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Abstract 

Although VLIW architectures offer the advantages of 
simplicity of design and high issue rates, a major impedimegt 
to their use is that they are not compatible with the existing 
software base. We describe new simple hardware features for 
a VLIW machine we call DAISY (Dynamically Architected 
Instruction Set from Yorlrtown). DAISY is specifically in- 
tended to emulate existing architectures, so that all existing 
software for an old architecture (including operating system 
kernel code) runs without changes on the VLIW. Each time a 
new fragment of code is executed for the first time, the code 
is translated to VLIW primitives, parallelized and saved in a 
portion of main memory not visible to the old architecture, 
by a Ertual Machine Monitor (software) residing in read 
only memory. Subsequent executions of the same fragment 
do not require a translation (unless cast out). We discuss the 
architectural requirements for such a VLIW, to deal with is- 
sues including self-modifying code, precise exceptions, and 
aggressive reordering of memory references in the presence 
of strong MP consistency and memory mapped I/O. We have 
implemented the dynamic parallelization algorithms for the 
PowerPC architecture. The initial results show high degrees 
of instruction level parallelism with reasonable translation 
overhead and memory usage. 
Keywords: INSTRUCTION-LEVEL PARALLELISM, OBJECT 
CODECOMPATIBLE VLIW,DYNAMICCOMPILATION,B~NARY 
TRANSLATION,~UPERSCALAR 

1 Background and Motivation 

Very Long Instruction Word (VLIW) architectures of- 
fer the advantages of design simplicity, a potentially short 
clock period, and high issue rates. Unfortunately, high per- 
formance is not sufficient for success. One of the major 
impediments to using a VLIW (or any new ILP machine 
architecture) has been its inability to run existing binaries 
of estabIished architectures. It was argued (and not face- 
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tiously) in a recent keynote speech [I 11, that architectures 
which do not run Intel x86 code may well be doomed for 
failure, regardless of their speed! 

To solve the compatibility problem efficiently, there have 
been several proposals beyond plain or caching interprctcrs 
[lo]. One has been the object code translation approach (c,g, 
[20, 21, 22, 23]), where a software program takes as input 
an executable module generated for the old machine, and 
profile directed feedback information from past emulations, 
if available. It then generates a new executable module that 
can run on thenew architecture (resorting to interpretation in 
some difficult cases), and that gives the same results that plain 
interpretationwould. Although many of the nasty challenges 
to static object code translation (programs printing their own 
checksum, shared variables, self modifying code, generating 
a random number and using it as a branch target address, and 
so on) have been addressed, the static object code translation 
solution still has some problems. 

If object code trtislation is used to emulate applications 
written for one existing machine on another ([22,23]), then 
many primitives may need to be generated to emulate one 
old architecture instruction, or unsafe simplifying assump- 
tions may need to be made (e.g. about ordering of shared 
variable accesses, or the number of bits in the floating point 
representation) to get more performance, in which cast full 
compatibility is sacrificed. This is typicaIly because hard- 
ware features to help compatibility with an “important” old 
architecture were not designed into the new fast machine; 
compatibility was just not emphasized, or came as an aftcr- 
thought. For example, the set of condition codes maintained 
is often quite different in different architectures. This ob- 
ject code translation approach does allow the convenicncc of 
running many important applications of the old architccturc 
on the new machine, but does not provide a replacement for 
the old machine in terms of speed and range of applications, 

If thenew architecture is fully binary compatible with the 
old one by hardware design, but does not run with the best 
performance on old binaries, ([20,21]), and the new features 
of the new architecture that improve performance can bc uti- 
lized only by object code translation, or recompilation, the 
solution is still not perfect. Rapid adoption of new architcc- 
tural features for higher performance may be possible under 
certain circumstances; scientific and technical computing is 
an example. But computer designers often underestimate the 
strong inertia of the user community and software vendors at 



large, and their resistance to change. 
Another approach is to translate the old architecture in- 

structions to a new internal representation (e.g. VLIW) at 
Icache miss time, by hardware [9, 14, 191. This approach 
is robust in the sense that it implements the old architecture 
completely. But the optimizations that can be performed 
by the hardware are limited, compared to software oppor- 
tunities. Also the conversion from the old architecture rep- 
resentation in memory to the internal Icache representation 
is complex (especially if one attempts to do re-ordering) 
and can require substantial hardware design investment, and 
VLSI real estate. 

As an alternative we present DAISY (D~~~amicaZ~ 
Axhitected Instruction Set front Yorktown). DAISY em- 
ploys software translation, which is attractive because it 
dispenses with the need for complex hardware whose sole 
purpose is to achieve compatibility with (possibly ugly) old 
architecture(s). Given the appropriate superset of features in 
the new architecture (e.g. condition codes inx86, PowerPC, 
and S/390 format), DAISY can be dynamically architected 
by software to efficiently emulate any of the old architec- 
tures. Assuming that we can begin with a clean slate for both 
hardware and emulation software, and adopt a simple de- 
sign philosophy, what architectural features and compilation 
techniques are required to make software translation efficient 
and 100% compatible with existing software? We attack this 
problem in the current paper. 

While DAISY and this paper focus mainly on a VLIW 
as the new architecture, the same ideas can be applied any 
new superscalar design, and potentially to other new LP ar- 
chitectures that break binary compatibility as well. Current 
compiler techniques for attaining high ILP are unacceptably 
slow for dynamic parallelization, which requires real-time 
performance from a compiler, in order to make the over- 
head imperceptible to the user. To this end, we describe a 
new, significantly faster parallelization technique. We have 
implemented this technique for the PowerPC and we report 
the initial encouraging EP results. Another feature of the 
new compilation technique is the ability to maintain pre- 
cise exceptions, so the original instruction responsible for 
an exception can be identified, whenever an exception oc- 
curs. While out-of-order superscalars use elaborate hardware 
mechanisms to maintain precise exceptions, in our case this 
is done by soflware alone. 

