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ABSTRACT

This paper describes a CAD system for automatic implementation of FIR filters
on Xilinx Field Programmable Gate Arrays. Given the frequency specifications,
this software package designs an FIR filter, optimizes the filter coefficients in the
power of two coefficient space and implements it on an FPGA chip. The FPGA
specific mapping techniques used to increase speed are discussed. The performance
of the typical filters which were implemented is presented.
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Figure 1: FIR Filter Structure

1 Introduction

Finite Impulse Response filters without full multipliers and their potential high speed
VLSI implementations have received attention over the past decade [1, 2, 3, 4].
An efficient FIR filter architecture suitable for Field Programmable Gate Arrays
(FPGA), which requires the coefficients to be a sum or difference of two power-
of-two terms was discussed in [1]. In this paper, we present an improved filter tap
structure and several mapping techniques which were used to increase the sampling
rate. This paper also describes a CAD system which can be used for design of
FIR filters, optimization of filter coefficients in the discrete coefficient space, and
subsequent implementation on Xilinx XC3100 series FPGAs.

2 Background

In binary arithmetic, multiplication by a power-of-two is simply a shift operation.
Implementation of systems with multiplications may be simplified by using only a
limited number of power-of-two terms, so that only a limited number of shift and
add operations are required.

In order to obtain good performance using a small number of such terms, the
number of power-of-two terms used in approximating each coefficient value, the
architecture of the filter, and the optimization technique used to derive the discrete
space coefficient values must be carefully selected. It was demonstrated in [4] that
an FIR filter with -60dB of frequency response ripple magnitude can be realized
using two power-of-two terms for each coefficient value.

An inverted form FIR filter, which will be used in our FPGA implementations,
is depicted in Figure 1. If the coefficient value is an integer power-of-two or a sum
of two powers-of-two, the multipliers can be replaced by one or two shifters. Since
the coefficients will be fixed for this class of filter, the coefficient values can be
realized by appropriately routing the inputs to the full adders in the filter structure.
That is, moving the adder inputs k places to the left achieves the same effect as
would a coefficient value of 2k .
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Figure 2: FIR Filter Architecture

3 Architecture

The overall filter structure is shown in Figure 2, where the filter taps and final adder
stage are shown. The adder is required to resolve the carries that are generated
and propagated through the pipeline. The structure of a portion of a typical filter
tap is shown in Figure 3, where the internal pipeline is depicted. The two shifted
versions of the data corresponding to the two power-of-two components of each
coefficient are shown as dotted lines. Two adders are necessary for adding the sum
and carry generated by the previous tap and the two shifted versions. The sign of
the coefficients is controlled by inverters. The sum and carry signals from the full
adders are pipelined using a carry-save addition (CSA) technique in order to increase
the sampling rate and alleviate potential routing delays. The hardware requirements
for a tap with Bd input datapath bits andBi intermediate accumulation path bits are
then 2Bi full adders and a minimum of 2Bi flip-flops.

4 CAD Tool

4.1 Filter Design and Optimization

The first stage in the design process is to obtain the filter coefficients. Given
the frequency specifications, MILP3, written by Y.C. Lim [5] is used to obtain a
continuous solution (which assumes infinite precision coefficient values). MILP3
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Figure 3: FIR Filter Tap Structure

uses standard integer programming techniques to optimize this continuous solution
in the discrete powers-of-two coefficient space [2]. The resulting discrete solution
has coefficients which are a sum or difference of power-of-two terms.

4.2 Xilinx Implementation

The output of the optimization stage is fed to code which maps the filter onto the
FPGA. With the help of the Xilinx tools, the configuration details for the FPGA are
then generated.

4.2.1 Place and Route

Due to the limited availability of global and local routing resources, placement of
Configurable Logic Blocks (CLBs) and routing of nets are very critical in any FPGA
design. The Automatic Place and Route (APR) program provided by Xilinx cannot
be used to provide 100% placement for the following reasons. Due to the large of
number of variables in the optimization problem, it takes an exorbitant amount of
CPU time for placement. Since it is a general purpose package based on heuristic
methods, it cannot always give the optimum placement for all the designs. For
instance, when APR was given full freedom of placement for all of the 22 x 22
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Figure 4: Mapping of the filter architecture on the Xilinx FPGA

array of CLBs for a 11 tap filter, it took 9 hours 2 minutes and 27 secs on a Sun
SPARCstation–2 for the completion of placement and routing.

