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Abstract— We consider the requirements of cognitive radar
detection in the presence of non-Gaussian clutter. A pair of
machine learning approaches based on non-linear transforma-
tions of order statistics are examined with the goal of adaptively
determining the optimal detection threshold within the low
sample support regime. The impact of these algorithms on false
alarm rate is also considered. It is demonstrated that the adaptive
threshold estimate is effective even when the distribution in
question is unknown to the machine learning algorithm.

I. INTRODUCTION

In addition to the familiar passive sensing modalities, such
as sight and hearing, the natural world is full of examples
of active sensing modalities. The most notable example is
biosonar employed by bats, dolphins, and whales, the oper-
ation and characteristics of which bears an understandable
resemblance to the systems that have been developed by the
radar and sonar communities [1], [2]. Using these natural
biological systems as inspiration the concept of cognitive, or
fully adaptive, radar has been an active area of recent research
[3]–[11]. In this spirit, we consider the needs of a cognitive
radar detector.

The concept of a cognitive radar, particularly in a bioin-
spired sense, lends itself naturally to target tracking and
automatic target recognition tasks [3], [4], [6], [7]. The
cognitive aspect manifests in the form of persistent memory
and a perception-action cycle. The perception-action cycle
requires the ability to adapt waveforms to the non-stationary
environment. In addition, cognition for a single radar may be
expanded into a network of multiple radars intelligently coop-
erating to accomplish the mission goals [8], [11]. However,
while the main foci in the literature has been on adaptive
waveform design or cognitive target recognition strategies,
here we concentrate on the detection statistics needed to
maintain an acceptable false alarm rate over a multitude of
operational environments.

A radar detector must incorporate previously determined
knowledge to estimate the statistical characteristics of the
operating environment. The estimated statistics are then used
to provide the highest possible probability of detection, while
maintaining a constant, acceptable probability of false alarm.
The environmental characteristics are governed by two pri-
mary phenomenon: clutter and thermal noise. Typically, the
superposition of the backscattered echoes received by the radar
detector may be considered to be the sum of a large number of
independent, identically distributed (I.I.D.) random variables.

Therefore, the Central Limit Theorem may be invoked and the
clutter is commonly assumed to be Gaussian distributed [12].
Assuming a large transmit power, the magnitude of the clutter
is assumed to be much greater than the thermal noise, such
that the thermal noise statistics may be ignored.

The statistical distribution of the clutter provides the context
necessary to form the optimal Neyman-Pearson detector, or the
detector that has the maximum probability of detecting a target
with an acceptable false alarm rate [13]. If the clutter is dis-
tributed as complex Gaussian, the optimum detector requires
knowledge of the first and second moments. With the Gaussian
assumption, there have been efforts to use prior estimates of
the covariance matrix of the environment [14], [15]. However,
it has also been established that clutter may follow a number
of non-Gaussian distributions, most notably the K, Pareto, and
Weibull distributions [12], [16]–[24]. Because they are heavy-
tailed, the occurrence of such distributions as these in practice
invariably leads to increased false alarms when the Gaussian
assumption is made.

By definition, a radar detector is sampling a physical
process. The parameters of the clutter process depend on
multiple factors such as the physical environment, the grazing
angle of the radar, and the range resolution. Therefore, given
the sheer number of influences on the clutter statistics, the
existence of clutter distributions that differ to some degree
from the existing models [12], [16]–[24] remains a possibility.
However, cognitive systems in nature are adept at adapting
to new situations by leveraging prior knowledge. Therefore,
a true cognitive radar should adaptively estimate an accurate
threshold regardless of the distribution to which the clutter
process belongs. Building from the results of [25], here we
consider the framework of a cognitive detector and explore
one method of implementing such a system.

II. MODELING RADAR CLUTTER

The characterization of radar clutter is dependent on the
interplay of the design parameters of the radar (e.g. bandwidth,
grazing angle, etc.) as well as the operating environment. The
complicated relationship between these parameters requires
that care be taken when assuming the characteristics of the
clutter response. The overall clutter response is often consid-
ered to be composed of contributions from two different types
of clutter: distributed and discrete.

For distributed clutter each range cell is assumed to contain
a large number of individual, electrically small elementary



scatterers. The backscattered radiation from the range cell may
then be characterized as the sum of a large number of inde-
pendent, identically distributed random variables. Under this
assumption, the Central Limit Theorem may be invoked and
the clutter response follows a complex Gaussian distribution
with average power proportional to the product of the transmit
power and the backscatter coefficient of the illuminated terrain.

