our results in the last section
indicate the potential for performance gains by customizing opti-
mization phase selection for individual (smaller) code regions. In
this section we conduct experiments to quantify the steady-state
speed benefits of customizing optimization sets for individual pro-
grams/methods in JIT compilers. The large number of optimiza-
tions in HotSpot makes it unfeasible to performexhaustiveop-
timization selection search space evaluation. Earlier research has
demonstrated that genetic algorithms (GA) are highly effective at
finding near-optimal phase sequences [17]. Therefore, we use a
variant of a popular GA to find effective program-level and method-
level optimization phase selection solutions [7]. Correspondingly,
we term the benefit in program run-time achieved by the GA derived
phase sequence over the default HotSpot VM as the ideal perfor-
mance benefit of phase selection for each program/method.

We also emphasize that it is impractical to employ a GA-based
solution to customize optimization sets in an online JIT compila-
tion environment. Our program-wide and method-specific GA ex-
periments are intended to only determine the performance limits of
phase selection. We use these limits in the next section to evaluate
the effectiveness of existing state-of-the-art heuristics to specialize
optimization sets in online JIT compilers.



0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

0 10 20 30 40 50 60 70 80 90

B
e

st
 p

ro
g

ra
m

-w
id

e
 G

A
 t

im
e

 /

ti
m

e
 w

it
h

 d
e

fa
u

lt
 c

o
m

p
il

e
r

Generations

jvm98-small jvm98-large

dacapo-small dacapo-default
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5.1 Genetic Algorithm Description

In this section we describe the genetic algorithm we employ for
our phase selection experiments. Genetic algorithms are heuristic
search techniques that mimic the process of natural evolution [10].
Genesin the GA correspond to binary digits indicating the ON/OFF
status of an optimization.Chromosomescorrespond to optimization
phase selections. The set of chromosomes currently under consider-
ation constitutes apopulation. The evolution of a population occurs
in generations. Each generation evaluates thefitnessof every chro-
mosome in the current population, and then uses the operations of
crossoverandmutationto create the next population. The number
of generationsspecifies the number of population sets to evalu-
ate. Chromosomes in the first GA generation are randomly initial-
ized. After evaluating the performance of code generated byeach
chromosome in thepopulation, they are sorted in decreasing order
of performance. Duringcrossover, 20% of chromosomes from the
poorly performing half of the population are replaced by repeatedly
selecting two chromosomes from the better half of the population
and replacing the lower half of each chromosome with the lower
half of the other to produce two new chromosomes each time. Dur-
ing mutationwe flip the ON/OFF status of each gene with a small
probability of 5% for chromosomes in the upper half of the popu-
lation and 10% for the chromosomes in the lower half. The chro-
mosomes replaced during crossover, as well as (up to five) chromo-
some(s) with performance(s) within one standard deviationof the
best performance in the generation are not mutated. Thefitness cri-
teria used by our GA is the steady-state performance of the bench-
mark. For this study, we have 20 chromosomes in each population
and run the GA for 100 generations. We have verified that 100 gen-
erations are sufficient for the GA to reach saturation in mostcases.
To speed-up the GA runs, we developed a parallel GA implemen-
tation that can simultaneously evaluate multiple chromosomes in a
generation on a cluster of identically-configured machines.

5.2 Program-Wide GA Results

In this experiment we use our GA to find unique optimization se-
lections for each of our benchmark-input pairs. Figure 3 plots the
performance of code compiled with the best optimization setfound
by the GA in each generation as compared to the code generated
by the default compiler sequence averaged over all programsfor
each benchmark suite. This figure shows that most (over 75%) of
the average performance gains are realized in the first few (20) GA
generations. Also, over 90% of the best average performanceis ob-
tained after 50 generations. Thus, 100 generations seem sufficient
for our GA to converge on its near-best solution for most bench-
marks. We also find that the SPECjvm98 benchmarks benefit more
from optimization specialization than the DaCapo benchmarks. As
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Figure 4. Performance of best program-wide optimization phase
sequence after 100 generations of genetic algorithm.

expected, different inputs do not seem to significantly affect the
steady-state optimization selection gains for most benchmarks.

