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Abstract

Instructions executed by the processor are dynamically dead if the values they

produce are not used by the program. Executing such useless instructions can

potentially slow-down program execution and waste power. The goal of this work

is to quantify and understand the occurrence of dynamically dead instructions

(DDI) for programs compiled using modern compilers for the most relevant con-

temporary architectures. We expect our extensive study to highlight the issue of

DDI and to play a critical role in the development of compiler and/or architectural

techniques to avoid DDI execution at runtime.

In this thesis, we introduce our novel GCC-based instrumentation and analysis

framework to determine DDI during program execution. We present the ratio and

characteristics of DDI in our benchmark programs. We find that programs com-

piled with GCC (with and without optimizations) execute a significant fraction of

DDI on x86 and ARM based machines. Additionally, an ample amount of predi-

cation employed by GCC results in a large fraction of executed instructions on the

ARM to be dynamically dead. We observe that a handful of static instructions

contribute a large majority to the overall DDI in standard benchmark programs.

We also find that employing a small amount of static context information can

significantly benefit the detection of DDI at run-time. Additionally, we describe

the results of our manual study to analyze and categorize the DDI instances in our

x86 benchmarks. We briefly outline compiler and architecture based techniques

that can be used to eliminate each category of DDI in future programs. Overall,

we believe that a close synergy between compiler and architecture techniques may

be the most effective strategy to eliminate DDI to improve sequential program

performance and energy efficiency on modern machines.
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Chapter 1

Introduction

Physical barriers and technology limitations have effectively ended the era of

rapid processor frequency scaling to automatically increase single-thread software

performance. However, even as the migration of computer hardware into the

multi/many-core domain is now several years old, we find that many software

tasks are inherently sequential and derive no benefit from increasing processor

counts on multi-core machines. Additionally, even most parallel workloads are

limited by their sequential counterparts, as dictated by Amdahl’s law, and do not

scale beyond a small number of cores. Therefore, we believe that it will become

attractive as well as important in the future to dedicate more transistors to im-

prove single-thread performance. Similarly, aggressive techniques are necessary to

improve single-thread program performance on modern machines. In this research

we investigate the phenomenon of dynamically dead instructions (DDI) and their

potential to benefit sequential program performance and energy efficiency.

Researchers have observed that a surprisingly large fraction of the instructions

executed by a processor are often dead, that is, their calculated result is not used by

the program [2]. It was reported that, on average, close to 20% of the instructions
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executed by programs can be dead (even excluding NOP instructions) [4, 17]. It

is obvious that executing dynamically dead instructions will waste power and

hardware resources, and likely slow-down the program execution.

The issue of DDI is well-known, old, and fundamental. However, we believe

that this issue may have received less attention during the earlier era of expo-

nentially growing uniprocessor clock speeds, when single-threaded applications

were enjoying free, regular, and rapid performance gains, and microprocessor en-

ergy consumption was not as important of an issue. With physical barriers and

technology limitations causing a stagnation of single-core program performance,

techniques to achieve automatic efficiency improvements for all existing and fu-

ture microprocessors are becoming very critical. Similarly, mechanisms to reduce

power consumption are also important to improve the operational characteristics

of embedded and battery-operated devices, as well as, large server farms. Elim-

inating DDI will automatically achieve the efficiency and power benefits for all

program threads, and thus satisfy both these major computing trends.

All previous DDI studies were conducted on architectures such as the Alpha

and the Itanium that are defunct or less mainstream today. This work revisits and

investigates the issue of DDI for more contemporary and relevant architectures,

such as the x86 and the ARM. Similarly, this work also seeks to gain a comprehen-

sive understanding of the characteristics of DDI in existing programs to be able to

develop new software and hardware-based DDI elimination techniques. We also

investigate the types and properties of DDI, and systematically characterize them

for programs compiled using modern, state-of-art compilers.

In this paper, we describe the framework we built to detect, study, and catego-

rize the DDI in x86 and ARM benchmark programs. Our detection framework uses
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GCC to instrument the binaries with additional instructions to produce control-

flow and data-flow traces on program execution. We implement algorithms to

analyze the dynamic trace to determine the number and ratio of DDI, and their

corresponding static instructions. We also determine the ratio and number of

static instructions that actually contribute to the overall DDI. We further explore

the effect of using static context information to isolate instructions with a high

probability of being dynamically dead. We also manually analyzed the DDI in our

smaller benchmark programs to better understand the causes for dead instruc-

tions. We use this analysis to categorize the DDI and propose static compiler

approaches to eliminate DDI from binary programs, and (micro) architectural

techniques that employ compiler-driven feedback to avoid the execution of DDI

at runtime. Thus, the major contributions of this work are the following:

1. This is the first work to quantify and study the properties of DDI for con-

temporary architectures, the x86 and the ARM, compiled and optimized

with a modern compiler,

2. This is the first investigation into the probability that an instruction will be

dynamically dead, as well as the effect of using static context information

to find highly probable dead instructions, and

3. This work presents our observed categorization of DDI for optimized and

unoptimized versions of x86 programs.

The rest of this thesis is organized as follows. We present background con-

cepts and related work in the area of dynamically dead instruction detection and

elimination in Chapter 2. We describe our GCC-based framework to detect, ana-

lyze, and categorize DDI in Chapter 3. We present our experimental results and
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observations in Chapter 4. Finally, we describe our plans for future work and the

conclusions from this research in Chapters 5 and 6 respectively.
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Chapter 2

Related Work

In this section, we describe background concepts and related work in the ar-

eas of characterizing dead instructions and compiler and architectural techniques

for eliminating them. Earlier research efforts have explored both software and

hardware approaches to address the problem of DDI. Unreachable and dead code

can be introduced by software developers into high-level language programs or by

the compiler while optimizing and generating binary code. Traditional compiler

optimizations, such as unreachable code elimination, dead code elimination, and

partial dead code elimination are tasked with detecting and removing such dead

code from generated programs. While, unreachable and dead code elimination

detect and remove code that is dead along all program paths from the program

start, partial dead code elimination is a more complex algorithm that attempts

to find code that is useful on some program paths, while being dead on the other

paths.

Figure 2.1 presents examples to illustrate fully dead and partially dead code

in programs. Figure 2.1(a) shows an instance of full dead code elimination, where

the assignment to y in block #1 is never used before being reset in block #5 along
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print(y)

y = c+d

1

2

3 4

5

6

y = a*b

y = c+d

print(y)

y = a*b

2

1

3 4

5

6

print(y)

y = c+d y = a*b

1

2

3 4

5

6

y = a*b

y = c+d

print(y)

1

2

4

5

6

3

Before
Optimization

After
Optimization

(a) (Full) Dead Code Elimination

(b) Partial Dead Code Elimination

Figure 2.1. Varieties of dead code elimination optimizations in a
compiler

all program paths. The compiler removes such dead assignments from optimized

codes. Figure 2.1(b) shows an example of partial dead code elimination. In con-

trast to the previous example where the dead statement was reset before being

used along all program paths, the assignment to y in block #1 of Figure 2.1(b) is

reset (in block #3) before being used along the program path 1-2-3-5-6, but is used

along the other path 1-2-4-5-6. The compiler optimization algorithm of partial

dead code elimination can handle such code by aggressively moving the partially

dead statements down in the control-flow as far as possible, while maintaining the

program semantics [7]. The second graph in Figure 2.1(b) illustrates the resulting

code after applying this optimization. Although these optimizations are highly
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effective in removing many dead instructions from generated codes, high rates of

DDI still persist even for programs generated by modern sophisticated compilers

that contain and apply these optimizations. Our research attempts to investigate

why these optimizations, as implemented in existing compilers, are not always

effective at eliminating dead instructions in the program, and its repercussions on

performance.

Butts and Sohi proposed a mechanism for the microprocessor hardware to pre-

dict and eliminate dynamically dead instructions at runtime [2]. This work only

tracked instructions that produce dead register values (and ignored dead memory

stores, nops and prefetches) to simplify their detection and remedial mechanisms.