The mapping of the architecture in Figure 3 is shown in Figure 4, where each
full adder is implemented in a Configurable Logic Block (CLB). The two rows of
full adders map to alternate columns of the chip referred to as 1 and 2 as shown in
Figure 4. To reduce congestion, the two shifted versions of the data are distributed
among the two sets of full adders, whereas in the previous approach [1], they were
routed to the first set of full adders. In the previous tap structure, the sum outputs
of the second set of full adders in any tap are fed to the corresponding full adders in
the next tap, which are two columns away. When the new structure is mapped onto
the FPGA, the routing is only between CLBs which are in the adjacent columns.
This makes more efficient use of the local routing resources. This structure has been
found to achieve an improvement of 5 - 15% in the sampling rate for several typical
filters.

The input data bus is distributed using horizontal long lines from one end of
the chip to the other. By careful assignment of input pins and hence the horizontal
long lines to the data, it is possible to reduce the maximum distance between
any horizontal long line and a CLB where the data is needed. The assignment
which gives the least distance and hence the delay varies from filter to filter. This
optimization problem, with relatively a relatively small number of variables, is
solved very effectively by APR to give an improvement of 20 - 30% in the sampling
rate over the unoptimized placement.
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4.3 Pin Constraints

For ease of design of printed circuit boards (PCBs), it may be necessary to have
the input data pins in some particular order which will invariably not be the same
as that of the optimum assignment found by the APR. As FPGAs are in-system
reconfigurable, it is reasonable to impose pin constraints according to the existing
PCB layout. Hence, inside the FPGA chip the the data lines are reordered by
APR. This reordering inside the chip utilizes some routing resources and hence
affects the sampling rate. The order of magnitude by which the sampling rate is
affected is being investigated. It is possible to achieve performance close to that
achieved by the optimum assignment using certain fixed assignments. To validate
this, various assignments have been tried and their performances evaluated. Filters
were implemented with data being distributed on alternate pins. Implementations
were also done with assignments to alternate pins in the center of the chip. These
fixed assignments achieved performance close to that of the optimum assignment by
APR. Hence with any pin constraint, pin to fixed CLB and CLB to longline routings
can be made without sacrificing speed.

4.4 User Interface

A Graphical User Interface (GUI) was designed using the Motif tool kit. As with
other Motif GUIs, the interface has the basic menus, namely Design (File), Edit,
and Help Menus. The Design menu has three options for the three main stages in
the design process, that is, Frequency Specification, Discrete Space Optimization
and Xilinx Implementation, as shown in Figure 5. The output of one stage is used
as the input of the subsequent stage. The user can start at any stage, depending
on the specification at hand. Thus a filter can be implemented from the frequency
specifications or from an already existing infinite word length filter coefficient set
or coefficients with power-of-two terms.

To begin a design, the Frequency Specification option in the Design menu is
selected. Certain details such as the number of frequency bands and number of
taps are entered in a dialog box. The input control option and symmetry option are
selected using radio boxes. The input control option can be any one of minimal
control (default), grid density control and band specification type control. The sym-
metry option can be either symmetrical (default) or antisymetrical. Depending on
the details entered upto this point, a dialog box prompts for frequency specifications
such as band gain, ripple ratio, starting and ending frequencies of the bands, and
band specification type as shown in Figure 6.

By selecting the Optimization option in the Design menu, a radio box pops up
which prompts the user to select any one of the six discrete space optimization
control options as shown in Figure 7. Here again the default choice is the minimal
control option. Depending on the option selected, some of the parameters such as
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Figure 5: Main Window of the CAD Tool showing the various options in the Design
Menu

Figure 6: Dialog box prompting for frequency specification for different bands
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Figure 7: Radio Box for selecting one of the various Discrete optimization control
options

passband gain weight, upper and lower limits of passband gain, objective function
values,and maximum allowable coefficient value need to be specified in the Dialog
box which follows. The output of this Design option is a set of filter coefficients in
the discrete power-of-two space.

