WIDE AREA ATM NETWORK EXPERIMENTS USING EMULATED TRAFFIC SOURCES

Beng-Ong Lee Master Thesis Defense

Department of Electrical Engineering and Computer Science The University of Kansas

Committee Member :

Professor Victor Frost (Chair) Professor Doug Niehaus

Professor Joseph Evans

January 16, 1998

Organization

- Motivation
- Introduction
- Emulated Traffic Sources
- NetSpec Implementation
- Validation Experiments
- WAN Experiments

Test Scenarios

Traffic Parameters

Performance Metrics

Traffic Shaping

TCP and UPD (Packet Pacing)

ATM (Cell Pacing)

Organization (Contd.)

Experiment Results

No Cell Pacing

Cell Pacing on Target Flows

Cell Pacing on Background Traffic

ullet Comparison of Network Performance Before and After Network Upgrades

Lesson Learned

ATM Network Performance

Doing WAN Experiments

- Conclusions
- Future Work

Motivation

- Many point-to-point maximum throughput measurements have been done
- Multi-cross user traffic scenarios are more realistic to evaluate network performance from user prospective.

WWW, FTP, Video, telnet, and etc.

Evaluate Packet Level Performance

Applications see packet performance, not ATM performance.

One 53-byte ATM cell loss may cause the whole 9180-byte TCP packet useless

Measure packet level performance: Packet Delay Jitters, Packet Loss, and etc.

Introduction

- Future broadband WAN networks will carry the traffic from diverse applications, such as FTP, WWW, Video, Audio, Graphic, telnet.
- ATM is a perfect candidate to provide supports for these bandwidth-hungry multimedia applications.
- Several national wide large scale ATM testbeds, such as MAGIC, AAI, ATDnet, have been deployed to experimentally evaluate the ATM performance.
- KU is one of the AAI paticipants.
- All the experiments in this study were conducted on the AAI network.

Emulated Traffic Sources

- All the user traffic models were collected from various notes and papers.
- FTP (File Transfer Protocol)

 FTP Session Interarrival Time

 FTP Number of Item

 FTP Item Size
- WWW (World Wide Web)
 WWW Request Interarrival Time
 WWW Item Size
- MPEG (Motion Picture Experts Group)
 Video MPEG Frame Size
- Videoconference Video Teleconference Frame Size

• Telnet

Telnet Session Interarrival Time
Telnet Session Duration
Telnet Packet Interarrival Time
Telnet Packet Size

NetSpec Implementation

- The emulated traffic sources have been successfully implemented in NetSpec 3.0.
- Many generic random distribution are also included.

Uniform

Exponential

Normal

LogNormal

Geometric

Pareto

Gamma

- By using any combination of random distributions, many differenct packet-level traffic types can be generated for experiments.
- Detailed Info can be found at http://www.ittc.ukans.edu/Projects/AAI/products/netspec/

Validation of Traffic Models

Validation Experiments

12-hour FTP Traffic

12-hour WWW Traffic

30-minute MPEG Stream

30-minute Videoconference Stream

The emulated traffic was captured by KU's ATM traffic data collector.

12-hour FTP Traffic

Figure 1: Emulated Daily FTP Traffic

12-hour WWW Traffic

Figure 2: Emulated Daily WWW Traffic

30-minute MPEG Stream

Figure 3: 30-minute MPEG Stream

30-minute Videoconference Stream

Figure 4: 30-minute Videoconference Stream

WAN Experiments

- Test Scenarios
- Traffic ParametersPerformance Metrics
- Traffic Shaping

Test Scenario #1

Test Scenario #2

Traffic Parameters

60	10	Video Conference	
	10	MPEG	
	10	FTP	
	30	WWW	60Mbps
25	ਹਰ ਹ	Video Conference	
	5	MPEG	
	57	FTP	
	10	WWW	25Mbps
Total (Mbps)	Mean Rate (Mbps)	Traffic Types	Background Traffic
31.34	14	54840	
26.11	14	45700	
20.89	14	36560	
15.67	14	27420	
10.45	14	18280	
5.22	14	9140	
Rate (Mbps)	Period (ms)	Blocksize (bytes)	Target Flow

Performance Metrics

• Delay Jitter of Packets

$$J(n) = [T_R(n) - T_R(n-1)] - [T_T(n) - T_T(n-1)]$$
 (1)

J(n) is the delay jitter of n^{th} packet.

