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Abstract

Phase selectiofs the process of customizing the applied set of
compiler optimization phases for individual functions cograms

to improve performance of generated code. Researchersrbave
cently developed novel feature-vector based heuristibnigoes

to perform phase selection during online JIT compilatiorhi/
these heuristics improve prograstartup speed steady-statger-
formance was not seen to benefit over the default fixed sirggle s
guence baseline. Unfortunately,is still not conclusively known
whether this lack of steady-state performance gain is dweféil-
ure of existing online phase selection heuristics, or beeathere
is, indeed, little or no speedup to be gained by phase setedati
online JIT environmentsThe goal of this work is to resolve this
question, while examining the phase selection relatedwehaf
optimizations, and assessing and improving the effectissiof ex-
isting heuristic solutions.

1. Introduction

An optimization phase in a compiler transforms the input-pro
gram into a semantically equivalent version with the goainof
proving the performance of generated code. Quality conrgpita-
plement many optimizations. Researchers have found tkasah
of optimizations producing the best quality code variesdach
method/program and can result in substantial performaece-b
fits over always applying any single optimization sequescd 2].
Optimization phase selectigmthe process of automatically finding
the best set of optimizations for each method/program tammiaz
performance of generated code, and is an important, funciame
but unresolved problem in compiler optimization.

We distinguish phase selection from the related issyghate
ordering, which explores the effect of different orderings of opti-
mization phases on program performance. We find that althoug
phase ordering is possible in some research compilers, asich

We conduct experiments to find and understand the potency VPO [17] and Jikes Research Virtual Machine (VM) [19], reard

of the factors that can cause the phase selection problerdTin J
compilers. Next, using long-running genetic algorithms deger-
mine that program-wide and method-specific phase seleictite
HotSpot JIT compiler can produddeal steady-state performance
gains of up to 15% (4.3% average) and 44% (6.2% average)aespe
tively. We also find that existing state-of-the-art heicisblutions
are unable to realize these performance gains (in our erpatal
setup), discuss possible causes, and show that exploitiogylk
edge of optimization phase behavior can help improve suahigie
tic solutions. Our work develops a robust open-source prootor
quality framework using the HotSpot JVM to further explohést
problem in the future.

Categories and Subject Descriptors D.3 [Softwarg: Program-
ming languages; D.3.4Pfogramming languagésProcessors—
Compilers, Optimizations; 1.2.@\rtificial intelligencq: Learning—
Induction

General Terms Performance, Experimentation, Languages

Keywords Phase selection, Compiler optimizations, HotSpot
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ing optimization phases is extremely hard to support in rpost
duction systems, including GCC [8] and the HotSpot VM, due to
their use of multiple intermediate formats and complex iehe
dependencies between optimizations. Therefore, our warkhfs
paper conducted using the HotSpot JVM only explores the-prob
lem of phase selection by selectively turning optimizagidrases
ON and OFF.

The problem of optimization selection has been extensively
vestigated by the static compiler community [2, 8, 12, 25jfdy-
tunately, techniques employed to successfully addrespthblem
in static compilers (such aterative compilatiof are not always
applicable to dynamic or JIT (Just-in-Time) compilers.c&icom-
pilation occurs at runtime, one over-riding constraint dgnamic
compilers is the need to be fast so as to minimize interferevith
program execution and to make the optimized code availaisle f
execution sooner. To realize fast online phase selectésearchers
have developed novel techniques that employ feature-vbated
machine-learning heuristics to quickly customize the $edyi-
mizations applied to each method [5, 23]. Such heuristiatsmis
perform the time-consuming task afodel learningoffline, and
then use the models to quickly customize optimization smténf
dividual programs/methods online during JIT compilation.

It has been observed that while such existing online phase se
lection techniques improve prograstartup(application+ compi-
lation) speed, they do not benefit throughpusi@ady-stat@erfor-
mance (program speed after all compilation activity is clatg).
Program throughput is very important to many longer-rugrap-
plications. Additionally, with the near-universal avéilty of in-
creasingly parallel computing resources in modern mudtiiya
core processors and the ability of modern VMs to spawn multi-
ple asynchronous compiler threads, researchers expecothpi-
lation overhead to become an even smaller component of the to



tal program runtime [16]. Consequently, achieving stestdye or Fursin et al. who develop a GCC-based framework (MILEPOST
code-qualityimprovements is becoming increasingly important for GCC) to automatically extract prograf@aturesand learn the best
modern systems. Unfortunately, while researchers at@wstiisting optimizations across programs. Given a new program to dempi
in the development of new techniques to resolve phase smlect this framework can correlate the program’s features withdlos-

we do not yet conclusively know whether the lack of steaatg-st  est program seen earlier to apply a customized and potgntiate
performance gain provided by existing online phase selatgch- effective optimization combination [8].

nigues is a failure of these techniques, or because thenedegd, Machine-learning techniques, such as genetic algorithmas a
little or no speedup to be gained by phase selection in ordime hill-climbing, have been commonly employed to search ferlibst
vironments While addressing this primary question, we make the set or ordering of optimizations for individual programstimods.
following contributions in this work. Cooper et al. were among the first to use machine-learning alg

1. We conduct a thorough analysis to understand the phase sel fithms to quickly and effectively search the phase seleci®arch
tion related behavior of JIT compiler optimization phased a  Space to find program-level optimization sequences to eedode-
identify the potency of factors that could produce the plsase  Size for embedded applications [2, 7]. Hoste and Eeckhout de
lection problem, veloped a system calledOLE that uses genetic algorithm based

2. We conduct long-running (genetic algorithm based) iteza multi-objective evolutionary search algorithm to autoieeity find
searches to determine tigeal benefits of phase selection in  pareto optimal optimization settings for GCC [12]. Kulkeet al.

online JIT environments, compared the proficiency of several machine-learning dlgos

3. We evaluate the accuracy and effectiveness of existatg-st  to find the best phase sequence as obtained by their exteustiv
of-the-art online heuristic techniques in achieving thesit search strategy [17]. They observed that search technayesas
delivered by (the more expensive) iterative search teclmsiq  genetic algorithms achieve benefit that is very close to biest
and discuss improvements, and performanceWe use this result in our current study to character-

4. We construct a robust open-source framework for dynafilic J  ize the GA-delivered best performance as a good indicatthef
compiler phase selection exploration in the standard Swaci® performance limit of phase selection in dynamic compilers.

