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Abstract

Narrowband integrated audio/data networks require bandwidth management tech-
niques to be implemented during congestion to provide the desired quality of ser-
vice. Traditionally, congestion control schemes are applied generically and broadly
at congested nodes. This can be improved by using Active Networks which provide
application-specific processing of user-data at congested nodes. Each application spec-
ifies how losses to the data it is processing should occur in a controlled fashion, while
maintaining the desired quality of service.

In this work, the Active Network architecture is implemented for a Narrowband
ATM network. Switching is provided using a software switch on a computer running
Linux Operating system. Congestion control programs are inserted into the switches
dynamically using on-demand loading. The effectiveness of this design is demon-
strated by implementing a bit-dropping congestion control algorithm for audio coded
using Sinusoidal Transfer Coding (STC), encapsulated according to Real-time Trans-
port Protocol (RTP) standards. Additional algorithms, such as RTP Header Compres-
sion are also implemented and demonstrated. The experience and results suggest that
using Active Networking for congestion control allows enabling of schemes not possi-
ble within a conventional network.
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Chapter 1

Introduction

Traffic integration in communication networks is currently the focus of research activ-

ity in the telecommunication and computer communications communities. The last

decade has witnessed the evolution of standards such as Integrated Services Digital

Network (ISDN) for end-to-end digital transport of voice and data, and Broadband

ISDN (B-ISDN) for support of high-bandwidth services over high-speed links. While

these technologies are based on increasing bandwidth availability due to the fiber rev-

olution, parallel developments in the fields of cellular and wireless communications

must contend with rapidly depleting link capacities due to spectrum congestion. These

developments underline the need for the implementation of integrated networks in a

narrowband environment, especially for services such as digital mobile radio and per-

sonal communications. Narrowband integrated networks gain importance also as an

interim or alternative low-cost solution for the integration of voice and data over exist-

ing telecommunication networks.

Since bandwidth is at premium in narrowband networks, congestion occurs fre-

quently and control techniques have to be used to prevent undesired losses. However,

here the traffic is integrated i.e. multimedia. Applying a general congestion control al-

gorithm to audio and data is potentially wrong, since both traffic types have different

quality of service requirements. This demands traffic-specific processing. In addition,

audio traffic may be coded differently, resulting in different QoS requirements within
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audio traffic itself . Since the networks discussed are ATM networks, congestion con-

trol is performed on the switches. In a traditional switch, all possible congestion al-

gorithms will have to be setup for every traffic type passing on any connection. But

it is impossible to provide customized schemes for all traffic types on all switches in a

practical network. An effective alternative to this is to implement the congestion con-

trol algorithms as application programs under the Active Network architecture.

In order to adapt to changing application needs, a new type of network architec-

ture, called Active Network [10, 25], has been proposed. This architecture allows appli-

cations to dynamically extend the functionality of the network by injecting customized

protocols, also known as application specific protocols, into the nodes and switches. In

this type of network, packets select the protocol by which they need to be processed.

Nodes within this network become execution environments that supply Application

Programming Interface to the protocols delivered to them. There are two major ap-

proaches towards transporting code in an Active Network, the out-of-band and the

in-band approach. Active Network nodes are switches that contain a number of pre-

defined protocols. The nodes load the protocols through an auxiliary i.e. out-of-band,

mechanism. Packets passing through these switches request processing by one of the

previously installed protocols. In contrast, packets within an in-band architecture do

not request processing by a protocol at node, but rather carry the protocol, in the form

of code, with them as they travel throughout the network. Network nodes process the

packet by executing the accompanying code.

Thus, in an Active Network, switches perform computations on user data as it tra-

verses the network. Applications are provided with a mechanism to select and even

program, the computation that occurs. Network congestion is a prime candidate for

Active Networking, since it is specifically an intra-network event and is potentially

far removed from the application. Further, the time that is required for congestion

notification information to propagate back to the sender limits the speed with which

an application can self-regulate to reduce congestion, or can ramp-up when conges-
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tion has cleared. In this work, an out-of-band loading scheme for congestion control

mechanisms is used. The network being composed of ATM switches, congestion con-

trol schemes are loaded into switches in the connection path at connection set-up time.

Each switch in turn propagates these programs to other switches it is connected to, not

necessarily in the connection path. Thus the switches in a network are populated with

a particular program in a short interval of time during a single connection set-up.

The next chapter discusses related work in the area of Active Networking. Chap-

ter 3 discusses the Narrowband ATM network, the Real-time Transport Protocol and

the Magician Active Networking architecture. Chapter 4 gives details of the design

and implementation of the Active Network, software switches and the congestion con-

trol programs used for demonstrating the effectiveness of the proposed architecture.

Chapter 5 discusses the tests carried out to evaluate the network and the results ob-

tained. Finally, Chapter 6 presents conclusions and discusses possible future work.

3



Chapter 2

Related Work

2.1 Active Networking

Tennenhouse and Wetherall [25] have outlined an architecture and set of issues for Ac-

tive Networking. They propose an integrated approach in which capsules containing

data and programs replaces the traditional (passive) network packets. Much of their

discussion focuses on the programming and security aspects of this architecture, in-

cluding program scope, cross-platform execution of code and resource usage.

Active messages [26] are related to Active Networking in the sense that the message

contains both user data and information to specify processing at the receive. Specifi-

cally, each message contains an address of a user-level handler.). However, active mes-

sages are intended to optimize performance for a network of workstations or other

relatively closely coupled set of processors, not a multi-hop, wide-area network.

Examples of processing that could be called active can be found in existing con-

gestion control mechanisms. Recognizing the performance degradation caused by

fragmentation [6], packet level discard techniques have been explored to improve the

performance of TCP/IP over ATM [2, 22]. The Partial Packet Discard strategy drops

all cells in a packet that follow a dropped cell [2]; the Early Packet Discard strategy

improves performance by aggressively dropping entire packets when a congestion
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threshold is reached [22].

The presence of a cell loss priority bit in the ATM cell header allows the source to

indicate to the network that some cells should be treated differently than others under

congestion. Separating traffic more finely into classes allows further specialization of

treatment.

While dynamic congestion control is not an explicit goal of Amir et al’s applica-

tion level video gateway [1], their techniques for transcoding can have the effect of

bandwidth reduction. Their focus is on accommodating an environment with hetero-

geneous transmission and end-station capabilities, by converting video from one rep-

resentation format to another. An implementation of a JPEG to H.261 transcoder can

reduce the bandwidth of a video stream from 6 Mbps to 128 kbps. Amir et al. further

consider some temporal and spatial bandwidth reduction techniques to use in concert

with format conversion.

Most of the work in Active Networking has been targeted toward the internet and

hence IP [28, 19]. However, [3] has tried to effectively apply the principles of Active

Networking to ATM networks, targeting congestion control for demonstration. They

propose a design where the active processor resides external to the ATM switch. Also,

a protocol architecture is defined which allow applications to specify computation to

occur in the network. Active mechanisms were implemented which allowed band-

width reduction to occur in a manner that preserves as much application-level useful

data as possible. However, there are some limitations to this implementation.

� It is assumed that active mechanisms required by different traffic types will al-

ways be available on the active processor. This is not possible in a rapidly chang-

ing application environment like the internet. Some loading scheme needs to be

implemented to allow on-the-fly loading of mechanisms.

� Inter-operability of active mechanisms on different types of active processors is

not addressed.
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� Multimedia data is encapsulated using a custom protocol. Using a general pro-

tocol like RTP would ensure universal applicability.

These issues have been addressed and successfully implemented in the current Ac-

tive Network implementation.

6



Chapter 3

Background

This chapter is devoted to explaining the basics of the various protocols and packages

used in the design and implementation of the environment for this project. Specifi-

cally, we discuss the Narrowband ATM network, the switching functionality imple-

mented using software switches, the signaling on end-hosts and the device drivers

implemented to interface with serial interfaces. We discuss the Magician Active Net-

working architecture used to provide user-data-specific processing. We discuss Real-

time Transport Protocol (RTP), the protocol used for encapsulating multimedia data

and Robust Audio Tool (RAT), which implements RTP and which implements the con-

gestion control schemes.

3.1 Asynchronous Transfer Mode

Asynchronous Transfer Mode (ATM), has rapidly emerged as a protocol of choice for

the demands made by multimedia networks [8]. ATM networks have many distinctive

features that help maintain its edge over other network protocols, especially in the area

of high speed networking carrying different kinds of data. ATM transfers data between

network elements using fixed sized ’packets’, or cells of 53 bytes.
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3.1.1 ATM Signaling

When two nodes in an ATM network want to communicate, they first need to estab-

lish a virtual connection [7]. These connections can be either provisioned, in which

case they are called Permanent Virtual Circuits or PVCs, or established on demand,

in which case they are called Switched Virtual Circuits or SVCs. PVCs are analogous

to leased lines in a phone network, while SVCs are analogous to making a call over a

phone network. SVCs require signaling support on the originating node, the switches

that lie along the path, and the on terminating node. ATM networks have dedicated

Signaling Channels, which implement connection setup and tear down between hosts.

The signaling is of two kinds - User Network Interface, or UNI, and Network Network

Interface, NNI. When a user on a host wants to setup a connection, the UNI entity on

the host sends a setup message to the network. The network, which is a collection of

switches, will use NNI to build a route between the destination, and the final leg be-

tween network and the destination host will again use UNI to setup the connection.

The ATM Forum, a group of industrial representatives and academicians, are respon-

sible for establishing and standardizing the various aspects of the ATM protocol. The

Forum has currently published Version 4.0 of UNI signaling, and has recently pub-

lished the PNNI specification, which is Public NNI. Before PNNI was standardized,

ATM networks implemented the Interim Inter-switch Signaling Protocol, or IISP, as an

interim solution. The work on this project has used and extended UNI 3.1 on the hosts,

and IISP 1.0 to setup connections between switches.

3.2 Narrowband ATM

The actual protocol used in the project was a deviation from the standard ATM de-

scribed in Section 3.1.1. The modifications were made to solve some of the problems

related to low speed, wireless links carrying mixed real time (audio) and non-real time

(data) traffic. The two main problems that needed attention were the high error rate -

1 random error in every 1000 bits, added to burst errors due to channel fading, and the

transmission latency of the cells. Simulations showed that the error rates would cause

8
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Figure 3.1: NATM Cell Structure [9]

frequent cell loss at an impractical rate. The modifications made resulted in a Narrow-

band ATM [9](Fig 3.1), or NATM protocol, which had a cell length of 24 payload and

2 header bytes, as against the standard 53 byte cell, and a geometric Hamming Code

based Forward Error Correction scheme that added a 50% redundancy to each cell.

