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Abstract—A design approach is presented that jointly op-
timizes the beampattern and spectral content of a wideband
MIMO radar emission within the context of physically realizable
frequency-modulated (FM) waveforms emitted from a uniform
linear array. Such waveforms minimize the distortion induced by
the power amplifier by virtue of being constant amplitude and
inherently well-contained spectrally. The design approach is a
specific form of alternating projections that shapes the emission
spectrum as a function of spatial angle while intrinsically address-
ing the problem of reactive power that arises for the wideband
MIMO emission. This scheme also permits incorporation of joint
space-frequency nulling to facilitate spectrum cohabitation with
other nearby RF users. The design process is performed in a
discretized manner that is over-sampled relative to waveform
3-dB bandwidth to capture a sufficient portion of the spectral
roll-off to realize the physical waveform, which is subsequently
implemented via the polyphase-coded FM (PCFM) structure.

Index Terms—Multiple-Input multiple-output (MIMO) radar,
wideband, beampattern optimization.

I. INTRODUCTION

W ITHIN the broader context of waveform diversity [1]–
[4], the design of MIMO radar emissions is typically

approached from a narrowband perspective where the steering
vectors of the array are constant throughout the bandwidth of
the emission [5]–[7]. The optimal power allocation in space
for traditional wideband emissions has also been investigated
[8], [9]. Likewise in [10], the wideband MIMO beampattern
was optimized using the relationship between the beampattern
and the cross-spectral density matrix. In [11] the waveform
matrix was obtained by first determining the optimal waveform
spectra (in a least-squares sense) that matches a desired space-
frequency beampattern and then optimizing the waveform
matrix in the time-domain given a PAPR constraint.

Here an iterative wideband MIMO waveform design scheme
is presented that is an extension of the method introduced
in [12] where the spectrum in certain transmission angles,
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denoted as “beamlets”, are shaped according to a prede-
fined spectral window that includes a sufficient portion of
the spectral roll-off region. In so doing, physical waveforms
can be realized in a discretized fashion that a) are constant
amplitude and spectrally well-contained so as to be robust to
the distortion induced by the transmitter power amplifier, b)
minimize the reactive power otherwise generated by wideband
MIMO emissions, and c) can be readily implemented with
high fidelity via the polyphase-coded FM (PCFM) framework
[13].

As an extension to [12], space-frequency nulling is incor-
porated into the emission design to facilitate coexistence with
other spectrum users in the vicinity of the radar. The space-
frequency beampattern matching problem from [12] cannot
produce nulls of sufficient depth, thus an additional stage is
needed to enforce null constraints. To do so,the reiterative
uniform weight optimization (RUWO) method [22] is included
within the larger emission design scheme. Analysis of the over-
all design process is presented to evaluate emission correlation,
calculation of reactive power, and convergence behavior.

The proposed design scheme leverages the body of work
on phase retrieval algorithms (e.g. [14]–[19]) which typically
do not have closed form solutions but can be solved using
iterative transform methods generally referred to as alternating
projections. Such methods have been shown to be effective
to synthesize polyphase codes via shaping of the power
spectral density (PSD) [19]. Similar methods have likewise
been recently shown to facilitate the optimization of frequency
modulated (FM) waveforms [20], [21]. Typically, signal syn-
thesis algorithms of this type possess sets of constraints in
two domains referred to as the object and image domains.
A solution is found by alternating between the two domains,
enforcing the constraints during each stage. For this joint
space/frequency formulation, the object domain is element-
time, with a constant amplitude constraint on the waveform
generated by each of the M array elements. The image domain
is space-frequency, with the far-field emission constrained to
particular spatial directions (the ”beamlets”) with predefined
spectral windows.

To address the physical nature of a wideband MIMO
emission, the amount of energy stored due to “radiating”
into the invisible space is considered [23]–[25]. This energy,
which can lead to large amounts of reflected power, typically
is associated with reactive power and occurs in arrays with
electrical spacing that is less than a half-wavelength, which
may correspond to a large portion of the bandwidth of a
wideband emission. It is shown that the proposed emission
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design effectively mitigates the energy contained in this region
ensuring the spatial angles of the beamlets reside within the
visible space. The fractional reactive power (FRP) metric is
defined to measure the percentage of power imparted to this
region.

To demonstrate the utility of this approach three wideband
emission scenarios are considered: 1) three spatially separated
narrow beams (e.g. to track multiple targets in different spatial
directions simultaneously), 2) a near omnidirectional wide
beam comprised of many closely-spaced beamlets (e.g. for
SAR applications [26]), and 3) a moderately wide beam
concurrent with a narrow secondary beam in a different spatial
direction (e.g. for multi-mode operation [27]). Each case in-
cludes one to two space-frequency nulls that encompass large
regions in space-frequency. For each scenario, the frequency
content of the designed emission and spatial beampattern are
presented along with convergence plots, correlation analysis,
and determination of the FRP.

The remainder of the paper is organized as follows. In
Section II the physical realization of a wideband MIMO
emission is considered. In Section III wideband array analysis
is presented along with definitions of bandwidth, the invisible
space, and wideband beamforming. The wideband MIMO
emission design with space-frequency nulling is then presented
in Section IV, with Section V briefly outlining the continuous-
time, polyphase-coded frequency-modulated (PCFM) imple-
mentation of the resulting waveform matrix. Finally, in Section
VI the three different example scenarios are described and
results analyzed.

II. PHYSICAL CONSIDERATIONS

For any emission optimization involving multiple antenna
elements the physical electromagnetic interaction between
these elements needs to be considered. This mutual coupling
interaction can be described using a frequency-dependent
mutual impedance between each pair of antennas just as
every antenna has a frequency-dependent self-impedance. The
coupling of antennas directly alters the driving impedances of
the antenna elements and is dependent on the amplitude and
phase of the array excitation and frequency of the transmission
[28]. The spatially-dependent impedance variation can be
decreased by placing antenna elements closer together [29].
However, large reflections can occur if the electrical spacing
between elements becomes less than a half-wavelength for a
given frequency such that the emission “radiates” into what
is known as the invisible (or imaginary) space [23]. The term
“radiate” is really a misnomer in this context as the majority
of the power is actually not radiated due to the element drive
impedance becoming largely reactive. The result is storage of
energy locally in the near field of the array, which can lead
to large amounts of reflected power that could damage the
transmitter [23], [25]. The invisible space is leveraged in the
design of super-directive array patterns, which are known to
store large amounts of energy [30].

This “reactive” region resides beyond the endfire direction
for linear arrays and does not correspond to a physical angular
direction. For wideband arrays, the frequency-dependence of

the electrical spacing between antenna elements becomes sig-
nificant and cannot be assumed a constant over the bandwidth.
Thus the ratio of invisible to visible space changes over the
bandwidth of the emission. A more thorough description of
visible and invisible space is presented in Section III-D.

The angular-dependent element impedance variation can
also result in what is known as scan blindness where the
mismatch between the transmitter and antenna is such that
little to no power is transmitted in a particular transmit angle.
These directions have been linked to angles at which a grating
lobe appears in real space but can occur at smaller angles as
well [31]. In this paper, the assumption is made that the array is
matched (no reflections) over all visible space and completely
mismatched (total reflection) in invisible space. Therefore,
while the “radiation” of power into the invisible space is
addressed, the phenomenon of scan blindness is considered
outside the scope of the current work. Such mutual coupling
dependent effects for MIMO, e.g. [32], [33], will be considered
elsewhere.