Discrete clutter results from specular returns, often from
objects that resemble plate or corner reflectors. From a phys-
ical perspective, when the size of a range cell is decreased
via a smaller beamwidth or a transmitted waveform with an
increased bandwidth (with an unchanged pulse-width), the
distributed clutter power in each new range cell decreases
proportionally. However, discrete clutter in the smaller range
cells may come to dominate the clutter return, leading to
outliers in the measured clutter.

Observing the trend of increases in measured outliers as
range resolution becomes finer, alternative statistical distri-
butions with heavier tails have been examined (e.g. [12],
[16]–[24] and the references therein). The class of spherically
invariant random processes (SIRPs) arises when the number
of elementary scatterers is assumed to result from a mixture
of Poisson random variables, even if the expected value of
the number of scatterers is very large. In addition, most
of the commonly fitted clutter distributions (notably the K,
Weibull, and Pareto distributions) belong to the class of SIRPs.
Therefore, SIRPs may be justified from both an empirical and
a theoretical point of view.

A multidimensional sample of a SIRP yields a spherically
invariant random vector (SIRV). Crucially, a SIRV may be
expressed as a Gaussian random vector that is modulated
by a positive random variable. From a physical perspective,
this model considers the temporally correlated L slow time
returns from a single range cell to be locally distributed as
complex Gaussian. However, when a collection of the length
L vectors are considered (corresponding to a homogoneous
group of range cells) there exists a power modulation from
cell to cell. The distribution of the modulating random variable
then controls the length of the tail of the SIRV.

A zero mean SIRV can be characterized by the quadratic
form

q = yHΣ−1y, (1)

where y is a length L complex SIRV, Σ is the covariance
matrix of y, and (•)H denotes the complex-conjugate trans-
pose. The pdf of the random vector y can then be expressed
in terms of the quadratic form q and the modulating random
variable V as

fY(y) = (π)−L|Σ|−1
∫ ∞
0

v−2Lexp
(
− q

v2

)
fV (v)dv, (2)

where |Σ| denotes the determinant of the covariance matrix.
Note that (2) illustrates that the pdf of V is the only de-
gree of freedom between different SIRV distributions with
identical covariance structure. The distribution of V is often
parametrized by a shape parameter, ν. It is easily shown that
the Gaussian distribution is obtained from (2) by setting the

modulating random variable fV (v) = δ(v− 1), where δ(v) is
the impulse function [17].

SIRVs provide an attractive model for radar clutter for
several reasons. First, as has been established, the SIRV model
can be justified from both a theoretical and an empirical
basis. By considering the entire class of SIRVs, a cognitive
radar detector relaxes statistical assumptions of Gaussian-
ity to provide an additional degree of freedom over which
to adapt while maintaining a physical justification for the
model. Second, SIRVs are closed under linear transforms [17].
Therefore, under any linear transformation only the mean and
covariance matrix will change. The closure property allows
for the detection in SIRV clutter to take the familiar form of
a whitening filter (i.e. via the quadratic form of (1)) followed
by an operation on the data-dependent threshold governed
by (2) [12]. Third, exploitation of the closure property and
separability of the modulating random variable V and the
underlying Gaussian process allows for convenient simulation
of SIRV radar clutter.

It should be noted that there are several challenges when us-
ing SIRVs as a model for clutter. First, there is often no closed
form solution available, leading to reliance on numerical and
Monte Carlo methods to evaluate theoretical performance [26].
Also, for low shape parameter values (i.e. very heavy tailed)
the numerical estimation of the pdf and cdf of SIRVs can suffer
from numerical instability [27]. Second, due to the individual
scaling induced on each sample random vector, estimating
the covariance matrix is a rather difficult open problem [28]–
[30]. Finally, multiple SIRV distributions may fit measured
data equally well [19]. Therefore, the possibility of heretofore
unknown distributions must be considered. The problem of
identifying the true underlying SIRV distribution is directly
related to the difficulty in estimating the sample covariance,
as the maximum likelihood estimation of the covariance matrix
requires knowledge of the pdf of (2).

III. CONSEQUENCES OF NON-GAUSSIAN CLUTTER

A radar detector must estimate the statistics of a cell-
under-test from the returns of the surrounding (assumed ho-
mogenous) range cells. The Neyman-Pearson detector is then
the detector that maximizes the detection probability while
maintaining a desired probability of false alarm Pfa [13]. The
detection threshold is set according the the tail of the distri-
bution of the null (target absent) hypothesis. Clearly, heavier
tailed distributions directly lead to an increased threshold to
maintain the same Pfa.

