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Abstract

A new bit-serial architecture for implementation of high order FIR filters, as well as example FPGA and

CMOS realizations are introduced. This structure exploits the simplicity of coefficients which consist of two

power-of-two terms to yield efficient implementations. Quantization effects are discussed and a simple block

scaling method for reducing rounding and truncation noise in high order filters is also presented.
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1 Introduction

In recent years, considerable attention has been placed on the implementation of signal processing algorithms in VLSI

[1, 2, 3, 4, 5, 7, 8, 9, 10, 13, 16, 17, 19, 21], ranging from full custom VLSI to general purpose digital signal processors. A

variety of approaches to high speed implementation of FIR filters have been pursued.

Bit-serial processing techniques have been used in several applications [3, 14, 17, 18, 20]. We present a new bit-serial

FIR filter building block which may be used to implement filters where each of the coefficient values is a sum or difference of

several power-of-two terms, and which is particularly useful for the case where it is a sum or difference of only two power-

of-two terms. Example designs based on field programmable gate arrays (FPGAs) as well as custom CMOS approaches

will be used to illustrate the advantages of this architecture. The performance of the architecture on commercially available

FPGAs, in particular, is comparable or superior to that of many custom filtering chips.

In binary arithmetic, multiplying a number by a power-of-two is just a matter of shifting, and consequently, the

implementation may be simplified by using only a limited number of power-of-two terms. The minimum clock period may

be as short as that required by a full adder and a latch. The improvements in speed and saving in silicon area are, however,

achieved at the expense of a deterioration in the frequency response characteristics. The extent to which the frequency

response deteriorates depends on the number of power-of-two terms used in approximating each coefficient value, the

architecture of the filter, and the discrete space optimization technique used to derive the coefficient values. It has been

demonstrated in [12] that -60dB of frequency response ripple magnitude can be achieved with two power-of-two terms

for each coefficient value when the filter is realized in cascade form and the coefficient values are derived using mixed

integer linear programming. These coefficient values are realized by appropriately positioning the summing points in the

tapped delay line. A full custom design may be created by using transmission gates to control the summing points, while a

semi-custom implementation may developed by metal layer interconnect positioning via contacts.

In addition to custom implementations, this architecture is well suited to field programmable gate arrays (FPGAs).

Due to the prevalence of local routing in this architecture, both high performance and high density can be attained in a

straightforward mapping to the FPGA building blocks and routing resources.

High filter length may be obtained by connecting the basic building blocks in series. Due to the large number of rounding

and truncation operations in high order filters, quantization noise effects may be serious. A new block scaling method is

introduced to reduce these noise effects.
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2 Architecture

In a bit-serial implementation, each delay element of the filter is replaced by an M -stage single-bit shift register, as shown

in Figure 1, where M is the wordlength of the filter. If the coefficient value is an integer power-of-two, the multiplier can

be replaced by a barrel shifter. There is a more efficient method, however, for implementing a coefficient value which is an

integer power-of-two. It will be shown later that moving the adder k places to the right achieves the same effect as would

be achieved by a coefficient value of 2�k.

2.1 General Structure

Consider the bit-serial summation of Sn and Un to produce Vn, as shown in Figure 2, where Sn, Un, and Vn are given by

Sn =
M�1X

m=0

sn(m)2m; sn(m) = 0; 1 (1)

Un =
M�1X

m=0

un(m)2m; un(m) = 0; 1 (2)

Vn =
M�1X

m=0

vn(m)2m; vn(m) = 0; 1 (3)

The variables sn(m), un(m), and vn(m) do not exist for m < 0 and m > M � 1. In Figure 2, un(m) is clocked into a

shift register, least significant bit first, and sn(m) is added to u(m� k) at the kth stage producing v(m� k). The adder is

a single-bit full adder. Hence,

vn(m) = un(m) + sn(m+ k) (4)

The requirements for the existence of un(m), vn(m), and sn(m + k), and the possibility of a carry being generated are

ignored at this moment; these will be discussed in the next subsection. Multiplying both sides of (4) by 2m and summing

from m = 0 to M � 1, we have

Vn = Un + 2�k
M�1+kX

m=k

sn(m)2m (5)

Hence,

Vn = Un + 2�kSn � 2�k
k�1X

m=0

sn(m)2m (6)

and

Vn = Un + 2�kSn; if sn(m) = 0 for m = 0; : : : ; k� 1 (7)
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Suppose that Sn is derived from an R-bit data word Dn, where

Dn =

M�1X

m=M�R

r(m)2m; r(m) = 0; 1 and R �M (8)

and Sn = Dn, then it is necessary that sn(m) = 0 form = 0; : : : ;M�R�1. Thus, ifM�R � k, then Vn = Un+2�kSn.