Even with this restriction, they observed that between 3% to 16% of the instruc-

tions executed by the SPEC2000 integer benchmarks using the Alpha instruction

set were dead. They also noticed that many dead instructions are introduced

by the compiler during code optimizations, like instruction scheduling. They de-

veloped a hardware unit to predict dead instructions in the dynamic instruction

stream. Their predictor achieved good accuracy and, along with some other cache-

based hardware, was able to avoid the execution of 79% of useless instructions in

their benchmarks. This DDI elimination achieved up to 9.6% speedup benefits.

However, this study did not perform a thorough investigation and categorization

of dead instructions across different compilers and architectures, especially for

those that are more prevalent today. This was also a pure hardware study and

did not propose any compiler techniques to eliminate DDI, evaluate their costs,

and study interactions with other compiler optimizations.

Related also is the work of Sundaramoorthy et al. that proposed a new pro-

cessor microarchitecture that simultaneously runs two copies of every program to
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exploit the properties of predictable dead, branch, and other ineffectual instruc-

tions to speed up both the duplicated program streams [23]. In their scheme, the

first speculative thread runs faster by skipping over instructions whose results in

their previous instances were predicted correctly, and uses their predicted values

instead. The other thread that validates these predictions can also speed up since

it has a more accurate picture of the future. Thus, the two redundant program

threads combined run faster than either can alone. This work also did not attempt

to investigate the causes or devise techniques to eliminate DDI in code generated

by the compiler, and is very resource intensive for routine deployment in all pro-

cessors. At the same time, attempts to address the DDI issue with architectural

and/or microarchitectual changes have not been adopted, likely due to high as-

sociated design and implementation costs. However, modern device technologies

may make it possible to develop other more successful hardware schemes to handle

DDI at run-time.

Researchers have also explored static instructions that produce the same value

on multiple consecutive dynamic invocations [10], or those that update a register

or memory location with a value that it already contains [9]. This phenomenon

is called value locality. Related research attempts to detect dynamic instruc-

tions that update a register or memory location with a value that it already

contains [9, 14]. Some researchers have explored the phenomenon of silent stores,

which are memory write instructions that do not alter the value already present at

the target address [9,26]. Many of these works also propose and evaluate specula-

tive mechanisms to remove or eliminate such ineffectual instructions. We do not

consider such categories of instructions, since they are not statically dead from

the compiler’s point of view.
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Some other works have observed and exploited the occurrence of dynamically

dead instructions in executed programs. Lumetta and Patel found that, on av-

erage, 15% of all dynamically executed instructions in SPEC2000 integer bench-

marks on the Alpha processor are dead [11]. They also measured an additional

10% of the instructions to be nops. Fahs et al. proposed the rePLay microarchi-

tecture to provide dynamic optimization support at the microarchitecture level.

Their dynamic optimization system built upon the Alpha simulator discovered

24% of dynamic instructions to be dead, on average, and eliminated about 10%

of them. Again, none of these approaches investigate the causes of DDI, study

this phenomenon for contemporary compilers and architectures, or suggest mech-

anisms to reduce or eliminate them from binary programs.

Detecting and understanding dynamically dead instructions will require us

to generate and analyze the profile or trace of the whole program execution.

Compiler and computer architecture researchers have often employed such exe-

cution time program trace information to understand important program prop-

erties [1, 16, 19]. The first algorithms for generating whole-program paths were

presented by Larus [8] and Melski and Reps [12]. These algorithms instrument

the program to generate a complete trace of all basic blocks or paths executed

by the program. Later, researchers extended these algorithms so that the instru-

mented programs also generate the memory dependence profile of the program,

which is necessary to detect dead memory load instructions [25, 28]. While the

naive generation of whole program traces is relatively simple, the collected traces

are often extremely long. Consequently, most research is focused on developing

compression algorithms to compact the larger generated traces [18, 27]. We will

use and extend these algorithms to generate the control-flow and data-flow profiles

9



for this research.
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Chapter 3

Framework for Exploring

Dynamically Dead Instructions

In this section we will describe our framework to generate program execution

profiles to detect and investigate dynamically dead instructions. We employ and

modify the GCC compiler (version 4.5.2) for this research. We use the same GCC

source code to build an ARM cross-compiler toolchain (cross-platform arm-elf-

gcc compiler, cross-platform binutils). The program is instrumented after all the

optimizations are applied and immediately before code generation. The binaries

are generated for a 32-bit x86 platform, as well as the ARM platform. Each x86

binary is natively executed on a server machine with Intel(R) Xeon(R) processors.

Each ARM binary is natively executed on an OMAP4 Panda board with a dual-

core ARMv7 Processor. The instrumented binaries generate trace files, which we

later use to analyze and discover instances of DDI in our benchmark programs.

In this section, we provide further details on our compiler-based implementations.
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3.1 Generating Dynamic Program Profile

Dynamic program profiles can be straightforwardly produced in one of two

ways: (a) by modifying the compiler to instrument the generated binary with

additional instructions to output some representation of the trace when the pro-

gram is run, or (b) by updating a processor simulator/emulator to output the

instructions that it executes for an unmodified binary. We choose to use option

(a) for our trace generation. We believe that the mechanism of generating traces

via compiler-inserted instrumentations has advantages over the simulator-based

approach:

1. A compiler-based mechanism will be more flexible, for example, by easily

allowing the selective instrumentation of only application functions, or all

application and library functions,

2. The compiler-based approach can allow the instrumented binaries to run

natively on available architectures, including x86 and ARM, which is much

faster than using a simulator, and

3. The backward-scan algorithm to analyze the dynamic trace and detect DDI

needs to parse each instruction to determine the registers or memory loca-

tions that are set or used. Thus, to study the issue of DDI across multiple

architectures, a simulator-based approach may require us to implement this

algorithm over architecture-specific assembly instructions, which will neces-

sitate understanding the instruction format and updating the implementa-

tion for each architecture. However, many compilers use a common low-level

intermediate language (IR), like the RTLs used by GCC, that has a one-to-

one correspondence with assembly instructions. Such correspondence will

12



allow us to implement our parsing algorithm only once for the compiler IR,

and not update it for each architecture.

The compiler-based method does have one drawback. While the compiler

can easily instrument application and library functions, this approach may find

it more difficult to instrument system calls and trap routines. However, even

most simulators only emulate system calls, which implies that the compiler-based

approach will not result in reduced trace accuracy in such cases. In future work,

we will evaluate the potential benefit to accuracy of instrumenting system calls

as compared to the alternative of conservatively assuming that all/most program

register and memory state is used on entering system functions.

For this work, we modify the GCC compiler to insert instrumentation code

into only the application binaries during its final code generation pass, after all

the optimization phases have been applied. We do not yet instrument library

functions. Our tracing algorithm automatically marks all arguments passed to a

library function as being used. The compiler also produces a new file containing a

numbered list of all the basic blocks (along with their constituent instructions) in

the program. The inserted instrumentations produce two trace files on program

execution. One trace file contains an uncompressed sequential list of the basic

block numbers as they are reached during execution. The other file contains a list

of memory addresses as they are accessed during execution.

3.2 Finding Dynamically Dead Instructions

The dynamic program execution trace in its most basic form consists of a lin-

ear sequence of instructions (or basic blocks) in the order they are executed by

the processor. Therefore, algorithms for finding dynamically dead instructions

13



main(int argc, char *argv[])
{
    int i, j;

    i = atoi(argv[1]);
    j = atoi(argv[2]);

    if(j > 10)
        i = j;
    else
        i = i * j;

    printf("%d %d\n", i, j);
}

mov1 atoi, %eax
movl %eax, %esi
mov1 atoi, %eax
cmp  $10,  %eax
jg   .L1

movl %eax, 8(%esp)
movl %esi, 4(%esp)
movl .LC0, (%esp)
call printf

call printf
movl .LC0, (%esp)

movl %esi, 4(%esp)
movl %eax, 8(%esp)
movl %eax, %esi
jg   .L1
cmp  $10,  %eax

mov1 atoi, %eax
movl %eax, %esi
mov1 atoi, %eax ; j = atoi(argv[2])

; printf uses i and j
; push printf string on the stack
; push i on the stack for printf
; push j on the stack for printf
; i = j
; if(j>10) jump to block L1

; compare j with 10

; i = t1 , dead assignment to i

Set: 
Set:
Set: %esi
Set:
Set:
Set:
Set:

(a) Sample Input program (b) Static program flow graph

imul %eax, %esi
jmp  .L2

movl %eax, %esi

.L2

.L1

(c) Dynamic program trace (./a.out 4 20) and analysis to detect dynamically dead instructions

Set: %eax Used: %eax
Used: %eax
Used: %eax
Used: %eax, %esi
Used: %eax, %esi
Used: %esi
Used:
Used:

Used: Set: 
Set: Used: ; t1 = atoi(argv[1]), transitively dead

Figure 3.1. Sample example to illustrate the backward traversal
algorithm to dead dynamically dead instructions

in program execution traces only need to perform a single sequential scan of the

trace. Most algorithms scan the trace in reverse order to reduce the complexity of

classifying dead instructions. In particular, when processing a particular instruc-

tion in the trace, reverse scanning allows the liveness value of all consumers of the

instruction’s result to be already known [2, 4].