The paper is organized as follows: We first give an exam- 
ple illustrating the new fast dynamic compilation algorithm 
used by DAISY. Next, various architectural features to sup- 
port high performance translation are described. We then de- 
scribe the dynamic translation mechanism whereby DAISY 
runs the old software with minimal hardware support. Next 
we discuss the mapping mechanisms from the old code to 
VLJW code and back. We then provide some experimental 
results and conclude. 
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2 The Compilation Algorithm 

In this paper, we call the original, old architecture that 
we are trying to emulate, the base architecture. The VLIW 
which emulates the old architecture we called the migrant 
architecture, following the terminology of [20]. The base 
architecture could be any architecture, but we will be giving 
examples mostly from the IBM PowerPC. 

Traditional caching emulators may spend under 100 in- 
structions to translate a typical base architecture instruction 
(depending on the architectural mismatch and complexity of 
the emulated machine). So caching emulators are very fast, 
but do not do much optimization nor ILP extraction. Tradi- 
tional VLJW compiler techniques, on the other hand, extract 
considerable ILP at the cost of much more overhead. 

The goal in DAISY is to obtain significant levels of ILP 
while keeping compilation overhead to a minimum, to meet 
the severe time constraints of a virtual machine implementa- 
tion. Unlike traditional VLIW scheduling, DAISY examines 
each operation in the order it occurs in the original binary 
code, converting each into RISC primitives (if a CISCy oper- 
ation). As each RISC primitive is generated, DAISY imme- 
diately finds a VLJW instruction in which it can be placed, 
while still doing VLJW global scheduling on multiple paths 
and across loop iterations and while maintaining precise ex- 
ceptions. 

Figure 1 shows an example of PowerPC code and its 
conversion to VLJW code l. This conversion uses the al- 
gorithm described in [6]. However, the discussion below 
should make the main points clear. We begin with four major 
points: . 

l Operations l-1 1 of the original PowerPC code are 
scheduled in sequence into VLIW’s. It turns out that 
two VLIW’s sufiIce for these 11 instructions, yielding 
an ILP of 4, 4, and 3.5 on the three possible paths 
through the code. 

l Operations are always added to the end of the last 
VLJW on the current path. If input data for an op- 
eration are available prior to the end of the last VLIW, 
then the operation is performed as early as possible 
with the result placed in a renamed register (that is not 
architected in the original architecture). The renamed 
register is then copied to the original (architected) reg- 
ister at the end of the last VLIW. This is illustrated by 
the xor instruction in step 4, whose result is renamed 
to r63 in VLIWl, then copied to the original desti- 
nation r4 in VLIW2. By having the result available 
early in r63, later instructions can be moved up. For 
example, the cntl z in step 11 can use the result in 
r63 before it has been copied to r4. (Note that we 
use parallel semantics here in which all operations in 
a VLIW read their inputs before any outputs from the 
current VLIW are written.) 

l The renaming scheme just described places results in 
the architected registers of the base architecture in orig- 
inal program order. Stores and other operations with 

‘For an animated version of this example, please visit 
http://www.research.ibm.com/vliw. 
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Figure 1: Example of conversion from PowerPC code to 

VLIW tree instructions. 
non-renameable destinations are placed at the end of 
the last VLIW on the current path. In this way, precise 
exceptions can be maintained. 
For example, assume an external interrupt occurs im- 
mediately after VLIWl finishes executing, and prior to 
the start of VLIW~. The interrupt handler is just an 
incrementally compiled version of the standard Pow- 
erPC interrupt handler. Hence it looks only at Pow- 
erPC architected registers. These registers appear as 
if instruction 2, bc has just completed execution and 
control is about to pass to instruction 3, sli. (The 
instruction address register is even set to the proper 

PowerPC address of the sli, as will be described in 
Section 3.3.) Since VLIW~ expects the value of the 
speculatively executed xor to be in non-architcctcd 
register r63, it is not a valid entry point for the intcr- 
rupt handler to return to: the value of r63 is not saved 
by the PowerPC interrupt handler, and hence its value 
may be corrupted upon return from the interrupt. Thus 
the VMM must either (1) interpret PowerPC instruc- 
tions starting from instruction 3, sli., until reaching 
a valid entry into VLIW code (which depends only 
on values in PowerPC architected registers), or (2) it 
must compile a new group of VLIW’s starting from 
instruction 3, so as to create a valid entry point. 

. VLIW instructions are trees of operations with multiple 
conditional branches allowed in each VLIW [5]. All 
the branch conditions are evaluated prior to execution 
of the VLIW, and ALU/Memory operations from the 
resulting path in the VLIW are executed in parallel, 

Note that this approach works even if data is mis- 
interpreted as code and aggressively scheduled. As we dis- 
cuss more in Section 2.1, no side effects to architected re- 
sources occur until the point in the original program at which 
they would occur. However, we can and do limit scheduling 
of data by halting translation at unconditional branches. If 
the address following such a branch is indeed code, it must 
be reachable in one or more of the following ways: (1) by 
some other path on the page, (2) some branch from another 
page, or (3) by an indirect jump. In case (l), the address will 
be properly translated when encountered on the other path, 
For cases (2) and (3), the address will be translated when 
the executing program actually attempts to branch to that ad- 
dress. In Section 3.2, we discuss VLIW branch instructions 
which facilitate cases (2) and (3). 

As this example suggests, the instruction set of the tni- 
grant K!JW architecture should be a superset of the base 
architecture for efficient execution. 2 This example also 
raises several questions. How is an OFFPAGE branch han- 
dled? How and why is it different than an ONPAGE branch7 
How are indirect branches handled? These questions arc 
addressed in Section 3. 