We shall refer to R as the input signal wordlength. Note that k is the equivalent “coefficient wordlength”. Hence, if

the signal wordlength plus the “coefficient wordlength” is less than or equal to the internal wordlength of the filter, the

coefficient multiplier 2�k can be implemented using (4).

2.2 Control Unit and Adder Design

In bit-serial architectures, the word-boundary must be identified. The summation operation sn(m)+ un(m� k) should not

be performed if m� k < 0 since un(m+ k) for m� k < 0 is undefined. When m� k < 0, un(m+ k) is in fact part of

Un�1; Sn�1 should be sign extended (assuming two’s complement representations are being used) and added to un(m+ k)

when m � k < 0. This timing can easily be controlled by a set of timing signals. Let the jth timing signal at time i be

�j(i). The logic level of �0(i) is time invariant and is always equal to 1. Except during i = 0, the logic levels of �j(i) for

j = 2; : : : ;M � 1, are given by

�j(i) = �j�1(i� 1) (9)

At the word-boundary, i.e. when i = 0, �j(i) for j = 2; : : : ;M � 1, are reset to zero. Whether sn(m) should be added to

un(m+ k) or whether the most significant bit of Sn should be sign extended and then added to un(m+ k) is controlled by

�j(i). Those adders associated with the coefficients whose values are 2�j should add sn(m) to un(m+ k) when �j(i) = 1;

Sn�1 should be sign extended and then added to un(m+ k) when �j(i) = 0.

Since the weight of vn(m+ 1) is twice that of vn(m), the carry generated by the right-hand side of (4) should be added

to vn(m+ 1). Hence, the complete equation for (4) is

vn(m) + cn(m) = un(m) + sn(m+ k) + cn(m� 1); (10)

where cn(m) is the carry generated from the summation operation un(m) + sn(m+ k) + cn(m� 1). The adder structure

is shown in Figure 3. One of the inputs of the adder is u(m� k) and the other input is either s(m) or ¯s(m) depending on

whether the coefficient is positive or negative. The multiplexer and the latch perform the sign extension under the control

of b1, which is connected to the appropriate signal line �j(i). Since the carry bits should not be allowed to propagate past

the word-boundaries, the control line b2 is used to clear the delay at word-boundaries.
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3 Quantization Noise Effects

3.1 Architecture Performance

IfR+k is larger than the wordlength of the filter, the signal wordlength must be truncated, producing roundoff noise. When

a digital filter is implemented using nontrivial multipliers, the roundoff noise power is Q2=12 [15, 18] for each coefficient,

where Q is the quantization step size. This noise power is derived based upon the assumption that the probability density

function of the rounding error is rectangularly distributed. When a filter is implemented using the structure proposed in

this paper, however, the roundoff noise properties are quite different. Those coefficients withR+ k �M do not introduce

roundoff noise. Those coefficients withR+ k >> M generate roundoff noise with the same noise power as that generated

by a nontrivial multiplier. When R + k �M is small, the roundoff noise consists of a DC bias and a broadband AC

component. The DC bias and the AC noise power for small values of R+ k �M are tabulated in Table 1. It can be seen

from Table 1 that the AC noise power is less than Q2=12 and approaches Q2=12 for R+ k >> M .

The large number of rounding or truncation processes in the implementation of high order FIR filters can render the

filter output noisy. A commonly used method for reducing the roundoff noise of high order FIR filter is to implement the

filter using a cascade structure. In a cascade realization, the roundoff noise introduced in the preceding stages is partially

removed by the stopband response of the succeeding stages. Although the cascade realization reduces the total roundoff

noise power, the reduction in roundoff noise is achieved mainly in the reduction of the noise power density in the stopband

of the filter. The signal to noise ratio in the passband cannot be improved by a cascade realization since all the cascaded

sections must pass the signal and noise in the passband. Hence, a cascade realization is not effective in reducing the roundoff

noise in wideband filters. A simple block scaling method for reducing the roundoff noise over the entire frequency spectrum

for filters with arbitrary bandwidth addresses this problem.