The smaller cell size reduced the transmission latency to acceptable levels for real time

traffic, and FEC helped reduce the errors to acceptable levels without retransmissions

making a mockery of the throughput. The VCI space has been reduced from 2
16 to 2

6,

the VPI value is always assumed to be 0. The second byte of the header is used for an

optional ARQ protocol, to further reduce errors by automatic retransmission of cells

lost due to errors in the channel.

3.2.1 Interrupts and Interrupt Drivers

The low level drivers are usually implemented to handle Interrupts, that are gener-

ated by the hardware. Whenever any peripheral device or hardware wants attention

from the CPU, for instance when new data has arrived at the ATM card, it generates an

Interrupt to the CPU. The CPU then invokes a special software routine designed to ser-

vice the hardware, and this is called the Interrupt Service Routine. During boot time,

ISRs are configured in the kernel, so that the kernel knows what ISR is handling what

interrupt. This is critical, since the correct ISR needs to be invoked for each interrupt.

Standard ATM cards use the PCI bus, which has a common interrupt for all the cards

on it. However, other ISRs need to register themselves, and inform the kernel the inter-
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rupt number for which they need to be evoked. In the case of low level ATM drivers,

the ISRs are composed of top-halves and bottom-halves. The top-half performs the ba-

sic data copying from the hardware memory to local memory and queues up further

processing for the data as a task for the bottom-half. The bottom-half performs the

Data Link level ATM protocol, and hands the data up to the high level driver through

a well defined and consistent interface.

3.2.2 IOCTLs

An IOCTL or I/O control system call is used to manipulate a device driver. It provides

a method for user applications to change the behavior or characteristics of the driver.

The ioctl system call has a uniform interface at the kernel. However, each call has an

argument that targets the call to a specific device driver, and indicates to the driver

what task needs to be performed, or what variable needs to be set. For example, an

ioctl may be used by a program to change the speed of the serial port. IOCTL calls are

performed by opening special files in the file system, called device files. Each of these

files is connected to a device driver.

3.2.3 Multiport Serial Cards

Traditionally, a serial port on a computer has an interrupt associated with it. The

switching function requires a user to be able to connect hosts to the switch, and connect

this switch to other switches so that the hosts can access each other and the rest of net-

work. This requires multiple ATM ports on the switch. Each port handles both input

and output, and has either a host or another switch connected to it. Since each ATM

port is a serial port on the machine, the number of interrupts required for this task soon

becomes prohibitive. The alternative is to use Multiport serial cards. These cards offer

up to 16 serial ports on one interrupt. The ISR associated with the card reads a special

register on the card to determine which of the multiple ports needs servicing. These

cards also provide a host of other features. Each port on the card can usually support

serial data transfer rates of up to 115 kbps. They also have extensive built-in Modem

support. For the NATM Switch, the Cyclades card was chosen. The source code for
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the driver for this card is available with the Linux distribution, which was modified to

handle ATM traffic over each of the ports.

3.3 Switching in ATM

An ATM switch contains a set of input ports and output ports, through which it is

interconnected to users, other switches, and other network elements. It might also

have other interfaces to exchange control and management information with special

purpose networks. Theoretically, the switch is only assumed to perform cell relay and

support of control and management functions. However, in practice, it performs some

inter-networking functions to support services such as SMDS or frame relay.

It is useful to examine the switching functions in the context of the three planes of

the B-ISDN model [15].

3.3.1 User Plane

The main function of an ATM switch is to relay user data cells from input ports to the

appropriate output ports. The switch processes only the cell headers and the payload

is carried transparently. As soon as the cell comes in through the input port, the Vir-

tual Path Identifier/Virtual Channel Identifier (VPI/VCI) information is derived and

used to route the cells to the appropriate output ports. This function can be divided

into three functional blocks: the input module at the input port, the cell switch fab-

ric (sometimes referred to as switch matrix) that performs the actual routing, and the

output modules at the output ports.

3.3.2 Control Plane

This plane represents functions related to the establishment and control of the VP/VC

connections. Unlike the user data cells, information in the control cells payload is not

transparent to the network. The switch identifies signaling cells, and even generates

some itself. The Connection Admission Control (CAC) carries out the major signaling

functions required. Signaling information may/may not pass through the cell switch
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fabric, or maybe exchanged through a signaling network such as SS7.

3.3.3 Management Plane

The management plane is concerned with monitoring and controlling the network to

ensure its correct and efficient operation. These operations can be subdivided as fault

management functions, performance management functions, configuration manage-

ment functions, security management functions, accounting management and traffic

management. These functions can be represented as being performed by the func-

tional block Switch Management. The Switch Management is responsible for support-

ing the ATM layer Operations and Maintenance (OAM) procedures. OAM cells may

be recognized and processed by the ATM switch. The switch must identify and process

OAM cells, maybe resulting in generating OAM cells. As with signaling cells, OAM

cells may/may not pass through cell switch fabric. Switch Management also supports

the interim local management interface (ILMI) of the UNI. The Switch Management

contains, for each UNI, a UNI management entity (UME), which may use SNMP.

3.4 Software Switching

Switches are usually built using custom hardware, since they are highly parallel and

speed intensive applications. However, modeling and testing of new and unproven as-

pects of the protocol can be done on software test beds before full fledged investment

into the hardware is made. Software switches usually are a link between network sim-

ulations and hardware implementation of new protocols. If the required bandwidth of

the network is small enough, a software switch might be useful as an actual switching

element. The following sub-sections describe the integral components of a software

switch as implemented for this project.

3.4.1 Switch Structure

As Fig 3.2 shows, the software switch designed has a fully interconnected fabric, a con-

trol layer and minimal management. The switch can support up to 16 serial ports, each
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of which is controlled by the ATMSL driver running narrowband ATM, with speeds of

up to 115 kbps per port. However, these are theoretical limits. The main constituents

of the NATM switch are

� The switch is built on a PC platform, running Linux. Networking support on

Linux exists in the form of the BSD socket interface. The Linux ATM driver is

patched in to provide ATM Network and Link Layer support.

� The MicroSwitch driver, which implements a fully connected switch fabric is in-

stalled for physical cell switching.

� The Narrowband ATM driver (NATM driver) which uses the serial port to trans-

port narrowband ATM cells is installed.

� The Cyclades multi-port card is used to obtain series of low speed (up to 115

kbps) ports fanning off a single hardware interrupt (section 3.2.3).

� A standard ATM Network Interface Card (NIC) is installed to obtain a fiber chan-

nel to conventional ATM switches.

� Q.Port, a user level signaling application, that implements both host and switch

Call Control, is installed. A new interface between Q.Port and the underlying

MicroSwitch driver is written.

Some of these items are self evident. Salient features of the rest are described below.

3.4.2 The NATM Driver

The Narrowband ATM device driver, adapts a serial port to handle Narrowband ATM

traffic [9]. It is implemented using a top half and a bottom half . It interfaces with the

Linux ATM Driver on one end, and the serial port on the other. The top-half does the

basic copying of data from the interface memory to the local memory. The bottom-half

implements the NATM protocol. The bottom-half contains a round robin scheduler

which looks at the various open VCs and schedules data according to a preset priority

scheme. Real-time (audio) traffic is given priority over data traffic. The traffic priority
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is set using setsockopt() call during connection set-up. the The scheduler is followed by

a Segmentation and Reassembly layer, to handle the various ATM Adaptation Layer

types as defined by the ATM Forum. The SAR layer queues fully formed ATM cells to

the port in the transmit direction, and fully assembled PDUs to the ATM interface in the

receive direction. The cells pass through an (optional) FEC module that adds the error

correction to the cell, and the bytes are then placed at the serial port. The interface

to the serial port is modular. In the case of the NATM switch, the serial interface is

replaced with an interface to the Cyclades Multiport card. The NATM driver registers

itself with the ATM driver for each of the active ports below that it is configured to

handle. It instantiates local data structures for each of the ports, which contain data

to be transmitted and data received on that port. It wakes up the appropriate port on

multiport cards on switches (the default serial port on hosts), each time there is data to

be transmitted. The receive section is woken up by the interrupt handler for the port

when data arrives.

3.4.3 The MicroSwitch Driver

The MicroSwitch driver is a simple cell level switching driver that is implemented for

Linux. It has an ioctl() based interface, which can be used to connect and disconnect

a VC on a port to another VC on a different port. The connection is bidirectional.

Cells arriving on either VC are then dequeued, and queued on the outgoing queue of

the complimentary VC. The driver does rudimentary traffic management by blindly

dropping cells if any of the destination queues become too long. The switching is cell

based in the sense that no SAR functions are implemented in the driver and all the

cells are treated as raw ATM data (AAL0). Provision has been made to allow optional

switching of data as arbitrary length AAL5 packets.

3.4.4 Q.Port

Q.Port [21] implements signaling stacks on a configurable number of ports. It provides

both UNI and IISP stacks, and a fabric controller. There are a few standard fabrics

supported by the application, however a well defined fabric interface allows one to
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implement custom fabric interfaces for controlling non-standard switches(Fig 3.3). The

main parts are

AALCP AALCP

Switch
Call Controller

Fabric Control

Q.93B
Switch

Q.SAAL

Switch
Q.93B

Q.SAAL

Manager

Fabric Signaling ChannelSignaling Channel

Signaling
Stack

Figure 3.3: The Q.Port Switch Call Controller [21]

� Switch Call Control coordinates the various protocol entities supporting calling

party with one or more entities supporting called party and/or the next switch

in the path in creating a call. It determines routes, and controls the fabric interface

according to call setup and tear down requirements.

� Switch Signaling Stack Grouping is built on each port, and can be either a UNI or

IISP stack. It helps establish, maintain and release SVC. It consists of three mod-

ules: a network side implementation of the ATM Forum Q.2931 signaling proto-

col (also called Q.93B), an implementation of Q.2130 data link protocol (Q.SAAL)

and an AAL5 wrapper (AALCP).

� Fabric Control Module maps generic requests from the call controller into actions

that physically connect and disconnect VCs. The Fabric Controller has a well

defined interface, and any adhering fabric can be thus controlled.
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3.5 Signaling on the End System

Signaling on the end system is performed by a set of daemons that are part of the ATM

driver for Linux. There are essentially three important signaling daemons.

3.5.1 ATMSIGD

Atmsigd is the UNI signaling daemon for the Linux ATM [27]. It implements the UNI

3.1 signaling stack for a single ATM interface on the host (Fig 3.4). The signaling dae-

daemon
Application

Signaling NetworkKernel

UNI signaling (Q,2931)

Internal Signaling Protocol

Figure 3.4: Linux ATM Signaling

mon implements the UNI signaling complexity as part of user space, while a simple

protocol to support ATM signaling resides in the kernel. The user process communi-

cates with the kernel using a simple Internal Signaling Protocol, which relies on the

well ordered nature of the system to manage the signaling. The ISP uses synchronous

communication based on BSD sockets.

