16/32-Bit ARM-Thumb
Architecture and AX Extensi

Presenter: Prasad Kulkarni
Course: CIS5930 Embedded Pr

Need for 16 Bit Thumb

 ARM Encoding characteristics
— fixed width 32 bit ISA
— three address instruction set format
— All instructions are conditional
— 16 registers in user space

_0de size as well as power are |

Thumb ISA Characteristic

e 16 bit instruction encoding space.
e 2 address format.
 No support for predication.

Most Instructions can only access
gisters.

Thumb Hardware

e« Thumb instruction decoder is placed in the pipel

Decode stage Execute

Thumb

Instruction
Decompressor

ARM
instruction

decode

Thumb state

ARM-Thumb Instruction Mapp

* Thumb-instruction ADD Rd, #constant is converte
unconditionally executed ARM-instruction

ADD Rd, Rd, #constant.

Example: ADD R4, #Constant

The upper register . Thumb code

B . ; 0
bit I1s fixed to zero 10| Rd | 8-bitimmediate
and source and | L

astination are

Major op-code
denoting format 3
move/compare/add/sub
with immeadiate value

Minar op-codea
denoting ADD
instruction

Destinationand ~ Immediate
source register value

31 | | | | |
1110 | 00 | 1 1 |0ORd | ORd | 0000 8-bit immediate

| ARM code

Always condition code

Thumb State Registers

THUMBE state ARM state

e Only 8 of the 16 RO RO

registers visible for = u
most instructions. R R3

Instructions MOV, = RS
ADD, and CMP are RT R7

Lo registers

R6 R6
R&

vailable between RY
R10

Ister sets. RI1

R12
Stack Pointer (SP) Stack Pointer (R13)
Link Register (LR) Link Register (R14)
Program Counter (PC) [Program Counter (R15)]=
CPSR CPSR
SPSR SPSR

Hi registers

Thumb Instruction

Rb

Rb

Rb

Rb

Word8

Word8

SWord7T

Rlist

Rlist

Soffset8

Value8

Offset11

Form

Move shifted register
Add/subtract

Move/comparefadd
fsubtract immediate

ALU operations

Hi register operations
/branch exchange

PC-relative load

Load/store with register
offset

Load/store sign-extended
byte/halfword

Load/store with immediate
offset

Load/store halfword
SP-relative load/store
Load address

Add offset to stack pointer
Push/pop registers
Multiple load/store
Conditional branch
Software Interrupt
Unconditional branch

Long branch with link

Entering Thumb State

Thumb execution is normally entered
executing an ARM BX instruction (Bre
and Exchange).

Address held in a general purpose
Bit 0 of that register must be set Ic
LDR/LDM Instructions tk

Mixed ARM-Thumb Code
(Example)

" Thumb instructions folow

, make bx word aligned

, switch to ARM, ri15[0] not s
, ensure ARM code is wor

. ARM code follows

, set r15[0]
. switch

Advantages of Thumb IS£

 The main benefit of using Thumb cod
over ARM is reduction in code size.

e Code size reduction is reported to be
on average.

In some cases, Thumb code may ¢
hieve better performance due

Issues with Thumb

e Significant increase In instruction counts,
reported to be from 3% to 98%.

e Higher cycle counts for the Thumb code a:
compared to ARM.

Savings In I-cache energy offset by ener
'n other parts of the processor due to ir

equired to “blend” instructi
ormance critice

Thumb-2 Architecture

e Combined 32 and 16 bit instruction set
— Instructions can be freely mixed
— 16 bit instructions include the original Thumb

Instruction set
— Complete compatibility with Thumb binaries
— Some new 16 bit instructions for key code Siz

Vlrtually all instructions available in ARI

Thumb-2 Encoding

Half Word1l | Half Word2 |Length | Functionality
[15:13] [12:11]

Not 111 XX 16 bits | Current 16 bit Thumb instructic
111 00 16 bits | Current 16 bit Thumb uncondi
111 Not 00 32 bits | Thumb-2 32 bit Thumb instruc

» Thumb-2 encodings are compatible
existing Thumb BL/BLX instructions

3| /BLX are 32 bit, in 2 half wore

:O) Contalns AL T S T AN | NN (1 8 7T & &5 4 3 2 1 0

jaw-e [TTTTT =
|]

|— Long branch and link offset highflow

Lowrhigh offset bit
0- offast high
1- offset low

Thumb-2 Instructions

e Two 32-bit instructions to load a 32-bit con

MOVW Rd,#Zimml6 - Rd = ZeroExtend(immZa1¢
MOVT Rd#mml6 - Rd[31:16] =imm16
// Rd[15:0] unaffected

Optimizes for the common case of brar

Thumb-2 |
B (cson e
T T —

Thumb-2 Support for Predicat

< The then(n) [T]
Instruction causes the l

next 1-4 instructions

h memory to be
conditional

nditional execution

Thumb-2 Compiled Code S

HEEEEEEEN
”"””"

-}
N
1
-}
T

lllllllll
”"””“

m
=)
e
T

«
)

Thumb-2 Performance

 EEMBC benchmarks, on ARM11-like core.

 Thumb-2 performance is 98% of ARM performanc
125% of Thumb performance.

