
A FRAMEWORK FOR THE DESIGN OF HIGH SPEED FIR FILTERS ON FPGAS

Satish Mohanakrishnan and Joseph B. Evans
Telecommunications & Information Sciences Laboratory

Department of Electrical Engineering & Computer Science
University of Kansas

Lawrence, KS 66045-2228

This paper discusses a hardware design path from filter de-
sign to high performance FPGA implementation of FIR filters
using Ptolemy, a freely distributable DSP prototyping environ-
ment developed in the University of California at Berkeley. The
previously available hardware design path was either one of code
generation for Digital Signal Processors or VHDL generation,
which is currently in the developmental stages. Sythesis tools
which map VHDL to FPGA rarely result in a high performance
implementation. We demonstrate the ability to use Ptolemy to
design a filter,simulate it and implement it on Xilinx XC3195
series of FPGAs. The target specific details of implementation
are exported to the synchronous dataflow (SDF) domain for accu-
rate simulation. Several target independent and target dependent
techniques are used to achieve a high performance mapping onto
FPGAs. A VHDL model of the placed and routed logic cell array
(LCA) is generated and simulated using VHDL simulators.

1. INTRODUCTION

Low densities in the current generation FPGAs allow only lim-
ited DSP functionality such as digital filters to be supported
[3, 4, 5, 6, 10]. Hence, there is a need for a framework for
design and simulation of complete systems incorporating FPGA-
based DSP functions. This work focuses on demonstrating such
a framework for implementing high speed FIR filters on Xilinx
XC3100 series FPGAs. The framework chosen is Ptolemy [12], a
freely distributable, block-oriented prototyping environment de-
veloped in the University of California at Berkeley.

In Ptolemy, signal processing algorithms are developed in the
synchronous dataflow domain. Blocks in the standard library and
custom-coded blocks are used to build a DSP system. Depending
on the target architecture, C or VHDL code generation domains
can be used.

The problem discussed here is the implementation of an FIR
filter on an FPGA which can be a part of a DSP system. In
the previously available design path, a custom-coded block is
written in SDF, which simulates the behaviourof the filter, without
taking the implementation details into account. A VHDL model
of the filter is written and added to the VHDL library which
describes the functionality. Synthesis tools are then used to map
the filter onto the FPGA or any other architecture. As the synthesis
tools are designed to be general purpose, they fail to yield a high
performance FPGA mapping. Similar reasoning applies to the
placement and route tools. Hence, an implementation based on
application specific logic partitioning and placement is needed to
yield high performance.

A hardware design path which results in high performance is
illustrated in Figure 1. Here the custom-coded block takes the
implementation details into account in the synchronous dataflow
domain itself. This is possible because the target architecture has

This research is partially supported by the Kansas Technology Enter-
prise Corporation through the Center for Excellence in Computer-Aided
Systems Engineering.

Test

Program the FPGA (use Xilinx tool Xchecker)

Generate Configuration (use Xilinx tool makebits)

Extract delay parameters of routed design
(use Xilinx tool lca2xnf)

(use Xilinx tools - xnfmap, map2lca, apr)
Placement with user constraints and Routing

(VHDL generation)
Simulate design for functional verification

generation of netlist using C++ libraries
High performance logic partitioning and placement 

Target specific simulation in SDF

Filter Design

Resimulate for timing verification
(generate VHDL with routing delays)

Figure 1. High performance hardware design path



X3 S3 X 2 S2 X1 S1 X0 S0C 3 C 2 C1 C 0

X3 C 3 S3 X 2 C 2 S2 X1 C1 S1 X0 C 0
S0

FA FA FA FA

FAFAFAFA

D D D D D D D D

Figure 2. Structure of the filter tap

already been identified and the user utilizes his knowledge of the
architecture and that of the support tools to partition and place the
logic in a manner which results in high performance.

2. BACKGROUND

A methodology and CAD tool to implement high speed,
multiplier-less FIR filters on XC3195 have been discussed pre-
viously [4, 5, 10]. The filter design consists of generation of a
floating point coefficient set which is then optimized in the power-
of-two coefficient space. The coefficients are constrained to be a
sum or difference of two power-of-two terms. It has been shown
that an FIR filter with -60dB of frequency response ripple mag-
nitude can be realized using two power-of-two terms for each
coefficient value using the appropriate optimization techniques
[8].

The structure of a filter tap is shown in Figure 2. As the coef-
ficients are split into two power-of-two terms, it requires two full
adder stages to implement the carry save addition. The input data
lines are routed to the corresponding full adders. The final adder
stage, which is needed to resolve the carries, is not implemented
in the XC3000 series as it is not cost effective, but it can be done
in the XC4000 series.