III. WIDEBAND ARRAY ANALYSIS

When considering wideband signals many assumptions that
are made for narrowband signals become invalid. Two well-
known methods of wideband beamforming [34] are discrete
Fourier transform (DFT) beamforming, where frequency-
dependent steering vectors are applied in the Fourier domain,
and finite impulse response (FIR) beamforming, where an FIR
filter is placed at the output of each antenna element. Both
methods employ true-time delay processing, which is neces-
sary for wideband signals. The method of DFT beamforming
is adopted here.

A. Bandwidth definition

Bandwidth is typically defined within a certain power level
(e.g. 3-dB), or bounded by a percentage of total power (e.g.
98% of total power). When considering different spectral
shapes the “percentage of total power” definition of bandwidth
is attractive as it accounts for spectral roll-off and limits the
amount of power in the roll-off region to a percentage of the
total.

For example, Fig. 1 shows both a Gaussian spectrum and the
spectrum of a linear frequency modulated (LFM) waveform
that have identical 3-dB bandwidths. The powers outside the
bandwidth for these spectra represent 24% and 5.5% of the
total power, respectively.

In contrast, Fig. 2 shows a Gaussian spectrum and LFM
spectrum with equal 98% power bandwidths. In so doing the
spectra are normalized to have equal in-band power, and thus
equal out-of-band power. They are visually more comparable
in spectral shape, as well. We shall use this definition of
bandwidth for emission design.

Note that the percent power bandwidth definition becomes
ambiguous when considering nulled spectra. Thus, assuming
that nulling is applied to a base spectral shape, we shall define
the bandwidth of the nulled spectrum according to this base
spectral shape prior to nulling.
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Fig. 1. 3-dB bandwidth for Gaussian spectral shape (red) and linear frequency
modulated waveform (blue).
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Fig. 2. 98% power bandwidth for Gaussian spectral shape (red) and linear
frequency modulated waveform (blue).

B. Wideband beamforming

Consider an M element uniform linear array (ULA) with
element spacing d. For a narrowband array, the complex-
baseband far-field emission as a function of time t and spatial
angle θ can be defined as

h(t, θ) =
1

M

M−1∑
m=0

sm(t)ejmφ(θ), (1)

where sm(t) is the complex-baseband representation of the
continuous, pulsed waveform emitted by the mth antenna
element and φ(θ) is the electrical angle defined as

φ(θ) =
2π

λcent
d sin θ, (2)

for λcent the wavelength of fcent the center frequency. If
the element spacing d is defined as half of wavelength λd

corresponding to some frequency fd as

d =
λd

2
=

c

2fd
(3)

for c the speed of light, the electrical angle φ can be rewritten
as

φ(θ) = π
fcent

fd
sin θ. (4)

This form is convenient when generalizing the electrical angle
for a wideband emission.

For wideband arrays, the electrical angle becomes depen-
dent on the continuous passband frequency f as

φ(f, θ) = π
f

fd
sin θ. (5)

Because of the frequency dependence, the electrical phase
shift is applied to the signals in the Fourier domain, such
that the complex-baseband emission as a function of passband
frequency f and spatial angle θ becomes

g(f, θ) =
1

M

M−1∑
m=0

 T∫
0

sm(t)e−j2π(f−fcent)tdt

 ejmφ(f,θ).

(6)
Note that the frequency f in (6) is the average response over
pulsewidth T (as opposed to instantaneous frequency). Taking
the inverse Fourier transform of (6) yields

h(t, θ) =
1

M

M−1∑
m=0

sm(t) ∗ δ
(
t+

m

2fd
sin θ

)

=
1

M

M−1∑
m=0

sm

(
t+

m

2fd
sin θ

)
(7)

for ∗ convolution. The complex envelope of the far-field emis-
sion, given by (7), is a summation of time-shifted waveforms
in which delay is dependent on the spatial angle θ and is
relative to element 0.

Now consider an N × M discretized complex-baseband
waveform matrix S in which the columns correspond to the
waveforms emitted by each of the M antenna elements, with
N the length of the discretized waveforms in the time domain.
The matrix can be vectorized into an MN ×1 vector s where
the waveforms are stacked starting with the leftmost waveform
vector. To adequately represent these continuous waveforms in
discrete form, it is necessary to ”over-sample” with respect to
some bandwidth measure so as to capture an adequate portion
of the spectral roll-off (which is theoretically infinite due to
the pulsed nature of the signal). Thus the complex-baseband
emission as a function of passband frequency f and spatial
angle θ from (6) can be well approximated as

g (f, θ) =
1

M
[t (f, θ)]

H
s (8)

where (•)H is the conjugate-transpose. The MN × 1 space-
frequency steering vector

t (f, θ) = v (f, θ)⊗ a (f) , (9)

for frequency f and spatial angle θ with ⊗ the Kronecker
product, is comprised of the M × 1 frequency-dependent
steering vector

v(f, θ) =
[

1 e−jφ(f,θ) · · · e−j(M−1)φ(f,θ)
]T

(10)

and the N × 1 discrete-time Fourier transform (DTFT) vector

a(f) =
[

1 e
j2π

f−fcent
fsamp · · · e

j2π(N−1)
f−fcent
fsamp

]T
(11)

as a function of continuous passband frequency f , for fsamp

the sampling rate of the discretized waveforms in S.
Since it is impossible to represent this beamformer as a

continuous frequency spectrum using digital signal processing,
the spectrum is discretized and a discrete Fourier transform
(DFT) is used to transform the signal into the discretized
frequency domain. This type of beamforming is known as the
DFT beamformer for wideband arrays [34].
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Discretizing the frequency spectrum into Q equally spaced
points, define the discrete baseband frequencies as

fq =
−fsamp

2
+
q

Q
fsamp (12)

for q = 0, 1, . . . , Q − 1. Therefore the discrete passband
frequency becomes

f = fq + fcent. (13)

Inserting (12) and (13) into (11) yields the N × 1 DFT vector
at discrete baseband frequency fq as

a(fq) =
[

1 ej2π(− 1
2 + q

Q ) · · · ej2π(N−1)(− 1
2 + q

Q )
]T
.

(14)
To account for the time delay in wideband beamforming

the number of frequency points Q needs to be over-specified
relative to N , the discretized length of the waveform, to
prevent aliasing of the complex envelope of the emission.
This over-specified frequency representation corresponds to a
zero-padding in the time-domain to account for the possible
sample delays that may occur. The number of additional
samples necessary is dictated by the maximum sample shift
dfsamp ∆τmaxe, where d•e is the ceiling operation and ∆τmax

is the maximum time delay between any two elements in the
array. Therefore, the number of frequency points must meet or
exceed the discrete length of the waveform plus this maximum
sample shift, or Q ≥ N +dfsamp ∆τmaxe. The discrete length
of the waveform can be represented in terms of the sampling
frequency fsamp and the pulse duration T as

N = fsampT (15)

and the maximum delay

∆τmax =
M − 1

2fd
, (16)

is the largest delay term from (7). Therefore, the number of
frequency points Q must adhere to

Q ≥ N +

⌈
fsamp

(
M − 1

2fd

)⌉
(17)

to prevent aliasing of the complex envelope. As shown in
(7), the wideband emission is numerically equivalent to a
summation of the waveforms emitted from each element con-
volved with delayed impulse functions. Since the waveforms
are sampled, the impulse function is represented as a truncated
sinc function, thus the time-shifted waveform will exhibit the
well-known Gibbs phenomenon that produces time sidelobes
beyond the extent of the pulsewidth [35]. Increasing Q above
the bound in (17) extends the time window, thus reducing error
due to aliasing of these sidelobes. It has been observed that
Q = 2N frequency points are sufficient to reduce this error
to a negligible amount.