3.2 A Block Scaling Method

Figure 4 is a typical impulse response sequence of an FIR filter. The only important observation to be noted is that only

a few samples of the impulse response sequence at the middle have large magnitudes; the magnitudes of the remaining

samples are small. Let H(z) be the z-transform transfer function of the filter (assuming symmetry),

H(z) = h(0) +
(N�1)=2X

n=1

h(n)(zn + z�n): (11)

Assume that rounding is performed after every multiplication and that the noise power of each rounding process is �2. The

total noise power at the output is (1 + 2L + 2M + 2K)�2. The impulse response sequence, h(n), can be sectioned into

three (or more) blocks as shown in Figure 4, based upon their magnitudes. Suppose there are 2L + 1 large samples, 2M

small samples, and 2K very small samples. The small and very small samples may be made large by multiplying them by
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suitable scale factors. Suppose we define

h(n) = s1h1(n) for n = L+ 1; :::; L+M (12)

h(n) = s2h2(n) for n = L+M + 1; :::; L+M +K (13)

where s1 and s2 are appropriate scale factors. H(z) can then be rewritten as

H(z) = h(0) +
LX

n=1

h(n)(zn + z�n) + s1

L+MX

n=L+1

h1(n)(z
n + z�n)

+ s2

L+M+KX

n=L+M+1

h2(n)(z
n + z�n) (14)

With these scale factors, H(z) may be implemented using the structure shown in Figure 5. The symmetry of the impulse

response sequence may be used to reduce hardware complexity but it is not used in the structure shown in Figure 5 purely

for expository convenience; the structure can easily be modified to make use of the symmetry.

The total noise power at the output of the block scaled implementation is (2L+ 1)�2+ 2(Ms2
1 + 1)�2+ 2(Ks2

2 + 1)�2.

The noise power decreases asymptotically to (2L+ 5)�2 as Ms2
1 +Ks2

2 decreases. Hence, it is advantageous to choose s1

and s2 as small as possible. As s1 and s2 decrease, h1(n) and h2(n) increase. In order to avoid overflow,

L+MX

n=L+1

jh1(n)j � 1 and
L+M+KX

n=L+M+1

jh2(n)j � 1: (15)

Hence, s1 and s2 should be chosen so that

s1 �

L+MX

n=L+1

jh(n)j and s2 �

L+M+KX

n=L+M+1

jh(n)j: (16)

For high order filters, the magnitude of h(n) for large n is several orders of magnitude less than that for small n. Hence, the

scale factors s1; s2,..., etc. are small. The noise reduction effect is significant. Furthermore, this method reduces the noise

spectrum uniformly across the entire spectrum, so that it is equally effective for wideband as well as narrowband filters.

4 Implementation

The proposed bit-serial processing technique is eminently suitable for implementing FIR filters whose coefficient values are

sums or differences of power-of-two terms, particularly for the case of two power-of-two terms. Figure 6(a) shows the floor

plan of a cell consisting of two full adders, implemented as previously indicated, and an M -stage single-bit shift register; s

is the input data signal, u is the input from the previous tap, and v is the output to the next tap. This module implements a

single FIR filter tap, as shown by the equivalent circuit model in Figure 6(b).
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4.1 FPGA Implementation

The efficiency of this architecture is demonstrated by implementation on commercially available field programmable gate

arrays (FPGAs), in particular the Xilinx XC3100 series components. This approach is illustrated in Figure 7, where the

interconnection pattern for a typical filter tap is shown. Each block corresponds to a single configurable logic block

(CLB), and most data signals are routed locally. Control signals for implementing sign extension are distributed using the

horizontal long lines of the array (denoted by the dotted lines) and are applied to the input signal in the centrally located

control block. Automatic generation of the FPGA configuration information starting from the specification of the filter

response is straightforward, as only the interconnection pattern of the adder and delay element inputs change with filter

characteristics.

Using 10 bit coefficient words, a filter tap has been implemented using 7 CLBs. A filter with 60 taps could thus be

implemented on a single XC3195 FPGA, with sampling rates of approximately 5 MHz. If present trends in integrated

circuit technology continue, filters implemented in FPGAs with 600 taps and sampling rates of 20 MHz should be attainable

by the end of the decade using this structure.

4.2 Custom CMOS Implementation

This bit-serial architecture can be used for implementing both fully programmable filters, or mask programmable semi-

custom designs. In the fully electrically programmable structure, the summing points are implemented using transmis-

sion/pass gates which are controlled by coefficient registers unique to a given tap. In a mask programmable implementation,

the summing points are selected using the metal layer mask. The mask programmable design can provide superior area/speed

performance due to the reduced circuit complexity, but only at the expense of reduced flexibility.