Figure 4 compares the performance of each program optimized
with the best program-wide optimization phase set found by our
genetic algorithm with the program performance achieved bythe
default HotSpot server compiler for both our benchmark suites.
The error bars show the 95% confidence interval for the difference
between the means over 10 runs of the best customized optimiza-
tion selection and the default compiler sequence. We note that the
default optimization sequence in the HotSpot compiler has been
heavily tuned over several years to meet market expectations for
Java performance, and thus presents a very aggressive baseline. In
spite of this aggressively tuned baseline, we find that customizing
optimization selections can significantly improve performance (up
to 15%) for several of our benchmark programs.

On average, the SPECjvm98 benchmarks improve by about 7%
with both theirsmall and large inputs. However, for programs in
the DaCapo benchmark suite, program-wide optimization setspe-
cialization achieves smaller average benefits of 3.2% and 2.3% for
theirsmallanddefaultinput sizes respectively. The DaCapo bench-
marks typically contain many morehot and total program meth-
ods as compared to the SPECjvm98 benchmarks. Additionally,un-
like several SPECjvm98 programs that have a single or few domi-
nant hot methods, most DaCapo benchmarks have a relatively flat
execution profile with many methods that are similarly hot, with
only slightly varying degrees [4]. Therefore, program-wide opti-
mization sets for DaCapo benchmarks are customized over much
longer code regions (single optimization set over many morehot
methods), which, we believe, results in lower average performance
gains from program-wide optimization selection. Over all bench-
marks, the average benefit of ideal program-wide phase selection is
4.3%.

5.3 Method-Specific Genetic Algorithm

The default HotSpot compiler optimizes individual methodsat a
time, and applies the same set of optimizations to each compiled
method. Prior research has found that optimization phase sequences
tuned to each method yield better program performance than a
single program-wide phase sequence [1, 18]. In this section, we
explore the performance potential of optimization selection at the
method-level during dynamic JIT compilation.

5.3.1 Experimental Setup

There are two possible approaches for implementing GA searches
to determine the performance potential of method-specific opti-
mization phase settings: (a) running multiple simultaneous (and in-
dependent) GAs to gather optimization sequences for all program
methodsconcurrentlyin the same run, and (b) executing the GA for
each methodin isolation (one method per program run). The first



# Benchmark Method % Time

1 db-large Database.shellsort 86.67
2 compress-small Compressor.compress 54.99
3 compress-large Compressor.compress 53.42
4 avrora-default LegacyInterpreter.fastLoop 50.85
5 db-small Database.shellsort 50.72
6 jess-small Node2.findInMemory 48.57
7 jack-small TokenEngine.getNextTokenFromStream 48.05
8 avrora-small LegacyInterpreter.fastLoop 44.49
9 jack-large TokenEngine.getNextTokenFromStream 44.23

10 sunflow-default KDTree.intersect 40.52
11 luindex-default DocInverterPerField.processFields 40.43
12 sunflow-default TriangleMesh$WaldTriangle.intersect 39.20
13 sunflow-small KDTree.intersect 37.92
14 sunflow-small TriangleMesh$WaldTriangle.intersect 36.78
15 jess-large Node2.runTestsVaryRight 34.31
16 jython-small PyFrame.getlocal 32.73
17 luindex-small DocInverterPerField.processFields 30.51
18 lusearch-small SegmentTermEnum.scanTo 29.88
19 lusearch-default SegmentTermEnum.scanTo 28.76
20 jess-large Node2.runTests 27.41
21 compress-large Decompressor.decompress 24.86
22 compress-small Compressor.output 23.39
23 mpegaudio-small q.l 23.12
24 batik-default MorphologyOp.isBetter 22.26
25 mpegaudio-large q.l 21.87
26 jython-small PyFrame.setline 21.79
27 xalan-small ToStream.characters 21.70
28 db-small ValidityCheckOutputStream.strip1 21.52
29 compress-large Compressor.output 21.40
30 compress-small Decompressor.decompress 21.23
31 xalan-default ToStream.characters 20.00
32 pmd-default DacapoClassLoader.loadClass 19.26
33 batik-small PNGImageEncoder.clamp 17.74
34 sunflow-small BoundingIntervalHierarchy.intersect 15.22
35 h2-small Query.query 13.84
36 sunflow-default BoundingIntervalHierarchy.intersect 13.79
37 javac-large ScannerInputStream.read 13.46
38 javac-small ScannerInputStream.read 13.17
39 luindex-small TermsHashPerField.add 13.01
40 mpegaudio-small tb.u0114 12.88
41 jython-default PyFrame.setline 12.68
42 mpegaudio-large tb.u0114 12.61
43 jess-large Funcall.Execute 12.25
44 luindex-small StandardTokenizerImpl.getNextToken 12.23
45 lusearch-small IndexInput.readVLong 11.82
46 lusearch-default StandardAnalyzer.tokenStream 11.49
47 lusearch-default IndexInput.readVLong 11.46
48 lusearch-small StandardAnalyzer.tokenStream 11.44
49 h2-default Command.executeQueryLocal 11.37
50 luindex-default TermsHashPerField.add 10.65
51 jython-default PyFrame.getlocal 10.62
52 eclipse-default Parser.parse 10.52
53 luindex-default StandardTokenizerImpl.getNextToken 10.49