3. HARDWARE DESIGN PATH

3.1. Filter Design
There are two filter design packages in Ptolemy namely, optfir and
windowfir. In addition to these two, another packageMILP3 [7] is
included in our extended version. Given the filter specifications,
MILP3 generates filter coefficients and optimizes them in the
power-of-two coefficient space. The MILP3 can be invoked by
using the pop-up menus in Ptolemy. A Motif interface, as shown in
Figure 3, can be used to design the filter using MILP3, implement
it on FPGAs, and edit the logic cell array (LCA). The frequency
specifications of the filter can be input as shown in Figure 4.

3.2. Simulation in the SynchronousData Flow (SDF) domain
In Ptolemy, all fixed point representations use the data type Fix
in the Ptolemy kernel. Carry save addition, the arithmetic which
is used in this FPGA implementation at present, is not supported
by the Fix data type. To support this, member functions which

Figure 3. Main Window of the Filter Design Package

Figure 4. Dialog box for entry of frequency specifications

Figure 5. Specification of Implementation parameters in
SDF



Figure 6. Block diagram to determine the frequency response of the filter

perform bitwise operations on the Fix objects, such as bitwise
logical AND and bitwise logical exclusive OR were added.

A custom-coded block was written in the Ptolemy language
(.pl), which represents the fixed point FIR filter as shown in Fig-
ure 2. The full adders are realized using the bitwise operations.
The parameters of the block, such as the number of input bits,
coefficient bits, intermediate bits and output bits can be specified
as shown in Figure 5. Depending on the number of bits, one can
select the size of the FPGA. This block can be used along with
other blocks from the Ptolemy library either to determine the fil-
ter characteristics or to build a DSP system. Figure 6 shows the
interconnection of blocks to determine the frequency response of
the filter.

3.3. High performance mapping onto FPGA
In the FPGA design flow, the stage where the mapping onto FPGA
architecture is performed, is very critical. User controlled logic
partitioning and placement as opposed to using general synthesis
tools is the key to achieving high performance. Libraries were
developed in C++, which allow any digital design to be captured
in terms of Xilinx CLB (Configurable Logic Block) and IOB
(Input Output Block) primitives. Thus the design entry consists
of writing C++ code, specifying partitioned and placed logic. The
Xilinx Netlist Format file is automatically generated.

3.3.1. Logic Partitioning and Placement
The basic block for this implementation is a full adder which

fits in a CLB. The input data lines are shifted according to the
coefficients and routed to the corresponding CLBs. The sign
of coefficients is controlled by the logic inside the CLB. The
mapping of a full adder to a CLB constitutes logic partitioning.
The CLBs are pre-placed and only routing is done by the Xilinx
APR (Automatic Placement and Route) tool.

3.3.2. Efficient Utilization of Routing Resources
Inefficient use of routing resources manifests itself as unrouted

pins or increased net delays. The structure of the filter tap is so
designed that it reduces congestion in any channel and makes effi-
cient use of the limited routing resources [10, 5]. These techniques
are general and not restricted to the XC3100 series of FPGAs.

Multiplication by a signed power-of-two term, as mentioned
earlier, involves a shift and an optional inversion. The Low and
High signals which are used in the least significant bits during
this operation, utilize a considerable amount of routing resources.
These were absorbed into the combinatorial logic of the CLBs
without increasing the CLB delay as it is independent of the func-
tionality. This techniqueresulted in a significant increase in speed.

3.3.3. Knowledge of Support Tools
Though nets can be marked as critical and longline, the APR

program does not permit the user to specify the exact assignment
of longlines. Hence, we resort to making a rough estimate of
APR’s longline assignment and then buffering the nets close to
their respective longlines. The estimate based on the average
number of shifts required by the power-of-two terms has been

Figure 7. Layout of the first of the two chips

empirically found to produce good results. This technique reduced
a considerable amount of routing delay.

3.3.4. Multiple Chips

A single XC3195 chip can accomodate10 to 11 taps. Using this
CAD tool, higher order filters can be implemented as a cascade
of chips. Due to the inherent pipelining and parallelism in the
design, the speed is independentof the number of taps. In a multi-
chip implementation, the outputs of one chip are fed as inputs to
the next chip. Hence, in subsequent chips, there is an increased
utilization of CLBs, I/O blocks and routing resources. Hence only
10 taps can be implemented in the subsequent chips whereas 11
taps can be implemented in the first chip. The increasedutilization
of routing resources is shown in Figures 7 and 8.

A 21 tap, linear phase, low-pass FIR filter with stop band from 0
to 0.1 fs , pass band from 0.15 fs to 0.5 fs and stop band rejection
of 27 dB, was designed and implemented using this system on two
XC3195s. The maximum clock speeds achieved were 46.2 MHz
for the first chip and 48.5 MHz for the second chip. Hence, the
maximum sampling rate is 46.2 MHz.