HotSpot Java virtual machine (JVM) [21]. Our framework pre- Also related is their more recent work that compares thetgabil
pares 28 optimizations in the HotSpot compiler for indiitiu ~ of GA-based program and function-level searches to find és¢ b
fine-grain control by different phase selection algorithms phase sequence, and finds the finer-granularity of fundtiesi-

searches to achieve better overall results in their statior@piler,
VPO [18]. All these above studies were conducted for staiin-c
pilers. Instead, in this work, we use the GA searches to chirer
the performance limits of phase selection in dynamic coengil
While program-specific GA and other iterative searches neay b
acceptable for static compilers, they are too time-conegnfior
use in dynamic compilers. Consequently, researchers hawe-d
oped novel techniques to quickly customize phase sequénaes
dividual methods in dynamic JIT compilers. Cavazos and @l&o
employed the technique of logistic regression to learn aipre
tive model offline that can later be used in online compilam-
vironments (like their Jikes Research VM) to derive custmadi
optimization sequences for methods based on its featuleArj5
2. Background and Related Work other related work by Sanchez et al. used support vector imegch
. . . . . to learn and discover method-specific compilation sequerite
In this section we provide some overview and describe mlate g\ (closed-source) production JVM [23]. This work usedit:
works in the area of optimization phase selection resedbBise (oot jearning algorithm and was conducted in a productio.
selection and ordering are long-standing problems in clempp- While these techniques reduce program startup times daeitogs

timization. Several studies have also discovered thaetjeno in the compilation overhead, the feature-vector basecherdigo-
single optimization set that can produce optimal code farev fithm was not able to improve program steady-state perfoo@a

method/program [2]. A common technique to address the phase e the default compiler configuration. Additionally, ®oaf the
selection problem in static compilers is to iteratively lage the existing works attempt to determine the potential benefjihse
performance of many/all different phase sequences to f@tést o0 1ion to improve code-quality in a dynamic compiler.iM/he-
one for individual methods or programs. Unfortunately,hiite solving this important question, we also evaluate the sscoéex-

large number of optimizations present in mOd.em compille.agy,( isting heuristic schemes to achieve this best potentidbpaance
n), the search space of all possible combinations of optitioza benefit in the HotSpot production JVM

settings £") can be. very Iargg. Therefore, researchers havg in the In this paper, we also investigate the behavior of optinzet
past employed various techniques to reduce the space oftiadte  , potter ynderstand the scope and extent of the optimizate
candidate solutions. Chow and Wu applied a technique céiéed lection problem in dynamic compilers. Earlier researclierge at-

tional factorial design to systematically design a s_er_lieemi er- tempted to measure the benefit of dynamic optimizationgxam-
ments to select a good set of program-specific optimizatiases ple, to overcome the overheads induced by the safety antiflgxi
by determining interactions between phases [6]. Haneda et constraints of Java [14], in cross-platform implementai§15],
ployed statistical analysis of the effect of compiler opido prune and to explore optimization synergies [20]. However, noitaese

the phase selection search space and find a single comptiegse |, -1 o ; — .
. perform their studies in the context of understandigop-
for a collection of programs that performs better than thadard timization selection problem for JIT compilers.

settings used in GCC [11]. Pan and Eigenmann developed three
heuristic algorithms to quickly select good compiler opsation .
settings, and found that their combined approach that flesiti- 3. Experimental Framework

fies phases with negative performance effects and greeldity-e In this section, we describe the compiler and benchmarkd, asel
nates them achieves the best result [22]. Also related istinke by the methodology employed for our experiments.

The rest of the paper is organized as follows. We presertetkla
work in the next section. We describe our HotSpot based exper
mental framework and benchmark set in Section 3. We explare t
behavior of HotSpot compiler optimizations and presentalger-
vations in Section 4. We present our results on the ideal pase
formance benefits of phase sequence customization at thie-who
program and per-method levels in Section 5. We determine the
effectiveness of existing feature-vector based heuristbniques
and provide feedback on improving them in Section 6. Finally
present our planned future work and the conclusions of thidys
in Sections 7 and 8 respectively.



Optimization Phase

Description

aggressive copy coalescing

Perform aggressive copy coalescing after coming out of B {before register allocation).

block layout by frequency

Use edge frequencies to drive block ordering.

block layout rotate loops

Allow back branches to be fall through when determining klagout.

conditional constant prop.

Perform optimistic sparse conditional constant propagatintil a fixed point is reached.

conservative copy coalescing

Perform conservative copy coalescing during registecation (RA). Requires RA is enabled.

do escape analysis

Identify and optimize objects that are accessible only witne method or thread.

eliminate allocations

Use escape analysis to eliminate allocations.

global code motion

Hoist instructions to block with least execution frequency

inline

Replace (non accessor/mutator) method calls with the bbtheanethod.

inline accessors

Replace accessor/mutator method calls with the body of #tbad.

instruction scheduling

Perform instruction scheduling after register allocation

iterative global value numbering

(GVN) parsing).

Iteratively replaces nodes with their values if the valus Ieen previously recorded (applied in several places after

loop peeling Peel out the first iteration of a loop.

loop unswitching

Clone loops with an invariant test and insert a clone of teettt selects which version to execute.

optimize null checks
operation to perform the null check).

Detect implicit null check opportunities (e.g. null checksh suitable memory operations nearby use the memjory

parse-time GVN

Replaces nodes with their values if the value has been prglyioecorded during parsing.

partial loop peeling

Partially peel the top portion of a loop by cloning and placame copy just before the new loop head and the other
copy at the bottom of the new loop (also known as loop rottion

peephole remove copies

Apply peephole copy removal immediately following regisaiocation.

range check elimination

Split loop iterations to eliminate range checks.

reassociate invariants

Re-associates expressions with loop invariants.

register allocation

Employ a Briggs-Chaitin style graph coloring register edltor to assign registers to live ranges.

remove useless nodes

Identify and remove useless nodes in the ideal graph aftsinga

split if blocks

Folds some branches by cloning compares and control flomgfranerge points.

use loop predicate

Generate a predicate to select fast/slow loop versions.

use super word

Transform scalar operations into packed (super word) tipesa

eliminate auto bok

Eliminate extra nodes in the ideal graph due to autoboxing.

optimize fills®

Convert fill/copy loops into an intrinsic method.

optimize string$

Optimize strings constructed by StringBuilder.