Section II discussed the dependence of the optimal detec-
tor on properly estimating the whitening stage of (1), and
knowledge of (2) in order to set the correct data-dependent
threshold. However, these two estimates are intrinsically linked
via the estimation of the covariance matrix [27]. For the
sake of brevity, here we consider the covariance matrix to
be clairvoyantly known.

As an example, consider the K distribution, whose tail is
governed by a shape parameter ν. The K distribution is notable
for providing a particularly good fit to sea clutter [12]. Small



Fig. 1. Increased Pfa from K distributed clutter

values of ν lead to a heavy tailed distribution, but the K
distribution converges to Gaussian as ν →∞. To illustrate the
consequences of the K distribution, consider a radar detector
with clairvoyant knowledge of the covariance matrix but with
the assumption of Gaussian clutter for dimensionality L = 4
slow time samples. The radar detector can then determine
the optimal detection threshold TG in the presumed presence
of Gaussian clutter for a Pfa = 10−6. Figure 1 shows the
resultant actual Pfa when K distributed clutter of varying shape
parameters is present but the Gaussian-presumed threshold TG
is used. Noting that the K distributed clutter requires a unique
threshold for each value of ν, it is clear that a wrongly assumed
distribution can yield a significant increase in false alarms.

IV. CONSIDERATIONS FOR A COGNITIVE DETECTOR

It has been established that SIRVs are an attractive model
for radar clutter. Not only are most known non-Gaussian
distributions admissible as SIRVs, the Gaussian distribution is
also a SIRV. However, predicting which SIRV is the best model
for the radar clutter encountered in any given scenario remains
an open problem. One possible approach is to construct a
database of distributions identified for previously encountered
geographical areas. However, such a database suffers from
several problems. First, the distribution measured is strongly
dependent on transmit beamwidth, time-bandwidth product,
and grazing angle. Therefore, dependence on such a database
necessarily imposes a tradeoff between on-the-fly emission
controls and the validity of previous measurements. Second, in
a long term temporal sense geography may be non-stationary.
Human influence can change geographic features or introduce
discrete clutter. For instance, the clutter response of farmland
will vary greatly in the winter compared to during a harvest
when large radar cross-section farm machinery is scattered
throughout a scene.

For these reasons, the goal of a cognitive radar should be to

adapt to the present conditions based on suggestions from past
experiences. One method would be to construct a Bayesian
approach to distribution identification. The prior distribution
can be formed in a knowledge-aided approach based on past
measurements of similar geography and transmit parameters.
The best estimate of the current distribution would then be
formed based on the prior and current measurements. Once
the distribution is determined, an optimal threshold may be
derived. A second method is to utilize machine learning to
suggest directly a threshold based on the measured data and
knowledge of the commonly encountered threshold.

Methods of distribution identification for SIRVs were pre-
sented in [16], [17], [31]–[33] and expanded upon in [25].
In [16], [17], [25], [31]–[33] the primary goal was to use
a non-linear operation based on order statistics to identify
the SIRV distributions that best fit a set of sample data
by comparing the test statistics to a precomputed library
of known distributions. The non-linear transformations used
in [16], [17], [25], [31]–[33] provided a unique, one-to-one
mapping between distribution/shape parameter pairs and the
transformation space. However, the algorithms required large
sample support to classify the distribution correctly. Recall
from (2) that the distinction between SIRVs of the same
dimension is encapsulated in the positive random variable V .
However, distributions such as the K, Pareto, and Weibull all
have continuously defined shape parameters. Therefore, it is
inevitable that ambiguities will arise. Due to the difficulties
in matching measured data having low sample support to
the generating SIRV, the Bayesian approach is not further
considered here.

V. WEIGHTED ORDER STATISTICS

In [25], it was suggested that the ambiguity inherent in
SIRV distributions would allow the distribution identification
algorithm of [31]–[33], denoted as the Ozturk Algorithm after
the lead author, to be adapted to direct threshold estimation.
Here we expand these results and consider a new formulation.