C. Wideband definition and the narrowband assumption

For a signal impinging on or emitted from an array, the
methods used to define whether a signal is narrowband de-
pends not only on the spectral content of the signal but also
on the geometry of the array. As a result, there are two distinct

narrowband definitions: one that we shall call the spectral
narrowband definition and the other the array narrowband
definition.

The spectral narrowband definition is based purely on the
bandwidth of the signal as compared to the center frequency.
This definition uses the fractional bandwidth metric defined
as

%BW =
B

fcent
(18)

where B is the bandwidth of the emission. The signal is
assumed to be narrowband if the fractional bandwidth is below
some predefined threshold (10% is typically used).

The array narrowband definition is based on the array
geometry and the bandwidth of the signal as

B ·∆τmax << 1. (19)

This relationship allows for the time delay between elements
to be treated as a phase shift. When the product in (19)
approaches 1, the true-time difference between elements must
be considered. Inserting (16) into (19) yields

B · M − 1

2fd
<< 1, (20)

which can be rewritten in terms of fractional bandwidth as

%BW · (M − 1)

2fd/fcent
<< 1. (21)

The number of array elements M , the frequency ratio fd/fcent

and the fractional bandwidth %BW are the three relative
parameters that fully characterize a wideband ULA.

D. Invisible space

As stated in Section II, the invisible domain resides beyond
end-fire (in terms of electrical angle) for a uniform linear array
and contains the well-known grating lobe series [28]. The
invisible space does not correspond to a physical direction and
can be represented as complex spatial angles (|sin θ| > 1). For
now, consider a narrowband array. Fig. 3 shows the visible and
invisible regions for the grating lobe series for a center-steered,
M = 30 element narrowband array with half wavelength
spacing that equates to the ratio f/fd = 1.
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Fig. 3. Visible and invisible regions for an M = 30 element narrowband
array with f/fd = 1. Not possible to place energy into invisible space.

The feasible array excitations point to electrical angles
φ ∈ [−π, π] due to wrapping of the phase beyond these values.
For f/fd = 1, these electrical angles perfectly fill the visible
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region (|sin θ| ≤ 1). Therefore, if the main beam is steered
into the invisible space, it will be “replaced” by a grating lobe
entering the visible space from the opposite endfire direction.

In contrast, Fig. 4 shows the visible and invisible regions for
the same M = 30 element array but with quarter-wavelength
spacing (f/fd = 0.5). The array spacing has now shrunk the
visible space to the range of electrical angle values |φ| ≤ π/2.
Array excitations that emit a majority of the transmitted energy
into the directions π/2 < |φ| ≤ π (the red portion in Fig. 4) are
associated with large amounts of reactive power, potentially
corresponding to power reflections if not properly matched.
This region is referred to as the reactive region.
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Fig. 4. Visible and invisible regions for an M = 30 element narrowband
array with f/fd = 0.5. Red portion represents reactive region.

For a wideband scenario, the electrical spacing between
antenna elements cannot be assumed to be constant over the
bandwidth of the emission. Fig. 5 shows how the ratio of
invisible space to visible space changes as the normalized
frequency f/fd is varied.
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Fig. 5. Visible and invisible regions for an M = 30 element narrowband array
with variable f/fd. The reactive region is bounded inside the red triangles.

The frequency f in Fig. 5 is varied from 0 to 2fd on
the vertical axis. The diagonal traces correspond to particular
values of sin θ. The vertical dashed lines signify the points at
which the electrical angle is φ = ±π just as in Figs. 3 and 4.
The frequency f = fd is the point at which the vertical dashed
lines intersects the diagonal solid black lines (corresponding
to sin θ = ±1). The area bounded in red is the reactive
region as described in Fig. 4 for frequencies less than fd.
This bounded area is generally not a problem for narrowband
systems. However, the reactive region can become a problem
when steering towards endfire or for wide beam (standard

or MIMO) emissions without consideration of the frequency-
dependent beampattern, for which energy could unknowingly
be placed in the reactive region.

Since the energy stored in the invisible space does not get
emitted into the far-field, an emission efficiency metric can
be calculated. Define the fractional reactive power (FRP) as
the ratio of average reactive power contained in the invisible
domain to average power of the total emission as

FRP =

fd∫
0

−πf/fd∫
−π

|g(f,φ)|2dφ+
π∫

πf/fd

|g(f,φ)|2dφ

df
∞∫
0

π∫
−π
|g(f,φ)|2dφdf

× 100%.

(22)
The formulation in (22) is based on the assumption that the
energy contained within the invisible space accounts for all
of the reactive power in the emission, and that the energy
contained within the visible space is fully emitted (no reflected
power). This efficiency definition does not account for ohmic
losses or reflections due to scan impedance variation within
the visible space [28], [29].

For example, consider a discretized waveform matrix S used
to produce a wideband MIMO emission having a fractional
bandwidth %BW = 40% and an omnidirectional beampattern
(in terms of average power) without consideration of the
reactive region. The array is comprised of M = 30 equispaced
elements with inter-element spacing according to (3) with
fd = 1.2fcent which sets the element spacing according to the
highest frequency within the bandwidth; a common practice
to prevent grating lobes from appearing in-band [34].

Fig. 6 shows the frequency content of the described emis-
sion versus electrical angle φ(f, θ) and normalized frequency
f/fcent. Note the intersection points of sin θ = ±1 and
φ = ±1 occurs at frequency fd. The reactive region is
again bounded by the red triangles. Using (22), the FRP for
this scenario comprises 17.4% of the total average power in
the emission. This scenario shows the need to consider the
invisible space for wideband emission design when a portion
of the bandwidth has an electrical antenna spacing less than a
half-wavelength.
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Fig. 6. Spectrum of wideband (%BW = 40% bandwidth) omnidirectional
MIMO emission versus electrical angle φ(f, θ) for an M = 30 element ULA
with fd = 1.2fcent. The reactive region is bounded inside the red triangles
and comprises 17.4% of the total average power.

The power in the reactive region can be minimized by either
1) increasing the spacing between antenna elements such that
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no portion of the bandwidth has an electrical spacing below
half-wavelength or 2) constraining the emitted energy to the
visible space either by design or traditional beamforming. The
first method, while valid, does not prevent grating lobes from
appearing [36]. Thus we shall consider how to design of the
emission spectral content in the visible space as a means to
minimize the power in the reactive region.

IV. WIDEBAND MIMO EMISSION OPTIMIZATION WITH
SPACE-FREQUENCY NULLING

The proposed design method was first presented in [12]
and extended here to also include space-frequency nulling to
address spectral coexistence issues [37], [38]. The algorithm is
a space-frequency generalization of the approach used in [20]
where a non-recurrent form of frequency-modulated continu-
ous wave (FMCW) radar was developed and experimentally
demonstrated. That same previous approach was also used in
[21] to perform joint FM waveform/taper optimization yield-
ing an ultra-low sidelobe emission that was experimentally
demonstrated to achieve a peak sidelobe level (PSL) of −83
dB with only 0.26 dB of SNR loss. In general, this manner
of optimization falls within the class of alternating projection
approaches, such as [14]–[19].

Here the emitted wideband spectrum is shaped in certain
pre-defined angles denoted as “beamlets”, where each beamlet
has a specific spectral window (e.g. Gaussian) with predefined
98% bandwidth. For a length M uniform linear array the M
waveforms are constrained to have constant amplitude, with
the discretized version used for optimization being oversam-
pled to account for spectral roll-off and to facilitate sufficient
fidelity for subsequent continuous implementation. The space-
frequency nulling is performed using the Reiterative Uniform-
Weight Optimization (RUWO) algorithm which iteratively
enforces nulls given interference matrix R while maintaining
constant amplitude vectors [22]. Note that the two iterative
loops are nested: the outer loop is the spectral/beampattern
shaping design and the inner loop is the RUWO nulling.