Table 1. Configurable optimizations in our modified HotSpot compi@ptimizations marked with are disabled in the default compiler.

3.1 Compiler and Benchmarks

We perform our study using the server compiler in Sun/Oiscle
HotSpot Java virtual machine (build 1.628-b06) [21]. Similar
to many production compilergjotSpot imposes a strict ordering
on optimization phasedue to the use of multiple intermediate
representations and documented or undocumented assnmatio
dependencies between different phases. AdditionallyHhtSpot
compiler applies a fixed set of optimizations to every metkiiod
compiles. The compilation process parses the method'sbgés
into a static single assignment (SSA) representation kresvihe
ideal graph Several optimizations, including method inlining, are
applied as the method’s bytecodes are parsed. The comipder t
performs a fixed set of optimizations on the resultant stmact
before converting to machine instructions, performingesithing
and register allocation, and finally generating machineecod

The HotSpot JVM provides command-line flags to optionally
enable or disable several optimizations. However, maniyigd-
tion phases do not have such flags, and some also generat/upd
analysis information used by later stages. We modified th& ptat
compiler to provide command-line flags for most optimizatio
phases, and factored out the analysis calculation so tisgat@m-
puted regardless of the optimization setting. Some tramsftons,
such asconstant foldingandinstruction selectiopare required by
later stages to produce correct code and are hard to effbctiv
disable. We also do not include a flag fdead code eliminatign
which is performed continuously by the structure of therimtedi-
ate representation and would require much more invasivegasa
to disable. We perform innovative modifications to deattivthe
compulsory phases akgister allocation(RA) and global code
motion(GCM). The disabled version of RA assumes every register
conflicts with every live range, and thus, always spills tigages to

memory. Likewise, the disabled version of GCM scheduleiall
structions to execute as late as possible and does not atehgist
instructions to blocks that may be executed much less fretyue
Finally, we modified the HotSpot JVM to accept binary seqasnc
describing the application status (ON/OFF) of each phasbeat
program or method-level. Thushile not altering any optimiza-
tion algorithm or the baseline compiler configuration, we daa
several major updates to the HotSpot JIT compiler to faatiitits
use during phase selection researdiable 1 shows the complete
set of optimization phases that we are now able to optioraifble
or disable for our experiments.

Our experiments were conducted over applications from two
suites of benchmarks. We use all SPECjvm98 benchmarks [24]
with two input sizes (10 and 100), and 12 (of 14) applicatiivom
the DaCapo benchmark suite [4] with the small and defaulitsp
Two DaCapo benchmarksadebeansandtradesoapare excluded
from our study since they do not always run correctly with our
defaultHotSpot VM.

3.2 Performance Measurement

One of the goals of this research is to quantify the perfoaaan
benefit of optimization phase selectianth regards to generated
code qualityin a production-grade dynamic compiler. Therefore,
the experiments in this study discount compilation time aveh-
sure thesteady-stateperformance. In the default mode, the VM
employsselective compilatioand only compiles methods with ex-
ecution counts that exceed the selected threshold. Ourimgreal
setup first determines this set of (hot) methods compilethduhe
startupmode for each benchmark. All our steady-state experiments
only compile this hot method set for all its program runs.Bibte
SPECjvm98 and DaCapo harness allow each benchmark to be it-



erated multiple times in the same VM run. During our steayes
program runs we disable background compilation to forcthate
hot methods to be compiled in the first program iteration. Videlm
ify our VM to reset execution counts after each iterationrevpnt
methods from becoming hot (and getting compiled) in later-it

performance (reduces program runtime) of the generatee. dnd
other words, a negative value implies that including thdinoza-
tion harms performance of the generated code. The HotSpot Ji
compiler uses an individual method for its compilation umhere-
fore, in this section we evaluate the effect of compilermations

ations. We allow each benchmark to iterate five more times and over distinct program methods.

record the median runtime of these iterations as the ststdg-
program run-time. To account for inherent timing variaiafur-
ing the benchmark runsll the performance results in this paper
report the average and 95% confidence intervals deersteady-
state runausing the setup described by Georges et al. [9].

All experiments were performed on a cluster of Dell Powerdg
1850 server machines running Red Hat Enterprise Linux 5theas
operating system. Each machine has four 64-bit 2.8GHz Xgeh
processors, 6GB of DDR2 SDRAM, and a 4MB L2 cache. Our
HotSpot VM uses the stand-alone server compiler and theuliefa
garbage collector settings for “server-class” machin& (Ipar-
allel collector” GC, initial heap size is 96MB, maximum is B
We make no attempt to restrict or control GC during our exper-
iments. Finally, there are no hyperthreading or frequeratirsg
techniques of any kind enabled during our experiments.

4. Analyzing Behavior of Compiler
Optimizations for Phase Selection

Compiler optimizations are designed to improve progranioper
mance. Therefore, it is often (naively) expected that wdnapply-
ing (turning ON) all available optimizations to all prograsgions
should generate the best quality code. However, optinazatop-
erating on the same program code and competing for finite imach
resources (registers) may interact with each other. Sueteictions
may remove opportunities for later optimizations to geteesven
better code. Additionally, program performance is ofteryvward
for the compiler to predict on the current generation of niraeh
with complex architectural and micro-architectural featu Con-
sequently, program transformations performed by an opétion
may not always benefit program execution speed. The godieaf-ef
tive phase selection is to find and disable optimization$ wég-
ative effects for each program region. In this section wedooh
a series of experiments to explore important optimizatelaction
issues, such as why and when is optimization selectiontefésfor
standard dynamic JIT compilers. We are also interested dinign
indicators to suggest that customizing optimization d&las for
individual programs or methods is likely to benefit perfonoa.
We report several interesting observations that help @xjiath
the prior as well as our current results in phase selectiseareh
for dynamic JIT compilers.

4.1 Experimental Setup
Our setup to analyze the behavior of optimization phases-is i

Our experiments in this section are conducted overd&3ocus
methods over all the programs in our benchmark suite. Tloesesf
methods are selected because each compaisksast10% of its
respective benchmark run-time. More details on the ral®oaad
selection of focus methods, as well as a complete list ofethes
methods, are provided in Section 5.3.1.