To form a library of distributions, we find the expected value
of a test statistic for a series of known SIRV distributions
and shape parameter pairs. The basis of this test statistic is
formed from a set of N length L SIRVs. In the context of radar
detection, this set corresponds to N homogeneous, target-free
range cells measured over L pulses. For the purpose of forming
the library, the covariance matrix is known. The set of vectors
are compressed to a set of quadratic forms q = [q1, . . . , qN ]
via (1). The order statistics of q are then formed by sorting
the samples such that

q(1) ≤ q(2) ≤ · · · ≤ q(N). (3)

The studentized order statistics are given as

z(i) =
q(i) − q̄
σ̂

, i = 1, 2, . . . , N (4)

where q̄ is the sample mean and σ̂ is the sample standard
deviation. The extended Ozturk algorithm (EOA), first intro-
duced in [25], forms the expected points in the library by



finding the expected value of the summation of the magnitude
of studentized order statistics that have been multiplied by a
weighting function. In other words, the point associated with
distribution j with shape parameter ν is found as

XEOA,j(ν) = E

[
N∑
i=1

wi|zj,(i)(ν)|

]
(5)

where | • | denotes absolute value and wi is some weighting
function.

Here we consider forming a library with the weighted sum
of order statistics (WSOS), found similarly as

XWSOS,j(ν) = E

[
N∑
i=1

wiqj,(i)(ν)

]
. (6)

In other words, we remove the studentization and the absolute
value operations and only compare weightings of the raw order
statistics. In Section VI we compare and contrast the two
approaches.

Each point in the library is calculated offline, allowing a
threshold to also be calculated offline and associated with each
point. The radar may then form the same test statistic from
measured data and find the closest point in the library matching
the sample test statistic. The associated threshold is then used
as a detection threshold for the cell under test.

Upon examination of (5) and (6), it is clear that proper
selection of weighting functions is crucial to the performance
of the algorithm. In [25] sets of weights were used to form
a multidimensional search space. The weighting functions
were selected from trigonometric and hyperbolic functions,
as well as the squares of those functions. Here we examine
two weighting functions in a single-dimension space. Similar
to the original Ozturk algorithm [31]–[33], we consider the
sine and cosine weighting functions, uniformly parametrized
on the open set (0, π). These functions were selected due to
their orthogonal nature.

By using weighted sums of order statistics, the weighting
functions serve to enhance or suppress segments of the pdf.
For example, Figure 2 shows the values of the sine and cosine
weights for a set of N = 64. Notice that the sine provides
more emphasis to ordered points near the median values,
while suppressing values near the extremes. In contrast, the
cosine provides positive emphasis to the minimum values,
negative emphasis to the maximum values, and de-emphasizes
the values close to the median.

The WSOS and EOA provide a method to pre-compute
a lookup table of thresholds paired with SIRV distributions
that is low complexity. The primary computational expense
comes from computing the inverse of the covariance matrix,
which must be performed regardless of algorithm choice. In
addition, the order statistic approach induces structure on the
sample points that are used to enable effective operation in
low sample support regimes. For example, it was found that
the original Ozturk algorithm was robust to sample covariance
matrix estimation error [17]. The points in the library do
depend on the dimensionality of the SIRV (and therefore the

Fig. 2. Weight Values for Sine and Cosine Weightings

number of pulses in a CPI) as well as the number of range
cells used to provide the order statistics. The number of range
cells is assumed to be equal to the number of cells that would
be used to estimate the covariance matrix.

Comparing the threshold estimation accuracy of the WSOS
and EOA methods allows one to consider the value of the
studentization/magnitude operations that encapsulate the dif-
ference between the EOA method and the new WSOS method.
In addition, we also consider a new method of combining
the weighting functions. In [25] the combination of multiple
endpoints in a multidimensional search space was considered.
Here we examine the combination of the endpoints after
threshold has been estimated by taking the average of the
estimates given by the sine and cosine weighting functions.

VI. SIMULATION RESULTS

To examine the EOA and WSOS methods, a library was
constructed with K distributed data with shape parameters
1.3 ≤ ν ≤ 100, Weibull distributed data with shape param-
eters 1.05 ≤ ν ≤ 1.95, Pareto distributed data with shape
parameters 3.2 ≤ ν ≤ 40, and Gaussian distributed data.
The lower values of each shape parameter was chosen to
give a detection threshold approximately 10 dB greater than
the threshold needed for the Gaussian distribution with equal
clutter power. The SIRV dimensionality was L = 16, and
the number of order statistics used was N = 4L = 64. The
thresholds were estimated from 107 Monte Carlo runs with a
desired Pfa = 10−5. Each point in the library was found from
105 Monte Carlo runs.