We use a simple example program in Figure 3.1 to illustrate the typical process

of generating the dynamic program trace and analyzing it for dynamically dead

instructions. Figure 3.1(a) shows the example ‘C’ program that initializes local

14



variables i and j with input arguments entered on the command-line. While the

initialized value of j is used along both paths of the if -branch, i is only used

along one path. Thus, the initialization of i in the statement i=atoi(argv[1])

is partially dead. Figure 3.1(b) shows the static control-flow graph of the code

generated by GCC for the example C program for x86 32-bit architecture. To

keep this example simple, we have left out the code generated by the compiler for

managing the run-time stack, and abstracted the calls to atoi() with the two movl

atoi, %eax instructions to consecutively initialize i and j respectively. Thus, we

can see that the compiler did not eliminate the partially dead assignment to i

(movl %eax, %esi) from the generated optimized binary code.

Figure 3.1(c) represents the dynamic trace that is generated on executing the

binary program in Figure 3.1(b) with the input arguments 4 and 20 respectively

(i=4 and j=20). It is important to note that the dynamic program trace is a

linear sequence of instructions with no control-flow transfers, which makes it easier

to build algorithms to analyze the trace. The algorithm to detect dynamically

dead instructions scans the trace in reverse order, starting at the last instruction.

Figure 3.1(c) also shows the lists of Set and Used registers that can be maintained

during this scan. (Again, to keep this example simple, we only track and show the

register sets/uses, and ignore memory loads/stores.) Thus, during this backward

scan, if we reach an instruction that sets a register or memory location when that

register or address is not on the Used list, then we tag that instruction as dead.

Therefore, the second instruction in the dynamic trace, movl %eax, %esi, will

be tagged as a direct dead instruction. The registers/addresses used in such dead

instructions will not be put on the Used list, since they do not produce useful

values. Thus, the register %eax is not inserted in the Used list for this second
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instruction in the trace. Consequently, the first trace instruction that sets %eax

is also marked as a transitively dead instruction. We use this simple linear-time

algorithm to detect the dynamically dead instructions in a single pass over the

program execution trace.

3.3 Benchmark Set and Simpoints

Our benchmark set included programs from the MiBench [5] and the SPEC

CPU2006 benchmark suites [3]. MiBench includes ‘C’ programs generally used

in embedded applications. We randomly select one program from each of the

six MiBench categories for our set. The standard SPEC CPU 2006 benchmarks

contain larger CPU-intensive general-purpose applications. We include eight ‘C’

integer benchmarks from the SPEC CPU 2006 set in our experiments. While

our x86 experiments use our complete benchmark set, we only use the embedded

MiBench benchmarks on the ARM platform.

The reference input data set provided with the SPEC benchmarks results in

very long-running programs. Therefore, as is commonly done in most architectural

studies, we employ the Simpoint framework to limit the program run-times with

SPEC benchmarks, and the corresponding size of the generated dynamic program

traces, while still gathering enough information to perform accurate DDI analysis

and characterization of the full program [20]. The Simpoint framework allows us

to generate traces over smaller intervals of the benchmarks instead of the entire

execution of each SPEC benchmark. With Simpoints, information was gathered

for a maximum of five 100 million instruction windows for each SPEC benchmark.

In order to determine and find the representative program traces, the Simpoint

tool requires us to perform off-line analysis to generate Basic Block Vectors (BBV)
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for each benchmark, input, compiler configuration, and architecture combination.

A BBV is a list of the number of times each basic block is entered during a program

execution run. The Simpoint analysis tool used the BBV to find regions of code

with similar execution behavior (program phases).

We again employed our compiler-based instrumentation methodology (men-

tioned in Section 3.1) to determine the BBV for each configuration. However,

instead of generating a trace file of the basic blocks as they are reached during

execution, we create our basic block vectors and dump them in 100 million instruc-

tion intervals to generate the BBVs. This BBV file is then fed to the Simpoint

tool, which outputs the simpoints for each benchmark configuration, along with

a weight for each simpoint. We use the weight to scale each phase interval to

extrapolate the DDI behavior over the full-program.

One challenge when performing our DDI analysis over the generated simpoints

is caused by the fact that the intervals usually start and end in the middle of the

benchmark’s execution. It may happen that a memory location set in the interval

might not be used until after that interval. Thus, technically, the set of that

memory location is not a dead instruction, but our scan algorithm finds it so. In

such cases, we choose to keep our analysis conservative and consider all memory

locations and registers as used upon starting the backward scan on the simpoints.

Thus, due to using the Simpoint tool, our DDI numbers for SPEC benchmarks

reflect a conservative estimate.
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Chapter 4

Experimental Results and

Analysis

We use our modified version of GCC to instrument the x86 and ARM bench-

mark programs. These instrumented programs produce instruction and data

traces at runtime, which we then analyze for DDI. For each benchmark, we use

the GCC optimizations flags to generate and analyze both the unoptimized (-O0)

and optimized (-O3) binaries. In this section we present the results of our analy-

sis regarding the ratio and characteristics of DDI for both x86 and ARM binary

programs generated by GCC.

4.1 x86 Results and Analysis

We first describe our DDI analysis results on the x86 platform in this section.

Results of our experiments on the ARM are presented in Section 4.2. We use the

algorithm described in Section 3.2 to traverse the execution traces for each x86

benchmark (or benchmark’s simpoints) and collect the number and characteristics
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of each program’s dynamically dead instructions.

4.1.1 Ratio of Dynamically Dead Instructions

Figure 4.1 shows the ratio of the number of total executed instructions for each

benchmark that are dynamically dead. On average, our unoptimized MiBench

benchmarks contain 4.62% of DDI, while the optimized MiBench benchmarks have

a slightly higher DDI fraction (7.71%). The SPEC benchmarks exhibit even higher

DDI. Thus, the unoptimized SPEC benchmarks contain 8.71% of dynamically

dead instructions, while the optimized programs display a larger percentage at

10.12% of DDI, on average. This observation of optimized programs containing

more dead instructions is consistent with earlier research conducted on the Alpha

architecture [2]. Figure 4.1 further breaks-up the DDI into three categories: dead
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Figure 4.1. Percentage of dynamically dead instructions in x86
benchmark programs. The DDI is further categorized as register set
dead instructions, memory set dead instructions, and NOP instruc-
tions

instructions due to a register set, dead instructions due to a memory set, and NOP

instructions. A NOP instruction does not change the state of the system. It is used

for several purposes such as to force memory alignment, to prevent hazards, etc.

On average the unoptimized MiBench benchmarks contain 3.34% register set dead
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instructions, 1.21% memory set dead instructions, and 0.06% NOP instructions.

The optimized MiBench benchmarks contain 3.88% register set dead instructions,

3.83% memory set dead instructions, and no NOP instructions. Correspondingly,

on average, the unoptimized SPEC programs contain 6.64% register set dead

instructions, 1.85% memory set dead instructions, and 0.21% NOP instructions.

The optimized SPEC benchmarks contain 4.58% register dead instructions, 5.42%

memory set dead instructions, and again, no NOP instructions.