A. Parameter initialization

1) Beamlet steering vectors: Let the uniform linear array
have element spacing d as defined in (3). The sampling
frequency is fsamp = γB, where γ is a scalar over-sampling
factor and B is the 98% bandwidth. It has been found that
γ = 3 tends to provide sufficient over-sampling to adequately
approximate a continuous-time waveform. The discrete length
of the waveform defined in (15) can thus be written as
N = γBT , where BT is the time-bandwidth product.

Denote ΘP = {θ0, . . . ,θP−1} as the set containing the P
beamlets to be included in the design. From (5), (12) and (13),
the pth beamlet spatial angle θp corresponds to the discretized
frequency-dependent electrical angles

φ(fq, θp) = π

(
fsamp

(
− 1

2 + q
Q

)
+ fcent

)
fd

sin θp, (23)

for q = 0, 1, . . . , Q − 1 over the set of p = 0, 1, . . . , P − 1
beamlets. Note that the number of frequency points Q must
meet the condition of (17) to account for sample shifts that

occur in true time delay processing of wideband emissions.
Inserting fsamp = γB into (23) and dividing the numerator
and demoninator by fcent yields

φ(fq, θp) = π

(
%BW × γ

(
− 1

2 + q
Q

)
+ 1
)

fd/fcent
sin θp, (24)

which can be readily inserted into (10) to form the steering
vectors v(fq, θp) that correspond to the P beamlets and sub-
sequently the space-frequency steering vectors t (fq, θp) using
(9). The formulation in (24) allows for direct implementation
of the fractional bandwidth %BW and the ratio fd/fcent which
sets the intersection points of sin θ = ±1 and φ = ±π as
described in Figs. 5 and 6. Define

T(θp) =
[
t (f0, θp) · · · t (fQ−1, θp)

]
(25)

as the MN × Q transformation matrix that steers towards
spatial angle θp and performs a discrete Fourier transform.

2) Spectral windows and adaptive beamlet weighting: Each
of the P beamlets is shaped according to a desired spectral
window. Define the Q × 1 (magnitude) spectral window for
the pth beamlet as

u (θp) =
[
u (f0, θp) · · · u (fQ−1, θp)

]T
(26)

is scaled for a desired amount of power for the corresponding
beamlet. For simplicity we shall assume that the P spectral
windows are identical, though the beamlets can have non-
identical spectral windows1. Note that the spectral window
extends over the frequency interval fcent± fsamp/2, such that
the 98% bandwidth is contained in 1/γ of the total spectral
window centered at fcent.

Depending on the number of antenna elements, the P
beamlets will likely be correlated to some extent. Therefore
the relative scaling of the spectral windows u(θp) must be
adapted to prevent the design process from overemphasizing
(or underemphasizing) a given beamlet, thus ensuring that
the desired beampattern is formed. Define b(θp) as the
adaptive scaling that dictates the relative contributions
of the pth beamlet so as to achieve the desired joint
spectrum/beampattern set when constructing u(θp) for
p = 0, . . . , P − 1. Therefore the spectral window including
the adaptive weighting is b(θp)u(θp). Computation of this
adaptive scaling is defined in Section IV-B.

3) Interference covariance matrix: Define L space-
frequency points to be nulled (f`, θ`) for ` = 0, 1, . . . , L− 1.
Denote ΘL = {θ0, . . . ,θL−1} and fL = {f0, . . . ,fL−1}
as the sets containing the spatial angles and corresponding
frequencies to be nulled. These points can be condensed into
a region to achieve a broad null or can be placed individually.
Collect the corresponding space-frequency steering vectors
into the MN × L nulling matrix

D =
[
t (f0, θ0) t (f1, θ1) · · · t (fL−1, θL−1)

]
. (27)

1The same spectral shape should be used when approximating a wide beam
using multiple beamlets.
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Thus the NM ×NM wideband space-frequency interference
matrix can be defined as

R =
1

L
DDH + ηIMN (28)

where η is a loading factor and INM is the NM × NM
identity matrix. The loading factor η supplements the rank
of the interference matrix so that it can be inverted. If the
loading factor is too large, the depth of the null will decrease
due to the loading factor masking essential eigenvalues. After
inversion it is advantageous to normalize R−1 such that the
maximum eigenvalue is unity (the maximum eigenvalue before
normalization is approximately η−1) so that a product with the
matrix is neither amplified nor attenuated.

If the space-frequency null locations defined by the
sets ΘL and fL coincide with a value in u(fq, θp), for
p = 0, 1, . . . , P − 1 and q = 0, 1, . . . , Q− 1, then the spectral
window must also be nulled accordingly to prevent the design
process from filling in the null when shaping the spectrum.
Note that nulling within a spectral window necessitates
additional scaling to achieve the desired power within the
beam containing the null.

4) Waveform initialization: Because this emission design
scheme allocates power jointly in space-frequency, the process
does not directly minimize cross-correlation of the fast-time
far-field emission as a function of spatial angle. However,
to the degree to which the desired space/frequency response
is similar to the initialization, low cross-correlation can be
retained if present in the initial emission structure (e.g. see
cross-correlation results for optimized emission cases in Sec-
tion VI). Of course, the presence of space-frequency nulls
limits the available degrees of freedom (see [39]) and thus
can be expected to increase cross-correlation. It should also be
noted that the structure of the M waveforms is only important
insofar as they are amenable to the radar transmitter (constant
amplitude, well-contained spectrally) and realize the desired
far-field emission within the physical constraints of the array.

B. Emission design via alternating projections

The beampattern matching design problem for beamlet
directions ΘP , with space-frequency nulling defined in ΘL

and fL, can be expressed as

minimize
s

P−1∑
p=0

∥∥∥∥∣∣∣∣ 1

M
TH(θp)s

∣∣∣∣− u(θp)

∥∥∥∥2

subject to |smn | = 1, n = 0, . . . , N − 1,m = 0, . . . ,M − 1

DHs = 0L×1

|sin ΘP | ≤ 1− 2fd/fcent

M
(

1− %BW
2

)
(29)

where s is the vectorized form of the discretized waveform
matrix S, smn is the nth time sample of the mth waveform,
‖•‖2 is the squared-Euclidean norm, | • | takes the absolute
value, and 0L×1 is an L×1 vector of zeros. The consequence
of requiring constant modulus waveforms is that this design

problem is non-convex and must be solved in an iterative
manner.

The third constraint in (29) limits the available beamlet
directions in ΘP such that the entire mainlobe of each is within
the visible region according to the lowest frequency (widest
spatial beamwidth). This constraint is established in Appendix
A.

Given the initializations from Section IV-A, the Q × 1
frequency vector of the pth beamlet at the ith iteration can
be expressed as

gi(θp) =
1

M
TH(θp)si (30)

which is in the cost function in (29). It is implicit assumed
that the relative scaling between u(θp) and g(θp) is such that
they can be directly compared. However, it has been found
that this relationship tends to not occur due to the constant
amplitude constraint. Thus, a normalized emission design cost
function can be defined as

J(i) =

P−1∑
p=0

∥∥∥∥ |gi (θp)|√
γg,i

− u (θp)√
γu

∥∥∥∥2

, (31)

where

γg,i =

P−1∑
p=0

‖gi(θp)‖2 (32)

and

γu =

P−1∑
p=0

‖u(θp)‖2 (33)

are the total powers contained in the beamlets of the current
iteration i and the predefined spectral windows, respectively.
The formulation in (31) compares the relative difference rather
than the absolute difference to prevent artificially increasing
cost due to scaling.