4.2 Results and Observations

Figure 1 (left Y-axis, bar-plot) illustrates th@ccumulatedneg-
ative and positive impact of each optimization calculatsthg
Equation 1 over all our 53 individual program methods. Fahea
HotSpot optimization, Figure 1 (right Y-axis, line-plotlsa shows
the number of program methods that witness a negative otiyisi
impact. These results enable us to make several importaet-ob
vations regarding the behavior of optimizations in the HotSJIT
compiler. First, the results validate the claims that optimizations
are not always beneficial to program performance. This obser
tion provides the motivation and justification for furthesvelop-
ing and exploring effective phase selection algorithmsrabée
the JIT compiler to generate the best possible output cadeafth
method/programSecond we observe thatostoptimizations in
the HotSpot JIT compiler produce, at least occasional, thegef-
fects. This observation indicates that eliminating therojaation
phase selection issue may require researchers to undkestemp-
date several different compiler optimizations, which nsaiecom-
piler design-time solution very har@hird , most optimizations do
not negatively impact a large number of program methodstlzed
typical negative impact is also not very high. However, veodind
optimizations, including\ggressiveCoalesckerGVN, andSplitlf-
Blocks that, rather than improving, show a degrading performance
impact more often. This result is surprising since dynantm<¢
pilers generally only provide the more conservative coermipti-
mizations! Thus, this study finds optimizations that need to be ur-
gently analyzed to alleviate the optimization selectioobpem in
HotSpot.Fourth, we unexpectedly find that most of the optimiza-
tions in the HotSpot JIT compiler only have a marginal indiial
influence on performance. We observe thadthod inliningis by
far the most beneficial compiler optimization in HotSpotldaed

by register allocatior?

Figure 2 plots the accumulated positive and negative opéimi
tion impact (on left Y-axis, bar-plot) and the number of aptia-
tions that impact performance (on right Y-axis, line-plfat) each
of our focus methods represented along the X-axis. Thes#tses
allow us to make two other observations that are particulan-

spired by Lee et al’s framework to determine the benefits and lightening. First, there are typically not many optimizations that

costs of compiler optimizations [20]. Our experimental fogura-

tion (defOp) uses the default HotSpot server compilation sequence 7

as baseline. The execution time of each benchmark with gse-b
line (T'(OPT < defOpt >)) is compared with its time obtained
by a JIT compiler that disables one optimizatior) @t a time
(T'(OPT < defOpt — xz >)). We use the following fraction to
quantify the effect of HotSpot optimizations in this configtion.

T(OPT < defOpt —x >) — T(OPT < defOpt >)

T(OPT < defOpt >) @

Each experimental run disables only one optimization (dut o
25) from the optimization set used in the default HotSpot jpiben
Equation 1 computes a negative value if removing the coomesbp
ing optimization,z, from the baseline optimization set improves

Compare the 28 optimization flags in HotSpot with over 10thsilegs
provided by GCC.

2Method inlining is a difficult optimization to control. Ouxperimental
setup, which uses a fixed list of methods to compile, may #igixaggerate
the performance impact of disabling method inlining beeaamme methods
that would normally be inlined may not be compiled at all iéyhare not
in the hot method list. To avoid such exaggeration, one pdigiis to
detect and compile such methods when inlining is disablemvdter, an
inlined method (say, P) that is not otherwise compiled spétsdX inlined
invocations in compiled code, but other Y invocations ireipteted code.
With inlining disabled for the focus method, if P is compildten it will
spend all ‘X+Y’ invocations in compiled code. We chose thaggeration
because we found that it was very uncommon for methods naeiffixed
list to still be inlinable.
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degrade performance for any single method (2.2 out of 25vena 5.

Limits of Optimization Selection

erage). More importantly, even for methods with severabviddal
degrading optimizations, the accumulated negative imigawtver
very high. This result, in a way, tempers the expectationzeofor-
mance improvements from ideal phase selection in JIT cargil
(particularly, HotSpot). In other words, we can only expeas-
tomized phase selections to provide modest performancefiteen
for individual methods/programs in most cas8scond for most
methods, there are only a few optimizations (4.36 out of 25\
erage) that benefit performance. Thus, there is a huge pdtiort
saving compilation overhead during progratartupby disabling
theinactiveoptimizations. Itis this, hitherto unreported, attribafe
JIT compilers that enables the online feature-vector bpkade se-
lection algorithms to improve program startup performaincear-
lier works [5, 23].

Finally, we note that although this simple study providesfuls
information regarding optimization behavior, it may nopttae all
possible optimization interactions that can be simultasgoactive
in a single optimization setting for a method. For examplage
interactions may cause compiler optimization phases thgtadle
performance when applied alone to improve performance when
combined with other optimizations. However, these simpigce
iments provided us with both the motivation to further explthe
potential of phase selection for dynamic compilers, wholedring
our expectations for large performance benefits.

Most dynamic JIT compilers apply the same set of optimiratio
phases to all methods and programs. Our results in the letsbise
indicate the potential for performance gains by custongizipti-
mization phase selection for individual (smaller) codeigrg. In
this section we conduct experiments to quantify the stesidie
speed benefits of customizing optimization sets for indigidoro-
grams/methods in JIT compilers. The large number of opamiz
tions in HotSpot makes it unfeasible to perfoerhaustiveop-
timization selection search space evaluation. Earliezaeh has
demonstrated that genetic algorithms (GA) are highly ¢iffecat
finding near-optimal phase sequences [17]. Therefore, weaus
variant of a popular GA to find effective program-level andinogl-
level optimization phase selection solutions [7]. Coroefingly,
we term the benefit in program run-time achieved by the GArddri
phase sequence over the default HotSpot VM as the idealrperfo
mance benefit of phase selection for each program/method

We also emphasize that it is impractical to employ a GA-based
solution to customize optimization sets in an online JIT poa3
tion environment. Our program-wide and method-specific GA e
periments are intended to only determine the performanuislof
phase selection. We use these limits in the next sectionaioze
the effectiveness of existing state-of-the-art heursstiicspecialize
optimization sets in online JIT compilers.
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5.1 Genetic Algorithm Description