100117
90
80
70

AX Extensions

 Work at the University of Arizona exploits t
excess fetch bandwidth in Thumb mode to
augmenting instructions.

o AX Instructions are non-executing instructi
that do not contribute to execution time.

AX Instruction i1s coalesced with followi
Instruction at decode time.

2duces the instruction counts In
erting AX instructions for b

AX Instruction 1

e setshift

— sets the shift type and amount for the next inst

ARM

AXThumb

sub regl, reg2, Isl #2

setshift Isl, #2
sub regl, reg2

AX Instruction 2

e setpred - support for predication in 16 bit ¢

ARM

AXThumb

cmp r3, #0
addeq r6, r6, rl
addeq 5, r5, r2
rsbne r6, r6, rl
rsbne r5, r5, r2
mov r3, r9

(1)
(2)
3)
(4)
(5)
(6)
(7)

cmp r3, #0
setpred EQ #2
add r6, rl

sub r6, rl

add r5, r2

sub r5, r2

mov r3, r9

Coalesc

cmp r3, #0
sub r6, r6,

AX Instruction 3

e setsbit — set the ‘'S’ bit to avoid explic
cmp Instruction

ARM AXThumb

movs regl, reg2 setsbit
mov regl, reg2

AX Instruction 4

* setsource — sets the source register f

next instruction

ARM

AXThumb

Idr r5, [r9, #100]

setsource high r9
ldr 15, [-, #100]

Coalesce

ldr 15, [r9, #100]

AX Instruction 5

o setdest — sets the destination registe
the next instruction

ARM AXThumb

add Hregl, Hregl, #imm setdest Hregl
add -, #imm

Coale

AX Instruction 6

o seftthird — set the third operand (supp
address format)

ARM AXThumb

add reqgl, reg2, reg3 setthird reg3
add regl, reg2

AX Instruction 7

e setimm — sets the iImmediate value fo
next instruction

ARM AXThumb

and regl, regl, #imm setimm #imm
and reqgl, -

AX Instruction 8

o setallhigh — indicates next instruction

all high registers

ARM

AXThumb

push {r4,...,r11}

(1) push|[r4,r5, 16, r7
(2,3) setallhigh
push [r4, r5, r6

Thumb

Coalescec

push [r4, r5, 16, r7]
4, r8

push {r4, r5,
push {r€

AX Performance Improveme

Use of AX instructions reduces the
dynamic instruction count by 10% on
average over Thumb code.

Use of AX instructions reduces cyc
ounts by -0.2% to 20% comparec

Jumb code.
1Ize IS almost identl

AX Extension to Use Invisibl
Registers

* Another reason for the loss in perfor
of Thumb code as compared to ARM

reduction in the number of visible reg
* The registers are divided into 2 sets

The register set currently visible to
ogram can be set using setmas

ompiler has to allocate

Improved AX Performanc

* Negligible code size increase over or
Thumb code.

* Reduction in dynamic instruction cou
up to 19% over Thumb, due to remc

oV Instructions.
eedup of up to 20% over Tr

ARM Processor Families
Supporting Thumb

« ARM processors provide cores for

— application cores for platforms running comple>
operating system, for wireless, imaging, and

consumer applications.

— embedded cores for real-time systems for me
storage, automotive, industrial, and networki
applications

ecure cores for secure applications inc
ds, and SIMs

embedded core

Questions ?

ARMvVAT Architecture (ARM7TL

 Introduced 16 bit Thumb ISA, von
Neumann design.

e 3 stage pipeline, max 150 MHz.

No branch prediction, 3 cycles for te
oranch, 1 cycle for not-taken bra

Ads and stores can take
ocute stage.

Thumb - ARM
Instruction Fetch ARM decode/
decompress| Reg select

ARMvV5TEJ Architecture (ARM9z

o Better interworking between ARM anc
Thumb, Harvard architecture.

e 5 stage pipeline, max 233 MHz.
Branches have similar access.

oads and stores now have 3 pipg
ges to finish execution.

Instruction Arm = Thumb Memory Access
Fetch Reg Reg ¢
read decode

ARMv6 Architecture (ARM113

ARMv7 Architecture

	16/32-Bit ARM-Thumb Architecture and AX Extensions
	Need for 16 Bit Thumb
	Thumb ISA Characteristics
	Thumb Hardware
	ARM-Thumb Instruction Mapping
	Thumb State Registers
	Thumb Instruction Format
	Entering Thumb State
	Mixed ARM-Thumb Code (Example)
	Advantages of Thumb ISA
	Issues with Thumb
	Thumb-2 Architecture
	Thumb-2 Encoding
	Thumb-2 Instructions
	Thumb-2 Support for Predication
	Thumb-2 Compiled Code Size
	Thumb-2 Performance
	AX Extensions
	AX Instruction 1
	AX Instruction 2
	AX Instruction 3
	AX Instruction 4
	AX Instruction 5
	AX Instruction 6
	AX Instruction 7
	AX Instruction 8
	AX Performance Improvements
	AX Extension to Use Invisible Registers
	Improved AX Performance
	ARM Processor Families Supporting Thumb
	Questions ?
	ARMv4T Architecture (ARM7TDMI)
	ARMv5TEJ Architecture (ARM926EJ)
	ARMv6 Architecture (ARM1136JF)
	ARMv7 Architecture