3.5.2 ILMID

Ilmid is the Interim Local Management Interface daemon that is used to manage the

host status and configuration, perform address registration and update at the switch.

It uses existing SNMP standard, and defines a new ATM UNI Management Informa-

tion Base (MIB) to perform VC status and management, operational measurement as

required, diagnostics, etc [7].
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3.5.3 ATMARPD and ATMARP

Atmarp is used to resolve IP addresses over an ATM subnet. The ATMARP requests

and replies are sent using AAL5. The ATMARP structure consists of an ARP Server,

whose ATM address is well known within the subnet. Hosts wanting to resolve IP ad-

dresses to their respective ATM addresses send queries to the ARP server, which looks

up its data base and responds with the required address. The ARP server updates it’s

data base when it receives ARP requests by sending inverse ARP or InARP REQUEST

to the originating host for each logical IP subnet the server is configured to serve. In

the event that the server is unable to find the corresponding entry in its table, it returns

an ARP NAK to the host.

The ARP client is responsible for contacting the ARP Server with its own IP ad-

dress to register itself. This usually happens at boot-up time. It is also responsible to

initiate and maintain a VC to the ARP server, respond to ARP and InARP requests,

and generate and transmit ARP REQUEST when required by applications wishing to

make connections.

3.6 Real-time Transport Protocol - RTP

RTP is the Internet-standard protocol for the transport of real-time data, including au-

dio and video. It has been designed within the Internet Engineering Task Force (IETF)

[24]. It can be used for media-on-demand as well as interactive services such as Inter-

net Telephony. RTP consists of a data and a control part. The latter is called RTCP. If

RTP packets are carried in UDP datagrams, data and control packets use two consec-

utive ports, with the data port always being the lower one. If other protocols serve

underneath RTP (e.g. RTP directly over ATM AAL5), other schemes have to be used.

While UDP/IP is its initial target networking environment, efforts have been made

to make RTP transport-independent so that it could be used, say, over CLNP, IPX or

other protocols. RTP is currently also in experimental use directly over AAL5/ATM.

RTP does not address the issue of resource reservation or quality of service control;
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instead, it relies on resource reservation protocols such as RSVP.

3.6.1 RTP Data Packets

The data part of RTP is a thin protocol providing support for applications with real-

time properties such as continuous media (e.g., audio and video), including timing

reconstruction, loss detection, security and content identification.

P X M Payload Type

Sequence Number

Timestamp

Timestamp (contd)

Synchronization source (SSRC) identifier

SSRC (contd)

X - eXtension

Contributing source (CSRC) identifiers

CSRC (contd)

V-Version CSRC count

Fixed

Optional

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

0 1

V - Version

P - Padding

M - Marker

Figure 3.5: RTP Header Structure [24]

The RTP header format is shown in Figure 3.5. RTP data packets consist of a 12-byte

header followed by the payload e.g. a video frame or a sequence of audio samples. The

payload may be wrapped again into an encoding-specific layer. The header contains

the following information:

� Payload type: A one-byte payload type identifies the kind of payload contained
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in the packets, e.g. JPEG video or GSM audio

� Timestamp: A 32-bit timestamp describes the generation instant of the data con-

tained in the packet. The timestamp frequency depends on the payload type.

� Sequence number: A 16-bit packet number allows loss detection and sequence

within a series of packets with the same timestamp.

� Marker bit: The interpretation of a marker bit depends on the payload type. For

video, it marks the end of a frame, for audio, it marks the beginning of a talkspurt.

� Synchronization source (SSRC) identifier: A randomly generated 32-bit scalar

that uniquely identifies the source within a session.

Some additional bit fields are not described here for brevity.

3.6.2 RTP Control Functionality

RTP offers a control protocol called RTCP that supports the protocol functionality. An

RTCP message consists of a number of stackable packets, each with its own type code

and length indication. Their format is fairly similar to data packets; in particular, the

type indication is at the same location. RTCP packets are multicast periodically to the

same multicast group as data packets. Thus, they also serve as a liveness indicator of

session members, even in the absence of transmitting media data. RTCP is scalable and

provides support for real-time conferencing of groups of any size. RTCP provides the

following functionality:

� QoS monitoring and congestion control

� Inter-media synchronization

� Identification

� Session size estimation and scaling
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3.7 Congestion Control

Congestion Control is important in high-speed networks in order to achieve network

performance objectives and at the same time increase the network utilization. Conges-

tion control schemes can be broadly classified into two categories: preventive schemes

and reactive schemes [20]. In preventive schemes, the goal is to avoid congestion

within the network. Reactive schemes control the congestion once it occurs in the net-

work. Figure 3.6 shows the categorization of some of the schemes that are proposed.
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Figure 3.6: ATM Congestion Control Options [20]

Preventive schemes: In these schemes, the connection’s traffic is estimated a priori

and allocated sufficient amount of bandwidth. The connection is expected to remain

within the limits of its allocated bandwidth. These schemes require accurate modeling

of short and long term traffic patterns in order to satisfy the objectives of network. This
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is not a very easy task.

Reactive schemes: These are usually used as backup for preventive schemes, or as

an aggressive control to maximize network utilization. The primary disadvantage of

this scheme is their inefficiency in an environment with large delay-bandwidth product

which causes large delay to the feedback information which is used by points within

the network to regulate traffic. Hence, in the current implementation, the reactive

schemes are used with a difference. A source-independent rate translation mechanism

is used, whereby no feedback information needs to be sent and hence delay-bandwidth

product is not a problem. The rate translation is made possible by using the STC ex-

plained in Section 3.9. Encoding, decoding and rate-translation is done using RAT

explained in Section 3.8.

3.8 Robust Audio Tool - RAT

RAT is a network audio tool that allows users to participate in audio conferences over

the internet. These can be between two participants directly, or between a group of

participants on a common multicast group. No special features are required to use

RAT in point-to-point mode, but to use the multicast conferencing facilities of RAT, a

connection to the Mbone, or a similar multicast capable network, is required. RAT is

based on IETF standards, using RTP [24] above UDP/IP as its transport protocol, and

conforming to the RTP profile for audio and video conference with minimal control.

In addition to the features provided by other Mbone audio conferencing tools, such

as vat, RAT offers the following additional functionality:

� Sender based repair of damaged audio streams

� FEC in the form of redundant packet transmission

� Support for interleaved audio

� Received based repair of damaged audio streams

� Adaptive scheduling protection
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� Secure conferencing

� Improved statistics and diagnostic features

� Conference coordination bus

� Transcoder operation

Of interest is the transcoder operation, which can be used in congestion manage-

ment. When the bandwidth available is not constant for all participants in a con-

ference, or when some participants do not have multicast capable access, the RAT

transcoder/gateway may be used. This connects two multicast groups, or one mul-

ticast group and a single unicast host. RTP packets received from either group are

transcoded into the format specified for the other group, multiple sources are mixed

together, and the resulting stream is transmitted to the other group. This allows for

different codecs to be used in each group, meaning that the bandwidth requirements

are different. Thus, when sending out data on a congested link data coded in one for-

mat can be transcoded into another format with lower bandwidth requirement.

It is supported on a range of platforms: FreeBSD, HP-UX, IRIX, Linux, Solaris,

SunOS, and Windows 95/NT. The source code is publicly available for porting to other

platforms and for modification by others.

3.9 Speech Coding and Sinusoidal Transfer Coder - STC

Since the project deals with narrowband communication, it is required that a low bit

rate speech coder be used to provide efficient resource usage on the low bandwidth

links. Also, it is required that the speech coder supports source-independent rate

translation capability where it is possible to transform the bit rate of the coded speech

stream at any intermediate node in the network, without interaction with the source.

This feature is used in congestion control where the Active Node transcodes audio on

the congested links to lower bit rates to ease congestion.
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Encoder Linear 16 PCM DVI GSM LPC STC
Coding Rate (kbps) 128 64 32 13.2 5.8 4.8

Encoded audio bytes/frame 320 160 80 33 14.5 18
RTP header bytes/frame 12 12 12 12 12 12

AAL5 Trailer (bytes) 8 8 8 8 8 8
Total bytes per frame 340 180 100 53 34.5 38

NATM cells/frame 15 8 5 3 2 2
Framelength (ms) 20 20 20 20 20 30

Frames/sec 50 50 50 50 50 100/3
Bandwidth/RTP stream 156 83.2 52 31.2 20.8 13.87

(kbps)

Table 3.1: Comparison of Bandwidth Requirements of Different Coding Techniques

Table 3.1 gives a comparison of bandwidth required to transfer audio encoded us-

ing different codecs using RTP embedded in AAL5 packets. Since the maximum link-

bandwidth in the current narrowband network is 38.4 kbps, only 3 codecs can be used

within the narrowband environment. However, STC has a few more advantages to its

usage as mentioned below.

Standard low and medium bit-rate coders provide efficient and good quality speech

output, but do not adequately support the source-independent rate translation capa-

bility, which is a requirement for the current project. The solution that the current

project employs is to use embedded coders, where the parameters of the lower rate

coder are embedded in the parameters of the higher rate coder [5]. To reduce the bit

rate, the higher rate parameters are stripped off. The Sinusoidal Transfer Coder (STC)

[17, 16] allows inter-operability at different rates and source-independent rate transla-

tion using bit-dropping technique. The STC is a vocoding technique which represents

the excitation signal as a sum of sine waves of arbitrary amplitudes, frequencies and

phases. The STC uses FFT to generate a set of cepstral coefficients which are coded and

transmitted along with excitation parameters. STC is a multirate coder which operates

at several discrete rates from 8 kbps to 2.4 kbps. In the current project, STC normally

operates at 4.8 kbps. During congestion, STC performs bit-dropping and produces

voice coded at 2.4 kbps.
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3.10 Magician - An Active Networking Toolkit

To understand the strengths and limitations of Active Networking, Magician [14], a

toolkit for creating a prototype Active Network was developed at the University of

Kansas. In an Active Network, program code and data is placed inside specialized

packets called SmartPackets. The nodes of an Active Network are called active nodes

and they are programmable in the sense that when a SmartPacket reaches an active

node, the code inside the SmartPacket is extracted and executed. Depending on the

nature of the code inside the SmartPacket, the SmartPacket either modifies the behav-

ior of the active node or transforms the data it is carrying. Magician provides the

platform on which active nodes can run, and the tools and interfaces for creating new

SmartPackets and deploying new services and protocols in the Active Network. The

basic implementation uses UDP/IP combination for transport and routing.