In this section we describe the genetic algorithm we emptoy f
our phase selection experiments. Genetic algorithms argstie
search techniques that mimic the process of natural evol(ii0].
Genesn the GA correspond to binary digits indicating the ON/OFF
status of an optimizatiof€hromosomesorrespond to optimization
phase selections. The set of chromosomes currently undsides-
ation constitutes population The evolution of a population occurs
in generationsEach generation evaluates fitaessof every chro-
mosome in the current population, and then uses the opesatio
crossoverandmutationto create the next population. The number
of generationsspecifies the number of population sets to evalu-
ate. Chromosomes in the first GA generation are randomliaiinit
ized. After evaluating the performance of code generatedam
chromosome in thpopulation they are sorted in decreasing order
of performance. Duringrossover 20% of chromosomes from the
poorly performing half of the population are replaced byeagedly
selecting two chromosomes from the better half of the pdjmura
and replacing the lower half of each chromosome with the towe
half of the other to produce two new chromosomes each time. Du
ing mutationwe flip the ON/OFF status of each gene with a small
probability of 5% for chromosomes in the upper half of the ypop
lation and 10% for the chromosomes in the lower half. The chro
mosomes replaced during crossover, as well as (up to fivejreiw
some(s) with performance(s) within one standard deviabiothe
best performance in the generation are not mutatedfifriess cri-
teria used by our GA is the steady-state performance of the bench-
mark. For this study, we have 20 chromosomes in each popnlati
and run the GA for 100 generations. We have verified that 180 ge
erations are sufficient for the GA to reach saturation in mases.
To speed-up the GA runs, we developed a parallel GA implemen-
tation that can simultaneously evaluate multiple chrom@®in a
generation on a cluster of identically-configured machines

5.2 Program-Wide GA Results

In this experiment we use our GA to find unique optimization se
lections for each of our benchmark-input pairs. Figure 3gthe
performance of code compiled with the best optimizatiorfeaatd
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Figure 4. Performance of best program-wide optimization phase
sequence after 100 generations of genetic algorithm.

expected, different inputs do not seem to significantly ciftbe
steady-state optimization selection gains for most beacksn

Figure 4 compares the performance of each program optimized
with the best program-wide optimization phase set found oy o
genetic algorithm with the program performance achievedhiey
default HotSpot server compiler for both our benchmarkesuit
The error bars show the 95% confidence interval for the diffee
between the means over 10 runs of the best customized optimiz
tion selection and the default compiler sequence. We nettettiie
default optimization sequence in the HotSpot compiler hesnb
heavily tuned over several years to meet market expectafimn
Java performance, and thus presents a very aggressivénbase!
spite of this aggressively tuned baseline, we find that coigiog
optimization selections can significantly improve perfarmoe (up
to 15%) for several of our benchmark programs.

On average, the SPECjvm98 benchmarks improve by about 7%
with both theirsmall andlarge inputs. However, for programs in
the DaCapo benchmark suite, program-wide optimizatiorsget
cialization achieves smaller average benefits of 3.2% &3 2or
theirsmallanddefaultinput sizes respectively. The DaCapo bench-
marks typically contain many moteot and total program meth-
ods as compared to the SPECjvm98 benchmarks. Additionaty,
like several SPECjvm98 programs that have a single or fewi-dom
nant hot methods, most DaCapo benchmarks have a relatiagly fl
execution profile with many methods that are similarly hoithw
only slightly varying degrees [4]. Therefore, program-vidpti-
mization sets for DaCapo benchmarks are customized oveh muc
longer code regions (single optimization set over many nhamte
methods), which, we believe, results in lower average perdoce
gains from program-wide optimization selection. Over ahbh-
marks, the average benefit of ideal program-wide phasetkelés
4.3%.

5.3 Method-Specific Genetic Algorithm

The default HotSpot compiler optimizes individual methedsa
time, and applies the same set of optimizations to each dechpi
method. Prior research has found that optimization phagesees
tuned to each method yield better program performance than a
single program-wide phase sequence [1, 18]. In this sectien
explore the performance potential of optimization setectt the

by the GA in each generation as compared to the code generatednethod-level during dynamic JIT compilation.

by the default compiler sequence averaged over all progfams
each benchmark suite. This figure shows that most (over 75%) o
the average performance gains are realized in the first fepG2a
generations. Also, over 90% of the best average performiarate
tained after 50 generations. Thus, 100 generations seditiesoif

for our GA to converge on its near-best solution for most benc

5.3.1 Experimental Setup

There are two possible approaches for implementing GA bearc
to determine the performance potential of method-specifitt- o
mization phase settings: (a) running multiple simultarss@und in-
dependent) GAs to gather optimization sequences for afjrpro

marks. We also find that the SPECjvm98 benchmarks benefit more methodsoncurrentlyin the same run, and (b) executing the GA for