2.1 Essential Architectural Features for Ag- 
gressive Reordering 

The VLIW must have the usual support for speculative 
execution and for moving loads above stores optimistically, 
even when there is a chance of overlap, as discussed in (c.g. 
[13,12,20,5,8]). Furthermore, dataintermingledwith code, 
and (unknowingly) scheduled as code must not cause errant 
execution. In order to keep the paper self contained, WC 
briefly mention here how we address these problems. 

Each register of the VLIW has an additional exception 
tag bit, indicating that the register contains the result of an 
operationthat caused an error. Each opcode has a speculative 
version (in the present implementation, operations that set a 

aComplex and/or infrequent instructions such as Load M~lllple Regls- 
ters or Decimal Divide can be decomposed into simpler primitives, 
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non-architected register such as r63 will be speculative). A 
speculative operation that causes an error does not cause an 
exception, it just sets the exception tag bit of its result register. 
The exception tag may propagate through other speculative 
operations. When a register with the exception tag is used by 
a non-speculative commit operation, or any non-speculative 
operation, an exception occurs. This is illustrated below: 

ORIGIBAL CODE VLIY CODE 

load x63<-[Addr] 

bc Ll bc Ll 

load r3<-[Addr] copy r3<-r63 

Register r63 is not architected in the base architecture. 
Hence when it is loaded, no exception occurs, even if this 
load would normally cause a page fault or segmentation 
violation. Instead the exception tag bit of r63 is set. If 
the bc falls through, the attempt to copy r63 to r3 will 
result in an exception since r3 is architected in the base 
a&itecture. However, if bc is taken, then execution con- 
tinues apace and no exception is ever taken. This mechanism 
allows the VMM to move loads aggressively above condi- 
tional branches without changing the exception behavior of 
the original program. 

As discussed above, loads may be moved above stores 
that cannot be proven not to store into the same location. If 
there does turn out to be aliasing between a speculative load 
and a store it passed, or some other processor changed the 
memory location, the code must be retranslated starting at the 
load. This allows both the optimistic execution of loads on a 
single program, and also strong multiprocessor consistency 
(assuming the memory interface supports strongly consistent 
shared memory). 

It is not always possible to distinguish at dynamic compile 
time which loads refer to I/O space (I/O references shouldnot 
be executed out of order). A speculative memory mapped 
I/O space load, will be treated as a no-op, but the exception 
tag of the result register of the load operation will be set. 
When the load is committed, an exception will occur and the 
load will be re-executed -non-speculatively this time. 

Note that neither exception tags nor the nonarchitected 
registers are part of the base architecture state; they are 
invisible to the base architecture operating system, which 
does not need to be modified in any way. With the precise 
exception mechanism, there is no need to save or restore 
non-architected registers at context switch time. 

Finally, for this paper, we assume that the base archi- 
tecture machine is a “standard” register oriented machine 
with sequential semantics. This need not be the case. For 
example, [7] outlines how the DAISY approach could be 
implemented for a Java stack machine. If the base architec- 
tule is a VLIW with parallel semantics, where x = y; y 
= x; means exchange x and y, the code must first be con- 
verted to sequential code by introducing temporaries. The 
exchange then becomes the sequential code, 
t = x; x = y; y = t;. 

3 Page and Address Mapping Mechanisms 

In this section, we describe the address space layout of 
the VLIW or migrant architecture and how it compares to 
that of the base architecture. We then describe why this 
layout allows a translation mechanism whereby the migrant 
architecture runs the old base architecture software with 
minimal hardware support. We also discuss why with this 
layout, a page is a useful unit of translation for dynamic 
translation. Finally we describe why DAISY is robust in the 
presence of self-modifying or self-referential code and why 
all possible entry points to a page need not be known when 
translating from a particular entry point to that page. 

The VLIW (migrant architecture) has a virtual memory 
that is divided into 3 sections, as illustrated in Figure 2. The 
low portion, starting from address 0, is mapped with the 
identity mapping, where VLIW virtual address = VLIW real 
address, and is identical to the base architecture5 physical 
address space. (i.e., “real memory” for PowerPC, “absolute 
memory” for S/390, “‘physical memory” for x86). In Fig- 
ure 2, for example the base architecture virtual page at virtual 
address 0x3 0 0 0 0 is mapped to the base architecture phys- 
ical page at physical address 0x2 0 0 0 (which is the same 
as VLIW virtual address 0x2 0 0 0 in the low portion of the 
VLIW virtual memory), through the normal virtual memory 
mechanism of the base architecture. 

The next, middle portion of the VLIW virtual memory 
address space, comprises of (1) a read only store (ROM), 
which contains the Virtual Machine Monitor (VMM) soft- 
ware (that accomplishes the dynamic translation between 
base architecture code and VLIW code), (2) a read/write 
area to store various data structures needed by the VMM, 
and (3) a nonexistent memory area (a hole in VLIW virtual 
address space). The middle section (where present) is also 
mapped with the identity mapping, VLIW virtual = VLIW 
real. 