Table 2. Focus methods and the % of runtime each comprises of
their respective benchmark runs

approach requires instrumenting every program method to record
the time spent in each method in a single program run. These in-
dividual method times can then be used to concurrently drivein-
dependent method-specific GAs for all methods in a program. The
VM also needs the ability to use distinct optimization selections
to be employed for different program methods. We implemented
this experimental scheme for our HotSpot VM by updating the
compiler to instrument each method with instructions that employ
the x86 TSC (Time-Stamp Counter) to record individual method
run-times. However, achieving accurate results with this scheme
faces several challenges. The HotSpot JVM contains interprocedu-
ral optimizations, such asmethod inlining, due to which varying the
optimization sequence of one method affects the performance be-
havior of other program methods. Additionally, we also found that
the order in which methods are compiled can vary from one run
of the program to the next, which affects optimization decisions
and method run-times. Finally, the added instrumentation to record

method times also adds some noise and impacts optimization ap-
plication and method performance.

Therefore, we decided to employ the more straight-forward and
accurate, but also time-consuming, approach of applying the GA to
only one program method at a time. In each program run, the VM
uses the optimization set provided by the GA to optimize onefocus
methodand the default baseline set of optimizations to compile
the other hot program methods. Thus, any reduction in the final
program run-time over the baseline program performance canbe
attributed to the improvement in the single focus method. Inan
earlier offline run, we use our TSC based instrumentations with
the baseline compiler configuration to estimate the fraction of total
time spent by the program in each focus method. Any improvement
in the overall program run-time during the GA is scaled with
the fraction of time spent in the focus method to determine the
run-time improvement in that individual method. We conductthis
experiment over the 53focus methodsover all benchmarks that
each comprise at least 10% of the time spent in their respective
default program run. These methods, along with the % of total
runtime each comprises in their respective benchmarks, arelisted
in Table 2.

5.3.2 Method-Specific GA Results

Figure 5(a) shows thescaledbenefit in the run-time of each fo-
cus method when compiled with the best optimization set returned
by the GA as compared to the method time if compiled with the
baseline HotSpot server compiler. Methods along thex-axis in this
graph are ordered by the fraction that they contribute to their re-
spective overall program run-times (the same order methodsare
listed in Table 2). The final bar shows the average improvement
over the 53 focus methods. Thus, we can see that customizing the
optimization set for individual program methods can achieve sig-
nificant performance benefits in some cases. While the best perfor-
mance improvement is about 44%, method-specific optimization
selection achieves close to a 6.2% reduction in run-time, onaver-
age. Figure 5(b) provides a different view of these same results with
methods on thex-axis grouped together according to their respec-
tive benchmarks.

The plot in Figure 6 verifies that the (non-scaled) improvements
in individual method run-times add-up over the entire program
in most cases. That is, if individually customizing two methods
in a program improves the overall program run-time byx andy
respectively, then does the program achieve an (x + y) percent
improvement if both customized methods are used in the same
program run? As mentioned earlier, our focus methods are selected
such that each constitutes at least 10% of the baseline program
run-time. Thus, different benchmarks contribute different number
(zero, one, or more than one) of focus methods to our set. The
first bar in Figure 6 simply sums-up the individual method run-
time benefits (from distinct program runs) forbenchmarks that
provide two or more focus methods. The second bar plots the run-
time of code generated using the best customized optimization sets
for all focus methodsin the same run. We print the number of focus
methods provided by each benchmark above each set of bars. Thus,
we find that the individual method benefits add-up well in many
cases, yielding performance benefit that is close to the sum of the
individual benefit of all its customized component methods.