We can make several observations from this figure. First, all benchmarks

contain both register and memory set DDI. Second, compiler optimizations are

able to completely remove NOP instructions for x86 binaries. Third, all the

benchmarks, with the exception of (optimized) bitcount, display a larger number

of memory set dead instructions in the optimized binaries than in the unoptimized.

for (i=0 ; i<NUM_NODES ; i++) {
    if((iCost = AdjMatrix[iNode][i]) != NONE) {
        ...
    }
}

==> converted by compiler to

for (i=0 ; i<NUM_NODES ; i++ ) {
    leal  (%edi,%ebx), %ecx
    movl  AdjMatrix(,%ecx,4), %esi
    cmpl  $9999, %esi
    movl  %esi, iCost

    ...
}

    je    .L45 //if false, enter if statement

Figure 4.2. Optimization to reduce load/store latency (dijkstra)

There could be several reasons for this increase in the memory set DDI. For

instance, we observed that GCC commonly performs an optimization that assigns

a value to a register in order to reduce the load/store latency. Figure 4.2 shows an

example of this optimization from the dijkstra benchmark. In this example, the

unoptimized binary first sets the memory location of the variable iCost, and then

checks whether the if-path is taken. Instead, the optimized binary stores the

value of iCost both in memory and in the register %esi. Then, instead of using
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the memory location holding the contents of iCost, the rest of the loop body uses

the %esi register for the value of iCost. The iCost variable is updated once in

each loop iteration. Thus, while this optimization will likely reduce the load/store

latency, the set of the memory location has a very high probability of being dead.

This specific example actually accounts for 48.56% of the DDI we discovered in

the optimized x86 dijkstra benchmark.

4.1.1.1 Static Instruction Contributions to DDI

We have observed that most DDI are either partially dead or difficult to elim-

inate using pure static compiler analysis. Promising approaches to remove DDI

will likely involve a hybrid compiler-hardware approach, where instructions tagged

by the compiler as probably dead will be tracked by the hardware at run-time. For

such techniques, success in eliminating DDI at low (hardware and power) costs

will depend on the compiler accuracy of tagging potentially dead instructions, and

the number of instructions that the hardware needs to track at run-time. In this

section we collect statistics to determine the feasibility of such DDI elimination

techniques.

The first/leftmost bar in Figures 4.3, 4.4, 4.5, and 4.6 show the number and

ratio of static instruction instances that correspond to the DDI as compared to

the total number of static instructions reached during the execution of each x86

benchmark. Thus, we can see that on average, for the optimized SPEC and

MiBench benchmarks, about 18.62% and 8.97% of the static instruction instances

contribute to the overall DDI respectively. These average ratios remain similar for

the unoptimized SPEC and MiBench benchmarks, with about 18.25% and 7.64%

of the static instructions contributing to the DDI respectively.

21



adpcm bitcount dijkstra ispell jpeg sha Mibench Average

1

10

100

1000

10000

100000

Optimized Benchmarks

N
u

m
b

e
r 

o
f 

In
st

ru
ct

io
n

s

Static (Partial) Dead Instructions Static Instructions

Figure 4.3. Number of static instruction instances corresponding
to DDI for optimized x86 MiBench benchmarks. The three bars for
each benchmark display static instructions reached without context
information, with a single callee-static PC function for context infor-
mation, and using the entire callee-static PC function stack as context
respectively. Note, the vertical axis is plotted on a logarithmic scale
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Figure 4.4. Number of static instruction instances corresponding to
DDI for optimized x86 SPEC benchmarks. The three bars for each
benchmark display static instructions reached without context infor-
mation, with a single callee-static PC function for context informa-
tion, and using the entire callee-static PC function stack as context
respectively. Note, the vertical axis is plotted on a logarithmic scale
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Figure 4.5. Number of static instruction instances corresponding to
DDI for unoptimized x86 MiBench benchmarks. The three bars for
each benchmark display static instructions reached without context
information, with a single callee-static PC function for context infor-
mation, and using the entire callee-static PC function stack as context
respectively. Note, the vertical axis is plotted on a logarithmic scale
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Figure 4.6. Number of static instruction instances corresponding
to DDI for unoptimized x86 SPEC benchmarks. The three bars for
each benchmark display static instructions reached without context
information, with a single callee-static PC function for context infor-
mation, and using the entire callee-static PC function stack as context
respectively. Note, the vertical axis is plotted on a logarithmic scale

Figures 4.7, 4.8, 4.9, and 4.10 are plotted to further study only the set of

static instructions that contribute to the program DDI. These figures sort (in

ascending order) and display the contributions of individual static (partially) dead

instruction instances to the overall percentage of dynamically dead instructions

for the x86 benchmarks. Thus, we can observe an interesting pattern in these

figures: a very small percentage of instruction instances actually contribute to

the total DDI in our x86 benchmarks. For most of the benchmarks, whether

they are unoptimized or optimized, about 80 to 90% of the static (partially) dead

instructions do not contribute to the overall DDI in the SPEC benchmarks. The

MiBench programs are a little more varied and contain fewer static instructions

in general. Still, we can observe that about 70% of the static (partially) dead

instructions do not contribute to 50% or more of the overall DDI for most of the

benchmarks.

Potential techniques to detect and eliminate dynamically dead instructions

will likely also be impacted by the probability of static instructions being dead at

run-time. Probability for our purposes implies the ratio of the number of times

that a static instruction is dead to the number of times it is encountered during
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Figure 4.7. Contributions of static (partially) dead instruction in-
stances to the DDI of optimized x86 MiBench benchmarks (sorted in
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Figure 4.8. Contributions of static (partially) dead instruction in-
stances to the DDI of optimized x86 SPEC benchmarks (sorted in
ascending order)
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Figure 4.9. Contributions of static (partially) dead instruction in-
stances to the DDI of unoptimized x86 MiBench benchmarks (sorted
in ascending order)

24



0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100
%

 D
D

I

% Static (Partial) Dead Instructions

bzip gcc gobmk h264ref hmmer libquantum mcf sjeng

Figure 4.10. Contributions of static (partially) dead instruction in-
stances to the DDI of unoptimized x86 SPEC benchmarks (sorted in
ascending order)

program execution. Thus, if a specific static instruction is always dead, then we

say that its DDI probability is 100%.

The leftmost bar for each benchmark in Figure 4.11 shows the percentage DDI

that are dead with 100% probability in the optimized x86 benchmarks. Thus, on

average, 0.14% and 1.73% of dynamically executed instructions are dead every

time for the MiBench and SPEC benchmarks respectively. In other words, only

about 2% and 17% of the DDI are dead with a 100% probability for our optimized

MiBench and SPEC benchmarks respectively.
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Figure 4.11. Percentage of DDI that are dead with 100% probabil-
ity in the optimized x86 benchmarks. From left to right, the bars for
each benchmark display the percentage of DDI without context infor-
mation, with context of a single (callee-static PC) function, and using
the entire function stack for context information

We further categorize these results based on how fast (in terms of number of
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Figure 4.12. Percentage of DDI that are dead with 90% probability
in the optimized x86 benchmarks. From left to right, the bars for each
benchmark display the percentage of DDI without context informa-
tion, with context of a single (callee-static PC) function, and using
the entire function stack for context information
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Figure 4.13. Percentage of DDI that are dead with 70% probability
in the optimized x86 benchmarks. From left to right, the bars for each
benchmark display the percentage of DDI without context informa-
tion, with context of a single (callee-static PC) function, and using
the entire function stack for context information

intervening executed instructions) an instruction is detected to be dead after it is

reached. This detection speed may affect how long a potential dead instruction

may need to be delayed to avoid its execution for DDI elimination techniques

and/or to develop other better and more informed online DDI elimination tech-

niques. We further extended our trace algorithm to not only trace the register

or memory location being set, but to additionally determine when the register

26



or memory location was (re)set. With this modification, we could also find dead

instructions within specific instruction windows. We employ instruction windows

of 5, 10, 20, 50, 100, 500, and >500 to analyze the speed of detecting dynamically

dead instructions. Thus, from Figure 4.11 we can see that most of the instruc-

tions with DDI probability of 100% can be detected to be dead within very small

instruction windows.