The third and top section is the translated code area, and 
starts at a large power of 2 address called VLIW-BASE 
(e.g.Ox8 00 00000). There are at least two ways in which 
this section can be mapped: 

l For each page in the physical memory of the base ma- 
chine, (= the low portion of VLIW virtual memory) 
there is an N times larger page in the translated code 
area of the VLIW virtual address space. To achieve 
an efficient mapping between the base architecture 
code and VLIW code, N should be a power of 2, so 
N = 4 seems a reasonable value for PowerPC, S/390 
or x86. (The actual code expansion can be larger or 
smaller, as described in later sections.) The transla- 
tion of a page at physical address n in the base archi- 
tecture physical memory, is at VLIW virtual address 
n x N + VLIW-BASE. The translated code area is not 
mapped VLIW virtual = VLIWreal (since that would 
require a VI&V real memory area N times larger than 
the base architecture memory). Instead, the VMM 
translates pages when the first execution attempt oc- 
curs, and maps it to a real VLIW page frame from a 
pool of page frames in the upper part of VLIW real 
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storage (discarding the least recently used ones in the 
pool if no more page frames are available). 

l An alternative is to maintain the top section of memory 
as a hash table of translated entries. The hash table 
is indexed by the base architecture physical address 
and contains the real address of translated VLIW code. 
This hash table is maintained by the VMM, which 
adds entries to the hash table as page entry points are 
translated, and removes them as translations of new 
pages need the space. This approach has the advantages 
(1) that code for a translated page can be contiguous, 
(2) that code need never be moved when a new entry 
point is discovered, and (3) that there is less wastage 
- no portion of a VLIW real memory page need be 
wasted if the actual translation requires less than an 
NX expansion. However, this second mapping is more 
complicated than the first approach, and hence slower. 

For simplicity, we shall discuss only the mechanisms 
first mapping in the Sections below. However, the second 
approach can be extended in a straightforward manner to 
accomplish the actions described. 

3.1 Creation of a Page Translation 

Suppose a program running on the base architecture 
branches offpage to a base architecture instruction, whose 
physical address is n. In the translated version of the same 
program running on the VLIW, this branch will be executed 
bybranchingintoVLIWvirtualaddressnxN+VLIW-BASE 
in upper area of the VLIW virtual address space. Assume the 
beginning physical address of this 4K byte base architecture 
physical page was ng =(&OxfffffOOO)(inCnotation). 
If this base architecture page has never been executed before, 
then the corresponding NX 4K byte page at VLIW virtual 
address (no x N + VLIW-BASE) is not mapped, and there- 
fore a “VLIW translation missing” exception occurs, which 
is handled by the VMM. The VMM creates a translation for 
the base arclzitecfure physical page at physical address no, 
and makes the corresponding translated code area page map 
to some NX 4K byte page frame in the upper area of VLIW 
real memory. Then the interrupted translated program will be 
resumed to redo the branch to address (nx N+VLI W-BASE), 
which will now succeed. When that fist page of the base 
architecture program branches to a physical address TZ’ in a 
second, different base architecture physical page that has not 
yet been executed, that page will in turn be translated and 
mapped in the same manner. 

As a concrete example, as shown in Figure 2, suppose the 
base architecture program begins when the operating system 
branches to base architecture virtual address 0x3 0 10 0 (part 
ofthe4Kpageat Ox30000 - Ox3Offf). 

. The base architecture virtual address 0x3 0100 has 
been mapped (via base architecture page tables) to base 
architecture physical address 0x2 10 0 (part of the 4K 
pageframe 0x2000 - Ox2fff). 

. The VLIW transIation of 0x2 100 is at VLIW 
virtual address 4 x 0x2100 + VLIW-BASE = 
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0x80008400 (part of the 16K page 0x80008000 
- Ox8000bf f f). 

l In the translated code, the branch to base arclzitecfurr 
virtual address 0x3 0 10 0 is really executed as a branch 
toVLIWvirtualaddress 0x800084 00, which belongs 
to a 16K VLIW virtual page that is not yet mapped. So 
this branch initially causes a translation missing intcr- 
rupt to the VMM. The VMM creates the translation of 
the base architecture 4K physical page frame 0x2 0 0 0 
- Ox2f f f and writes it into the VLIW 16K page 
frame at (say) VLIW real address 0x02000000 - 
0x02003fff, 

*Finally the VMM maps the VLIW 16K virtual page 
0x80008000 - Ox8000bfff to this page frame 
at 0x02000000 - Ox02003fff. 

The interrupted translated program is then restarted, and 
now the branch to VLIW virtual address 0x8 0 0 0 84 0 0 suc- 
ceeds without an interrupt, and starts executing the translated 
VLIW code for the first page. 

We emphasize that the contents of the upper portion of 
the VLIW Real Memory are managed by the VMM and arc 
not paged. When room is needed for newly translated code, 
theVMM discards the least recently used translation to make 
space. At some point it may be desirable to page translations 
to disk so as to save them for later use, but initially WC wish 
to develop an architecture that requires no base software or 
system changes. 

All exceptions are fielded by the VMM. When an exccp- 
tion occurs, the VLIW branches to a fixed offset (based on 
the type of exception) in the VMM area. So far WC havo 
described the VLlW translation not present and cocle NIO& 
zjkation interrupts, that are handled directly by the VMM. 
Another type of exception occurs when the translated code 
is executing, such as a page fault or external interrupt. In 
such cases, the VMM first determines the base arc~zitecfure 
instruction that was executing when the exception occurred, 
(The translation is done maintaining precise interrupts as was 
described in Section 2, so this is possible.) The VMM then 
performs intenupt actions required by the base arclzitectzrre, 
such as putting the address of the interrupted base ar- 
chi tee ture instruction in a specific register. Finally the 
VMM branches to the translation of the base operating sys- 
tem code that would handle the exception. When the baso 
operating system is done processing the interrupt, it executes 
a return- from- interrupt instruction which rcsumcs 
execution of the interrupted code at the translation of the 
interrupted instruction. 

We still need to address the problem of how to handlc an 
offpage branch in the base architecture to an address q on 
the same 4K page as n, but where q was not identified as a 
possible entry point during the translation starting from n. 
This problem is addressed in Section 3.2. Another concern 
is self-referential code such as code that takes the checksum 
of itself or code with floating point constants interrnixcd 
with real code or even PC-relative branches. These arc all 
transparently handled by the fact that all registers architectcd 
in the base architecture -including theprogram counter or 
instruction address register-contain the values they would 
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contain were the program running on the base architecture. 
The only means for code to refer to itself is through these 
registers, hence self-referential code is trivially handled. 