Using (30), the adaptive scaling for the pth beamlet is
updated as

bi+1(θp) = bi(θp)

√√√√√ ‖u (θp)‖2
/
γu

‖gi (θp)‖2
/
γg,i

. (34)

As the iterative design progresses the term inside the
√
•

converges to unity, thus producing a beam scaling value b(θp)
that produces the desired spatial beam power specified in
u(θp).

The spectral window and beam scaling for the pth beam is
applied as

g̃i(θp) = bi+1 (θp) [u (θp)� exp (j 6 gi (θp))] , (35)

where � is the Hadamard product and 6 extracts the phase
angle of the argument (each element in the vector). The
unconstrained (in amplitude) vectorized waveform set at the
ith iteration can then be found as

s̃i =

P−1∑
p=0

T (θp)g̃i (θp) , (36)
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which is equivalent to projecting each beamlet back onto the
array, taking the inverse Fourier transform, and summing the
P responses.

If space-frequency nulling is required, denote the current
RUWO iteration as k and the total number of iterations K.
The RUWO loop is initialized using the current estimate of
the unconstrained waveforms as r0 = exp (j 6 s̃i). The update
of the nulled, vectorized waveform set is defined as [22]

rk+1 = exp
(
j 6
(
R−1rk

))
(37)

where R−1 is the inverse of the interference covariance matrix
from (28). The RUWO cost function is

H(k) =
∥∥rk+1 −R−1rk

∥∥2
, (38)

where the normalization of R−1 by the maximum eigenvalue
as discussed in Section IV-A causes the terms rk+1 and R−1rk
to possess comparable amplitudes. The RUWO algorithm is
not guaranteed to converge onto a solution that produces the
desired nulls, though it has been proven that the cost function
in (38) reduces at each iteration k, thus establishing that it
does not diverge [22], [40], [41]. The convergence speed of
RUWO is dependent on the rank of interference covariance
matrix R, but typically converges to a stable solution within
K = 50 iterations [22].

The vectorized waveform set is then updated as

si+1 =

{
rK , when nulling
exp (j 6 s̃i) , otherwise

. (39)

The process (30), (34)–(37), and (39) is repeated a predefined
number of times Φ. Table I provides a summary of the
optimization steps. If nulling is being applied, the per iteration
computational cost is dominated by the RUWO loop and is
O(K(NM)2) in complexity. If no nulling is applied (K = 0),
then the cost is O(PQNM) in complexity.

When the nulling stage is removed, it can be shown that
this approach can be put into the Error Reduction Algorithm
(ERA) structures of [19], specifically in the form in Algorithm
6 therein2. However, due to the practical issues of 1) needing
to avoid the edges of the spatial domain to limit the FRP
of the emission (the final constraint in (29)) and 2) needing
sufficient time sampling to account for true time delay (17),
these forms cannot be solved because the associated matrix
is neither unitary nor invertible. Thus, the proposed algorithm
deviates from the error reduction form of ERA [18], [19],
and therefore cannot be proven analytically to decrease each
iteration. However, myriad different simulation scenarios have
all been observed to converge to meaningful solutions. Further,
the combination of the first and third constraints of (29) with
the implementation scheme described in Section V does ensure
the result is a physically realizable emission, regardless of how
close to optimal it actually is.

2The formulation in [19] considers unitary transformation matrices, though
non-unitary matrices may also be considered by means of a matrix inverse.

TABLE I
IMPLEMENTATION OF WIDEBAND MIMO EMISSION DESIGN WITH

SPACE-FREQUENCY NULLING

1. Establish the number of antenna elements M and discretized
waveform length N for oversampling factor γ and time-bandwidth
product BT .

2. Select quantity P and specific directions ΘP of the beamlets, the
number of frequency bins Q, percent bandwidth %BW, and the
ratio fd/fcent that dictates element spacing.

3. Determine the L space-frequency points ΘL and fL to be nulled
(if any). Form the NM ×NM interference matrix R using (28),
calculate the inverse, and normalize by the maximum eigenvalue.
Select the number of RUWO iterations K.

4. Form the spectral shaping vector u(θp) for each of the P beamlets.
Zero values u(fq , θp) if they contradict with a nulled region.

5. Set the number of optimization iterations to perform Φ. Initialize
vectorized waveform set s0, loop index to i = 0, and the adaptive
scaling coefficients b0(θp) to unity.

6. Form gi(θp) and update bi+1(θp) for p = 0, . . . , P − 1 via (30)
and (34).

7. Apply beamscaling bi+1(θp) and spectral shaping using u(θp) to
form g̃i(θp) for p = 0, . . . , P − 1 via (35).

8. Form the unconstrained vectorized waveform set s̃i via (36).

9. If no nulling is being applied, set si+1 = exp (j 6 s̃i) and go to
step 11.

10. Initiate RUWO nulling loop. Set loop index to k = 0.
a. Form initial vectorized solution r0 = exp (j 6 s̃i).
b. Update vectorized solution rk+1 using (37).
c. Increment k = k + 1. Stop if k = K. Otherwise, and go to step

10b.
d. Set si+1 = rK .

11. Increment i = i + 1. If i = Φ, go to step 12. Otherwise, go to
step 6.

12. Implement discretized waveform set sΦ as physically realizable
FM waveforms as shown in Sect. V.

V. IMPLEMENTATION

The constant modulus, discrete-time, baseband representa-
tion of the optimized waveform set sΦ can be translated into
M continuous-time waveforms using the polyphase-coded FM
(PCFM) implementation [13].

  

 
 0

0

1

1

1 2 1 N

Fig. 7. Implementation of mth polyphase-coded frequency-modulated
(PCFM) waveform

Given the length-N phase sequence of the mth discretized
waveform ψm0 , ψ

m
1 , . . . ,ψ

m
N−1, for ψmn = 6 smn , a train of

N − 1 impulses with time separation Tp = 1/fsamp are
formed. The nth impulse is weighted by αmn , which is equal
to the modulo phase change between the nth and (n − 1)th
phase value as determined by

αmn =

{
α̃mn if |α̃mn | ≤ π
α̃mn − 2πsgn(α̃mn ) if |α̃mn | > π

(40)
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where

α̃mn = ψmn − ψmn−1 for n = 1, . . . ,N − 1 (41)

and sgn(•) is the sign function.
The values of (40) can then be collected into the phase-

change sequence xm = [ αm1 αm2 · · · αmN−1 ]T that pa-
rameterizes the mth complex-baseband waveform. The pulse
train is then convolved with a shaping filter w(t) that has a
time duration of Tp and integrates to unity over the real line
(e.g. a rectangular pulse or a raised cosine). The continuous
phase function is then found through a cumulative integration
with respect to the time dummy variable ς , with initial phase
ψm0 as seen in Fig. 7. The resulting mth complex-baseband,
constant-amplitude, continuous FM waveform is

sm(t;xm) = exp

{
j

(
t∫

0

w(ς) ∗
[
N−1∑
n=1

αmn δ (ς − (n− 1)Tp)

]
dς + ψm0

)}
.

(42)
Note that the inherent filtering (by shaping filter w(t))

involved in the PCFM implementation may slightly alter the
spectrum in lower power areas of the frequency response. Thus
the nulls that have been enforced in the optimization may “fill
in” to some degree. The loss in null sensitivity can be mitigated
by applying the design process at a higher sampling rate [42].