Please note that the experiments for Figure 6 only employ cus-
tomized optimization selections for the focus methods. There-
maining hot benchmark methods are compiled using the baseline
sequence, which results in lower average improvements as com-
pared to the average in Figure 5(a). Thus, customizing optimization
sets over smaller program regions (methods (6.2%) vs. programs
(4.3%)) realize better overall performance gains for JIT compilers.
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Figure 5. Performance of method-specific optimization selection after 100 GA generations. Methods in (a) are ordered by the % of run-time
spent in their respective benchmarks. In (b), methods from the same benchmark are shown together. All results are are scaled by the fraction
of total program time spent in the focus method and show the run-time improvement of that individual method.
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Figure 6. Accumulated improvement of method-specific opti-
mization selection in benchmarks with multiple focus method.

It is important to note that we observe good correlation between
the ideal method-specific improvements in Figure 5(a) and the per-
method accumulated positive and negative impact of optimizations
plotted in Figure 2. Thus, many methods with large accumulated
negative effects (such as methods numbers #2, #3, #7, #21, #30,
and #36) also show the greatest benefit from customized phasese-
quences found by our iterative (GA) search algorithm. Similarly,
methods with small negative impacts in Figure 2 (including many
methods numbered between #40 – #53) do not show significant
benefits with ideal phase selection customization. While this corre-
lation is encouraging, it may also imply that optimization interac-
tions may not be very prominent in production-grade JVMs, such
as HotSpot.

6. Effectiveness of Feature Vector Based
Heuristic Techniques

Experiments in Sections 5.2 and 5.3 determine the potentialgains
due to effective phase selection in the HotSpot compiler. How-
ever, such iterative searches are extremely time-consuming, and are
therefore not practical for dynamic compilers. Previous works have
proposed using feature-vector based heuristic techniquesto quickly
derive customized optimization selections during online compila-
tion [5, 23]. Such techniques use an expensiveofflineapproach to
construct their predictive models that are then employed bya fast
onlinescheme to customize phase selections to individual methods.
In this section we report results of the first evaluation (compared to

ideal) of the effectiveness of such feature-vector based heuristic
techniques for finding good optimization solutions.

6.1 Overview of Approach

Feature-vector based heuristic algorithms operate in two stages,
training anddeployment. The training stage conducts a set of offline
experiments that measure the program performance achievedby
different phase selections for a certain set of programs. This stage
then selects the best performing sets of phases for each method.
The approach then uses a set of programfeaturesto characterize
every compilation unit (method). The features should be selected
such that they are representative of the program propertiesthat are
important and relevant to the optimization phases, and are easy
and fast to extract at run-time. Finally, the training stageemploys
statistical techniques, such as logistic regression and support vector
machines, to correlate good optimization phase settings with the
method feature list.

The deployment stage installs the learned statistical model into
the compiler. Now, for each new compilation, the algorithm first
determines the method’s feature set. This feature set is given to the
model that returns a customized setting for each optimization that is
expected to be effective for the method. Thus, with this technique,
each method may be compiled with a different phase sequence.

6.2 Our Experimental Configuration

We use techniques that have been successfully employed in prior
works to develop our experimental framework [5, 23]. Table 3lists
the features we use to characterize each method, which are a com-
bination of the features employed in earlier works and thoserele-
vant to the HotSpot compiler. These features are organized into two
sets:scalar featuresconsist of counters and binary attributes for a
given method without any special relationship;distribution features
characterize the actual code of the method by aggregating similar
operand types and operations that appear in the method. Thecoun-
ters count the number of bytecodes, arguments, and temporaries
present in the method, as well as the number of nodes in the in-
termediate representation immediately after parsing.Attributesin-
clude properties denoted by keywords (final, protected, static, etc.),
as well as implicit properties such as whether the method contains
loops or uses exception handlers. We record distribution features
by incrementing a counter for each feature during bytecode pars-
ing. Thetypesfeatures include Java native types, addresses (i.e. ar-
rays) and user-defined objects. The remaining features correspond
to one or more Java bytecode instructions. We use these features
during the technique of logistic regression [3] to learn ourmodel for



Scalar Features Distribution Features
Counters Types ALU Operations

Bytecodes byte char add sub
Arguments int double mul div
Temporaries short long rem neg
Nodes float object shift or

address and xor
inc compare

Attributes Casting Memory Operations
Constructor to byte load load const
Final to char store new
Protected to short new array / multiarray
Public to int
Static to long Control Flow
Synchronized to float branch call
Exceptions to double jsr switch
Loops to address

to object Miscellaneous
cast check instance of throw

array ops field ops
synchronization

Table 3. List of method features used in our experiments

these experiments. Logistic regression has the property that it can
even output phase sequences not seen during the model-training.
We have tuned our logistic regression model to make it as similar
as possible to the one used previously by Cavazos and O’Boyle[5].