As expected, we observe that most of the dynamically dead instructions in our

benchmarks are not always dead. We further analyzed the ratio of DDI that are

dead with a very high probability of 90% and 70% and plotted these results in

Figures 4.12 and 4.13 respectively for our optimized benchmark set. These results

are much more optimistic. We find that, for our MiBench and SPEC benchmarks,

5.07% (65.76% of DDI) and 5.65% (55.83% of DDI) of total executed instructions

can be detected to be dead, on average, with the probability of 90% respectively.

With a probability of 70%, we can detect 5.51% (71.47% of DDI) and 5.99%

(59.19% of DDI) of the dynamically executed instructions to be dead for our

MiBench and SPEC benchmarks respectively. Interestingly, most of these are

detected dead within small instruction windows, which can benefit some plausible

hardware-based DDI detection techniques.

Figures 4.14, 4.15 and 4.16 plot similar graphs for DDI that are dead with prob-

abilities of 100%, 90%, and 70% and within the illustrated instruction windows

for the unoptimized benchmarks respectively. These results are mostly consistent

with our earlier observations from the optimized benchmarks. On average over

our benchmarks, while few dead instructions are always dead, a majority of DDI

can be detected to be dead with high probabilities and relatively quickly within

small instruction windows.
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Figure 4.14. Percentage of DDI that are dead with 100% probabil-
ity in the unoptimized x86 benchmarks. From left to right, the bars
for each benchmark display the percentage of DDI without context
information, with context of a single (callee-static PC) function, and
using the entire function stack for context information
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Figure 4.15. Percentage of DDI that are dead with 90% probability
in the unoptimized x86 benchmarks. From left to right, the bars for
each benchmark display the percentage of DDI without context infor-
mation, with context of a single (callee-static PC) function, and using
the entire function stack for context information

4.1.2 Context Information to Improve DDI Detection

It is important to note that an instruction with a unique static (program

counter or PC) location may be reached along different intra- and inter-procedural

paths. Exploiting such compile-time and execution-time context information will

effectively partition the dynamically executed instruction instances attributed to

a single static location into multiple disjoint sets. While such partitioning may
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Figure 4.16. Percentage of DDI that are dead with 70% probability
in the unoptimized x86 benchmarks. From left to right, the bars for
each benchmark display the percentage of DDI without context infor-
mation, with context of a single (callee-static PC) function, and using
the entire function stack for context information

increase the number of static locations a technique to eliminate DDI may need to

track, it should also improve the probability of each instruction associated with

context to be dead at run-time. In this section, we explore the impact of using

such context information on the DDI probability and the number of instances that

may need to be tracked.

There are many different kinds of context information that the compiler/hardware

can exploit or track. For example, information contained in the dynamic function

call-stack and/or the intra-procedural basic block path taken to an instruction can

provide context to partition dynamic instruction instances. In this research, we

limit the context information employed to the callee-static PC function call-stack.

To simulate and analyze the effect of gathering and using this context informa-

tion, we employ our GCC compiler to add further instrumentation to the generated

binaries. This new instrumentation dumps the static PC function identifier on the

entry and exit of each function as it is reached during execution.

We also extended our trace algorithm implementation to maintain the neces-

sary context information during the DDI analysis phase. We maintain knowledge
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of the function context by employing a call-stack during our tracing algorithm.

Remember that our algorithm scans the trace file backwards. Therefore, to gener-

ate the single callee-static PC function context information, we push the function

name or identifier on the call-stack on encountering a function return, and later,

pop the top element off the stack on reaching the function start. Thus, the single

function context is easily obtained by only using the top callee-static PC function

from the call-stack. To generate the full-stack context knowledge, we extend our

call-stack implementation such that each stack location also holds a hash of the

entire function call-stack state below it. On reaching the function return during

our backward scan algorithm, we push a CRC32 hash checksum of the current

function identifier with the previous checksum of top of the stack. The checksum

value is restored on reaching the function start. Thus, the CRC32 hash allows us to

cheaply maintain and employ context knowledge of the entire program call-stack

state at each point.

As discussed in the last section, Figures 4.11, 4.12, and 4.13 show the percent-

age of DDI that are dead with 100%, 90%, and 70% probability in the optimized

x86 benchmarks respectively. Remember that we obtain these probabilities by

dividing the number of times the instruction instance is dynamically dead by the

number of times the instruction instance is executed. Therefore, the ratio of DDI

with probabilities of 90% and 70% (plotted in Figures 4.12 and 4.13 respectively)

display the same or higher overall numbers than those plotted for a DDI prob-

ability of 100% Figure 4.11. The leftmost bar in each of these figures show the

percentage of DDI without any context information. The middle bars display the

percentage of DDI when using the context provided by a single immediate callee-

static PC function. Finally, the rightmost bar for each benchmark presents the
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percentage of DDI using the full callee-static PC function call-stack knowledge as

context.

We can make several important observations by examining the graphs plotted

in these three figures. First, we can see that the percentage of instructions falling

into individual instruction windows can change (either increase or decrease) when

context information is considered. Second, and much more importantly, we ob-

serve that context knowledge dramatically improves the fraction of DDI that are

detected to be dead with a very high probability. Thus, using single callee-static

PC function and full call-stack context, we find that, on average, for optimized

SPEC benchmarks DDI that are dead with 100% probability increases from 1.73%

to 3.25% (32.11% of DDI) and 4.38% (43.27% of DDI) respectively. Similarly,

DDI with 90% probability rises from 5.65% to 7.61% (75.18% of DDI) and 8.13%

(80.32% of DDI) respectively. On average, DDI for SPEC benchmarks with 70%

probability increases from 5.99% to 8.66% (85.55% of DDI) and 8.92% (88.12%

of DDI) respectively. It is very interesting and important to note that the simple

single function context information is able to derive most of the benefits of using

the full context information. Thus, using a small amount of context knowledge

can significantly assist and benefit the task of various DDI detection/elimination

algorithms.

Similarly, Figures 4.14, 4.15, and 4.16 also plot the impact of using context

information on DDI probabilities of 100%, 90% and 70% respectively. Without

discussing the specific numbers, we simply note that our observations from the

earlier optimized benchmark results, namely that (a) a high ratio of static DDI

instances are dead with a high probability, (b) this probability can be substantially

improved by using little context knowledge, and (c) most DDI can be quickly
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detected to be dead in small dynamic instruction windows, also hold very well over

the unoptimized benchmark programs. Thus, although we only explore one avenue

of context information, we can conclude that context knowledge can significantly

improve the DDI probability. However, complex and large context knowledge is

unnecessary because it is not likely to significantly increase DDI probabilities seen

with a small amount of context information.

As noted earlier, context information improves DDI probability by partitioning

the DDI instances that are attributed to a single static PC location into multi-

ple PC-context locations. Therefore, it is obvious that using context knowledge

can increase the number of locations that an online DDI detection or elimina-

tion algorithm may need to track, thereby increasing its cost and complexity.

Figures 4.3, 4.4, 4.5, and 4.6 that were discussed earlier show the number and

ratio of static instruction instances that correspond to the DDI as compared to

the total number of static instructions reached during the execution of each x86

benchmark. The middle bar in these figures display these static instance numbers

and ratios when using the single callee-static PC function context, while the last

bar for each benchmark shows these when using the full callee-static PC function

call-stack context knowledge.

We again find that the unoptimized and optimized x86 benchmarks show very

similar trends. For the optimized SPEC benchmarks, and compared to the base-

line of not using any context information, the number of static instances that at-

tribute to DDI (and may need to be tracked) increases by about 2.56 times when

using single function context (middle bars), and by 356.83 times when using the

full function call-stack for context (last bars), on average. For the MiBench bench-

marks, the corresponding increases are 1.40 times and 2.72 times respectively, on
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average. Thus, as expected, using the full call-stack context information results

in a massive jump, especially for the SPEC benchmarks, in both the number of

total static instances as well as the number of instances corresponding to DDI.

Much more important is the observation that, while employing even the single

function context raises the number of static DDI instances, this increase is much

more tempered and manageable. These results, combined with our earlier obser-

vation showing that using more complete context knowledge is not significantly

beneficial, should bode well for the cost and complexity of future, simple online

techniques to eliminate DDI.