VI. EMISSION OPTIMIZATION ANALYSIS

Consider the design of a wideband emission having time-
bandwidth product BT = 50 and fractional bandwidth
%BW = 40% for a uniform linear array comprised of
M = 30 antenna elements. The antenna element spacing is set
according to the highest frequency in bandwidth B to reduce
the effect of grating lobes [34]. The normalized frequency
associated with this spacing is

fd

fcent
=
fcent +B/2

fcent
= 1 +

%BW

2
= 1.2. (43)

The sampling frequency is set to γ = 5 times the time-
bandwidth product of BT = 50 (so N = 5(50) = 250) to
closely approximate a continuous-time waveform. The max-
imum sample delay occuring for true-time delay processing
is

fsamp ·∆τmax = γ(M − 1)
%BW

2fd/fcent
= 23.2 samples. (44)

Therefore from (17), the minimum number of frequency
samples needed is 250 + d23.2e = 274 to prevent aliasing of
the complex envelope. As stated in Section III-B, the Gibbs
phenomenon produces time sidelobes beyond the extent of the
pulsewidth [35], and thus Q = 2N = 500 frequency points
are used to minimize this effect.

For the given array, the set of beamlets must be contained
within the spatial region established by the third constraint of
(29) as

| sin ΘP | ≤ 1− 2fd/fcent

M
(

1− %BW
2

) = 0.9 (45)

to avoid placing appreciable power in the reactive region.

Using these parameters as a baseline, three different sce-
narios are simulated and analyzed to highlight the cus-
tomizable design capabilities that are possible. In Case 1)
P = 3 beamlets are chosen to point in the directions
sin ΘP ∈{−0.71, 0, 0.17}. The sin θ = 0 beam is set to have
3 dB higher power than the other two beams and has a
wide space-frequency null bounded by normalized frequen-
cies fL ∈[1.2, 1.4] and angles sin ΘL ∈[0.10, 0.25]. For Case
2) a wide (nearly omnidirectional) beam is generated over
the angular interval sin ΘP ∈[−0.9, 0.9], which is realized
using P = 60 evenly spaced beamlets. Power is dis-
tributed equally over this wide beam and two nulled regions
are included that are bounded by normalized frequencies
fL ∈{[0.8, 0.9], [1.2, 1.4]} with corresponding angle intervals
sin ΘL ∈{[−0.5, −0.42], [0.10, 0.25]}. Finally, for Case 3)
a moderately wide beam and a narrow secondary beam are
jointly optimized over sin ΘP ∈{[−0.5, 0.5], 0.75}. The wide
beam is generated using 30 evenly spaced beamlets over the
interval, thus making for a total of P = 31 beamlets. The
secondary beam pointed in the direction sin θ = 0.75 is set
to be 2 dB higher than the peak power of the wide beam.
The wide beam is specified to have a Gaussian-tapered spatial
power distribution. Case 3 has the same null conditions as
Case 2.

All the beamlets are nominally (excluding nulls) designed to
have a Gaussian spectral shape in frequency for three reasons:
1) to establish the bandwidth of the emission, 2) to incorporate
the spectral roll-off and thus well approximate a continuous-
time emission, and 3) to leverage the desirable autocorrelation
properties associated with a Gaussian power spectral density
[43]. Table II shows a summary of the frequency, beamlet, and
null constraints for each case.

TABLE II
SUMMARY OF FREQUENCY, BEAMLET AND NULL CONSTRAINTS

Case 1 Case 2 Case 3

Q 500 500 500

Spectral shape Gaussian Gaussian Gaussian

P 3 60 30 + 1

sin ΘP −0.71, 0, 0.17 [−0.9, 0.9] [−0.5, 0.5]

{0.75}††

Relative 0dB, 3dB, 0dB Equal Tapered
powers (peak 0dB)

{2dB}††

sin ΘL [0.10, 0.25] [0.10, 0.25]† [0.10, 0.25]††

[−0.5, −0.42] [−0.5, −0.42]

fL [1.2, 1.4] [1.2, 1.4]† [1.2, 1.4]††

[0.8, 0.9] [0.8, 0.9]

†,†† denotes specific relationships for parameters with multiple entries

Each case uses Φ = 100 design iterations along with
K = 20 RUWO iterations. These values were selected because
it was observed that sufficient convergence was obtained,
though more sophisticated stopping criteria could alternatively
be employed. Convergence plots are presented for the RUWO
cost function H(k) from (38) and emission design cost func-
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tion J(i) from (31). The three cases are examined both with
and without adaptive beamlet scaling b(θp). The waveform
matrix S for each of the 3 cases is independently initialized
with white, complex-Gaussian distributed data having unit
variance and zero mean so as to start with relatively low cross-
correlation for the far-field emissions.

A. Wideband radar emission analysis

The far-field emission can be assessed by considering the
aggregate beampattern, angle-dependent autocorrelation of the
fast-time emission, maximum angular cross-correlation, and
the fractional reactive power (FRP) defined in (22). The
aggregate beampattern is the time-average of the space-time
emission over pulsewidth T , which displays the amount of
power emitted versus transmit spatial angle θ. Using the
continuous time representation of the waveforms from (42)
incorporated into the time/angle dependent emission of (7),
the aggregate beampattern can be written as

B(θ) =
1

T

T∫
0

|g(t, θ)|2dt. (46)

The scaling of the aggregate beampattern is relative to a single
focused beam, the peak of which would be normalized to 0
dB. Thus the overall emitted power remains constant across
all three cases.

To address the correlation properties of the emission, define
a wideband, frequency domain version of the angle-delay
ambiguity function from [44] as

A(τ, θ, β) =

∣∣∣∣∣ ∞∫−∞ g(f,θ)g∗(f,β)e+j2πfτ

[∑
m
e
jmπ

f
fd

(sin θ−sin β)

]
df

∣∣∣∣∣
2

M
∞∫
−∞

g∗(f,β)g(f,β)df

(47)
where β is the receive spatial angle. The angle-dependent
autocorrelation shows the delay ambiguity properties of the
emission versus spatial angle and is defined as the two-
dimensional cut of (47) when β = θ. The maximum angular
cross-correlation is the peak correlation of the emission over
delay as a function of transmit angle θ and receive angle β
and is defined as

max
τ

A(τ, θ, β). (48)

B. Case 1:Three-beam scenario

Fig. 8 shows the wideband spectrum of Case 1 where
P = 3 discrete beams are optimized in the directions
sin ΘP ∈{−0.71, 0, 0.17}, each with a Gaussian spectral
shape and the sin θ = 0 beam is designed to have 3 dB
higher power than the other two beams. The space-frequency
null bounded between f/fcent = 1.2 and f/fcent = 1.4 and
between sin θ = 0.1 and sin θ = 0.25 can also be observed in
this figure. The FRP for this emission is only 1.88% of the
total average power.

Fig. 9 shows the aggregate beampattern after emission
optimization (blue). The peaks of the sin θ = −0.71 and
sin θ = 0.17 beams exhibit relative powers of −6.25 dB while
that of the sin θ = 0 beam is −3.23 dB, which is within 0.02
dB of the 3 dB relative power constraint. The red plot in Fig.
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Fig. 8. Spectrum of wideband (%BW = 40% bandwidth) multi-beam MIMO
emission versus electrical angle φ(f, θ) for an M = 30 element ULA with
fd = fcent + B/2. The reactive region is bounded inside the red triangles
and comprises 1.88% of the total average power.
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Fig. 9. Aggregate beampattern of wideband (%BW = 40% bandwidth)
multi-beam MIMO emission versus sin θ for design with adaptive scaling
(blue) and without adaptive scaling (red) for from an M = 30 element ULA
with fd = fcent +B/2.