A final major concern is selfmodifying code. Each “unit” 
of base architecture physical memory (low section of VLIW 
virtual memory) has a new read-only bit, not known to the 
base architecture. (The unit size is 4K for PowerPC, 2 2 
bytes for S/390, 2 1 byte for x86 - perhaps 8 for both.) 
Whenever the VMM translates any code in a memory unit, 
it sets its read only bit to a 1. Whenever a store occurs to a 
memory unit that is marked as read-only (by this or another 
processor, or I/O) an interrupt occurs to the VMM, which 
invalidates the translation of the page containing the unit. 
The exception is precise, so the base architecture machine 
state at the time of the interrupt corresponds to the point 
just after completing the base architecture instruction that 
modified the code (in case the code modification was done by 
the program). After invalidating the appropriate translation, 
the program is restarted by branching to the translation of the 
base architecture instruction following the one that modified 
the code. If the page currently executing was modified, then 
retranslation of the page will occur before the program can 
be restarted. 

The above paragraphs describe the logical behavior of 
the address mappings. In the actual implementation, these 
multiple levels of address mapping are collapsed to one level, 
so cross-page branches can execute very efficiently, as will 
be seen in section 3.2. 

3.2 VLJW Branch Instructions 

We described in Section 3.1 how one could find the trans- 
lation of a base architecture instruction at physical address n, 
by branching to VLJW virtual address n x N + VLIW-BASE. 
So, if an instruction is at offset nin the basearchitecture page, 
its translation is at offset n x N in the VLIW translated code 
page. In reality, not all entry points are valid all the time in 
the VLIW page, a fact with which cross-page branches must 
deal. There are multiple ways of implementing cross-page 
branches, and we first describe a high-performance altema- 
tive. We then describe two lower performance and cheaper 
alternatives. 

High Performance Branches 

The VLIW primitive to perform a cross-page branch is: 
(G~~.~R~SS-PAGE reg offset) 

The off set is added to the register reg to obtain an effec- 
tive address of the base architecture. That effective address 
is first translated to a physical address of the base architec- 
ture; then it is multiplied by N and VLIWBASE is added 
to it; then it is translated to a VLIW real address, which is 
finally the address of the branch target VLIW. If the base 
architecture physical address is not available, a base archi- 
tecture instructionpagefault exception occurs (to a handler 
in the VMM - all exceptions are fielded by the VMMJ 
If the translated VLIW code for this page is not available, 
a translation missing exception occurs. If the target VLIW 
is not marked as a valid entry, an invalid entry exception 

occurs. Otherwise execution proceeds with the target VLlW 
instruction. 

Theabovedescriptionmay give the impression ofa daunt- 
ing CISC instruction, but here is how it can be implcmentcd: 
Assume the VLIW Instruction Translation Lookaside Buffer 
(ITLB) maps the base architecture 4K virtual page numbers 
directly into VLIW Nx 4K real page frame numbers that 
contain the translated code. The software could guarantee 
that the low order 12 bits of reg is 0, or the off set is 0, so 
the low order 12 bits of the effective address reg+of f set: 
is immediately available. The low order 12 bits of the effcc- 
tive address are shifted left by logz(N) bits, and applied to 
the Icache (14 bits allows a 64K cache, if 4 way associative). 
At the same time the upper bits of the effective address arc 
sent to the ITLB. If a VLIW real address that comes out 
of the Icache directory matches the VLIW real address that 
comes out of the ITLB, no miss occurs. The target VLIW 
is then checked for an valid entry marker on the next cycle, 
while optimistically executing the target VLIW as if it were a 
valid entry (and recovering before any side effects occur, and 
causing an exception, in case the target VLIW is an invalid 
entry). 

If only an Icache miss occurs, hardware handles it. One 
could handle an ITLB miss by hardware sequencers, but 
using a yet lower level of software to implement a “micro- 
interrupt” ITLB miss handler is simpler, and more in lint 
with the philosophy of the present design. (Note that all 
software in a VLIW is like horizontal microcode, so no part 
of the VLIW software is necessarily slower than horizontal 
microcode.) 

Other types of branches are: 

. (GOTO off set 1 just branches to the VLIW at 
off set in the current page (no check for a valid cn- 
try). Ordinary intra-page branches between VLIW’s 
use this branch. 

l (GOT0 lr) , (GOTO long-offset) branch to 
the VLIW at the real address given by a link rcgis- 
ter, lr or the long-off set, There is no check for a 
valid entry, and the ITLB is bypassed. Branches to an 
overflow area may use these primitives. 

The cross-page branch, ITLB, and valid entries mccha- 
nism described above are intended for reducing the latency 
of a cross-page branch. If we give up the simultaneous ITLB 
lookup, we could first do the address translation in a prior 
VLIW, and then send a VLIW real address to the Icache, 
which has some advantages in Icache design. 

; reg + offset is translated to physicaladdross n, 

; The VLIY real address for VLIU virtual addroan 

; n*B + VLIU-BASE is then placed in lrl. 

(LBA reg offset (lrl)) 

; Goto VLIU real addr in lrl. Check if valid ontry 

(GO~ACROSS~PAGElrl) 

Simpler Cross Page Branches 

As noted earlier, we can also give up the valid entry 
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point approach. Let the translated code page for a base 
anditecture page consist of a vector of pointers. For a base 
instruction at offset n in the base architecture page, vector 
element vz will contain the real address of the VLIW code, or 
in case the entry at offset n has not yet been created for this 
page, the real address of a translator routine, that will create 
the corresponding VLIW code. This costs another level of 
indirection, but is simpler to manage. 