The two principal components of an Active Network are the active nodes and

the SmartPackets. The prototype Active Network is a collection of individual active

nodes and a single Information Server each running on a separate Java Virtual Ma-

chine (JVM). Active nodes exchange SmartPackets by encapsulating them inside UDP

packets and sending them on UDP ports 3322-3325 of the host on which a neighbor-

ing active node is running. An Information Server maintains the configuration of the

network. At startup, nodes in the Active Network contact the Information Server to

determine adjacent nodes. This information is useful to provide a basis for developing

the infrastructure necessary for routing SmartPackets in the Active Network.

Magician is implemented in Java. The Java Virtual Machine environment supports

machine-independent programs and the language is quickly becoming a standard for

object-oriented programs that can be compiled into bytecodes. It was opted to imple-

ment the system using version 1.1 of the Java Development Kit (JDK) for two principal

reasons:
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� It supports object serialization which allows transport of state across the network

in SmartPackets, and Version 1.1 is expected to be forward-compatible with fu-

ture versions as opposed to version 1.0.2.

� Since SmartPackets are executable entities, their state has to be preserved when

they are transported from one active node to the next. Object serialization is

one technique for preserving and transporting state. The state of an executing

object is written out as a byte array in a particular format. The byte array is then

transported across the network to the neighboring active node where the bytes

in the array are used to re-create the SmartPacket. There is an added advantage

in using object serialization. Since Java is being becoming increasingly popular

in the Active Networking community, it is expected that most active nodes will

support object serialization. This permits widespread integration of the different

active network architectures.

3.10.1 SmartPackets

In an Active Network, data packets are information entities. These entities, called

SmartPackets, contain a destination address, user data, and methods that can be ex-

ecuted locally at any node in the Active Network. SmartPackets carry customized

protocols that are fitted in with protocol modules at the network nodes.

The code in the SmartPacket can be in any executable format and it is executed at

the node if the node has the correct processing environment. In Magician, the code of

the SmartPacket is actually a Java class that describes the methods that act on the user

data. Each SmartPacket has a 128-bit type identifier, which is used to identify the pro-

tocol that is carried by the SmartPacket. The type identifier is a MD-5 message digest

of the structure of the SmartPacket.

The idea is that any composer of a SmartPacket (user, application, router etc.) want-

ing to define a new type sends the SmartPacket definition to a local Type Authority
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(currently built into the kernel at the host node). This Type Authority authenticates

the composer, checks the structure of the SmartPacket and converts the SmartPacket

definition to canonical form. The canonical form is then hashed (using a standard hash

algorithm) into a 128-bit number that is returned as the type identifier for the Smart-

Packet. This prevents spoofing because the signature is a one-way function and the

contents of the packet can be verified against the signature.

Environment ID

Active Network Encapsulation Protocol (ANEP)

TLV - type/length/value tuple

Header

Source Address TLV

Destination Address TLV

128 bit Type Identifier TLV

KU SmartPacket Object (Java Serialized Object)

Figure 3.7: On-The-Wire Format of SmartPacket [14]

The overall structure of the SmartPacket conforms to the Active Network Encap-

sulation Protocol (ANEP). ANEP was created to enable members of the Active Net-

working community to implement their own execution environments at all member

sites and still be able to interchange SmartPackets. The ANEP structure shown in Fig-

ure 3.7 consists of a fixed header that describes, among other things, the environment

in which this SmartPacket executes, and a series of optional type/length/value (TLV)

tuples. Some of the TLVs defined in the ANEP proposal are source definition TLV, des-

tination definition TLV and authentication TLV.
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Members are free to add their own TLVs to the overall structure except that they

will not processed at nodes which do not understand them. In Magician, a class defi-

nition TLV was developed to carry the Java class definition of the user code. Also, an

object definition TLV was defined to carry the serialized object and a Type definition

TLV that carries the type identifier of the SmartPacket.

3.10.2 Active Nodes

Active nodes perform the functions of receiving, scheduling, executing, monitoring

and forwarding SmartPackets. When a SmartPacket arrives at an active node, the type

identifier and the user-defined code inside the SmartPacket is extracted. The type iden-

tifier is used to de-multiplex the SmartPacket to its correct processing environment.

The SmartPacket is then scheduled for execution. A separate environment is required

for each invocation to prevent undesirable interactions and malicious access to node

resources.

Active nodes export a set of resources and primitives that can be used by the user

programs contained inside SmartPackets. This not only provides a consistent view of

the network but also enforces constraints on the actions that can be performed by user

code. Thus an active node enforces a time limit on the execution of SmartPackets to

prevent runaway user programs. It also imposes a limit on the total memory that can

be requested by a SmartPacket. In terms of primitives, user code has restricted access

to certain internal information such as the routing tables, buffer space information and

available link bandwidth on the node’s interfaces. The user can utilize this information

to develop application specific strategies to combat congestion or implement a new

routing policy for its packets.

3.10.3 Active Node Architecture

The model of an active node is shown in Figure 3.8. An active node is made up of

(possibly) multiple processing environments such as a PLAN execution environment

or an ANTS environment. Each environment is controlled by its node manager. When
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an active node boots up, it starts a set of port managers, a demultiplexer, and the node

managers of all the environments that the active node supports. There is one Port

Manager per UDP port that the active node listens to and on which the active node

communicates with other nodes. The list of ports that the active node listens to is ob-

tained from the Information Server at boot time. Incoming SmartPackets are queued

at the Demultiplexer. The Demultiplexer verifies that the packet conforms to ANEP

standard and then attempts to demultiplex the packet to its correct processing envi-

ronment based on the environment identifier field in the header. This is accomplished

by using the environment identifier to index into a table to find the Node Manager

for the environment. The byte stream constituting the packet is then handed over the

environments node manager.

3.10.4 Node Manager

In this approach, the Node Manager starts other managers such as the resource man-

ager, the routing manager, the network event reporting manager and the port interface
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manager. The resource manager is involved in the management of node resources in-

cluding scheduling and is discussed in the next section. The routing manager provides

the interface for installing routing protocols and also provides a default routing mech-

anism for those SmartPackets that do not implement their own. More details about the

routing manager are discussed in Section 3.10.6.

The port interface manager controls the assembly and disassembly of SmartPack-

ets and their transmission and reception over the wire. The port interface manager

receives a SmartPacket as a byte stream. The ANEP header is peeled off first. The

TypeID TLV describes the type of the SmartPacket. If the node is receiving a packet

of that type for the first time, a new SmartPacket loader is created. The SmartPacket

loader extends the normal Java Virtual Machine class loader by allowing new classes

to be loaded from packets received over the network. The SmartPacket loader is then

assigned to that type and is used whenever packets of that type are received or need to

be transmitted. This also presents a separate environment for each type so that there

are no name conflicts between SmartPackets of different types. Name conflicts between

packets of same types are treated as errors.

To construct an incoming SmartPacket, the SmartPacket loader reads the bytecodes

representing the class definition and the serialized object. After reading the Smart-

Packet, the classes, if any, in the SmartPacket are loaded and verified by the Smart-

Packet loader. The serialized object is de-serialized and checked for the presence of

resource information. This resource information includes resource requirements like

maximum processing time, which are passed to the Resource Manager along with the

de-serialized object for processing.

The port interface manager reverses the process when transmitting SmartPackets.

When it receives the SmartPacket object and information about its next hop, the ob-

ject is serialized and placed in the Object Definition TLV, the ANEP header and other

appropriate TLVs are added and the byte stream is transmitted on the appropriate link.
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Serialization of a Java object is an expensive operation. Therefore, when a Smart-

Packet is received a hash is computed on the extracted data object and the object is

cached. This hash is used when the same SmartPacket is ready for forwarding to deter-

mine if the entire object needs to be re-serialized. If nothing in the object has changed,

simply re-sending the original cached object can save time.

3.10.5 Resource Manager

When a SmartPacket arrives at an active node, the Node Manager verifies, loads, and

defines the embedded class to the execution environment as described earlier. The

Node Manager then forwards the de-serialized code object to the Resource Manager

for execution. The Resource Manager provides an interface to resources at the node.

The code in the SmartPackets is run in a thread. All requests for resources are made

by the thread on behalf of the code. This is similar to the path abstraction used in the

Scout operating system. Having a single thread per SmartPacket simplifies resource

management because it is easy to track the resources allocated for a given thread.

Most SmartPackets arriving at an Active Node do not require sophisticated re-

source models. Some of the basic resources are CPU cycles, memory and I/O band-

width. This list can be extended by including storage in which SmartPacket can leave

small state at a node after its execution environment expires.

3.10.6 Routing

The Routing Manager maintains the interfaces for various routing protocols to be im-

plemented. The default routing protocol that is installed at all active nodes is the RIP

routing protocol. The RIP routing protocol creates and maintains its own routing ta-

bles and provides the interface for manipulating these tables. The routing table is a

simple vector of 4-tuples that describes other active nodes in the network and how

to get there. But instead of sending routing table updates as data, the active routing

protocol sends SmartPackets that carry code to modify, add or delete table entries at
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the destination. Users can install their own routing protocol for their SmartPackets by

overriding the GetNextHop method of the base SmartPacket class by a method which

returns the name of the active node that serves as the next hop towards the destination.

3.10.7 Four11 Server

The Four11 server (class Four11) is an information service that maintains information

about named, virtual active networks. The idea is that the physical network of active

nodes can be overlaid by a virtual network of nodes. Thus a physical Active Network

can contain multiple virtual active networks (VAN). Information about each VAN is

maintained by the Four11 server. Any active node can query the Four11 server through

a specific API to obtain information about a VAN or its constituent nodes. Information

such as the names of the active nodes in a VAN, the physical nodes on which they

reside, the interface addresses, their neighbors in the VAN can be easily determined.
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Chapter 4

Implementation

4.1 Narrowband ATM Testbed

4.1.1 Software-Switch

The software switch has been developed by modifying the Linux operating system

version 2.1.105 with Linux-ATM version 0.38. The hardware interfaces used have been

discussed in Section 3.4. The granularity of the Linux heartbeat has been improved

from 10 milliseconds to couple of microseconds using UTIME [23]. This additional

resolution is required to precisely match the cell switching rate on each switch port to

that of the line rate of the port e.g. 38.4 kbps is the line-rate on a Cyclades serial port,

hence 26 byte NATM cells will have to be switched every 5.416 milliseconds, which is

possible only with the improved heartbeat granularity.

The working of the MicroSwitch Driver has been explained in Section 3.4.3. The

basic driver, however, does not differentiate between ATM cells depending upon the

payload, QoS etc. Also, cell-switching is entirely a kernel space activity. In order that

a switch behave as an active node, the switched ATM data should be accessible from

user space. The following sections describe the modifications to the driver design.