6.3 Feature-Vector Based Heuristic Algorithm Results

We perform two sets of experiments to evaluate the effectiveness
of a feature-vector based logistic regression algorithm tolearn and
find good phase sequences for unseen methods during dynamic
JIT compilation. As done in our other experiments, all numbers
report the steady-state benchmark times.All our experiments in
this section employ cross-validation.In other words, the evaluated
benchmark or method (with both the small and large/default inputs)
is never included in the training set for that benchmark or method.

Figure 7 plots the performance achieved by the optimization
set delivered by the logistic regression algorithm when applied to
each benchmark method as compared to the performance of the
best benchmark-wide optimization sequence from Section 5.2. The
training data for each program uses the top ten methods (based
on their baseline run-times) from all theother (SPEC and Da-
Capo) benchmarks. While distinct benchmarks may contain dif-
ferent number of methods, we always consider ten methods from
each program to weigh the benchmarks equally in the trainingset.
For every benchmark, each top ten method contributes a distinct
feature vector but uses the single benchmark-wide best optimiza-
tion sequence from Section 5.2. The logistic regression algorithm
may find a different optimization selection for each method during
its online application. In spite of this flexibility, the feature vector
based technique is never able to reach or improve the ideal single
benchmark-wide optimization solution provided by the GA. Thus,
figure 7 shows that, on average, the feature-vector based solution
produces code that is 7.8% and 5.0% worse for SPECjvm98 (small
and large data sets respectively) and 4.3% and 2.4% worse forDa-
Capo (small and default) as compared to the ideal GA phase selec-
tion. However, this technique is some times able to find optimiza-
tion sequences that achieve performances that are close to or better
than those realized by the default HotSpot server compiler.On av-
erage, the feature-vector based heuristic achieves performance that
is 2.5% better for SPECjvm98-small benchmarks, and equal inall
other cases (SPECjvm98-large and DaCapo small and default)as
compared to thebaseline server compiler.
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Figure 7. Effectiveness of benchmark-wide logistic regression.
Training data for each benchmark consists of all the remaining
programs from both benchmark suites.
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Figure 8. Effectiveness of method-specific logistic regression.
Training data for each method consists of all the other focusmeth-
ods used in Section 5.3.

Figure 8 compares the performance of the logistic regression
technique for individual program methods to their best GA-based
performance. Since we employ cross-validation, the training data
for each method uses information from all the other focus methods.
Similar to the experimental configuration used in Section 5.3, each
program run uses the logistic regression technique only forone
focusmethod, while the remaining program methods are compiled
with the baseline optimization sequence. The difference inprogram
performance between the feature-vector based heuristic and the
focus-method GA is scaled with the fraction of overall program
time spent in the relevant method. Thus, we can see from Figure 8
that the per-method performance results achieved by the feature-
vector based heuristic are quite disappointing. We find that, on
average, the heuristic solutions achieve performance thatis over
22% worse than the GA-tuned solution, and 14.7% worse than the
baseline HotSpot server compiler.

6.4 Discussion

Thus, we find that existing state-of-the-art online feature-vector
based algorithms are not able to find optimization sequencesthat
improve code quality over the default baseline. We note thatthis ob-
servation is similar to the findings in other previous works [5, 23].
However, these earlier works did not investigate whether this lack
of performance gain is because optimization selection is not es-
pecially beneficial in online JIT compilers, or if existing feature-
vector heuristics are not powerful enough to realize those gains.
Our experiments conclusively reveal that, although modeston av-
erage, the benefits of optimization customization do exist for sev-
eral methods in dynamic compilers. Thus, additional research in
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Figure 9. Experiments to analyze and improve the performance of feature-vector based heuristic algorithms for online phase selection. (a)
Not using cross-validation and (b) Using observations for Section 4.

improving online phase selection heuristic algorithms is necessary
to enable them to effectively specialize optimization settings for in-
dividual programs or methods. We conduct a few other experiments
to analyze (and possibly, improve) the effectiveness of thelogistic
regression based feature-vector algorithm employed in this section.