Once the optimization is done, the Xilinx Implementation option of the Design
menu is selected. The input of this stage is either a set of user specified filter
coefficients or the output of the optimization stage. The pin constraints can be
specified in a dialog box or in a file. The Automatic Place and Route (APR) program
typically requires 10 - 15 minutes for routing this type of FIR filter implementation.
Messages are displayed in the message window regarding the progress of APR, as
shown in Figure 8. The configuration details are output in a .lca file which can be
used to determine the delay characteristics using the XACTTM tools [6].

5 Performance

With the Xilinx XC3195, which has an array of 22 by 22 (484) CLBs, the maximum
intermediate wordlength that can be accomodated is 22 bits. As a rule of thumb,
the intermediate wordlength can be taken as slightly more than twice the number of
input data bits. Hence, the maximum number of input data bits that can be supported
is 10 bits. As each tap requires two columns of CLBs, up to 11 taps can be realized
per chip.
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Figure 8: Automatic Place and Route in progress - showing messages in the message
window

Typical filter characteristics have been implemented on a Xilinx XC3195 FPGA
using this tool. One of these is an eleven tap lowpass FIR filter (filter #0) with pass-
band cut- off at 0:1fs, stop band beginning at 0:15fs and -18 dB stopband rejection.
Another example is an eleven tap highpass filter (filter #1) with the cut-off frequency
at 0:1fs, the passband beginning at 0:15fs, and -18db stopband rejection. The final
example is an eleven tap lowpass FIR filter (filter #2) with the passband cut-off at
0:2fs, the stopband beginning 0:3fs, and -27dB stopband rejection. The discrete-
space impulse responses shown in Table 1 have been designed and implemented
using this tool. An input data word size of 10 bits was used for all the examples;
the 22 rows provide sufficient intermediate word width protection against overflow.
All of the columns of the array were required to implement eleven taps. The final
accumulation stage was not performed on the array. The sampling speeds of these
filters attained using various mapping techniques on the present and the previous
structures are listed in Table 2. The present structure with input pins and horizontal
lines optimally assigned by APR gives the best performance with maximum sam-
pling rates of 33.3 MHz, 31.8 MHz and 31.3 MHz. If placement is done by APR
alone, with no prior placement, then the sampling speed attained for filter #0 is only
25.0 MHz.

The layout of the low pass filter mentioned above on an XC3195 is shown in
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Figure 9: Layout of the Low Pass Filter on XC 3195 FPGA

Figure 9.
It is not cost effective to provide the final accumulation stage on the chip for

the XC3000 and XC3100 series devices. A dedicated parallel adder can be used for
that purpose. It is possible to implement the final adder stage in the XC4000 series
of FPGAs, however, by virtue of the fast carry logic supported by these devices.

6 Conclusion

A CAD system for design and efficient implementation of FIR filters on Xilinx Field
Programmable Gate Arrays was presented. Several generalized techniques which
were used to reduce delay have been described and their effects on performance
were evaluated. The present structure with the optimal assignment of long lines is
found to be the best, but several other heuristic techniques can be used to obtain
quality routings, better than those that have been previously proposed. Examples of
typical filters designed and implemented using this tool were shown.
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Table 1: Example FPGA Filter Impulse Responses

filter taps filter #0 filter #1 filter #2

w0, w10 -30 12 36
w1, w9 6 7 -4
w2, w8 24 -33 -33
w3, w7 48 1 -56
w4, w6 65 96 -80
w5 72 72 160

Table 2: Sampling speed (in MHz) attained for different techniques

Filter Previous Structure Present Structure
Unoptimized Optimized Unoptimized Optimized Alternate Center - Alternate

filter #0 23.2 28.7 25.1 33.3 31.5 29.9
filter #1 26.3 27.3 26.4 31.3 30.7 30.7
filter #2 20.0 30.2 26.6 31.8 27.8 30.8
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