
16/32-Bit ARM-Thumb
Architecture and AX Extensions

Presenter: Prasad Kulkarni
Course: CIS5930 Embedded Processors

Need for 16 Bit Thumb

• ARM Encoding characteristics
– fixed width 32 bit ISA
– three address instruction set format
– All instructions are conditional
– 16 registers in user space

• Code size as well as power are important
for embedded processors.

• ARM provides good performance with low
power requirements, at the cost of code
size.

Thumb ISA Characteristics

• 16 bit instruction encoding space.
• 2 address format.
• No support for predication.
• Most instructions can only access 8

registers.

Thumb Hardware
• Thumb instruction decoder is placed in the pipeline.

ARM-Thumb Instruction Mapping

• Thumb-instruction ADD Rd, #constant is converted to
unconditionally executed ARM-instruction
ADD Rd, Rd, #constant.

• The upper register
bit is fixed to zero
and source and
destination are
equal.

• The constant is
also 8-bit instead
of 12-bit available
in ARM-mode.

Thumb State Registers

• Only 8 of the 16
registers visible for
most instructions.

• Instructions MOV,
ADD, and CMP are
available between
register sets.

Thumb Instruction Format

Entering Thumb State

• Thumb execution is normally entered by
executing an ARM BX instruction (Branch
and Exchange).

• Address held in a general purpose register.
• Bit 0 of that register must be set to 1.
• BLX, LDR/LDM instructions that load the

PC can also be used.
• T bit (bit 5) in the CPSR is set to 1.

Mixed ARM-Thumb Code
(Example)

.code 16 ;Thumb instructions folow

...

.align 2 ; make bx word aligned
bx r15 ; switch to ARM, r15[0] not set
nop ; ensure ARM code is word aligned
.code 32 ; ARM code follows
<Shorter ARM sequence>
orr r15, r15, #1 ; set r15[0]
bx r15 ; switch to Thumb as r15[0] is set
.code 16 ; Thumb instructions follow
...

Advantages of Thumb ISA

• The main benefit of using Thumb code
over ARM is reduction in code size.

• Code size reduction is reported to be 30%
on average.

• In some cases, Thumb code may also
achieve better performance due to fewer
I-cache misses.

• Savings in power due to fewer I-cache
fetches.

Issues with Thumb
• Significant increase in instruction counts,

reported to be from 3% to 98%.
• Higher cycle counts for the Thumb code as

compared to ARM.
• Savings in I-cache energy offset by energy used

in other parts of the processor due to increase in
dynamic cycles.

• User required to “blend” instruction sets by
writing performance critical section of code in
ARM and the rest in Thumb.

Thumb-2 Architecture
• Combined 32 and 16 bit instruction set

– Instructions can be freely mixed
– 16 bit instructions include the original Thumb

instruction set
– Complete compatibility with Thumb binaries
– Some new 16 bit instructions for key code size wins

• Virtually all instructions available in ARM ISA
available in Thumb-2
– Some minor cleaning up of system management

instructions
– In principle can stand-alone as a complete ISA

• Unified assembly language for ARM and
Thumb-2
– Assembly can be targeted to either ISA

Thumb-2 Encoding
Half Word1
[15:13]

Half Word2
[12:11]

Length Functionality

Not 111 xx 16 bits Current 16 bit Thumb instruction
111 00 16 bits Current 16 bit Thumb unconditional br.
111 Not 00 32 bits Thumb-2 32 bit Thumb instruction

• Thumb-2 encodings are compatible with
existing Thumb BL/BLX instructions.

• BL/BLX are 32 bit, in 2 half words.
• HW-1 (H=0) contains

bits 0-11, and HW-2
contains bits 12:21 of
target address.

Thumb-2 Instructions

• Two 32-bit instructions to load a 32-bit constant.

• Optimizes for the common case of branch-if-zero.