4.1.3 Understanding and Characterizing Dynamically Dead

Instructions

An important component of this project is to determine and understand the

causes of DDI, so that effective techniques can be developed to eliminate them,

when beneficial. Consequently, for this work, we manually analyzed the dead

instructions for all our x86 MiBench benchmark programs to understand their

deeper causes. Based on this analysis, we partition the DDI into seven distinct

categories. These categories are selected such that dead instructions in each cat-

egory could be addressed with one compiler or architecture-based solution.

We use the example code snippets in Figure 4.17 to explain some of the com-

mon instances of DDI that we encountered for these benchmarks. Our seven

categories of DDI are described below:

1. NOP instructions: The NOP instruction does not change the state of the

system. It is used for several purposes, such as to force memory alignment,

to prevent hazards, etc. While NOPs are typically present in unoptimized
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if(qval > temp){

   movl   %edx, %eax
   sarl   $31,  %edx
   idivl  −292(%ebp)

   movl   %eax, %esi
}

   /* Compute temp /= qval into %eax */

   /* Copy %eax to %esi */

movw   %si, (%edi,%ecx,2)

if(temp >= qval) temp/=qval;
else temp = 0;

==> converted by compiler to
xorl   %esi, %esi // initialize temp to 0

(e)  Initialization of %esi wasted 
if the ‘if−path’ is taken (jpeg)

  (Category 6)

   ...
   if(ct < cmin)
      cminix = i;
   if(ct > ctmax)
      cmaxix = i;
}
 = cminix;
 = cmaxix;

cmaxix in the loop not uses,
except the last sets (bitcount)

(c) Multiple sets of cminix and

  (Category 7)

for(i=0 ; i<FUNCS ; i++){int temp =
for(k=1 ; k<DCTSIZE ; k++){

      ...
   else
      = temp;
}

// path1: temp not used

path2: temp is used

along path 1 (jpeg)

  (Category 5)

(b) ‘temp’ is partially dead

   if((temp = block[k]) == 0)

   *q++ = mytoupper(*p++)
for(p=w ; q=nword ; *p;)

*q = 0;
==> converted by compiler to

leal   −144(%ebp), %esi
leal   −143(%ebp), %ecx
for(p=w ; *p){
   movzbl %dl, %edx

   movb   %dl, (%esi,%eax) 
   movzbl 1(%ebx,%eax), %edx
   add    $1, %eax
}
movb   $0, (%edi)

   movzbl hash+754(%edx), %edx
   leal   (%ecx,%eax), %edi

  (Category 6)

// %esi=q[0] (nword[0]
// %ecx=q[1] (nword[1])

// %edx = (zero−extend) p
// %edx=mytoupper(*p)
// %edi = q++ (DDI)
// store %edx into mem. ’q’

// access next array locs.

// use of %edi

//%edx=p; %ebx=w; %edi=q; %eax=0

(d) %edi set but not used in       every loop iteration (ispell)

   

outp = (char *) outdata;
...
for(; len > 0 ; len−− ) {

}

   ...
   *outp++ = (delta & 0x0F);

...

(Category 4)

// outp not used later

(a) increment of ’outp’ in the last
      loop iteration is not used (adpcm)

Figure 4.17. Preliminary analysis of the occurrence of dynamic
dead instructions

codes, we found that the compiler does a good job of eliminating all NOPs

for optimized binary programs.

2. Stack setup/adjustment: The compiler grows the stack upon function

entry in order to make space for local variables. However, in the typical

code produced by GCC, both the base pointer and the stack pointer can be

used to access local variables. We also found that the compiler often uses the

base pointer to reference these locals and the stack register to only access

the top of the stack. Therefore, if the top of the stack is never referenced in

a function (like to push arguments onto the stack for a function call), then
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the adjustment of the stack register upon entering the function becomes a

dead instruction. Our trace algorithm will only see the stack register set

consecutively, once to adjust the stack at the beginning of the function, and

once to set the stack to the previous stack frame. The stack setup upon

function entry is never used.

3. Parameters not used in called function: A common case of DDI are

function parameters and return values that are never used. It may be possi-

ble in some cases for the compiler to determine this case, and use optimiza-

tions like function cloning to remove the dead instruction instances.

4. Dead assignments in first/last loop iteration: The example code from

the adpcm benchmark in Figure 4.17(a) shows a common case of DDI, where

a register or memory location is first used and then reset in each iteration

of the loop (outp). The last set of such variables will be a dead instruction

if it is not used after the loop ends. Optimizations such as loop peeling may

be used to remove this DDI.

5. Partial static dead instructions not removed by the compiler: Fig-

ure 4.17(b) shows an example from the jpeg benchmark that illustrates the

category of partially dead instructions. In this example, the initialization of

variable temp outside the for-loop is dead. Furthermore, the set of temp in

each loop iteration is also dead along path 1. It may be possible to update

the partial dead code elimination optimization in GCC to resolve these cases

of DDI.

6. Introduced by compiler optimizations: We also witness several exam-

ples of DDI introduced by compiler optimizations. Figure 4.17(d) shows
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an example, where the register %edi is used to hold the current address of

‘q’. The instruction ‘leal (%ecx,%eax), %edi’ updates %edi in each loop

iteration, but %edi is only used after the loop ends. Thus, all %edi updates,

except the last, are dead. In another example, shown in Figure 4.17(e), the

compiler attempts to reduce branch latency by moving the computation per-

formed in the ‘else’ portion of the if-branch before the branch, and then

eliminates the ‘else’ path to reduce the branch overhead. This extracted

code will be dead at runtime if the if-path is taken. Additionally, the code

example in figure 4.2 discussed earlier is another case of DDI that would

fall into this category. Analyzing compiler optimization heuristics may be

necessary to understand and eliminate this category of dead instructions.

7. Deads that are difficult for the compiler to address: Finally, Fig-

ure 4.17(c) shows code from the bitcount benchmark, where variables (cminix

and cmaxix) are reset multiple times in a loop, but are only used after the

loop ends. Thus, all except the last set of such variables are dynamically

dead. Although easy to detect, it may be difficult for the compiler to auto-

matically remove such DDI. We will explore microarchitectural techniques

in future research, guided by compiler driven feedback, to remove such DDI.

Overall, we categorized at least 90% of the DDI in each benchmark. Instances

of DDI that we did not categorize, the remaining 10% or less, will either fall

into one of the seven categories described or, the dead instructions might not

fall into any of them. The set of DDI we did not categorize is grouped into the

Miscellaneous set. Figure 4.18 shows the contribution of each category of DDI

for each benchmark. We can make several observations from this figure. First,

all of our identified categories of DDI occur in multiple benchmarks. Second,
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Figure 4.18. Relative categories of dead instructions in each bench-
mark. The left and right bars for each benchmark show DDI in unop-
timized and optimized codes respectively.

compiler optimizations are able to completely remove NOP instructions from the

generated codes. Third, the second category, dead instructions resulting from

stack adjustments, does not exist in 90% of the optimized benchmarks. This

does not mean that this type of DDI will not occur in optimized binaries, but it

suggests the compiler makes an attempt at removing these useless instructions.

One way the compiler might accomplish this is by utilizing registers as much

as possible for local variables, instead of needing to push these variables onto the

stack and requiring that initial stack setup. Fourth, the dead instructions for each

benchmark fall into only a small number of categories, which may differ between

its optimized and unoptimized versions. We may need to further refine these

categories and/or add new ones as we explore other benchmarks and architectures

in the future. Additionally, in future work, we will explore compiler and hardware

techniques to study and resolve DDI for generated binaries and executed codes, as

well as, their effect on the ratio of DDI and runtime performance of the program.
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4.2 ARM Results and Analysis

While the x86 is still the prominent architecture for desktop and server-class

machines, the ARM architecture is the de-facto standard for medium and high-end

embedded/mobile devices. Therefore, any study for contemporary architectures

cannot ignore the ARM architecture. In this section, we describe the results of

our DDI analysis on benchmarks compiled for the ARM architecture.

We updated the ARM port of our GCC compiler to instrument binaries to

collect DDI statistics on our ARM-Linux based systems. Our ARM PandaBoard

machine has a dual-core ARMv7 Processor and is running the Ubuntu 10.10 sever

OS. We use the same algorithm described in Section 3.2 to gather and traverse

the execution traces for the ARM benchmark binaries and collect the number

and characteristics of each program’s dynamically dead instructions. Since the

ARM is still characterized as an embedded architecture, we only use our MiBench

benchmarks for our analysis in this section.