A. Threshold Estimation Accuracy

Figures 3 and 4 show the average threshold error in dB for
both the WSOS and EOA algorithms. The WSOS results are
denoted as solid lines, while the EOA results are dashed lines.
All threshold errors were found via 104 Monte Carlo runs.
Note that the 0 dB line corresponds to a correct threshold



Fig. 3. Threshold estimation accuracy for K data, WSOS (solid) and EOA
(dashed) v. shape parameter

estimate for each value of the shape parameter, but the true
threshold varies greatly by shape parameter. The threshold at
the smallest shape parameter is ≈ 7 − 9 dB greater than the
threshold at the largest shape parameter for both distributions.
Any estimated threshold below the 0 dB line is associated with
an increase in false alarm rate, while any estimated threshold
above the line corresponds to a detection loss. A total of six
combinations are considered. First, the endpoints given by the
sine and cosine weighting functions are used to estimate the
threshold. As the sine and cosine are orthogonal functions,
we considered the combination of the two weightings in a
way different than has previously been reported. For each
Monte Carlo, the threshold reported by the sine and the cosine
test statistics were averaged to yield a combined threshold
estimate. The average of this new estimate is denoted by the
green lines. Finally, each of these tests is performed for both
the WSOS and EOA transformation methods.

Figure 3 shows average threshold error when the test data
is K distributed. For the WSOS method, the cosine weighting
exhibits a bias to a greater threshold when compared to the sine
weighting function. However, the average of the two threshold
estimates is rather accurate for low to mid values of the shape
parameter, with an accuracy of ±1 dB for 1.3 ≤ ν < 30. The
average does suffer a loss of 2.6 dB for ν = 100. In contrast,
when the average of the two weighting functions is used in
conjunction with the EOA method the estimated threshold is
only better than that given by the WSOS method at very high
shape parameters. At the extreme of ν = 100 the EOA average
yields a detection loss ≈ 0.6 dB less than the WSOS average.
Note that even at the lowest shape parameter value, the average
estimated threshold is still 7 dB greater than the threshold
would be if the clutter was assumed to be Gaussian. Therefore,
the improved threshold estimate will lead to a much lower false
alarm rate in the face of low shape parameter K distributed
clutter.

Fig. 4. Threshold estimation accuracy for Weibull data, WSOS (solid) and
EOA (dashed) v. shape parameter

TABLE I
THRESHOLD ESTIMATION FOR GAUSSIAN DISTRIBUTED DATA

Weighting WSOS EOA
Cosine 0.22 dB 2.21 dB
Sine 2.99 dB 7.14 dB
Average 1.82 dB 5.34 dB

For the Weibull distribution, shown in Figure 4, the WSOS
method outperforms the EOA method. In general, the cosine
weighting provides the best results, albeit with increasing
detection loss as the tail becomes small.

For many radar detection scenarios, the Gaussian distribu-
tion should be considered the default distribution. Therefore,
the performance of non-Gaussian oriented techniques should
still be tested with Gaussian data. The detection loss associ-
ated with using the combinations of weighting function and
transformation methods are summarized in Table I. Note that
there is no point in the library associated with a distribution
with a lighter tail than the Gaussian. Therefore, any selection
of a threshold associated with a non-Gaussian distribution can
only bias the overall estimate up, yielding an average detection
loss. In general, the WSOS method yields more accurate
thresholds in the presence of Gaussian clutter. Therefore, of
the considered weighting functions, the EOA method should
only be used in conjunction with the cosine weighting unless
the cognitive radar has prior knowledge to indicate the likely
presence of non-Gaussian clutter.

A key capability of a cognitive radar is to estimate thresh-
olds accurately in an unfamiliar environment. To test this
scenario, the points in the library associated with the K
distribution were removed. The same threshold estimation
was then performed with K distributed test data. The average
threshold error is shown in Figure 5. Note that with the
exception of the cosine weighting, the EOA method suffers
little to no estimation loss compared to Figure 3 despite the
removal of the distribution under test.



Fig. 5. Threshold estimation accuracy for K data without K in library, WSOS
(solid) and EOA (dashed) v. shape parameter

Fig. 6. Pfa analysis for Weibull data using EOA

Finally, the impact of the threshold estimation on the
probability of false alarm is examined. The average threshold
estimates associated with the EOA method were employed
with simulated Weibull data. The false alarms over 107 Monte
Carlo runs were estimated and the results shown in Figure
6. Note that the false alarm rate associated with TG is the
expected false alarm rate if the optimal Gaussian threshold
was used in the presence of Weibull clutter. The desired Pfa

of 10−5 is shown by the dashed black line.

VII. CONCLUSION

The requirements for cognitive radar detection were con-
sidered. A low-complexity, robust approach was implemented
to estimate detection thresholds adaptively in non-Gaussian
clutter with low sample support. True to the needs of a

cognitive radar, the method was successfully applied when the
true distribution of the data was unknown to the estimation
algorithm. Ongoing work is also considering the impact of
covariance estimation.
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