; Put translated reg + offset in tl ==> tl contains 

; real address of ptr to VLIU code for this entry. 

(LRA reg offset (tl)) 

; Load ptr to real addr of VLIU code into lrl. 

(LOAD-REAL tl 0 (irl)) 

; Goto VLIY code. Hake no valid entry CM 

(GOTO lrl) 

For additional simplicity, we could even give up the ITLB 
and simulate a big direct mapped ITLB in VLIWreal memory 
by software. In many cases the operations for doing the cross- 
page branch may be moved up into previous VLIW’s, and 
their latencies hidden. 

3.3 Finding Exception-Causing Instruction in 
Base Architecture 

As we mentioned in Section 3.1, when an exception oc- 
curs in VLIW code, the VMM should be able to find the 
base anzhitecture instruction responsible for the interrupt, 
and the register and memory state just before executing that 
instruction. 

A Virtual Page Address (WA) register is maintained. 
The VPA contains the address of the current page in the 
original code, and is updated in the translated code whenever 
a cross-page branch is executed. The simplest way to identify 
the original instruction that caused an exception is to place the 
offset of the base instruction corresponding to the beginning 
of a VLIW as a no - op inside that VLJW, or as part of a 
table that relates VLIW instructions and base instructions, 
associated with the translation of a page. For example, the 
offset within a page could be kept in a IO-bit field in each 
VLIW instruction. (10 bits assumes a 4096 byte page aligned 
on a I-byte boundary.) 

If the VLIW has an exception semantics where the en- 
tire VLIW appears not to have executed, whenever an error 
condition is detected in any of its parcels, then the offset 
identifies where to continue from in the base code. Interpret- 
ing a few base instructions may be needed before identifying 
the interrupting base instruction and the register and memory 
state just before it. 

If the VLIW has a sequential semantics (like an in-order 
superscalar, where independently executable operations have 
been grouped together in “VLIW’s”) so that all parcels that 
logically preceded the exception causing one have executed 
when an exception is detected, the identification of the orig- 
inal base instruction does not require interpretation. Assum- 
ing the base architecture code page offset corresponding to 
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the beginning of the VLIW is available, the original base 
instruction responsible for the exception can be found by 
matching the assignments to architected resources from the 
beginning of the VLIW instruction, to those assignments in 
the base code, starting at the given base code offset. 

One way to avoid extra fields, tables, and pointers to 
the original base architecture instructions altogether is as 
follows: Let us assume the VLIW has sequential semantics, 
and exceptions occur at a parcel of VLIW, (as opposed to 
a VLIW boundary). In this scheme there are no offsets in 
the VLIW code that relate it to the base architecture, nor 
any tables. This scheme relies on the fact that the entry 
point of the group of VLIW’s, is known to have an exact 
correspondence with a base architecture instruction. (If the 
beginning of the group is at offset N x TZ in the translation 
page, the original base instruction must be at offset n in the 
base architecture page). 

We describe the scheme with the help of the example in 
Figure 3. Assume that the load at address 0x8 causes a 
page fault. To determine the base architecture address of the 
exception-causing instruction, the VMM finds the backward 
path from the exception causing parcel to the entry point of 
the group of VLIW’s. The exception is registered in VLIW~ 
in the copy r5=r5 ’ instruction, when the exception bits 
associated with r5 ’ are acted upon. Thus the VMM traces 
from this parcel to the start of VLIWl. the entry point of this 
group of VLIW’s. If VLIW’s are laid out in a topological 
order from the entry point, a backward scan in the binary 
code from the interrupting parcel to the nearest entry point 
should be able to rapidly identify the path from the entry 
point to the interrupting parcel. 

As the backward path 
isscanned, {copy, bc, VLIW2, b VLIW2, load, 
cmpi , VLIWl}, the VMM remembers the branch direc- 
tions taken by conditional branches, in this case the fact 
that bc cr0 . eq is not taken. Upon reaching the top of the 
backwards path, the base architecture address corresponding 
to VLIWl is calculated: VPA + VLIWlo~set/4, ifthe code 
has 4x expansion. In this case the calculation yields address 
0 in the base architecture. Now the same path is followed 
in forward order, {VLIWl, cmpi, load, b VLIWZ, 
VLIW~, bc, copy}. There has to be a one to onecor- 
respondence between assignments to architected registers, 
conditional branches and stores in the VLIW code path, and 
assignments to architected registers, conditional branches 
and stores in the base code path. Thus the cmpi assignment 
to cr0 is matched first. The load to r5’ is passed over 
sincer5’ isnotarchitectedinthebase architecture. 
The next correspondence is the bc at address 0x4 in the base 
architecture. The VMM recorded that this branch was not 
taken, so the VMM moves to instruction at 0x8 in the base 
architecture. The load to r5 in the base architecture is 
matched to the copy to r5 in the VLIW. Since the VMiM 
recorded that this copy caused the exception, it determines 
that the load at 0x8 is the offending instruction. The VMM 
then puts 0x8 in the register used by the base architecture to 
identify the exception, and branches to the VLIW translation 
of the exception handler. 
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Base Architecture Code VLIW Code 

cmpi crO=r3,0 

bC crO.eq,Ll 
load rS=O(r3) 

L2: 

4 Experimental Results 

We have implemented the incremental compilation tech- 
nique for the Rs/6000, which is essentially the same as Pow- 
erPC for our purposes. The present version of the incremen- 
tal compiler is incomplete in anumber ofways. For example, 
the “combining” optimization includes only a small subset 
of all combining possibilities, and software pipelining is not 
implemented. Nevertheless, we provide here some prelimi- 
nary results on the SPECint95 benchmarks, as well as a few 
AIX utilities, and an Erastothenes’ Sieve program for finding 
prime numbers (a Stanford integer benchmark). 