4.2.1 Implementation and Challenges

In this section, we first describe some implementation details and interesting

challenges that we encountered in building and deploying our GCC-based frame-

work to analyze DDI statistics on the ARM. While some challenges were expected

due to the differences between the CISC x86 and RISC ARM architectures, other

issues were more surprising and unanticipated. For example, the ARM architec-

ture lacks powerful instructions like the ’lea’ instruction, or the load effective

address instruction, that allows us to easily instrument the binary code to obtain

the memory address used by load/store instructions on the x86. Instead, we had

to more carefully study the memory addressing modes on the ARM and use a
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greater number of more primitive instructions to get an accurate trace of memory

addresses reached during execution on the ARM.

Predication, or conditional instruction execution, is an important, unique,

and useful feature of the ARM architecture. However, the use of predication

also has important ramifications on DDI analysis. As mentioned, an instruction

is dynamically dead if it was executed by the processor and the result of that

instruction is never actually used by the program. Therefore, to perform accurate

DDI analysis, we need to know whether the predicated instructions encountered

during execution are executed or not. A predicated instruction on the ARM

executes conditionally based on the state of the CPSR (Current Program Status

Register) register. If the condition is satisfied, the instruction is executed, and

would be considered a DDI if its result is not used by the program. Otherwise,

the instruction is effectively turned into a NOP instruction. We consider such

instructions that fail their predicate condition to be a predicated dead instruction.

GCC RTL representation includes information on whether or not the assembly

instruction is predicated. To accurately handle the issue of predicated instructions,

we insert additional code instrumentation to dump the value of the CPSR register

prior to executing such predicated instructions at run-time. The value of the

CPSR register allows us to determine whether or not a predicated instruction was

executed or converted into a NOP. Then, in our trace algorithm, we perform the

same check of the CPSR register for every predicated instruction and determine

its influence on the overall DDI value.

We also encountered several unanticipated challenges during our research on

the ARM platform. For instance, the ARM is a lot slower and a somewhat more

restrictive development platform compared to the x86. Furthermore, we only
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had access to one ARM PandaBoard. Therefore, to reduce development time,

we decided to perform as much of the development activity as possible on the

x86, even for experiments on the ARM. While this turned out to be the right

decision and significantly lowered our overall development time and cost, this

approach required us to initially build a cross-compiler for the ARM on the x86.

We discovered that building this cross-compiler toolchain is not a trivial task.

The process is long, requires many different components, and correctly configuring

these components is a complex activity.

Another issue we encountered, unlike our experience with the x86, was the

discovery that the ARM port of GCC does not strictly restrict each RTL to have

a one-to-one correspondence with the generated assembly instructions. Figure 4.19

displays two examples of RTLs created for the optimized ARM ispell benchmark,

along with their corresponding assembly instructions. Figure 4.19(a) shows an

(insn 37 36 50 correct.c:678 (cond_exec (eq (reg:CC 24 cc)
     (const_int 0 [0x0]))
  (set (reg/v/f:SI 3 r3 [orig:190 q] [190])
    (reg/f:SI 13 sp))) (nil))

==> corresponding assembly instruction

moveq  r3, sp

(insn 174 173 181 correct.c:1269 (set (reg:SI 2 r2 [497])
    (eq:SI (reg:CC_NOOV 24 cc)

        (const_int 0 [0x0]))) (nil))

==> corresponding assembly instructions

movne  r2, #1
moveq  r2, #0

(a) RTL and corresponding assembly instruction of a
      conditionally executed instruction

      the other will be a predicated dead instruction
      where one instruction will always be executed and
(b) RTL and corresponding assembly instructions

Figure 4.19. Example RTLs generated for the optimized ARM ispell
benchmark with corresponding assembly instructions

example of an RTL that is typically generated to represent conditionally executed
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instructions. Earlier, we discussed our method to handle predicated instructions

and how we determine if the instruction actually executed. Our trace algorithm

parses the RTL structure and checks for the cond exec statement to determine if

an instruction is a predicated instruction. Obviously, this test would return true

for the example RTL in Figure 4.19(a).

However, Figure 4.19(b) is a special case. Firstly, it does not correspond one-

to-one with a single assembly instruction. Secondly, the multiple corresponding

assembly instructions are both predicated instructions. Thirdly, while the RTL

does not contain the cond exec statement, it still clearly uses the CPSR regis-

ter, which corresponds to the RTL operand (reg:CC NOOV 24 cc), inside the eq

operation. Finally, one of the corresponding assembly instructions will always be

executed due to the fact that if the condition of one mov fails, then the other

will be true. A machine dependent trace algorithm based on analyzing specific

instruction sets might have examined the contents of the CPSR register twice in

this example, once for each predicated mov instruction, to correctly handle this

case. However, our decision to base our parsing algorithm on the GCC RTLs was

to specifically avoid implementing a different algorithm for each architecture we

choose to analyze. Since our instrumentation to print the contents of the CPSR

register is based on the existence of the cond exec statement in an RTL, our

framework can not catch this instance. We assume the compiler creates a single

RTL for cases like those in Figure 4.19(b) because only a single instruction will be

executed regardless of the contents of the CPSR register. Therefore, the compiler

does not need to include a cond exec statement in the RTL.

However, we need a mechanism to accurately handle this special case in our

trace algorithm. Fortunately, because our algorithm is not concerned with what
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is inserted into the registers or memory locations (it is only concerned with what

registers or memory locations are used and set), this type of RTL does not actu-

ally break our DDI detection scan. We still discover the correct number of DDI

because we can determine from the RTL that (reg:SI 2 r2 [497]) will be set

and (reg:CC NOOV 24 cc) will be used to set it. Unfortunately, for our purposes,

we assume each RTL corresponds one-to-one with assembly instructions, which is

how we determine a static instruction’s contribution to the DDI found. Therefore,

we still had to modify our trace algorithm in two ways. First, we need to keep

track of the number of corresponding assembly instructions an RTL might have.

Second, we have to sacrifice some accuracy when determining an instruction’s

contribution to the total DDI. For the example RTL in Figure 4.19(b), our trace

algorithm would not be able to distinguish the predicated instruction from the

executed instruction without checking the contents of the CPSR register value.

Therefore, we choose to handle this scenario by always labeling the second as-

sembly instruction as predicated dead. Again, while the occurrence of such RTLs

does not change our ratio of DDI overall, it does make our analysis of a static

instruction’s contribution to the overall percentage of DDI less accurate. Fortu-

nately, this is only a problem in the optimized ARM binaries and does not occur

often.

We came across another challenge in the ARM port of GCC, which conflicted

with the reason behind our decision to insert our instrumentation during the

final code generation pass of the compiler. In theory, such late insertion of code

instrumentation should have allowed optimizations to have been already applied

to the code, which was what we found to be the case for the x86. Curiously, we

found that our GCC’s ARM port performs some ad hoc optimizations at a very
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late stage of compilation during code generation. Such late optimizations interfere

with our insertion of instrumentations, which cause some instrumentations to not

always be inserted for every instruction that requires it. Again, fortunately, this

was an issue that only occurred in the optimized binaries, and only very rarely.

Currently, we eliminate this problem by manually inserting our instrumentation

for these infrequent cases.

Finally, we encountered another unexpected challenge when we attempted to

link some of our generated binaries. Because each instruction has a fixed width of

32 bits, the ARM is limited to loading unsigned immediate values of a certain size.

Larger constants (such as memory addresses) require a data load from memory

because they can not be stored in the instruction itself. Therefore, the ARM

compiler embeds literal pools throughout the code to store these large constants.