In our first experiment we use the same per-method feature-
vector based heuristic from the last section. However, instead of
performing cross-validation, we allow the training data for each
method to include that same method as well. Figure 9(a) plots
the result of this experiment and compares the run-time of each
method optimized with the phase selection delivered by the heuris-
tic algorithm to the method’s run-time when tuned using the ideal
GA sequence. Thus, without cross-validation the heuristicalgo-
rithm achieves performance that is only 4.3% worse than ideal, and
2.5%bettercompared to the default HotSpot baseline. This result
indicates that the logistic regression heuristic is not intrinsically
poor, but may need a larger training set of methods, more subsets
of methods in the training set with similar features that also have
similar ideal phase sequences, and/or a better selection ofmethod
featuresto be more effective.

We have analyzed and observed several important properties
of optimization phases in Section 4. In our next experiment,we
employ the observation that most optimizations do not negatively
impact a large number of methods to improve the performance of
the feature-vector based heuristic (using cross-validation). With our
new experiment we update the set of configurable optimizations
(that we can set to ON/OFF) for each method to only those that
show a negative effect on over 10% of the methods in the training
set. The rest of the optimizations maintain their baseline ON/OFF
configuration. Figure 9(b) shows the results of this experimental
setup. Thus, we can see that the updated heuristic algorithmnow
achieves average performance that is 8.4% worse than ideal,and
only 1.4% worse that the baseline.

There may be several other possible avenues to employ knowl-
edge regarding the behavior and relationships of optimization
phases to further improve the performance of online heuristic al-
gorithms. However, both our experiments in this section show the
potential and possible directions for improving the effectiveness of
existing feature-vector based online algorithms for phaseselection.

7. Future Work
There are multiple possible directions for future work. First, we
will explore the effect of size and range of training data on the
feature-vector based solution to the optimization selection problem
for dynamic compilers. Second, we will attempt to improve existing
heuristic techniques and develop new online approaches to better

exploit the potential of optimization selection. In particular, we
intend to exploit the observations from Section 4 and focus more on
optimizations (and methods) with the most accumulated negative
effects to build new and more effective online models. It will
also be interesting to explore if more expensive phase selection
techniques become attractive for the most important methods in
later stages oftieredJIT compilers on multi-core machines. Third,
we observed that the manner in which some method is optimized
can affect the code generated for other program methods. This is
an interesting issue whose implications for program optimization
are not entirely clear, and we will study this issue in the future.
Finally, we plan to repeat this study with other VMs and processor
architectures to validate our results and conclusions.

8. Conclusions
The objectives of this research were to: (a) analyze and under-
stand the phase selection related behavior of optimizationphases
in a production-quality JVM, (b) determine the steady-state per-
formance potential of optimization selection, and (c) evaluate
the effectiveness of existing feature-vector based heuristic tech-
niques in achieving this performance potential and suggestim-
provements. We perform our research with the industry-standard
Oracle HotSpot JVM to make our results generally and broadly
applicable.

We found that most optimization phases in a dynamic JIT com-
piler only have a small effect on performance, and most phases do
not negatively impact program run-time. These experimentsalso
hinted at modest improvements by phase selection in dynamicJIT
environments. Correspondingly, the GA-basedideal benchmark-
wide and per-method optimization phase selection improvesper-
formance significantly in a few instances, but the benefits are mod-
est on average (6.2% and 4.3% for per-method and whole-program
phase selection customization respectively). This resultis not very
surprising. To reduce compilation overhead, JIT compilersoften
only implement the more conservative optimization phases,which
results in fewer optimizations and reduced, and possibly more pre-
dictable, phase interactions.

We also found that existing feature-vector based techniques
used in dynamic compilers are not yet powerful enough to attain
the ideal performance. We conducted experiments that demonstrate
the directions for improving phase selection heuristics inthe future.
As part of this research, we have developed the first open-source
framework for optimization selection research in a production-
quality dynamic compilation environment. In the future, weexpect
this framework to enable further research to understand andresolve
optimization application issues in JIT compilers.
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