4.1.1.1 Class-Based Queuing

The MicroSwitch driver accomplishes the task of switching cells from an incoming

(Port, VC) onto an outgoing (Port,VC), based on the contents of a routing table that

33



Weighted Round-Robin scheduling

Input VBR Queue Output VBR Queue

Output UBR Queue

Output Port B

Transfer from input to output queue after port delay

Input UBR Queue

AAL5 packets

AAL0 cells

Programmed Port Delay
Input Port X

VBR Service Priority higher than

Input Port A

UBR Service Priority

Output Port Y

Figure 4.1: Class-Based Queuing

it maintains. It provides output queuing and implements per-class queuing with sep-

arate queues for different traffic types at the output of each of the ports as shown in

Figure 4.1. For the current implementation, the classes were defined to be audio and

data. Alternatively, audio can be called Variable Bit Rate (VBR) traffic, given the na-

ture of silence-suppressed audio and its time-critical aspect. Data can be considered

to be Unspecified Bit Rate (UBR) traffic considering non time-critical nature of data.

Thus, the switch has separate queues for VBR and UBR traffic at the output of each of

the ports. The VBR and UBR queues are serviced by a weighted round-robin sched-

uler with VBR:UBR weight ratio equal to 10000:1. This is done to ensure that audio

is switched whenever it is ready for delivery irrespective of the fact that data may al-

ready be queued for switching. This ensures that audio QoS is maintained.

Ordinarily, the MicroSwitch driver switches AAL0 cells i.e. it opens AAL0 sock-

ets for the incoming VC and outgoing VC and receives AAL0 (raw ATM) cells and

switches AAL0 cells. This is under the assumption that the switch will not be process-

ing the payload contained in the ATM cells. However, as mentioned in Section 1, in

an Active Network, switches perform computations on user-data as the data traverses

the network. In this case, the user-data is audio traffic. The encapsulation that is used

for audio traffic is AAL5 packets containing encoded audio embedded in RTP packets.

Thus, the switch is required to open AAL5 sockets for audio traffic and switch audio
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as AAL5 packets and not AAL0 (raw ATM) cells so that the payload can be retrieved

correctly in user-space by the active node for processing when required. Data traffic on

the other hand, will not be processed by the Active Network. Hence, data is switched

as AAL0 cells. In the current implementation, this distinction in traffic type is made

after connection set-up. During connection set-up, the switch call-controller (Q-Port),

makes a connection between the inport and outport. Once the connection is made,

the end-hosts transmit a special identifier on the connection. On each connection, the

switch checks the first AAL0 packet that it receives. If the packet, contains the magic

string ”AN” within the identifier, the switch identifies the connection to be carrying

audio traffic and expects that all cells coming then onwards are AAL5 encapsulated.

The special identifier is not sent on connections carrying data traffic by the end-hosts.

Thus, audio traffic is switched as arbitrary-sized AAL5 packets and data traffic as

fixed-sized AAL0 cells. This implies that the scheduler which is used for switching

cells onto outgoing links cannot switch out packets at all switching intervals. As ex-

plained, the switching interval is calculated considering that fact that NATM cells with

24-bytes payload are to be switched. The AAL5 audio packets can be of more that

24 bytes. Hence, the successive AAL5 packets/AAL0 cells for the same output port

should be re-scheduled considering the length of the AAL5 packets. This timing ad-

justment is not necessary after an AAL0 cell is switched. This scheme is shown in

Figure 4.1. Each AAL5 packet/AAL0 cell that arrives on a port is transferred to the

respective port input queue. Each cell undergoes a specific port delay in the input

queue before it is transferred to the output queue. Once the packet/cell is in the out-

put queue, it will be switched out at the earliest switching interval after it reaches the

head of the queue and the VBR/UBR priority scheme is resolved. The port delay, by

default, is zero seconds. However, if an AAL5 packet of length greater than 24 bytes is

being switched out, the port delay for that port is adjusted proportionately. Thus, usu-

ally there is only only packet/cell in either of the 2 output queues on one output port.

The input queue will contain more than one entity each. This scheduling regulates the

flow of cells on the link connected to the port.
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4.1.1.2 Active Network Processing

During connection set-up, the MicroSwitch creates a data structure which maintains

the state for the connection. This data structure maintains information for different

functions such as whether the packet on the connection is the first packet or not, what

is the special identifier that was sent in the first packet transmitted on the connection

etc. Also, at connection set-up, the MicroSwitch assigns each connection a switch-wide

unique VCI number from a reserved range of VCI numbers. No PVC/SVC connection

will ever be assigned VCIs from that range. The VCI number is called the Active VCI.

Immediately after connection set-up, the Active Manager opens PVC sockets on the

input port and output port of the connection using the Active VCI. Normally, data is

switched using the class-based queuing. However, when Active Processing is desired

the AAL5 packets on the active connection traverse a different path. In the current

implementation, Active Processing is desired whenever congestion occurs in the in-

put queues for an output port. In such a case, after the AAL5 packet enters the input,

instead of being queued in the input queue for output port, the packet is sent on the

PVC opened by the Active Node Manager on the Active VCI on the input port. The

Active Node Manager extracts the RTP packets from the AAL5 packets, processes the

encoded audio, re-encapsulates in AAL5 format and writes the AAL5 packet to the

same PVC it reads the packet from. In the kernel, the MicroSwitch driver interpretes

from the VCI number that the packet has been processed by the Active Node Man-

ager and then queues up the packet on the input queue for the destined output port

it is to be switched to. The path that the AAL5 packet then follows is the same that it

would follow if there were no Active Processing. Figure 4.2 shows the flow-chart for

the cell-reception by the MicroSwitch. Figure 4.3 shows the flow-chart for the queuing

and switching scheme of the MicroSwitch. Figure 4.4 shows the diagrammatic imple-

mentation of the switching scheme.
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Figure 4.2: Flow-chart for Cell Reception by the MicroSwitch Driver

4.1.2 End-Hosts

Section 4.1.1 describes the class-based queuing on the software switch. Similarly, it is

necessary to differentiate traffic on the end-hosts viz. audio and data traffic. The traffic

on a particular connection is identified using a setsockopt() call after the connection. By

default, all connections carry data traffic i.e. UBR. The setsockopt() call sets the connec-

tion type to VBR. This implementation assumes only one ATM port on the end-hosts.

So, class-based queuing is implemented for one port only. A round-robin scheduler

services the 2 queues, where the weights assigned to VBR:UBR are in the ratio 10000:1

to give maximum priority to audio traffic.

4.2 Active Network

This section describes the implementation of the Active Network architecture em-

ployed for the current project.
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4.2.1 Modifications to Magician

Section 3.10 gives a detailed explanation of the Magician architecture. The following

are the differences which require modification to the Magician architecture to adapt it

to the current Narrowband ATM network.

� Magician identifies active nodes using IP host address and UDP port combina-

tion. These identifiers are stored in the Information server.

� Magician uses connectionless UDP sockets to transfer to and from the network.

� Magician uses Java as the implementation language. Java provides a set of li-

braries for managing UDP sockets.

� Magician uses an in-band loading scheme for programming the nodes. Program

code and data are sent in the same SmartPacket.

We contrast below, the features of Magician on an IP network with the nature of the

Active Narrowband network.

� The Narrowband ATM Network as the name says is an ATM network. Hosts

and Software switches and thus active nodes are identified using ATM interface

address.

� To make connections over an ATM network, PVC or SVC sockets are required.

These sockets are connection-oriented.

� Java does not provide support for ATM socket through its libraries.

� The Narrowband ATM Network uses low-bandwidth links to interconnect hosts,

unlike in Magician over IP which assumes Ethernet as the physical medium. The

program code is of significant size to cause a long delay in transfer of the Smart-

Packets, if data and program code are sent together. This needs to be avoided by

pre-installing the program code on the active nodes using SmartPackets.
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4.2.2 System Architecture

Figure 4.5 shows the topology of the prototype Active Network which is a collection of

end-hosts and software switches. This system does not contain an Information Server.

In an ATM network, connection between end-host and switch, switch and switch, are

one-to-one i.e. an ATM interface will be physically connected only to one other inter-

face. This is unlike a broadcast medium like Ethernet where hosts are connected on a

common bus. In an ATM network, host will always be connected to a switch, whereas

a switch can be connected through its multiple interfaces to hosts and/or switches.

4.2.3 SmartPackets

The current project uses the same format for the SmartPackets using the TLV tuples

defined in 3.10.1. However, some of the fields pertaining to IP such as 32-bit host

address are not used.
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4.2.4 Active Nodes

The active nodes perform the validation, scheduling and sand-boxing as mentioned in

Section 3.10.2.

4.2.5 Active Node Architecture
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Figure 4.6: Active Node Architecture

The model of an active node in the Narrowband ATM network is shown in Fig-

ure 4.6. An active node is made up (possibly) multiple processing environments such

as a PLAN execution environment or an ANTS environment. In the current imple-

mentation, we assume only one execution environment. When an active node boots

up, it starts a set of Port Managers, a Demultiplexer, and the Node Managers for the

environments that the active node supports. There is one Port Manager per ATM in-
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terface on the end-host/switch. Usually end-hosts have only one ATM interface, and

hence only one Port Manager will start up. On a switch, there will be one Port Man-

ager for each enabled ATM interface. The list of interfaces is obtained by querying

the MicroSwitch through ioctl() calls using Java Native Interface (JNI). Since no infor-

mation about the switch is available through standard system calls and Java does not

provide support through its libraries, a library had to be created wherein native func-

tions are implemented which query the switch for different bits of information using

ioctl() calls and return information to the Active Manager using Java Native Interface

[12]. The Port Manager opens a PVC socket on a unique VCI (62) called Control VCI

on each of the enabled interfaces. Since Java does not provide socket API for ATM,

an API was defined and implemented which allowed AAL5 PVC socket management.

The Port Managers read and write to these sockets and thereby communicate with im-

mediate switch/host which is connected to the interface they are working with. The

Port Manager on the corresponding host/switch listen on a socket opened on the same

VCI. Incoming SmartPackets are queued at the Demultiplexer which verifies that the

packet conforms to ANEP standard and then demultiplexes it to the correct processing

environment. The byte stream constituting the packet is then handed over to the en-

vironment’s Node Manager. In the current implementation, the Node Manager starts

other managers such as the Resource Manager, the Port Interface Manager, and the

Connection Manager. In this implementation, there is no Routing Manager. The Port

Interface Manager controls the assembly and disassembly of SmartPackets and their

transmission and reception over the wire as mentioned in Section 4.6.

The role of SmartPackets is different in this implementation. SmartPackets are used

only to load program code in the active node. An out-of-band approach is used to load

the program code using SmartPackets. Hence, these SmartPackets are sent out before

the actual audio traffic is sent out. Each node on receiving the program code store

it locally using the Java class name as the key. Thereafter, the program code bearing

SmartPackets are sent out through all PortManagers which are connected to switches.