from optimization specialization than the DaCapo benchmaks

each methodn isolation (one method per program run). The first



[ # ] Benchmark | Method [ % Time |
1 | db-large Database.she8iort 86.67
2 | compress-small | Compressor.compress 54.99
3 | compress-large | Compressor.compress 53.42
4 | avrora-default Legacylnterpreter.fastLoop 50.85
5 | db-small Database.she#iort 50.72
6 | jess-small Node2.findinMemory 48.57
7 | jack-small TokenEngine.getNextTokenFromStream  48.05
8 | avrora-small Legacylnterpreter.fastLoop 44.49
9 | jack-large TokenEngine.getNextTokenFromStream  44.23
10 | sunflow-default KDTree.intersect 40.52
11 | luindex-default DoclnverterPerField.processFields 40.43
12 | sunflow-default TriangleMesh$WaldTriangle.intersect 39.20
13 | sunflow-small KDTree.intersect 37.92
14 | sunflow-small TriangleMesh$WaldTriangle.intersect 36.78
15 | jess-large Node2.runTestsVaryRight 34.31
16 | jython-small PyFrame.getlocal 32.73
17 | luindex-small DoclnverterPerField.processFields 30.51
18 | lusearch-small SegmentTermEnum.scanTo 29.88
19 | lusearch-default | SegmentTermEnum.scanTo 28.76
20 | jess-large Node2.runTests 27.41
21 | compress-large | Decompressor.decompress 24.86
22 | compress-small | Compressor.output 23.39
23 | mpegaudio-small| q.l 23.12
24 | batik-default MorphologyOp.isBetter 22.26
25 | mpegaudio-large | q.l 21.87
26 | jython-small PyFrame.setline 21.79
27 | xalan-small ToStream.characters 21.70
28 | db-small ValidityCheckOutputStream.strip1 21.52
29 | compress-large Compressor.output 21.40
30 | compress-small | Decompressor.decompress 21.23
31 | xalan-default ToStream.characters 20.00
32 | pmd-default DacapoClassLoader.loadClass 19.26
33 | batik-small PNGImageEncoder.clamp 17.74
34 | sunflow-small BoundinglntervalHierarchy.intersect 15.22
35 | h2-small Query.query 13.84
36 | sunflow-default BoundinglIntervalHierarchy.intersect 13.79
37 | javac-large ScannerlnputStream.read 13.46
38 | javac-small ScannerlnputStream.read 13.17
39 | luindex-small TermsHashPerField.add 13.01
40 | mpegaudio-small| tb.u0114 12.88
41 | jython-default PyFrame.setline 12.68
42 | mpegaudio-large | tb.u0114 12.61
43 | jess-large Funcall.Execute 12.25
44 | luindex-small StandardTokenizerlmpl.getNextToken 12.23
45 | lusearch-small IndexInput.readVLong 11.82
46 | lusearch-default | StandardAnalyzer.tokenStream 11.49
47 | lusearch-default | IndexInput.readVLong 11.46
48 | lusearch-small StandardAnalyzer.tokenStream 11.44
49 | h2-default Command.executeQueryLocal 11.37
50 | luindex-default TermsHashPerField.add 10.65
51 | jython-default PyFrame.getlocal 10.62
52 | eclipse-default Parser.parse 10.52
53 | luindex-default StandardTokenizerimpl.getNextToken 10.49

Table 2. Focus methods and the % of runtime each comprises of
their respective benchmark runs

approach requires instrumenting every program methodduorde
the time spent in each method in a single program run. These in
dividual method times can then be used to concurrently dnive
dependent method-specific GAs for all methods in a progrdma. T
VM also needs the ability to use distinct optimization sttets

to be employed for different program methods. We implentnte
this experimental scheme for our HotSpot VM by updating the
compiler to instrument each method with instructions thmaplkey

the x86 TSC (Time-Stamp Counter) to record individual mdtho
run-times. However, achieving accurate results with telseme
faces several challenges. The HotSpot JVM contains indegoiu-

ral optimizations, such amethod inlining due to which varying the
optimization sequence of one method affects the performaee
havior of other program methods. Additionally, we also fouhat

the order in which methods are compiled can vary from one run
of the program to the next, which affects optimization diecis
and method run-times. Finally, the added instrumentataedord

method times also adds some noise and impacts optimizgtion a
plication and method performance.

Therefore, we decided to employ the more straight-forwar a
accurate, but also time-consuming, approach of applyiegsa to
only one program method at a time. In each program run, the VM
uses the optimization set provided by the GA to optimize foces
methodand the default baseline set of optimizations to compile
the other hot program methods. Thus, any reduction in thé fina
program run-time over the baseline program performancebean
attributed to the improvement in the single focus methodarin
earlier offline run, we use our TSC based instrumentations with
the baseline compiler configuration to estimate the fraabictotal
time spent by the program in each focus method. Any improveme
in the overall program run-time during the GA is scaled with
the fraction of time spent in the focus method to determire th
run-time improvement in that individual method. We condiinis
experiment over the 58cus methodsver all benchmarks that
each comprise at least 10% of the time spent in their resecti
default program run. These methods, along with the % of total
runtime each comprises in their respective benchmarkdjsaeel
in Table 2.

5.3.2 Method-Specific GA Results

Figure 5(a) shows thecaledbenefit in the run-time of each fo-
cus method when compiled with the best optimization sermetl
by the GA as compared to the method time if compiled with the
baseline HotSpot server compiler. Methods alongitfais in this
graph are ordered by the fraction that they contribute tar ttee
spective overall program run-times (the same order methoels
listed in Table 2). The final bar shows the average improvémen
over the 53 focus methods. Thus, we can see that customizéng t
optimization set for individual program methods can achisig-
nificant performance benefits in some cases. While the bestrpe
mance improvement is about 44%, method-specific optinumati
selection achieves close to a 6.2% reduction in run-timeavan-
age. Figure 5(b) provides a different view of these samdtgesith
methods on the-axis grouped together according to their respec-
tive benchmarks.

The plot in Figure 6 verifies that thagn-scaledlimprovements
in individual method run-times add-up over the entire paogr
in most cases. That is, if individually customizing two nedh
in a program improves the overall program run-timeaand y
respectively, then does the program achieve :/an-(y) percent
improvement if both customized methods are used in the same
program run? As mentioned earlier, our focus methods aeeteel
such that each constitutes at least 10% of the baseline gmogr
run-time. Thus, different benchmarks contribute diffenreamber
(zero, one, or more than one) of focus methods to our set. The
first bar in Figure 6 simply sums-up the individual method-run
time benefits (from distinct program runs) foenchmarks that
provide two or more focus methadghe second bar plots the run-
time of code generated using the best customized optirnizagts
for all focus method# the same runWe print the number of focus
methods provided by each benchmark above each set of bars. Th
we find that the individual method benefits add-up well in many
cases, yielding performance benefit that is close to the duitmeo
individual benefit of all its customized component methods.