MOVW Rd,#imm16 Rd = ZeroExtend(imm16)
MOVT Rd,#imm16 Rd[31:16] = imm16

// Rd[15:0] unaffected

ARM Thumb-2 Thumb
CMP r0, #0 CZB r0, ln CMP r0, #0
BEQ ln BEQ ln
8 Bytes, 1 or 2 cycles 2 Bytes, 1 cycle 4 Bytes,1 or 2 cycles

Thumb-2 Support for Predication

• The If-Then (IT)
instruction causes the
next 1-4 instructions
in memory to be
conditional

• Allows short
conditional execution
bursts in 16-bit
instruction set

ARM Thumb-2 Thumb

LDREQ r0, [r1] ITETE EQ BNE l1

LDRNE r0, [r2] LDR r0, [r1] LDR r0,[r1]

ADDEQ r0, r3, r0 LDR r0, [r2] ADD r0, r3, r0

ADDNE r0, r4, r0 ADD r0, r3, r0 B l2

ADD r0, r4, r0 I1: LDR r0,[r2]

ADD r0, r4, r0

l2 ……

16 Bytes, 4
cycles

10 Bytes, 4 or 5
cycles

12 Bytes, 4 to
20 cycles

Thumb-2 Compiled Code Size
ARM Thumb-2 Thumb

• Thumb-2 space
optimized, 32%
smaller than ARM

• Thumb-2
performance
optimized, 26%
smaller than ARM

ARM Thumb-2 Thumb

Thumb-2 Performance
• EEMBC benchmarks, on ARM11-like core.
• Thumb-2 performance is 98% of ARM performance, and

125% of Thumb performance.

0
10
20
30
40
50
60
70
80
90

100

dh
ry

ro
tat

e
FF

Tp
uls

e

os
pf

jpe
g

Con
vE

n4
Vite

rb
ge

t
fB

itA
lty

pB
Ai

co
mpr

es
s

matr
ix0

1
Ave

rag
e

ARM
Thumb-2
Thumb

AX Extensions
• Work at the University of Arizona exploits the

excess fetch bandwidth in Thumb mode to insert
augmenting instructions.

• AX instructions are non-executing instructions
that do not contribute to execution time.

• AX instruction is coalesced with following Thumb
instruction at decode time.

• Reduces the instruction counts in Thumb mode
by inserting AX instructions for branches, ALU
operations, and MOVs.

• 8 types of AX instructions.

AX Instruction 1

• setshift
– sets the shift type and amount for the next instruction

ARM AXThumb
sub reg1, reg2, lsl #2 setshift lsl, #2

sub reg1, reg2

Thumb Coalesced ARM
lsl rtmp, reg2, #2
sub reg1, rtmp

sub reg1, reg2, lsl #2

AX Instruction 2
• setpred - support for predication in 16 bit code

ARM AXThumb
cmp r3, #0
addeq r6, r6, r1
addeq r5, r5, r2
rsbne r6, r6, r1
rsbne r5, r5, r2
mov r3, r9

(1) cmp r3, #0
(2) setpred EQ #2
(3) add r6, r1
(4) sub r6, r1
(5) add r5, r2
(6) sub r5, r2
(7) mov r3, r9

Thumb Coalesced ARM
(1) cmp r3, #0
(2) beq (6)
(3) sub r6, r1
(4) sub r5, r2
(5) b (8)
(6) add r6, r1
(7) add r5, r2
(8) mov r3, r9

cmp r3, #0
sub r6, r6, r1
sub r5, r5, r2
mov r3, r9
OR
cmp r3, #0
add r6, r6, r1
add r5, r5, r2
mov r3, r9

AX Instruction 3

• setsbit – set the ‘S’ bit to avoid explicit
cmp instruction

ARM AXThumb
movs reg1, reg2 setsbit

mov reg1, reg2

Thumb Coalesced ARM
mov reg1, reg2
cmp reg1, #0

movs reg1, reg2

AX Instruction 4
• setsource – sets the source register for the

next instruction
ARM AXThumb

ldr r5, [r9, #100] setsource high r9
ldr r5, [-, #100]

Thumb Coalesced ARM
mov r3, r9
ldr r5, [r3, #100]

ldr r5, [r9, #100]

AX Instruction 5

• setdest – sets the destination register for
the next instruction

ARM AXThumb
add Hreg1, Hreg1, #imm setdest Hreg1

add -, #imm

Thumb Coalesced ARM
mov rtmp, #imm
add Hreg1, rtmp

add Hreg1, Hreg1, #imm

AX Instruction 6

• setthird – set the third operand (support 3-
address format)