Thus, this produces a cascading effect and all switches are populated with a particular
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program code in a short time. The program code will never be re-transmitted between

same pair of interfaces, since each active node keeps track of the Port Managers which

have sent out the particular program code.

The role of program code is different here, too. Program code, by itself, does not

implement new protocols to be used by user-data. Instead, program code when ex-

ecuted, causes execution of system-dependent object code outside the Active Node

Manager and pass the relevant parameters to the object code. The object code in this

case is used to implement congestion control algorithm and is shown as Congestion

Control Program Thread in Figure 4.6. The object code opens AAL5 PVC sockets on

(Port, VCI) determined by the Connection Manager. Thus, once SmartPackets install

program code in the active node and Connection Manager executes the program code

and thereby the object code, the user data will be then read on AAL5 sockets by the

object code thread, processed and written back to the same AAL5 socket. An example

program code is given in Appendix A. The Connection Manager is explained in detail

in Section 4.2.6.

The Resource Manager works as described in Section 3.10.5. The functionality of

the Routing Manager is reduced due to the connection-oriented nature of ATM net-

works. Routing is carried out by the MicroSwitch driver in the switch. The Routing

Manager is used only to get information from the MicroSwitch about the existing con-

nections. The Net Event Manager is used for evaluation and debugging. Hence, it was

not used in the current project.

4.2.6 Connection Manager

The Connection Manager is responsible for checking creation of connections to the

MicroSwitch and invoking object code programs which implement congestion control

processing on the user-data read through AAL5 PVCs. The Connection Manager is

started by the Active Node Manager. The Connection Manager polls the switch using

native functions to determine if an active connection is set-up. The setting up of an
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active connection is explained in Section 4.1.1.2. As mentioned, active connections fol-

low RTP standard. Hence, active connections will always occur in pair, one connection

for the RTP data part and the other for the RTCP control part. Each active connection

immediately after connection set-up stores a special identifier in every MicroSwitch in

its connection path. This identifier in addition to the magic string ”AN” contains the

name of the class whose program code it wishes to execute on the connection. In this

way the connection has control over what algorithm it wishes to implement when con-

gestion occurs. Whenever an active connection is set-up, as mentioned an active VCI is

also assigned to the connection. This is the VCI on which AAL5 PVC socket is opened

by the object code and is the VCI on which on which data is sent for active processing

in the MicroSwitch before being switched out.

After an active connection is setup, the Connection Manager in its next poll, derives

what program code is to be executed. An internal database is checked to see if the

program code has been installed by out-of-band loading through SmartPackets. If it

exists, the program code is executed. The program code in turn attempts to execute

the object code it is required to invoke. If the object code is not resident on the switch,

an FTP request is made via a fast interface to fetch the object code and store it on the

switch. Program monitors have been implemented to ensure that all program codes

wanting to execute the object code wait for the single FTP request to complete and

do not fire off more FTP requests. Once it is ensured that the object code is available,

the object code is invoked by the program code by passing some arguments. One

of the arguments contains the Active VCIs for the RTP and RTCP connections. The

object code when executed, opens AAL5 PVC sockets on the Active VCI on the relevant

interfaces. Thus, whenever an AAL5 packet arrives on the input side of an active

connection, the MicroSwitch driver pushes it into the receive queue of the Active VCI

socket for the active connection. The object code reads the user-data from the AAL5

packet, processes it, re-encapsulates the data and sends it out on the socket. The kernel

when it receives data on an Active VCI socket, it is diverted to the MicroSwitch for

switching out as explained in Section 4.1.1.2. Whenever an Active Connection is torn
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down, in the next Connection Manager poll, it is detected and the Connection Manager

stops the execution of the program code and object code assigned to that connection.

4.3 Application Programs

4.3.1 RAT Architecture

As mentioned in Section 3.8, Robust Audio Tool (RAT) uses UDP/IP as its transport

protocol. In order to adapt it to the Narrowband ATM network, support was provided

to enable creation and management of PVC and SVC sockets. AAL5 was chosen as

the encapsulation due to its universal usage and support. As explained in Section 3.9,

a low-bit rate coder is required for narrowband networks. RAT does not have STC

inbuilt. So, the STC codec had to be fudged into the RAT. A significant difference

here was that STC works with 30 milliseconds framelengths, whereas all codecs within

RAT use 20 milliseconds framelengths. So, this required some parameter adjustment

to RAT.

4.3.1.1 RAT as Audiotool

RAT is used mainly to allow users to participate in audio conferences over the internet.

The conferences can be between two participants directly (unicast) or between a group

of participants on a common multicast address. In the current project, RAT is used as

a unicast tool between two participants directly. This is the mode that RAT is used on

the end-hosts.

4.3.1.2 RAT as Transcoder

RAT can operate as a transcoder/mixer. In this mode, no audio is played. RTP packets

received from either group are transcoded into the format specified for the other group.

This is useful for transcoding between low-bandwidth and high-bandwidth sessions,

for example. However, in transcoding, coded audio from one session is decoded into

raw audio format, and then encoded in the format for the second session. This is

a costly operation in terms of time. To minimize the time required in processing, a
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new mode called Bit-Dropping is introduced. This mode is targeted towards using

the embedded-coding feature of STC explained in Section 3.9. The STC-coded audio

received from a high-bandwidth link can be transcoded onto a low-bandwidth link

by bit-dropping the parameters for the higher bit-rate coding. This is more efficient

than true transcoding as the coded audio need not be decoded to raw audio format to

transcode it to another format. This is the mode that RAT is used on the active node

(switches) to perform congestion control processing. Thus, the object code mentioned

in Section 4.2.6 is the compiled RAT code. The program code ensures that RAT is

started in bit-dropping mode with the appropriate bit-rates on the non-congested and

congested links. Specifically, on the high-bandwidth link STC encodes audio into 4.8

kps streams and on the low-bandwidth link into 2.4 kbps.

4.3.2 RTP Header Compression Protocol

As mentioned in Section 3.6, RTP has a fixed 12-byte header. However, this is too large

an overhead for short payloads when operating over low speed lines such as the low

bandwidth links used in the current Narrowband ATM network. STC-coded audio at

4.8 kbps rate generates 18 bytes for each frame, whereas STC-coded audio at 2.4 kbps

rate generates 9 bytes for each frame. This produces an overhead of 12/30 and 12/21

in RTP packets using STC at 4.8 kbps and STC at 2.4 kbps respectively. The implies that

the RTP header size should be reduced through compression techniques as has been

done with TCP over serial lines [13].

The current project implemented a portion of the internet draft [4], aimed towards

compressing IP/UDP/RTP headers. In an ATM network, only RTP headers will have

to be compressed. Compression is done on a link-by-link basis as it provides better

performance compared to an end-to-end basis, in terms of delay and loss rate. The

design aims to provide simplicity at the expense of generality in order to reduce the

compression-decompression time.

In TCP header compression, the first factor-of-two reduction in data rate comes
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from the observation that half of the bytes in the IP and TCP header remain constant

over the life of the connection. After sending the uncompressed header once, these

fields may be elided from the compressed headers that follow. Similar technique is

applied to RTP header compression. The uncompressed header is stored in the session

state shared between the compressor and the decompressor. First-order differences are

communicated from the compressor to the decompressor. The decompressor recon-

structs the original header without any loss of information by adding the transmitted

first-order differences to the saved uncompressed header as each compressed packet is

received.

In the RTP header, the SSRC identifier is constant in a given context since that is

part of what identifies a particular context. For most packets, only the sequence num-

ber and the timestamp will change from packet to packet. If packets are not lost, the

sequence number will increment by one for each packet. For audio packets of constant

duration, the timestamp will increment by the number of sample periods conveyed in

each packet. The first order differences of these fields is transmitted to the decompres-

sor along-with the SSRC identifier as in TCP/IP header compression.

4.3.2.1 Protocol

The RTP header compression protocol consists of 2 finite state-machines, one for the

transmitter side shown in Figure 4.7 and the other for the receiver side shown in Figure

4.8. One instance of each state-machine will exist on both sides on the link.

The compression protocol must maintain a collection of shared information in a

consistent state between the compressor and decompressor. There is a separate con-

text for each RTP packet stream as defined by the RTP SSRC field. Both compressed

and uncompressed packets carry the context ID and a 4-bit sequence number to detect

packet loss between the compressor and decompressor. Each context has its own sep-

arate sequence number space.
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The shared information in each context consists of the following items:

� The full RTP header.

� The last value of the 4-bit sequence number.

� The last value of timestamp.

In order to communicate packets in the various uncompressed and compressed

form, this protocol introduces three new packet formats.

� FULL HEADER - communicates the uncompressed RTP header and data to es-

tablish the uncompressed header state in the decompressor for a particular con-

text. The FULL HEADER packet also carries the 8-bit session context identifier

and the 4-bit sequence number to establish synchronization between the com-

pressor and decompressor.

� COMPRESSED RTP - indicates that the RTP header is compressed. The first or-

der differences are communicated in this packet.

� CONTEXT STATE - indicates a special packet sent from the decompressor to the

compressor to communicate a list of context IDs for which synchronization has

or may has been lost.

The detailed format and fields of the packet formats is given in [4].

4.3.2.2 Error Recovery

Whenever the 4-bit sequence number for a particularly context increments by other

than 1, the decompressor invalidates that context and sends a CONTEXT STATE packet

back to the compressor indicating that the context has been invalidated. All packets for

the invalid context are discarded until a FULL HEADER packets is received for that

context to re-establish consistent state. If multiple compressed packets arrive in the

interim, the decompressor does not retransmit the CONTEXT STATE packet for every

compressed packet received.
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4.3.2.3 Compression of RTCP Control Packets

RTP convention dictates that data is carried on lower port number and the correspond-

ing RTCP packets are carried on the next higher port. For RTCP, the compression could

apply, but only for the contents of the packet type. However, the current project does

not perform RTCP compression. The RTP protocol suggests that the RTCP packet in-

terval be scaled so that the aggregate RTCP bandwidth used by all participants in a

session will not be more than 5% of the session bandwidth. It is analyzed that even if

the RTCP packets are uncompressed, the portion of bandwidth when operating along-

side compressed RTP packets, is not more than 5% if the size of RTP data packets is at

least 108 bytes. The RTCP packet length is assumed to be 90 bytes. If the size of RTP

data payload is smaller, the fraction of RTCP packets is still around 7%.

4.3.3 Congestion Control Algorithm Logic

4.3.3.1 RTP over ATM AAL5

This section explains how the congestion control algorithm reduces the bandwidth of

the STC coded audio at 4.8 kbps embedded using RTP within NATM AAL5 packets us-

ing bit-dropping and RTP header compression. As mentioned in Section 4.3.1.2, RAT

operating in the bit-dropping mode is used to convert 4.8 kbps to 2.4 kbps STC-coded

audio. Different scenarios are considered in the following cases and it is shown how a

particular case can reduce the bandwidth to half of the original.