Please note that the experiments for Figure 6 only employ cus
tomized optimization selections for the focus methods. Tée
maining hot benchmark methods are compiled using the In&seli
sequence, which results in lower average improvements ms co
pared to the average in Figure 5(a). Thus, customizing asition
sets over smaller program regions (methods (6.2%) vs. anogr
(4.3%)) realize better overall performance gains for Jinpiers.
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- B acc. GA improvements [ post run ideal) of the effectiveness of such feature-vector based héurist
23 techniques for finding good optimization solutions.
be % 1.05 )
£8 14 T s 6.1 Overview of Approach
@ E 095 4 _ . .
32 o5 Feature-vector based heuristic algorithms operate in tages,
E 3 o085 | training anddeploymentThe training stage conducts a set of offline
] '*':é 038 - experiments that measure the program performance achigved
é o 075 different phase selections for a certain set of programis Jtage
$E 7 o o o N then selects the best performing sets of phases for eactoeheth
S 0 S0 £ L 0 L LRSS i
& & F O F TS S L The approach then uses a set of progfaaturesto characterize
A .. . . .
& Qe°3’° LTS S & ° every compilation unit (method). The features should bectet!
< . o
& € Benchmarks such that they are representative of the program propehtéitsire

important and relevant to the optimization phases, and asy e

Figure 6. Accumulated improvement of method-specific opti- @and fast to extract at run-time. Finally, the training stageploys

mization selection in benchmarks with multiple focus meitho statistical techniques, such as logistic regression apicstivector
machines, to correlate good optimization phase settingjs thie

method feature list.
o ] The deployment stage installs the learned statistical fiotie
Itis important to note that we observe good correlation ketw  the compiler. Now, for each new compilation, the algorithnstfi

the ideal method-specific improvements in Figure 5(a) aacpt- determines the method'’s feature set. This feature seténdivthe
method accumulated positive and negative impact of opéititias model that returns a customized setting for each optintindtiat is

plotted in Figure 2. Thus, many methods with large accuredlat  expected to be effective for the method. Thus, with this iémple,

negative effects (such as methods numbers #2, #3, #7, #B1, #3 each method may be compiled with a different phase sequence.
and #36) also show the greatest benefit from customized [sease

guences found by our iterative (GA) search algorithm. Sirhyj 6.2 Our Experimental Configuration
methods with small negative impacts in Figure 2 (includingnm
methods numbered between #40 — #53) do not show significant
benefits with ideal phase selection customization. Whikedbrre-
lation is encouraging, it may also imply that optimizationerac-
tions may not be very prominent in production-grade JVMshsu

as HotSpot.

We use techniques that have been successfully employedoin pr
works to develop our experimental framework [5, 23]. Tabls®
the features we use to characterize each method, which am-a c
bination of the features employed in earlier works and these
vant to the HotSpot compiler. These features are organigedwo
sets:scalar featuresonsist of counters and binary attributes for a
given method without any special relationstdistribution features
6. Effectiveness of Feature Vector Based characterize the actual code of the method by aggregatinigasi
L . operand types and operations that appear in the method:ctime

Heuristic Techniques ters count the number of bytecodes, arguments, and temporaries
Experiments in Sections 5.2 and 5.3 determine the potegaials present in the method, as well as the number of nodes in the in-
due to effective phase selection in the HotSpot compilewwHo  termediate representation immediately after parsiitgibutesin-
ever, such iterative searches are extremely time-congyraimd are clude properties denoted by keywordisdl, protected static etc.),

therefore not practical for dynamic compilers. Previousksdave as well as implicit properties such as whether the methothaun
proposed using feature-vector based heuristic techniguasckly loops or uses exception handlers. We record distributiatufes
derive customized optimization selections during onlinenpila- by incrementing a counter for each feature during bytecads-p
tion [5, 23]. Such techniques use an expensiiféine approach to ing. Thetypesfeatures include Java native types, addresses (i.e. ar-
construct their predictive models that are then employed st rays) and user-defined objects. The remaining featuressmond

onlinescheme to customize phase selections to individual methods to one or more Java bytecode instructions. We use thesadeatu
In this section we report results of the first evaluation (pared to during the technique of logistic regression [3] to learnmadel for



Scalar Features Distribution Features Esmall  Olarge / default
Counters Types ALU Operations oy g 1w
Bytecodes byte char| add sub E=S |
. : 5 g 115
Arguments int double | mul div o} 1
Temporaries short long | rem neg Te 11 T I s
Nodes float object | shift or Es 105 £ T
address and xor g £ 1
Inc compare % ?:? 095
= a
Attributes Casting Memory Operations ‘3 g 09T T L T LT
Constructor to byte load load const g s g&& §.§§°§§ & é"f@”@%’fﬁ 55@,35’@5 &
Final to char store new § \g&" gf}’/ v e S8 s g
Protected to short new array / multiarray € S Benchmarks &
Public to int
Static to long Control Flow Figure 7. Effectiveness of benchmark-wide logistic regression.
Synchronized to float branch call Training data for each benchmark consists of all the remgini
Exceptions to double Ist switch programs from both benchmark suites.
Loops to address
to object Miscellaneous
cast check instance of throw
array ops field ops 16 295
synchronization S E e I ]
E*= i
Table 3. List of method features used in our experiments A N
5 2 1] A
s
these experiments. Logistic regression has the propeatyitthan g E 06
even output phase sequences not seen during the modéhgrain o g 041
We have tuned our logistic regression model to make it adaimi 2 g 02
as possible to the one used previously by Cavazos and O'Balyle £g i [Hil]
VYA DL A
6.3 Feature-Vector Based Heuristic Algorithm Results Methods
We perform two sets of experiments to evaluate the effentise - - — — )
of a feature-vector based logistic regression algorithfeaen and Figure 8. Effectiveness of method-specific logistic regression.

find good phase sequences for unseen methods during dynamiclraining d_ata for_each method consists of all the other fosath-
JIT compilation. As done in our other experiments, all nurabe ~ 0ds used in Section 5.3.
report the steady-state benchmark timaB.our experiments in
this section employ cross-validatioim other words, the evaluated . - .
benchmark or method (with both the small and large/defapliis) Figure 8 compares the performance of the logistic regrassio
is never included in the training set for that benchmark othoe. technique for individual program methods to their best Gasdal
Figure 7 plots the performance achieved by the optimization Performance. Since we employ cross-validation, the maimata
set delivered by the logistic regression algorithm whenliagpo for each method uses information from all the other focushos.
each benchmark method as compared to the performance of the>imilar to the experimental configuration used in Sectid &ach
best benchmark-wide optimization sequence from Sect@riThe program run uses the logistic regression technique onlyofar
training data for each program uses the top ten methodsdbase focusmethod, while the remaining program methods are compiled

on their baseline run-times) from all thether (SPEC and Da- with the baseline optimization sequence. The diﬁerencm_fcbgram
Capo) benchmarks. While distinct benchmarks may contdin di Performance between the feature-vector based heuristictien
ferent number of methods, we always consider ten methods fro focus-method GA is scaled with the fraction of overall peogr
each program to weigh the benchmarks equally in the traiséng time spent in the relevant method. Thus, we can see from EQur
For every benchmark, each top ten method contributes actisti ~ that the per-method performance results achieved by theréea
feature vector but uses the single benchmark-wide besnigati vector based heuristic are quite disappointing. We find, that
tion sequence from Section 5.2. The logistic regressioarihgn average, the heuristic solutions achleve performanceishaver
may find a different optimization selection for each methadrly 22% worse than the GA-tuned solution, and 14.7% worse than th
its online application. In spite of this flexibility, the feme vector baseline HotSpot server compiler.