Since our implementation of DAISY runs on RS/6000 
machines, a set of RS/6000 simulation instructions (in di- 
rect binary form) is also generated for each VLIW. These 
RS/6000 instructions emulate the actions of each VLIW. 
In effect we use a compiled simulation method similar to 
Shade [3] for simulating our VLIW machine on theRS/6000. 
During transitions between VLIW’s, a counter is incremented 
for each VLIW flowgraph edge. From the edge counts and 
from information about the static properties of each edge, 
ALU usage histograms and other statistical data can be ob- 
tained at the end of the run. A call to a kernel routine is 
translated to a real call, so kernel routines are not simulated 
in the current implementation. But since many applications 
that spend most of their time in user and library code, we 
can learn significantly about available ILP, and tradeoffs in 
compiler techniques, from the current implementation. 

Table 1 contains the pathlength reductions achieved on 
the SPECint95 benchmarks for an 8-issue machine. These 
numbers were obtained by executing the benchmarks with the 
full SPECint95 reference inputs, with a resulting execution 
of more than 500 billion PowerPC operations, or about 200 
billion VLIW instructions, as can be discerned from the mean 
infinite cache pathlength reduction of 2.5. (The pathlength 
reduction is equal to the number of operations in the RS/6000 
execution trace divided by the number of VLIW instructions 
in the VLIW execution trace.) The pathlength reduction 
can be viewed as an abstract measure of the infinite cache 
instruction level parallelism for the program. 

The VLIW machine has primitives similar to the Pow- 

VLIWl 

i 

cmpi crO=r3,0 

load rS'=O(r3) 

b vLIW2 

VLIWB 

A 
bc crO.eq 

copy rS=rS' 
b L2 b Ll 

Figure 3: Finding the base architecture instruction responsible for an exception 

Table 1: Pathlength reductions and code explosion moving 

from PowerPC to VLJW. 

erPC, but with 64 integer and floating point registers, rathor 
than 32 in PowerPC. Operation latencies are the same as in 
the PowerPC-604. A total of 8 operations (out ofwhich 4 can 
be memory accesses), and a total of 3 conditional branches 
(4-way branching) can be executed in each VLJW, which 
follows the tree instructionmodel. Efficient hardware implc- 
mentations of the tree VLIW have been described elscwhcro 
(e.g. [5]). The implemented incremental compilation algo- 
rithm is similar to the one discussed in this paper, although 
instead of generating binary VLIW code, an assembly level 
listing is produced. 

DAISY’s performance was achieved at quite low cost, 
In the current experiments, DAISY required an average of 
43 15 X/6000 instructions to compile each PowerPCinstruc- 
tion. Furthermore, we found that DAISY comes within 20% 
of a more traditional static VLIW compiler [ 161 which im- 
plements a large number of sophisticated optimizations and 
takes approximately 100,000 instructions to compile each 
instruction. By way of comparison, the gee compiler cxc- 
cutes an average of 65,000 RS/6000 instructions to gencratc 
each machine instruction in its output. Finally, our imple- 
mentation is a research prototype intended for flexible cx- 
perimentation. We expect to reduce our translation overhead 
significantly with straightforward tuning, and further with an 
eventual rewrite of the incremental compiler, when the de- 
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ns Per Cycle 

Architecture Conffguretlons: 
<Arch #b: # Issue -#ALU’s - # Mem Act - # Branches 

10: 24-16-8-7 5: 8- 8-4-3 
9: 16-16-8-7 4: 6- 6-3-3 
8: 12-12-8-7 3: 4- 4-4-3 

7: 8-8-6-7 2: 4-4-Z-2 
6: 8- 8-4-7 1: 4- 2-2-l 

* C_SIEVE 
+ FGREP 

--c SORT 
* WC 

I I I I I I I I I I 
1 2 3 4 5 6 7 8 9 10 

Architecture Configuration 

Figure 4: Pathlengthreductions for Different Machine Con- 

figurations 

sign matures. As a rough guess, under 1000 base instructions 
per base instruction seems achievable for implementing our 
aggressive compiler techniques. 

Code explosion statistics for the benchmarks are also in 
Table 1. The average code expansion per actually translated 
page is 16W4K = 4x (this is just the VLJW code size; empty 
wasted space on pages due to the 4x fixed expansion may 
lead to additional overhead, unless used for something else). 
We have placed little emphasis in our implementation on 
controlling code explosion and expect to reduce the explosion 
in future implementations. Notice that only the actually 
executed pages get translated, so code explosionmay be less 
than that of a static VLJW compiler that translates all pages 
of the executable. 

Figure 4 indicates, for several small utilities 3, how the 
pathlength reduction changes with the number of resources 
available in the migrant VLJW machine. These benchmarks 
all achieved ILP around 2 for the most primitive machine, 
withcwide VLIW instructions, 2 ofwhose ops may be ALU 
operations, and 2 of which may be memory ops, with only 
1 branch allowed per cycle. Performance diverges for a 24- 
wide high end machine, with ILP of close to 5 achieved for 
f grep. 

Another measure of interest is the number of crosspage 
branches executed. As discussed in Section 3.2 crosspage 
branches can be expensive, particularly in low-end imple- 

‘Time constraintsdid not permit us to obtain the correspondingnumbers 
for SPECint95. 

Table 3: Overhead of Dynamic Compilation 

mentations of the VLJW. Table 2 breaks down the number of 
crosspage branches in the seven benchmarks. PowerPC has 
3 distinct types of crosspage branches: (1) direct branches, 
(2) branches via the Link Register, and (3) branches 
via the Counter Register . Notice that there is wide 
variety among the different benchmarks as to the fraction of 
instructions which are crosspage branches. 