9 represents what the beampattern would look like without
the adaptive scaling of the P beams to enforce the relative
power constraint (without which the relative powers between
the sin θ = {−0.71, 0.17} beams and the center sin θ = 0
beam would be 3.4 dB and 2.7 dB respectively instead of the
desired 3 dB).

Fig. 10 shows the resulting power spectrum of the three
beams and the Gaussian spectral window used in the design
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Fig. 10. Emission spectrum for wideband (%BW = 40% bandwidth)
multi-beam MIMO emission versus normalized frequency f/fcent of the
P = 3 beams in the directions sin θ = −0.71 (blue), sin θ = 0 (red), and
sin θ = 0.17 (yellow) and the spectral window used for design (black).
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Fig. 11. Autocorrelation function for wideband (%BW = 40% band-
width) multi-beam MIMO emission of the P = 3 beams in the directions
sin θ = −0.71 (blue), sin θ = 0 (red), and sin θ = 0.17 (yellow).
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Fig. 12. Maximum angular cross-correlation for wideband (%BW = 40%
bandwidth) multi-beam MIMO emission as a function of sin θ and sinβ for
an M = 30 element ULA with fd = fcent +B/2.

(shown in black). A scaled version of this Gaussian window
was used for the sin θ = −0.71 and sin θ = 0 beams, while
for the sin θ = 0.17 beam the impact of the overlapping null
region can be observed.

Fig. 11 displays the resulting autocorrelation of the three
beams generated via (47) for β = θ. The peak sidelobe lev-
els relative to their respective mainlobes are −26 dB for
sin θ = −0.71, −22.5 dB for sin θ = 0, and −19.45 dB for
sin θ = 0.17. The slight sidelobe increase for the sin θ = 0.17
beam is a result of the null in its spectrum.

Fig. 12 depicts the maximum temporal cross-correlation of
the emission as a function of transmit (θ) and receive (β)
angles via (48) where the diagonal is the peak autocorrelation.
The responses from the three beamlets are clearly shown on
the diagonal of the plot. The peak-normalized, τ/T = 0 cut
of the angle-delay ambiguity function versus sinβ for the
transmit angles sin θ = −0.71, sin θ = 0, and sin θ = 0.17 is
shown in Fig. 13. The desired beam locations are indicated
by the black, vertical dashed lines. The peak cross-correlation
level and spatial resolution of each beam is dependent on the
correlation levels of the emission around that beam. Because
widely-separated, individual beams are being designed, the
spatial ambiguity level and spatial resolution remain similar
to that of a standard coherent beamformed emission.

The emission design cost function J(i) from (31) is shown
in Fig. 14 versus iteration index i for versions with (blue)
and without (red) adaptive scaling. The cost function value
converges to a solution after 5 iterations for both scenarios
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Fig. 13. Peak-normalized angle-delay ambiguity function at τ/T = 0 for
wideband (%BW = 40% bandwidth) multi-beam MIMO emission versus
sinβ for the transmit angles sin θ = −0.71 (blue), sin θ = 0 (red), and
sin θ = 0.17 (yellow), corresponding to the P = 3 beam directions.
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Fig. 14. Emission design cost function J(i) versus iteration index i (Φ = 100
iterations; K = 20 nulling iterations) for wideband (%BW = 40% band-
width) multi-beam MIMO emission with adaptive scaling (blue) and without
adaptive scaling (red) for an M = 30 element ULA with fd = fcent +B/2.

and remains at approximately that level for the remainder
of the iterations. The versions with and without the adaptive
scaling have similar convergence. Fig. 15 shows the RUWO
cost function H(k) from (38) versus iteration index k for all
Φ = 100 iterations, where the error reduction property can be
observed.

C. Case 2: Wide-beam scenario

Fig. 16 shows the spectrum for Case 2 where a near-
omnidirectional wide beam has been designed to exist between
sin θ = −0.9 and sin θ = 0.9, where the bound described in
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Fig. 15. RUWO cost function H(k) versus iteration index k (Φ = 100
iterations; K = 20 nulling iterations) for wideband (%BW = 40%
bandwidth) multi-beam MIMO emission for an M = 30 element ULA with
fd = fcent +B/2.
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Fig. 16. Spectrum of wideband (%BW = 40% bandwidth) wide beam
MIMO emission versus electrical angle φ(f, θ) for an M = 30 element
ULA with fd = fcent +B/2. The reactive region is bounded inside the red
triangles and comprises 1.35% of the total average power.
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Fig. 17. Aggregate beampattern of wideband (%BW = 40% bandwidth)
wide beam MIMO emission versus sin θ for optimization with adaptive
scaling (blue) and without adaptive scaling (red) for from an M = 30 element
ULA with fd = fcent +B/2.

(45) prevents the mainlobe of each beamlet from residing in
the reactive region (bounded in red) for all in-band frequen-
cies. The wide beam is constructed using P = 60 equal-spaced
beamlets and shaped to a Gaussian frequency spectrum. The
FRP for this case is 1.35% of the total average power, which
is a substantial reduction from the 17.4% for the previous
near-omnidirectional emission presented in Section III-D.

In addition to the null constraint from the previous
case, another null is included that comprises the re-
gion bounded between normalized frequencies f/fcent = 0.8
and f/fcent = 0.9 and spatial angles sin θ = −0.5 and
sin θ = −0.42.

The aggregate beampattern of this emission, shown in Fig.
17 as the blue trace, has only 0.74 dB of variation over
the optimized spatial region of sin ΘP ∈[−0.90, 0.90]. In
constrast, the beampattern optimized without the adaptive
scaling, shown as the red trace, has 2 dB of power variation.

The angle-dependent autocorrelation for normalized de-
lays τ/T ∈ [−0.5, 0.5] is shown in Fig. 18. The mainlobe
of the autocorrelation from spatial regions sin θ = −0.6 to
sin θ = −0.3 is broadened slightly because the null between
sin θ = −0.5 and sin θ = −0.42 lies entirely within the band-
width of the emission.

Fig. 19 depicts the maximum angular cross correlation as
a function of θ and β. The width of the diagonal depends on
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Fig. 18. Autocorrelation function for wideband (%BW = 40% band-
width) wide beam MIMO emission versus sin θ for normalized delay
τ/T ∈ [−0.5 0.5].
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Fig. 19. Maximum angular cross-correlation for wideband (%BW = 40%
bandwidth) wide beam MIMO emission as a function of sin θ and sinβ for
an M = 30 element ULA with fd = fcent +B/2.

the array size, which dictates the beamwidth and thus limits
the level of decorrelation between nearby spatial angles. Fig.
20 shows the peak-normalized angle-delay ambiguity function
versus sinβ for the transmit directions sin θ ∈ {−0.9, 0, 0.4}
at τ/T = 0. Note that both the mainlobe width and cross-
correlation level have improved (in terms of resolution and
spatial ambiguity) from that in Fig. 13 due to the wide beam
design enforcing a stricter spatial decorrelation by including
many proximate beamlets (P = 60).