CMOS implementations have been used to emphasis the advantages of this architecture. These implementations were

designed in a 2.5 micron, single level metal, single level polysilicon CMOS process. Some details of the implementations

are given in Table 2. The architecture is such that these configurations can be used to realize arbitrary filter responses.

The fully programmable chip is arranged in two independent sections, an east and a west side, each with 25 taps stacked

vertically. Buffers are inserted in the center of each stack, so that the IC appears to be divided into quadrants. The two sides

have independent clocking and data inputs and outputs; the pin connections may be used to cascade the sections to obtain a

48 tap filter with a single integrated circuit.

The mask programmable chip is arranged in three sections, each with 48 taps stacked vertically. Buffers are used in

the center of each stack to reduce fan-out and control signal skew problems. The sections share the master clock but have

independent data inputs and outputs. The pin connections may be used to cascade the sections to obtain a 144 tap filter with

a single integrated circuit.
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Clock distribution is accomplished via buffers at the corners of each quadrant; these buffers in turn drive the buffers at

both ends of each tap row. This scheme is designed to minimized clock skew problems and limit the buffer loading. In the

case of the fully programmable chip, independent clocks are used for normal filtering operation and coefficient loading, so

as to further minimize clock line loading.

The order of the filter can be expanded by using either direct form expansion or cascade form expansion. In the case

of the direct form expansion, the data input is broadcast to all filter sections, and the output of a given section is tied to the

sum input of the next filter section. In the case of cascade expansion, the output of a given filter section is simply tied to the

input of the next section.

These CMOS implementations were developed for a relatively primitive fabrication process; considerably higher

densities should be attainable in a more modern process. These implementations will particularly benefit from additional

metal layers, as clock and signal routing was severely constrained. Further, implementation on a modern custom gate array

architecture should be straightforward, and provide extremely high density and performance.

The current implementations compare favorably to those in [5, 6, 11, 19, 21, 22] when normalized for the differences

in fabrication technology. This is illustrated in Table 3, where the "score" is calculated according to the sampling rate

multiplied by the number of taps per unit area, with normalization for the particular technology used. Note that this

simplistic comparison does not consider differences in word length or coefficient codings, but it does provide some insight

into the results of the various design approaches.

5 Conclusions

A new bit-serial FIR digital filter structure which is eminently suitable for efficient VLSI implementation of filters whose

coefficient values are sums or differences of power-of-two terms has been presented. By exploiting the restriction on the

coefficient values, the new architecture yields extremely efficient FPGA and custom implementations. Example FPGA and

CMOS implementations employing this architecture were discussed. Further, a block scaling approach for reducing the

roundoff noise in high order FIR filters such as might be implemented using these architectures was presented. In contrast

with cascade form realization which reduces the roundoff noise in the stopband only, this block scaling approach reduces

the roundoff noise over the entire frequency spectrum.
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Table 1: The DC Bias and AC Noise Power for P + k �M = 1; 2; 3

P + k �M DC Bias AC Noise Power
1 0:25Q 0:0625Q2

2 0:125Q 0:0781Q2

3 0:0625Q 0:0820Q2

Table 2: FIR Filter ASIC’s (2.5 �m CMOS)

Fully Programmable Mask Programmable
input data 9 bits 9 bits
coefficients 9 bits + 2 sign bits 9 bits + 2 sign bits
filter length 48 taps 144 taps
maximum sampling rate 5 MHz 6 MHz
maximum clock rate 50 MHz 60 MHz
transistors 29396 30108
active area 5.838 mm by 5.840 mm 5.508 mm by 5.585 mm
die size 7 mm by 7 mm 7 mm by 7 mm

Table 3: FIR Filter ASIC Comparison

Taps Area (mm2) Rate (MHz) Technology (�m2) Score
Mask Programmable 144 30.762 6.0 2.5 438.9
Fully Programmable 48 34.094 5.0 2.5 109.9
Laskowski [11] 43 40.95 150.0 1.2 139.3
Yoshino [22] 64 48.65 100.0 0.8 33.68
Ruetz [19] 64 225 22.0 1.5 21.12
Yassa [21] 16 17.65 30.0 (estimate) 1.25 53.12
Hartley [5] 4 25.8 (estimate) 37.0 1.25 11.20
Hatamian [6] 40 22 100.0 0.9 132.5

h N-2 hN-1h

ky

x k

0

bit serial

bit serial

bit serial product

M stages

of single bit

shift register

Figure 1: A Bit-Serial Inverted FIR Filter
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