Table 4.1 shows that STC-coded audio at 2.4 kbps with RTP header compression

requires half the bandwidth of STC-coded audio at 4.8 kbps with no RTP header com-

pression.

Figure 4.9 shows how information and header bytes are generated using the band-

width reduction schemes mentioned in Table 4.1. As is seen, only using STC with 2.4

kbps encoding and RTP header compression produces one NATM cell for one frame

as opposed to two NATM cells for the other schemes.
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STC encoding 4.8 kbps 2.4 kbps 4.8 kbps 2.4 kpbs
RTP Header Compression No No Yes Yes

Encoded audio bytes/frame 18 9 18 9
RTP header bytes/frame 12 12 5 5

AAL5 Trailer (bytes) 8 8 8 8
Total bytes per frame 38 29 31 24

NATM cells/frame 2 2 2 1
Framelength (ms) 30 30 30 30

Frames/sec 100/3 100/3 100/3 100/3
Bandwidth/RTP stream 13.867 13.867 13.867 6.933

(kbps)

Table 4.1: Bandwidth Reduction for RTP over ATM AAL5

Figure 4.10 shows how bandwidth reduction occurs during congestion in the switch

using the Active Manager.

4.3.3.2 RTP over UDP/IP

A comparison is made in Table 4.2 to illustrate effectiveness of header compression

in bandwidth reduction when using RTP encapsulation over UDP/IP. The physical

medium used ethernet protocol. The bandwidth reduction shown occurs when RTP,

UDP and IP headers are all compressed.

STC encoding 4.8 kbps 2.4 kbps 4.8 kbps 2.4 kpbs
RTP Header Compression No No Yes Yes

Encoded audio bytes/frame 18 9 18 9
RTP header bytes/frame 12 12 5 5

UDP+IP header bytes/frame 28 28 3 3
Ethernet header bytes/frame 20 20 20 20

Total bytes per frame 78 69 46 37
Framelength (ms) 30 30 30 30

Frames/sec 100/3 100/3 100/3 100/3
Bandwidth/RTP stream 20.800 18.400 12.267 9.867

(kbps)

Table 4.2: Bandwidth Reduction for RTP over UDP/IP
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Figure 4.10: Bandwidth Reduction during Congestion

From Table 4.1 and Table 4.2, it is observed that due to the fixed cell-length of

NATM cells, bandwidth reduction is not observed even though header lengths are

reduced. However, due to variable packet length feature of IP, any header length re-

duction always results in some overall bandwidth reduction.
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Chapter 5

Evaluation

In this section we discuss the performance of the overall implementation evaluated

using standard tests. Section 5.2 discusses the performance of the narrowband net-

work, especially with regards to class-based queuing. Section 5.3 discussed the tests

which were carried out to evaluate the Active Network implementation and its use in

congestion control.

5.1 Test Setup

The end-hosts were 200 MHz Pentium laptops running Linux 2.1.105 patched with

ATM-Linux version 0.38 with serial cards as the ATM interface. The switches were 200

MHz PCs running Linux 2.1.105 patched with ATM-Linux version 0.38 with multi-port

serial card providing the ATM interfaces. Signaling was done using Q.Port software

version 2.0. The connections between interfaces were serial cables, telephone lines or

wireless links at 38.4 kbps link speed.

5.2 Narrowband ATM Network

The network topology that was used to evaluate the Narrowband ATM network con-

sisted of 2 switches and 4 end-hosts as shown in Figure 5.1. Each end-hosts is capable

of generating TCP data traffic using IP over ATM and audio traffic using RAT pro-

ducing RTP packets encapsulated using AAL5 protocol. The switches are software
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Switch 1 Switch 2

NATM1

NATM4NATM3

End-Hosts - NATM1, NATM2, NATM3, NATM4

NATM2

Software Switches - Switch 1, Switch 2

Figure 5.1: Evaluation Network Topology

switches which implement class-based queuing based on traffic type. The switching

rate on the switch is fixed at 32 kbps. This difference between the line rate and switch-

ing rate is maintained due to the fact that signaling messages do not pass through the

MicroSwitch driver. Hence, bandwidth has to be reserved for these messages. The ser-

vice rates for ratio for audio to data traffic is 10000:1 within the switch.

Data traffic was generated using the ttcp utility. On the transmitter side, the com-

mand used was:

ttcp -t -s -n<number_of_data_buffers> -l<length_of_data_buffers>

<receiver_host_name>

On the receiver side, the command used was:

ttcp -r -s -n<number_of_data_buffers> -l<length_of_data_buffers>

During the tests the value of number of data buffers and size of data buffers was

varied. ttcp provides application level throughput. The corresponding link-level through-

put was determined taking into account the packetization at all levels. The tests were
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repeated and an average value was computed for a fixed set of parameters.

Audio traffic was generated using RAT using the appropriate codec. In these tests,

audio is generated as a constant bit-rate source i.e. in the absence of audio, silence will

be sent.

Test 1:

This test was used to determine the maximum link-level bandwidth that the data

streams can use. Data traffic from natm1 to natm2 only. No traffic was sent between

natm3 and natm4.

Number of buffers Length of buffer Duration of test Link-level rate
(bytes) (bytes) (seconds) (kbps)

100 100 6.24 14.2
1000 8 2.8235 25.05

8 1000 2.705 24.14

Table 5.1: Maximum Link-Level Utilization

As seen from Table 5.1, the maximum utilization seen was 25.05 kbps. This is close

to the maximum switching rate of 32 kbps. This shows that in the absence of audio

traffic, data traffic utilizes maximum available bandwidth.

Test 2:

This test was used to verify the priority scheme between audio and data traffic. Data

traffic was transmitted from natm1 to natm2. Audio was generated using STC at 4.8

kbps coding rate and sent from natm3 to natm4.

Number of buffers Length of buffer Duration of test Link-level rate
(bytes) (bytes) (seconds) (kbps)

100 100 15.72 5.64
1000 8 4.32 15.12

8 1000 4.208 16.81

Table 5.2: Priority Scheme Verification using STC at 4.8 kbps

As seen from Table 5.2, in the presence of audio traffic the bandwidth of the data
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traffic reduces. As seen in Table 4.1, the theoretical link-level rate for STC at 4.8 kbps is

13.87 kbps. If this rate is added to the data-traffic rate, the total link rate is nearly the

maximum switching rate possible.

Test 3:

This test was used to verify the priority scheme between audio and data traffic. Data

traffic was transmitted from natm1 to natm2. Audio was generated using STC at 2.4

kbps coding rate with header compression and sent from natm3 to natm4. Also, this

test was used to prove the reduced bandwidth usage of 2.4 kbps STC encoded audio.

Number of buffers Length of buffer Duration of test Link-level rate
(bytes) (bytes) (seconds) (kbps)

100 100 6.60 13.42
1000 8 3.72 17.56

8 1000 3.69 19.17

Table 5.3: Priority Scheme Verification using STC at 2.4 kbps

As seen from Table 5.3, the bandwidth utilized by data traffic in the presence of 2.4

kbps STC encoded audio is more than that seen in Table 5.2. This indicates the lower

bit-rate of the encoded audio traffic.

Test 4:

This test was used to verify the bandwidth sharing between data traffic streams. Data

was transmitted from natm1 to natm2 and simultaneously from natm3 to natm4.

Number of buffers Length of buffer Link-level rate Link-level rate
natm1-natm2 natm3-natm4

(bytes) (bytes) (kbps) (kbps)
100 100 7.55 7.95
1000 8 13.64 11.69

8 1000 15.27 15.31

Table 5.4: Bandwidth Sharing between Data Traffic

As seen from Table 5.4, the sum of the data traffic on the common link is nearly

the same as that in Table 5.1. This shows that bandwidth is shared effectively between

streams of the same traffic.
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5.3 Active Network

The network topology shown in Figure 5.1 is used for testing the Active Network-

ing functionality too. Active Managers are initiated on all the machines. Depending

on whether the machine is an end-host or a switch it starts the required managers

accordingly e.g. end-hosts will not start the Connection Manager due to its obvious

functionality. It is assumed that before Active Managers come up on end-hosts, all the

user-specific protocols implemented using program code have been loaded in the cor-

rect location. After the Active Manager starts up on the end-hosts, the user is prompted

with a command-line prompt. The user keys in a command which includes the name

of the class of the program code. This results in two things. First, an application in

started on that end-host. In this project, it is the RAT in audiotool mode explained

in section 4.3.1.1 that is started on the end-hosts. Second, the Active Manager sends

the program code out on the PVC socket opened on the unique control VCI (62). The

switch connected at the other end of the link, receives the program code and stores it in

its repository. It then sends the program code on the control VCI PVC of all interfaces

that are enabled on the switch. This results in a cascading effect and the program code

gets installed in the active switches within the network. Since a point-to-point connec-

tion is desired, some other end-host also starts up RAT in audiotool mode using the

command line prompt. A connection is then made between the 2 hosts desiring con-

nection. If an active switch lies in the path of the connection, it executes the program

code associated with the connection from its repository. However, data packets will be

routed to the Active Manager only in case of congestion.

The efficacy of the scheme discussed above was evaluated using STC-coded audio.

The audiotool starts off producing 4.8 kbps coded audio. Two congestion control algo-

rithms were tested. The first one was RAT in bit-dropping mode where the bandwidth

of STC encoded audio was reduced from 4.8 kbps to 2.4 kbps. The second one was

RAT in bit-dropping mode along with header compression to reduce the bandwidth
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on the congested link. Standard audio clips were sent from the transmitting end-hosts

using RAT. Congestion was simulated on the switches causing active processing to be

performed in the audio data. Audio clips were recorded on the receiving end-hosts.

The performance of the clips using the different congestion algorithms was compared

subjectively.
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Chapter 6

Summary, Conclusions and Future

Work

6.1 Summary

An Active Network Architecture was proposed and implemented for a Narrowband

ATM Network. The Narrowband ATM network was built using software switches

and end-hosts. The software switches were built using PCs running Linux operating

system and Q-port, the switch call controller. Multiple ports were provided on the

switch using Cyclades multiport card as well as standard ATM OC-3 interfaces. A

software switching driver, the MicroSwitch driver was used as a kernel level applica-

tion to switch cells within the kernel. The end-hosts were standard laptops with serial

ports used for connecting to the Narrowband ATM Network. Standard PCs with OC-3

interface also constitute end-hosts. The physical medium for transmission could be

wireless, wireline or standard telephone lines. A protocol was used which is similar

to the ATM protocol in all aspects except the fixed cell length being 26 bytes with the

header length being 2 bytes. A class-based queuing scheme was designed and imple-

mented within the software switches to allow effective integration of audio and data

traffic, while satisfying the real-time aspect of audio traffic.