Analysis of Compiler Overhead 

Table 3 indicates the extra runtime of a two second pro- 
gram, due to dynamic compilation, assuming a VLIW ma- 
chine running at 1 GHz and assuming that both the incre- 
mental compiler and the program have an average ILP of 4 
instructions per cycle. Table 3 was devised using a rough 
formula for relating the amount of reuse needed of each page 
(or instruction) in order to make a VLIW with an incremen- 
tal compiler faster than the base architecture in executing a 
particular program. [6]. By reuse, we mean the number of 
times each translated instruction executes. 

Table 4 gives an idea of the reuse factor for large programs 
such as those in the SPEC95 benchmark suite. Table 4 
indicates that they have very high reuse factors with a mean 
of over 500,000. The static code sizes were obtained on an 
RX/6000 using the installed C compiler. * . 

A final example further supports the fact that dynamic 
compilation can be practical. Consider a worst case program 
that jumps from page to page, never repeating code. If the 
number of unique code pages executed is reasonable (say 
200), the large percentage increase in time is probably im- 
perceptible, as we expect only a millisecond will be required 
to translate each page. If the number of unique code pages 
is large, the overhead is likely to be dominated by the base 
architecture OS paging activity. Of course, thrashing due to 
a translated code area that is not large enough, will lead to 
extreme slowdown, and must be prevented. 

5 Previous Work 

Virtual machine concepts have been used for many years, 
for example in IBM’s VM operating systems [2], but virtual 
machines have so far implemented a virtual architecture on 
almost the same architecture (e.g. S/360 on S/370,8086 on 
486, whereas in DAISY we support a very different virtual 

4 We thank Mark Charney, Tom Puzak, and Ravi Nair for these numbers 
and constructing the tools with which to obtain them. 
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Branch Type II 1 Total VLIW’s Exec / 
Program 

k compress 

?P 
go 

I= 
Wg 
ii 

via 

k 
Linkreg 

1149M 
620M 
949M 
179M 
31M 

1072M 
376M 
1515M 

via 

k 
Counter 

(I 
Total ] Total Crosspage 

1605M 
1461M 
2273M 
416M 

57M 
3065M 

840M 
3603M 

Table 2: Number of crosspage branches in different benchmarks. 

T 
L 

INTEGER 
go 1 80.8 billion 1 135.852 1 

1 
594.764 ] 

m88ksim I 74.3 billion 1 84.520 I 879.081 1 
C’ cl 34.1 billion 357,166 95,474 
compress 46.4 billion 52,172 889,366 
li 66.7 hillion 67.084 994.276 

- ------_. _ - _-_.- 
tomcatv I 19.8 billion I 81.488 I 243,003 1 __ .- .-~~~ , 
swim 23.2 billion ___- _---~~~ I 811041 1 287.324 

!4.9 billion I 941390 I 2631911 
1 

su2cor 2 ..- --~~ , 
hudm2d 35.1 billion I 95:668 I 367,106 1 

Table 4: Reuse factors for SPEC95 benchmarks 

architecture on a VLIW. Caching emulators are commonly 
used for speeding up emulation. For example, each instruc- 
tion is individually translated and the translation is cached for 
re-use when the instructionis emulated again [lo]. However, 
in this approach, there is no sophisticated reordering, and thus 
no consequent difficult issues to deal with, for maintaining 
precise exceptions. We are also inspired by VLIW compiler 
research (e.g. the Moon-Ebcioglu compiler techniques [ 151 
and Rau’s work [ 1 S]), but in this paper we have proposed a 
new dynamic compilation algorithm that is much faster than 
existing VLIW compilation techniques, and which achieves 
good run-time performance. 

Our initial page-based translation ideas were inspired by 
the workof Conte and Sathaye [4] who proposed a translation 
at page fault time. However, their approach is intended for 

achieving object code compatibility between different gcn- 
erations of the same family of VLIW machines, and is not 
intended for emulating an existing architecture. Contc and 
Sathaye’s approach has a clever encoding which guarantees 
that the size of the code does not change during translation. 
However this guarantee does not hold for general virtual 
machine implementations. Dynamic translation by hard- 
ware to an internal VLIW-like representation at Icache miss 
time [9, 14, 19, 171 achieves a similar purpose, but requires 
complex Icache miss processing hardware and more hard- 
ware design investment, and does not allow sophisticated 
compiler techniques that can be implemented in software, 
Static translation of executable modules such as FXl32, ws 
done in [20, 22, 231. However, static translation does not 
address the problem of achieving 100% compatibility with 
the old architecture, including operating system code, dc- 
buggers, device drivers, etc.. So, although there arc many 
influences to our line of thought, we believe that the combi- 
nation of the ideas presented here constitute a new solution 
for an important compatibility problem. 

6 Conclusion 

We have described DAISY, an approach for making VLI- 
W’s and other novel architectures fully compatible with cxist- 
ing software for base architecture(s). DAISY achieves this 
without any special hardware for emulation. Our approach 
could be important in the future for making an ultimate open 
system, where a single hardware chip can run multiple op- 
erating systems and base architectures. It is only nccessaty 
that the chip be constructed with an appropriate supersct of 
the primitive operations of the multiple base arckitectures, 
e.g. x86, PowerPC, and S/390. A similar technique can be 
applied to aid migration to other new ILP architectures, that 
would otherwise break binary compatibility. 

Although space constraints do not permit us to elaborate 
here, anovelty ofDAISY is that it affords a practical means to 
achieve oracle parallelism (at high compilation cost): the first 
time an entry point to a page is encountered, the instructions 
in the page starting at the entry point are interpreted and tho 
execution path revealed by the interpretation (say path A) is 
compiled into VLIW’s, until a stopping point is encountered 



on path A. If the group is entered again, and it takes the same 
path A, performance will be high since it executes VLIW 
code solely. Further details may be found in [6] 
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