based technique is never able to reach or improve the ideglesi
benchmark-wide optimization solution provided by the GALUS,
figure 7 shows that, on average, the feature-vector basetasol Thus, we find that existing state-of-the-art online featwsetor
produces code that is 7.8% and 5.0% worse for SPECjvm98i(smal based algorithms are not able to find optimization sequetitgs
and large data sets respectively) and 4.3% and 2.4% wor§afor  improve code quality over the default baseline. We notettiisibb-
Capo (small and default) as compared to the ideal GA phase-sel  servation is similar to the findings in other previous worksZ3].

6.4 Discussion

tion. However, this technique is some times able to find ogtim However, these earlier works did not investigate whethisrltttk
tion sequences that achieve performances that are closb&éter of performance gain is because optimization selection tsese
than those realized by the default HotSpot server com@lerav- pecially beneficial in online JIT compilers, or if existingature-

erage, the feature-vector based heuristic achieves peafare that vector heuristics are not powerful enough to realize thasasy
is 2.5% better for SPECjvm98-small benchmarks, and equall in ~ Our experiments conclusively reveal that, although modesiv-
other cases (SPECjvm98-large and DaCapo small and default) erage, the benefits of optimization customization do exissév-
compared to théaseline server compiler eral methods in dynamic compilers. Thus, additional resear
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Figure 9. Experiments to analyze and improve the performance of feateictor based heuristic algorithms for online phasectele (a)
Not using cross-validation and (b) Using observations fxt®n 4.

improving online phase selection heuristic algorithmsesassary exploit the potential of optimization selection. In pautiar, we

to enable them to effectively specialize optimizationiag for in- intend to exploit the observations from Section 4 and focaseon
dividual programs or methods. We conduct a few other exparim optimizations (and methods) with the most accumulated thega
to analyze (and possibly, improve) the effectiveness ofdbstic effects to build new and more effective online models. Itlwil
regression based feature-vector algorithm employed &staition. also be interesting to explore if more expensive phase tighec

In our first experiment we use the same per-method feature- techniques become attractive for the most important methiod
vector based heuristic from the last section. Howevergatstof later stages ofiered JIT compilers on multi-core machines. Third,
performing cross-validation, we allow the training data éach we observed that the manner in which some method is optimized

method to include that same method as well. Figure 9(a) plots can affect the code generated for other program methods.ihi
the result of this experiment and compares the run-time ofiea an interesting issue whose implications for program optidn

method optimized with the phase selection delivered by ¢wig- are not entirely clear, and we will study this issue in thaufet
tic algorithm to the method’s run-time when tuned using teal Finally, we plan to repeat this study with other VMs and psso
GA sequence. Thus, without cross-validation the heurisigo- architectures to validate our results and conclusions.

rithm achieves performance that is only 4.3% worse than,ided

2.5%bettercompared to the default HotSpot baseline. This result 8. Conclusions

indicates that the logistic regression heuristic is notiristcally ' o )

poor, but may need a |arger training set of methods, moreessibs The objectlves of this research were to: (a) analyze andrunde

of methods in the training set with similar features thabdlave stand the phase selection related behavior of optimizgtiwses

similar ideal phase sequences, and/or a better selectioethfod in a production-quality JVM, (b) determine the steadyestaér-

featuresto be more effective. formance potential of optimization selection, and (c) esat
We have analyzed and observed several important propertiesthe effectiveness of existing feature-vector based hiwrisch-

of optimization phases in Section 4. In our next experimer, niques in achieving this performance potential and suggest

employ the observation that most optimizations do not riegigt ~ Provements. We perform our research with the industryetteth

impact a large number of methods to improve the performafice o Oracle HotSpot JVM to make our results generally and broadly

the feature-vector based heuristic (using cross-vatidjtith our applicable.

new experiment we update the set of configurable optimizatio We found that most optimization phases in a dynamic JIT com-

(that we can set to ON/OFF) for each method to only those that Piler only have a small effect on performance, and most phelee
show a negative effect on over 10% of the methods in the trgini N0t negatively impact program run-time. These experimetts

set. The rest of the optimizations maintain their baselihN@FF hinted at modest improvements by phase selection in dynaiic
configuration. Figure 9(b) shows the results of this experital environments. Correspondingly, the GA-basdeal benchmark-
setup. Thus, we can see that the updated heuristic algoritwn ~ Wide and per-method optimization phase selection imprpess
achieves average performance that is 8.4% worse than mL formance Significantly in a few inStanceS, but the benefés@od-
only 1.4% worse that the baseline. est on average (6.2% and 4.3% for per-method and whole-qrogr

There may be several other possible avenues to employ knowl- Phase selection customization respectively). This resuiot very
edge regarding the behavior and relationships of optinomat  Surprising. To reduce compilation overhead, JIT compitgften

phases to further improve the performance of online héarist only implement the more conservative optimization phasésch
gorithms. However, both our experiments in this sectiomstie results in fewer optimizations and reduced, and possiblserpee-
potential and possible directions for improving the effesmtess of ~ dictable, phase interactions.

existing feature-vector based online algorithms for plsasection. We also found that existing feature-vector based techsique

used in dynamic compilers are not yet powerful enough tdratta
the ideal performance. We conducted experiments that demaoe

7. Future Work the directions for improving phase selection heuristigh@future.

There are multiple possible directions for future work.sEimwe As part of this research, we have developed the first operesou
will explore the effect of size and range of training data bat  framework for optimization selection research in a proitunct
feature-vector based solution to the optimization sedeqbroblem quality dynamic compilation environment. In the future, expect
for dynamic compilers. Second, we will attempt to improvistrg this framework to enable further research to understandesualve

heuristic techniques and develop new online approachestterb optimization application issues in JIT compilers.
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