The Active Managers for the switches and end-hosts were implemented using the
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Magician architecture. Additional modules were developed for adapting to ATM net-

works, especially for routing and socket management. Libraries were developed using

Java Native Interface to interface the Active Managers to the switch and end-hosts

kernels. An out-of-band loading scheme was implemented for installing user-defined

protocols on the active switches.

The effectiveness of the architecture was demonstrated using congestion control of

audio streams as the target application. Audio streams coded using Sinusoidal Transfer

Coding were encapsulated using RTP standard within AAL5 packets. Two congestion

control algorithms based on source-independent rate translation were designed and

implemented, the STC Bit-Dropping algorithm and the RTP Header Compression al-

gorithm.

6.2 Conclusions

In this implementation it has been shown that an architecture which allows user-data

to be processed within the switches in ATM networks, increases flexibility in protocol

implementation within the network. Applications are provided the freedom to select

the computation that occurs. This is especially useful in today’s world where inte-

grated traffic is commonplace. Each type of traffic has its own parameters and it is

difficult to provide the a generic scheme to manage traffic. Active Networks allows

customized protocols to be implemented easily. The use of Java language to imple-

ment the Active Network, makes it easy to deploy it on any computing system.

The connection-oriented nature of ATM traffic allows the architecture to be scal-

able, as each interface needs to know only about the interface connected to the other

end of the link. The time required for connection set-up provides an appropriate op-

portunity for pre-installing user protocols on the switches.
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The applicability of Active Networks has been demonstrated within narrowband

networks by using it for reactive congestion control of audio traffic. Inspite of the ad-

ditional processing performed on the data in the Active Managers on the switches, the

real-time nature of audio traffic was retained. This can be extended to other multime-

dia traffic such as compressing digital video during congestion.

This implementation requires, however, support from the underlying kernels in the

switches. If a standard API is provided by the switch kernels which can give informa-

tion about the switch state, the computation flexibility can be immensely using Active

Networks philosophy on the switch.

6.3 Future Work

The concept of Congestion Control within ATM networks and control within the soft-

ware switch is a huge area in itself. A more complete implementation of the various

Active and Reactive policies possible within the switch should be done and evaluated,

working in tandem with the Active Networking Congestion control.

The Active Network implementation discussed had many ad hoc decisions made to

adapt it to the Narrowband ATM network. Especially where the Active Manager gets

information from the switch about connections etc. The implementation assumes the

network to comprise of software ATM switches alone. A more generic interface needs

to be defined so that Active Managers can reside on any ATM switch.

The effectiveness of Active Networking has been demonstrated for congestion con-

trol using rate-translation. More applications should be developed to prove its capa-

bilities.

It has been shown that the current implementation provides real-time performance.

However, there will be an upper limit on the number of simultaneous connections that
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it can support while implementing customized protocols on them. This aspect needs to

be investigated and the architecture needs to be optimized to provide a higher thresh-

old for its viability.

An out-of-band approach has been employed for this project for installing program

code using Smart Packets. This was used to avoid latency due to the narrowband net-

work. If the Active Network was deployed over an ATM network with OC-3 links, it

would be interesting to compare the performance with that of an in-band approach.

Also, the SmartPackets may be used not only for installing program code but also for

carrying data packets. Further, the object code itself can be Java byte-code, instead of

system-dependent code. Thus, there may be some significant design changes resulting

from the availability of high-speed links.

The project uses RTP packets embedded with AAL5 packets. AAL5 has an 8-byte

trailer irrespective of the payload size. This overhead can be reduced by using the

trailer bytes to store RTP header bytes which may be compressed [11]. Thus, the over-

all overhead bytes within the packets can be reduced.

The implementation directly uses ATM sockets assuming pure ATM networks. This

is an idealistic view of the network since IP networks exist universally. It will be in-

teresting to see how RTP/IP/AAL5 combination works and how real-time nature of

audio can be maintained considering the increased header overhead.
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Appendix A

Example of Program Code inserted

by SmartPackets on Active Nodes

/**
* Example of program code, sent using SmartPackets to the Active Nodes
* in the network. The program code is used to execute system-dependent
* object code
* KU_SmartPacket_V2_ATM is the base class which is only class accepted by
* the execution environment. All code carried by SmartPackets should be
* derived from KU_SmartPacket_V2_ATM
*/

public class StdStc extends KU_SmartPacket_V2_ATM {

String final_arg;
String program_name;
String tmp_name;
FtpMonitor ftpmonitor;

public void set (String prog, String args, FtpMonitor monitor) {
final_arg = args;
program_name = "StdStc";
ftpmonitor = monitor;

}

/**
* The exec() function within the program code will be called by
* the Active NodeManager. The contents of this function depends on
* the processing that is required by the user data. In this case,
* when the ConnectionManager executes the program code, it is
* desired that the congestion control program be run for the
* particular connection. Hence, as seen below, the object file
* is accessed and forked off as a child process.
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*/

public void exec () {

try {
String[] progarray = new String[10];
String filePrefix = "/tmp/activenode/obj";
objectFileName = filePrefix + program_name;

if (program_name != null) {
// Check is current node is an end-host or switch. If end-host,
// then exit since algorithm is to be performed on switches,
// in this case
File f1 = new File ("/dev/atmsw");
if (!f1.exists()) {

return;
}

// Prepare the arguments for the object code execution
progarray[0] = tmp_name;
progarray[1] = "-B";
progarray[3] = final_arg;

File fobj = new File (tmp_name);
// If object code does not exist FTP it from known site
if (!fobj.exists()) {

// Check if FTP is in progress already
// Wait if FTP in progress for the object code
if (!ftpmonitor.CheckFtpInProgress()) {

ftpmonitor.SetFtpInProgress();
// Perform the FTP
ftpObj ("obj"+program_name);
chmodarray[0]="chmod";
chmodarray[1]="777";
chmodarray[2]=tmp_name;
Process child = Runtime.getRuntime().exec(chmodarray);
try {

child.waitFor();
} catch (InterruptedException e) {

e.printStackTrace();
}
ftpmonitor.ResetFtpInProgress();

}
} else {

// Wait if FTP is in progress
if (!ftpmonitor.CheckFtpInProgress()) {
}

}

// Having obtained the object code, pass the appropriate
// arguments to it. The object code will perform the
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// congestion control algorithm on the data passed to
// user-space. The control of the child process is maintained
// by the ConnectionManager
child = Runtime.getRuntime().exec(progarray);

}
} catch (IOException e) {

System.err.println(e);
}

} /* run */

} /* public class StdStc */

67



Bibliography

[1] E. Amir, W. McCanne, and H. Zhang. An application level video gateway. In

ACM Multimedia ’95, 1995.

[2] G. Armitage and K. Adams. Packet reassembly during cell loss. IEEE Network

Magazine, September 1993.

[3] Samrat Bhattacharjee, Kenneth L. Calvert, and Ellen W. Zegura. On Active

Networking and Congestion. Technical Report GIT-CC-96/02, Georgia Institute

of Technology, 1996.

[4] S. Casner and V. Jacobson. Compressing IP/UDP/RTP Headers for Low-Speed

Serial Links. Internet Draft - draft-ieft-avt-crtp-05.txt.

[5] T. G. Champion and J. B. Evans. A flexible multirate speech coder. In Proceedings

of International Conference on Signal Processing Applications and Techniques, pages

1440–1443, September 1993.

[6] C.Kent and J. Mogul. Fragmentation considered harmful. In ACM

SIGCOMM’88, 1988.

[7] The ATM Forum Technical Committee. User-Network Interface (UNI)

Specification. Version 3.1, September 1994.

[8] de Prycker M. Asynchronous Transfer Mode - Solution for Broadband ISDN. Prentice

Hall International, 1995.

[9] Lindsley E. Narrowband ATM Networks. Master’s thesis, University of Kansas,

Lawrence, Kansas, August 1997.

68



[10] David L. Tennenhouse et al. A Survey of Active Network Research. IEEE

Communications Magazine, pages 80–86, January 1997.

[11] Alexander Fraser, Peter Onufryk, and K. K. Ramakrishnan. Encapsulation of

Real-Time Data Including RTP Streams over ATM, February 1998.

[12] Rob Gordon. Essential JNI: Java Native Interface. Prentice Hall Professional

Technical Reference, 1st edition, March 1998.

[13] V. Jacobson. TCP/IP Compression for Low-Speed Serial Links. RFC 1144.

[14] Amit Kulkarni. Magician - An Active Networking Toolkit.

http://ittc.ukans.edu/projects/Magician.

[15] Chen T. M. and Stephen S. L. ATM Switching Systems. Artech House

Incorporated, 1995.

[16] R. J. McAulay and T. F. Quatieri. Multirate sinusoidal transform coding at rate

from 2.4 kbps to 8 kbps. In IEEE Int. Conf. Acoust., Speech, Signal Processing, pages

1645–1648, 1986.

[17] R. J. McAulay and T. F. Quatieri. Speech analysis-synthesis based on a sinusoidal

representation. In IEEE Trans. Acoust., Speech, Signal Processing, pages 744–754,

August 1986.

[18] Vishal Moondhra. Implementation and Performance Analysis of ATM

Adaptation Layer Type 2. Master’s thesis, University of Kansas, Lawrence,

Kansas, January 1998.

[19] David M. Murphy. Building an Active Node on the Internet. Master’s thesis,

Massachusetts Institute of Technology, May 1997.

[20] A. Periyannan. A Reactive Congestion Control Scheme for Gateways in

High-Speed Networks. Master’s thesis, North Carolina State University, Raleigh,

NC, 1992.

69



[21] Bell Communication Research. Q.port Portable Signaling Software:

Implementation Notes. Release 1.3, July 1995.

[22] A. Romanow and S. Floyd. Dynamics of TCP traffic over ATM networks. IEEE

Journal on Selected Areas in Communications, May 1995.

[23] Balaji S. and Raghavan Menon. UTIME - Micro-Second Resoultion Timers for

Linux. http://hegel.ittc.ukans.edu/projects/utime.

[24] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A transport

protocol for real-time applications. RFC 1889, January 1996.

[25] David L. Tennenhouse and David J. Wetherall. Towards an Active Network

Architecture. Multimedia Computing and Networking, January 1996.

[26] T. von Eicken et al. Active Message: A mechanism for integrated communication

and computation. In 19th International Symposium on Computer Architecture, 1992.

[27] Almesberger W. Linux ATM internal signaling protocol, Draft Version 0.2,

November 1996.

[28] David J. Wetherall and David L. Tennenhouse. The Active IP Option. In

Proceedings of the 7th ACM SIGOPS European Workshop, September 1996.

70