The user can also specify pin constraints which are very useful
when there is an existing PCB. Again, the pin assignments do not
have a bearing on the sampling rate as the input data lines are



Figure 8. Layout of the second of the two chips

buffered near their respective long lines.

3.4. Functional Simulation

The next step in the design process is to verify the functionality
of the netlist which is created. Libraries were developed in C++
to generate VHDL models for functional simulation. The models
for the CLBs and IOBs use the exact delays as given in the Xilinx
data book [14], but the net delays are assumed to be zero. The
VHDL code is at present simulated using commercial simulators,
due to the unavailability of public domain versions.

3.5. Placement and Route

With the logic partitioning done as above, the traditional automatic
placement of CLBs takes an exhorbitant amount of time and the
quality of placement is far from satisfactory. For the filter example
considered, the placement took several hours on a SPARC 2 and
the speed achieved was only 25 MHz.

In this design flow, placement is already done when specifying
the netlist and the Xilinx APR (Automatic Placement and Route)
tool is used to perform the routing only. Routing typically takes
a few minutes per chip. Speeds over 45 MHz were consistently
achieved for several typical filters. Xilinx tools such as xnfmap,
map2lca, and APR are used to generate the routed logic cell array
(LCA).

3.6. Back Annotation

The routing delay dominates in any FPGA design due to the nu-
merous switching matrices and programmable interconnect points
(PIP) through which the signal traverses. Hence in all FPGA
designs, back annotation is essential to get an exact timing sim-
ulation. Using the Xilinx tool lca2xnf, the timing annotated .xnf
file is generated which gives the net delays. A parser was written
in yacc for creating the C++ objects from the XNF file. These
net delays are incorporated into the VHDL models for timing
simulation.

4. CONCLUSION

A high performance hardware design path for implementing high
speed FIR filters using Ptolemy was defined and demonstrated.
The target specific details are exported to the SDF domain for
simulation. Enhancements to the fixed point data type in the
Ptolemy kernel were done to perform the SDF simulation. Li-
braries were written to automatically generate the Xilinx Netlist
Format. Using these libraries for logic partitioning and placement
was proved to achieve high speed. Libraries were written to gen-
erate VHDL model for Xilinx Chips for functional simulation and
back annotation. This framework thus supports the design and
simulation of complete systems incorporating FPGA-based FIR
filters.

REFERENCES

[1] P. K. Chan and S. Mourad. Digital Design Using Field
Programmable Gate Arrays. Prentice-Hall, Inc., 1994.

[2] S. C. Chan, H. O. Ngai, and K. L. Ho. A programmable
image processing system using FPGA. In IEEE Int. Symp.
Circuits and Syst., pages 2.125–2.128, May 1994.

[3] C. J. Chou, S. Mohanakrishnan, and J. B. Evans. FPGA
implementation of digital filters. In Proc. Int. Conf. Sig.
Proc., Applcn. and Technology, pages 80–88, 1993.

[4] J. B. Evans. An efficient FIR filter architecture. In IEEE Int.
Symp. Circuits and Syst., pages 627–630, May 1993.

[5] J. B. Evans. Efficient FIR filter architectures suitable for
FPGA implementation. IEEE Trans. Circuits and Syst., July
1994.

[6] R. D. Hack. Designing digital filters using field pro-
grammable gate arrays. In Proc. Int. Conf. Sig. Proc.,Applcn.
and Technology, pages 435–438, 1993.

[7] Y. C. Lim. MILP3 Manual. National University of Singa-
pore, 1988.

[8] Y. C. Lim and B. Liu. Design of cascadeform FIR filters with
discrete valued coefficients. IEEE Trans. Acoust., Speech,
Signal Processing, ASSP-36:1735–1739, Nov 1988.

[9] Y. C. Lim and S. R. Parker. FIR filter designed over a dis-
crete power-of-two coefficient space. IEEE Trans. Acoust.,
Speech, Signal Processing, ASSP-31:583–591, June 1983.

[10] S. Mohanakrishnanand J. B. Evans. Automatic implementa-
tion of FIR filters on field programmable gate arrays. Under
review, IEEE Signal Processing Letters.

[11] A. Oppenheim and R. Schafer. Digital Signal Processing.
Prentice-Hall, Inc., 1975.

[12] University of California at Berkeley. Ptolemy 0.5 Manuals,
1994. Volumes 1-4.

[13] Xilinx Incorporated, San Jose, California. XACT Reference
Guide, 1992.

[14] Xilinx Incorporated, San Jose, California. The Pro-
grammable Gate Array Data Book, 1993.