For each instruction that uses a large constant, the compiler replaces the constant

with a short offset from the instruction location into the literal pool containing the

constant. The compiler must ensure that these offsets are small enough to encode

into each fixed-length instruction that requires them. As our instrumentation

is inserted after the compiler has already placed the literal pools, it sometimes

causes the code size to increase to a point where an instruction attempting to load

a large constant into a register goes out of range of the literal pool. This causes

the assembler to issue an error. In order to combat this issue, we placed additional

literal pools throughout the code, ensuring that the offsets are small enough to

encode into each instruction that performs a retrieval from the literal pool. We

successfully overcame all these specific challenges on the ARM platform. Next,

we present our DDI analysis and observations on the ARM. As mentioned earlier,

we only use the embedded MiBench benchmarks for our results on the ARM.
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4.2.2 Ratio of Dynamically Dead Instructions

Figure 4.20 shows the ratio of the number of total executed instructions for

each benchmark that are dynamically dead. We can see that, on average, our ARM

benchmarks contain a larger percentage of dead instructions than the previously

discussed x86 binaries, including the SPEC benchmarks. Our optimized MiBench

programs average 10.11% DDI, while the optimized benchmarks contain 20.60%.

Again, this observation of optimized programs containing more dead instructions

is consistent with earlier research performed on the Alpha architecture [2].
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Figure 4.20. Percentage of dynamically dead instructions in ARM
benchmark programs

While the x86 delivers a lower DDI ratio, the ARM benchmarks display a

similarly high ratio of DDI to other architectures, such as the DEC Alpha [2, 4]

and the Intel Itanium [17]. Again, this difference might be due to distinctions in

the benchmarks, compiler, or the architecture selected for these works.

Figure 4.21 shows a similar chart seen in Figure 4.20, with the dynamically

dead instructions broken up into four categories: dead instructions due to a regis-

ter set, dead instructions due to a memory set, predicated dead instructions, and

NOP instructions. As mentioned earlier, a predicated instruction is an instruc-

tion that executes conditionally based on the state of the CPSR (Current Program

Status Register) register. If the result is true, the instruction is executed. Oth-
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erwise, the instruction is effectively turned into a NOP instruction, which we

consider a predicated dead instruction. On average the unoptimized MiBench

benchmarks contain 8.44% register set dead instructions, 1.23% memory set dead

instructions, 0.39% predicated dead instructions, and 0.05% NOP instructions.

The optimized MiBench benchmarks contain 8.42% register set dead instructions,

4.63% memory set dead instructions, 7.55% predicated dead instructions, and 0%

NOP instructions, on average.
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Figure 4.21. Percentage of dynamically dead instructions in ARM
benchmark programs categorized as register set dead instructions,
memory set dead instructions, predicated dead instructions, and NOP
instructions

We can make several observations from this figure. First, all benchmarks

contain both register and memory set DDI. Second, compiler optimizations are

able to completely remove NOP instructions from the generated binaries. Third,

all the benchmarks display a larger number of memory set dead instructions in the

optimized binaries than in the unoptimized. And fourth, all the programs show

the optimized binaries contain the same or more predicated dead instructions than

the unoptimized binaries. The first three observations are patterns that we saw

in our previous x86 results. However, the last observation is unique to the ARM
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architecture because the x86 does not have predicated dead instructions.

4.2.3 Static Instructions and Dynamically Dead Instructions

adpcm bitcount dijkstra ispell jpeg sha Average

1

10

100

1000

10000

Benchmarks

N
u

m
b

e
r
 o

f 
In

s
t
r
u

c
ti

o
n

s

Optimized Static Instructions Optimized Static (Partial) Dead Instructions

Unoptimized Static Instructions Unoptimized Static (Partial) Dead Instructions

Figure 4.22. Number of instruction instances reached over execu-
tion of ARM MiBench benchmarks

Figure 4.22 displays the number and ratio of static instruction instances that

correspond to the DDI as compared to the total number of static instructions

reached during the execution of each ARM benchmark. Thus, we can see that

on average, for the unoptimized MiBench benchmarks, about 13.34% of the static

instruction instances contribute to the overall DDI. The average ratio grows for

the optimized MiBench benchmarks, with about 23.50% of the static instructions

contributing to the DDI. While we did not gather results with context information

for these programs, this figure still allows us to make an important observation. On

average, the unoptimized benchmarks contain more instruction instances reached

over the execution, than the optimized benchmarks. This trend is consistent with

the x86 results. We also observe that the percentage of static (partially) dead

instructions significantly increases in the optimized ARM benchmarks. It is likely

that this observation is due to the compiler’s liberal use of predicated instructions

in the optimized binaries.

Figures 4.23 and 4.24 are plotted to further study only the set of static in-
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stances to the DDI of optimized ARM MiBench benchmarks (sorted
in ascending order)
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Figure 4.24. Contributions of static (partially) dead instruction in-
stances to the DDI of unoptimized ARM MiBench benchmarks (sorted
in ascending order)

structions that contribute to the program DDI. These figures sort (in ascending

order) and display the contributions of individual static (partially) dead instruc-

tion instances to the overall percentage of dynamically dead instructions for the

ARM benchmarks. Again, we can observe an important pattern in these figures:

a small percentage of instruction instances actually contribute to the total DDI

in our ARM benchmarks. The figures suggest that, for most of the benchmarks,

whether they are unoptimized or optimized, about 70% of the static (partially)

dead instructions do not contribute to 50% or more to the overall DDI. We observe

a similar pattern in the x86 MiBench benchmarks.

Thus, in summary, the DDI characteristics and trends observed on the ARM

are consistent with our earlier observations on the x86, with the important excep-
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tion of the ARM binaries generating a significantly greater ratio of DDI. However,

we also find that this increase in the DDI ratio over the x86 is primarily due to

extensive use of the ARM-specific feature of predication by modern compilers like

GCC.
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Chapter 5

Future Work

Beyond the goals of this research to investigate the ratio, properties, and

types of DDI, the larger objective of our project is to develop compiler and hard-

ware techniques to resolve DDI, and evaluate their effect on program efficiency

and power consumption for multiple contemporary compilers and architectures.

Thus, there are several avenues for future work. First, we plan to study the

effect of static techniques, including the use of different compilers and optimiza-

tions on DDI. Second, we will explore existing hardware-only [2] and develop

new hardware and hybrid schemes to eliminate DDI on contemporary processors.

Third, we will evaluate the potential of new device technologies, such as tunneling

field effect transistors (TFET) [13, 15, 24] and spin-transfer torque RAM (STT-

RAM) [6, 21, 22], that with their unique characteristics may enable innovative

microarchitectural schemes to address the issue of DDI. Finally, the phenomenon

of DDI is closely related to the issues of value locality, and ineffectual instructions

that have also been widely studied by researchers. We plan to develop techniques

to simultaneously deal with all these related problems in a uniform manner.
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Chapter 6

Conclusions

As growth in single-thread program performance has stagnated in recent years,

more aggressive software and hardware techniques are necessary to reverse this

trend. Eliminating dynamically dead instructions that produce values not used

by the program provides an approach that can not only improve single-thread

program speed but also impact energy efficiency. Earlier studies report DDI to be

significant, but conducted their experiments for now-defunct and less mainstream

computer architectures. In this work we perform a comprehensive exploration of

DDI properties that are important to DDI elimination techniques for the (cur-

rently) more relevant x86 and ARM processor architectures.

We first present our GCC-based instrumentation and analysis framework that

provides a more portable environment to explore the number, ratio, and properties

of dynamically dead instructions across different architectures. We discover that,

for standard benchmark programs compiled with a state-of-the-art compiler, DDI

comprises a significant fraction of the total executed instructions on both the x86

(SPEC – 10.12%, MiBench – 7.71%) and ARM (MiBench – 20.60%) processors.

As noted in earlier research, compiler optimizations typically have the effect
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of increasing the DDI ratio. Further analysis shows that, while most of the static

instructions corresponding to the observed DDI are only partially dead, a large

fraction of such static locations are dead with a very high probability of over 90%.

Importantly, we determined that online analysis can detect most DDI within small

instruction windows. We also explored the percentage of static instructions that

contribute to the overall DDI, and found that to be a relatively low number. Ad-

ditionally, we investigated the effect of using context information to more precisely

differentiate between the DDI instances attributed to a single static location, and

found that a very limited amount of context knowledge can substantially improve

DDI probability. Finally, we also present observations from our manual study to

understand and categorize the DDI instances into a small number of independent

sets. We believe that our results presented in this paper set the stage for much

finer and deeper analysis, and eventual resolution of the problem of dynamically

dead instructions for programs executing on contemporary machines.
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