The emission design cost function J(i) is shown in Fig. 21
versus iteration index i for versions with (blue) and without
(red) the adaptive scaling. The scenarios have a similar con-
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Fig. 20. Peak-normalized angle-delay ambiguity function at τ/T = 0 for
wideband (%BW = 40% bandwidth) wide beam MIMO emission versus
sinβ for the transmit angles sin θ = −0.9 (blue), sin θ = 0 (red), and
sin θ = 0.4 (yellow).
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Fig. 21. Emission design cost function J(i) versus iteration index i (Φ = 100
iterations; K = 20 nulling iterations) for wideband (%BW = 40% band-
width) wide beam MIMO emission with adaptive scaling (blue) and without
adaptive scaling (red) for an M = 30 element ULA with fd = fcent +B/2.
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Fig. 22. RUWO cost function H(k) versus iteration index k (Φ = 100
iterations; K = 20 nulling iterations) for wideband (%BW = 40%
bandwidth) wide beam MIMO emission for an M = 30 element ULA with
fd = fcent +B/2.

vergence behavior, though the scenario with the adaptive beam
scaling better constrains the beam pattern of the emission. Fig.
22 shows the RUWO cost function H(k) versus iteration index
k for all Φ = 100 iterations. Again the cost function H(k)
decreases at each iteration due to the error reduction property
discussed in [22], [40], [41].

D. Case 3: Wide beam + secondary beam scenario

Finally, Fig. 23 shows the wideband spectrum for Case 3
where a moderately wide beam is designed to lie between
sin θ = −0.5 and sin θ = 0.5 with a Gaussian spatial taper
as well as a narrow secondary beam at sin θ = 0.75 that
is designed to be 2 dB larger than the peak power of the
wide beam. The wide beam was approximated using 30
equally spaced beamlets over the angular region. Including
the secondary beam makes a total of P = 31 beamlets for
this case. All beams are designed to have a Gaussian spectral
shape and the same null constraints as in Case 2. The FRP for
this case is found to be 1.74% of the total average power.

The aggregate beam pattern with and without the adaptive
scaling is shown in Fig. 24. Due to the close proximity of the
beamlets used to construct the wide beam, it is overemphasized
relative to the narrow secondary beam when adaptive scaling
is omitted (the secondary beam has 5 dB less power than the
peak of the wide beam). However, with the adaptive scaling
the secondary beam is 2 dB larger than the peak power of
the wide beam as originally specified. Also, the shape of the
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Fig. 23. Spectrum of wideband (%BW = 40% bandwidth) wide beam
+ secondary beam MIMO emission versus electrical angle φ(f, θ) for an
M = 30 element ULA with fd = fcent + B/2. The reactive region is
bounded inside the red triangles and comprises 1.74% of the total average
power.
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Fig. 24. Aggregate beampattern of wideband (%BW = 40% bandwidth)
wide beam + secondary beam MIMO emission versus sin θ for design with
adaptive scaling (blue) and without adaptive scaling (red) for an M = 30
element ULA with fd = fcent +B/2.

wide beam better approximates the Gaussian spatial window
enforced during the optimization.

The angular autocorrelation for normalized delays
τ/T ∈ [−0.5, 0.5] can be seen in Fig. 25. Again, it is
observed that the mainlobe of the autocorrelation between
sin θ = −0.6 and sin θ = −0.3 is slightly broadened due to
the presence of the null in the bandwidth of the emission in
that direction. Also, Fig. 25 shows that the range sidelobes of
the narrow secondary beam, on average, are lower than any
angle within the wide beam. This difference in sidelobe level
arises because the wide beam design involves the conflicting
goals of spatial decorrelation and spectral shaping of adjacent
beamlets.

The maximum angular cross-correlation is shown in Fig.
26. The peak cross-correlation response is clearly larger in
the vicinity of the narrow secondary beam than it is near the
widebeam. Expanding on this result, Fig. 27 shows the peak-
normalized angle-delay ambiguity function at τ/T = 0 versus
sinβ for the transmit angles sin θ = {0, 0.4, 0.75} . Note
the difference in ambiguity sidelobe level and shape of the
mainlobe for the three directions. The angles sin θ ∈ {0, 0.4}
reside within the wide beam and thus have an improved
spatial resolution and decreased sidelobe level compared to the
secondary beam in sin θ = 0.75, whose resolution and sidelobe
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Fig. 25. Autocorrelation function for wideband (%BW = 40% bandwidth)
wide beam + secondary beam MIMO emission versus sin θ for normalized
delay τ/T ∈ [−0.5 0.5].
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Fig. 26. Maximum angular cross-correlation for wideband (%BW = 40%
bandwidth) wide beam + secondary beam MIMO emission as a function of
sin θ and sinβ for an M = 30 element ULA with fd = fcent +B/2.

level are comparable to a standard beamforming ambiguity
function. The use of multiple proximate beamlets in the design
of the wide beam results in enhanced spatial decorrelation
and therefore an improvement in both spatial resolution and
ambiguity sidelobe level.
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Fig. 27. Peak-normalized angle-delay ambiguity function at τ/T = 0 for
wideband (%BW = 40% bandwidth) wide beam + secondary beam MIMO
emission versus sinβ for the transmit angles sin θ = 0 (blue) and sin θ = 0.4
(red), directions within the wide beam, and sin θ = 0.75 (yellow), the
secondary beam direction.

The emission design cost function J(i) is shown in Fig. 28
versus iteration index i for versions with (blue) and without
(red) the adaptive scaling. For both scenarios, convergence
occurs within 40 iterations (and very nearly so after 15
iterations). The version using the adaptive scaling converges
to a lower cost function solution. Fig. 29 shows the RUWO
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Fig. 28. Emission design cost function J(i) versus iteration index i (Φ = 100
iterations; K = 20 nulling iterations) for wideband (%BW = 40%
bandwidth) wide beam + secondary beam MIMO emission with adaptive
scaling (blue) and without adaptive scaling (red) for an M = 30 element
ULA with fd = fcent +B/2.
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Fig. 29. RUWO cost function H(k) versus iteration index k (Φ = 100
iterations; K = 20 nulling iterations) for wideband (%BW = 40%
bandwidth) wide beam + secondary beam MIMO emission for an M = 30
element ULA with fd = fcent +B/2.

cost function H(k) versus iteration index k for all Φ = 100
iterations. Again the cost H(k) decreases at each iteration.

VII. CONCLUSION

An iterative, wideband MIMO optimization scheme for
far-field emission design has been presented that optimizes
the spectral content in certain predefined angles denoted as
beamlets. Space-frequency nulling is also implemented in-
side the iterative process via the reiterative uniform-weight
optimization (RUWO) method. The design process avoids
placing power into the invisible space by maximizing power
emitted into the visible space, thus avoiding large amounts
of reactive power that would occur otherwise and that could
potentially damage the radar. The resulting waveforms are
constrained to be constant-modulus and can be implemented as
continuous-time PCFM waveforms. Three different scenarios
have been examined to show the versatility of the design
scheme. The results demonstrate that for a randomized wave-
form initialization, the subsequent wide beam emission design
provides greater spatial decorrelation, and thus finer spatial
resolution and lower spatial ambiguity sidelobes than a narrow
beam emission, though the latter can achieve better waveform
autocorrelation properties (lower range sidelobes).
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APPENDIX A
BEAMLET CONSTRAINT FROM (29)

We want to constrain the available beamlet directions in ΘP

such that the mainlobe of each beamlet is contained entirely
within the visible domain (for in-band frequencies). The peak-
to-null beamwidth W in sin θ space for a uniform linear array
with M elements and inter-element spacing d is

W =
c

Mfd
.

Inserting the representation of d from (3) yields

W =
2fd
Mf

.

The widest beamwidth for in-band frequencies occurs at
f = fcent − B/2. Therefore the maximum peak-to-null
beamwidth for in-band frequencies is

Wmax =
2fd/fcent

M
(

1− %BW
2

) .
Bounding sin ΘP such that each mainlobe within the set
avoids the invisible domain for all in-band frequencies is thus

sin ΘP ≤ 1−Wmax = 1− 2fd/fcent

M
(

1− %BW
2

) .
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