 $T_R(\mathbf{n})$ is the received timestamp of n^{th} packet.

 $T_T(n)$ is the transmitted timestamp of n^{th} packet.

Standard deviation is used to represent the variation of delay jitters

• Percentage of Packet Loss.

$$PacketLosses(\%) = \frac{Number of Missing Packets}{Number of Transmitted Packets} * 100\%$$
 (2)

Traffic Shaping

A total of six sets of experiments are defined to study the effect of TCP, UDP, and Cell Pacing:

• No Cell Level Pacing

UDP-level CBR Target Flows + TCP-level Background Traffic TCP-level CBR Target Flows + TCP-level Background Traffic

• Cell Level Paced Target Flows

Cell Level Paced UDP CBR Target Flows + TCP-level Background Traffic Cell Level Paced TCP CBR Target Flows + TCP-level Background Traffic

Cell Level Paced Background Traffic

TCP-level CBR Target Flows + Cell Level Paced TCP Background Traffic UDP-level CBR Target Flows + Cell Level Paced TCP Background Traffic

Delay Jitter of No Cell Pacing

Figure 5: Standard Deviation of Network Jitter of TCP Target Flows

Network Performance After Upgrades

- \bullet Several network changes occurred after 10/1/97.
- The network changes are listed as follows:

Early Packet Discard (EPD) was enabled where possible Edge switches are added. AAI network connections were changed from using VBR to UBR service.

- Two tests were selected to rerun.
- UDP Target Flows + Cell Paced TCP Background Traffic UDP Target Flows + TCP Background Traffic
- Experiments were conducted by Mike Linhart.

Delay Jitter of No Cell Pacing

Figure 6: Standard Deviation of Network Jitter of UDP Target Flows

Packet Loss of No Cell Pacing

Figure 7: Percentage of Packet Loss of UDP Target Flows

Delay Jitter of Cell Pacing on Background Traffic

Figure 8: Standard Deviation of Packet Delay Jitter of UDP Target Flows with Cell Paced 60Mbps Background Traffic

Packet Loss of Cell Pacing on Background Traffic

Figure 9: Percentage of Packet Loss of UDP Target Flows with Cell Paced 60Mbps Background Traffic

Lessons Learned

• ATM Network Performance

environment. Poor TCP and UDP protocol performance in an uncontrolled and congested

ATM traffic shaping significantly improves network performance.

Asymmetrical network performance was observed.

of the target flows. Early Packet Discard (EPD) technique significantly improves network performance

• Doing WAN Experiments (contd.)

Lessons Learned (contd.)

• Doing WAN Experiments

Network Connectivity

Host State

Long Duration of Experiments

August 1997. 150 hours of experiment time are logged. A total of 772 successful experiments have been conducted from May 1997 to

Large Amount of Collected Data

processing time 1Gbytes of uncompressed data have been collected and required 24 hours of

Conclusion

- Empirically-derived traffic models were collected and implemented in NetSpec 3.0.
- Congestion WAN experiments using these emulated traffic sources were successfully conducted.
- Packet level performance in terms of delay jitters, and packet loss, was evaluated.
- TCP alone does not provide efficient congestion control in this congested environment.
- ATM traffic shaping, cell pacing, significantly reduces network tention and improves network performance
- EPD technique provides efficient congestion control for packet traffic.

Future Work

- More sophisticated traffic models to implement. For exmaple, WWW. RealPlayer, QuickTime, ShockWave, IP Phone. More and more multimedia traffic appears on WANs.
- In the experiments, WWW and FTP traffic were transmitted in a single TCP connection. Realistic scenarios that include multiple TCP connections transmitting WWW and FTP traffic may be considered
- Analysis mainly focuses on the target flows. Further investigation on performance of background traffic may be done.