ARM AXThumb
add reg1, reg2, reg3 setthird reg3

add reg1, reg2

Thumb Coalesced ARM
mov reg1, reg2
add reg1, reg3

add reg1, reg2, reg3

AX Instruction 7

• setimm – sets the immediate value for the
next instruction

ARM AXThumb
and reg1, reg1, #imm setimm #imm

and reg1, -

Thumb Coalesced ARM
mov rtmp, #imm
and reg1, rtmp

and reg1, reg2, #imm

AX Instruction 8
• setallhigh – indicates next instruction uses

all high registers
ARM AXThumb

push {r4,...,r11} (1) push [r4, r5, r6, r7]
(2,3) setallhigh

push [r4, r5, r6, r7]

Thumb Coalesced ARM
(1) push [r4, r5, r6, r7]
(2) mov r4, r8
(3) mov r5, r9
(4) mov r6, r10
(5) mov r7, r11
(6) push [r4, r5. r6, r7]

push {r4, r5, r6, r7}
push {r8, r9, r10, r11}

AX Performance Improvements

• Use of AX instructions reduces the
dynamic instruction count by 10% on
average over Thumb code.

• Use of AX instructions reduces cycle
counts by -0.2% to 20% compared to
Thumb code.

• Code size is almost identical to Thumb
code.

AX Extension to Use Invisible
Registers

• Another reason for the loss in performance
of Thumb code as compared to ARM is
reduction in the number of visible registers.

• The registers are divided into 2 sets.
• The register set currently visible to the

program can be set using setmask.
• The compiler has to allocate and assign

registers and then generate minimal
number of setmask instructions.

Improved AX Performance

• Negligible code size increase over original
Thumb code.

• Reduction in dynamic instruction count of
up to 19% over Thumb, due to removal of
mov instructions.

• Speedup of up to 20% over Thumb code.

ARM Processor Families
Supporting Thumb

• ARM processors provide cores for
– application cores for platforms running complex

operating system, for wireless, imaging, and
consumer applications.

– embedded cores for real-time systems for mass
storage, automotive, industrial, and networking
applications

– secure cores for secure applications including smart
cards, and SIMs

• Example embedded cores
– ARM7TDMI, ARM946E-S, ARM1026EJ-S,

ARM1156T2, ARM Cortex

Questions ?

ARMv4T Architecture (ARM7TDMI)

• Introduced 16 bit Thumb ISA, von
Neumann design.

• 3 stage pipeline, max 150 MHz.
• No branch prediction, 3 cycles for taken

branch, 1 cycle for not-taken branch.
• Loads and stores can take multiple cycles

in the Execute stage.

Instruction Fetch
Thumb

ARM
decompress

Reg
read

ARM
decode/

Reg select
Shift ALU Reg

write

Fetch Decode Execute

ARMv5TEJ Architecture (ARM926EJ)

• Better interworking between ARM and
Thumb, Harvard architecture.

• 5 stage pipeline, max 233 MHz.
• Branches have similar access.
• Loads and stores now have 3 pipeline

stages to finish execution.

Instruction
Fetch

Arm Thumb
Shift + ALU Memory Access Reg

writeReg
read

Reg
decode

Decode Execute Memory WriteFetch

ARMv6 Architecture (ARM1136JF)

ARMv7 Architecture

	16/32-Bit ARM-Thumb Architecture and AX Extensions
	Need for 16 Bit Thumb
	Thumb ISA Characteristics
	Thumb Hardware
	ARM-Thumb Instruction Mapping
	Thumb State Registers
	Thumb Instruction Format
	Entering Thumb State
	Mixed ARM-Thumb Code (Example)
	Advantages of Thumb ISA
	Issues with Thumb
	Thumb-2 Architecture
	Thumb-2 Encoding
	Thumb-2 Instructions
	Thumb-2 Support for Predication
	Thumb-2 Compiled Code Size
	Thumb-2 Performance
	AX Extensions
	AX Instruction 1
	AX Instruction 2
	AX Instruction 3
	AX Instruction 4
	AX Instruction 5
	AX Instruction 6
	AX Instruction 7
	AX Instruction 8
	AX Performance Improvements
	AX Extension to Use Invisible Registers
	Improved AX Performance
	ARM Processor Families Supporting Thumb
	Questions ?
	ARMv4T Architecture (ARM7TDMI)
	ARMv5TEJ Architecture (ARM926EJ)
	ARMv6 Architecture (ARM1136JF)
	ARMv7 Architecture

