
Protocol Design for Congestion Management in

Narrowband Integrated Networks

by

Sona S. Kapadia

B.E., University of Bombay, Bombay, 1992

Submitted to the Department of Electrical Engineering and

Computer Science and the Faculty of the Graduate School of the

University of Kansas in partial ful�llment of the requirements

for the degree of Master of Science.

Professor in Charge

Committee Members

Date thesis accepted

Abstract

Narrowband integrated voice/data networks require that congestion control and
bandwidth management techniques be implemented in order to provide the desired
quality of service. An adaptive voice/data switch has been developed to demon-
strate the application of the Sinusoidal Transform Coder (STC), a low bit-rate
digital speech coder, to the implementation of integrated networks.

In this work, an integrated network management and control protocol is de-
signed and implemented. The protocol exploits the unique capabilities of the
STC for congestion control in a narrowband integrated network environment. A
software testbed is constructed to evaluate the speech coding technique and to
verify the protocol functionality. The results of informal listening tests on several
simulated conversations suggest that this coder is well-suited for bandwidth re-
allocation based on dynamic rate adjustment. The performance of the adaptive
voice/data switch congestion control mechanism is studied using simulation.

Acknowledgements

I would like to thank Dr. Joseph Evans, my advisor, for his help and advice

in the course of my graduate studies at KU. Working on this project under his

guidance has been an extremely rewarding experience.

I would like to thank Dr. Glenn Prescott and Dr. Swapan Chakrabarti for

serving on my committee.

I want to thank Meetul Parikh for lending an ear in times of need, and my

roommate Preeti Balse for putting up with my worse side these past few months!

I would also like to thank my colleague Najeeb Ansari for the valuable discussions

we have had.

Finally, I would like to thank my parents for encouraging me to further my

education. I would especially like to thank my mother, Uma Kapadia, without

whose support none of this would have been possible.

Contents

1 Introduction 1

2 Background 3

2.1 Speech Coding : 3

2.1.1 Applications : 3

2.1.2 Overview of Coding Techniques : : : : : : : : : : : : : : : 4

2.1.3 Limitations of Standard Coder Technology : : : : : : : : : 7

2.2 Sinusoidal Transform Coder : 8

2.2.1 Parameter Space Transformations : : : : : : : : : : : : : : 9

2.3 Adaptive Voice/Data Switch : 10

2.3.1 Network Con�guration : 10

2.3.2 Switch Architecture : 10

3 Integrated Network Management Protocol 14

3.1 Network Services : 14

3.2 Signaling Protocol : 15

3.2.1 Protocol Functions : 16

3.3 Protocol Description : 22

3.3.1 Control Messages : 22

3.3.2 Call Setup Example : 25

4 Protocol Simulation 29

iv

4.1 Switch Modeling : 29

4.2 Simulation Goals : 30

4.3 Simulation Strategy : 31

4.4 Test Cases : 32

4.5 Results : 36

5 Congestion Control 39

5.1 Overview of Bandwidth Allocation Algorithms for Circuit-Switched

Environments : 39

5.2 Congestion Control in Adaptive Voice/Data Networks : : : : : : : 40

5.3 Adaptive Switch Performance Evaluation : : : : : : : : : : : : : : 41

5.3.1 Modeling : 41

5.3.2 Performance Measures : 43

5.3.3 Simulation Results : 44

5.3.4 Conclusions : 50

6 Conclusion and Future Work 53

A Control Messages 55

B Parser Source Code 61

B.1 C Programs : 62

B.2 Header Files : 94

B.3 Sample Con�guration File : 99

C Simulation Source Code 104

C.1 C Programs : 105

C.2 Header Files : 141

v

List of Tables

3.1 Control Message types and functions : : : : : : : : : : : : : : : : 25

4.1 Simulation results : 38

5.1 Simulation parameters : 45

A.1 Voice rates : 59

A.2 Data rates : 59

A.3 Maximum connection rates : 59

A.4 Control Message IDs and parameters : : : : : : : : : : : : : : : : 60

vi

List of Figures

2-1 Vocoder speech production model : : : : : : : : : : : : : : : : : : 6

2-2 Adaptive voice/data switch network con�guration : : : : : : : : : 11

2-3 Integrated voice/data switch architecture : : : : : : : : : : : : : : 12

3-1 Switch Protocol Suite and functionality. Hardware components

associated with the protocol layers are listed on the left. : : : : : 16

3-2 The RS-232C interface circuits. The pin numbers are given in

parenthesis : 17

3-3 Asynchronous transmission format : : : : : : : : : : : : : : : : : 17

3-4 Multiplexing and demultiplexing of 9.6 kb/s voice and 2.4 kb/s data

on a single connection : 18

3-5 Control of call congestion using rate transformation : : : : : : : : 20

3-6 Multiplexing of multirate circuits on the modem link : : : : : : : 22

3-7 Time-slot assignment on the output link : : : : : : : : : : : : : : 23

3-8 Control message ow diagram for a typical call : : : : : : : : : : : 26

3-9 Control message ow diagram for a call using rate transformation 27

3-10 Switch-to-switch handshaking for connection setup : : : : : : : : 28

4-1 Simpli�ed model of adaptive voice/data switch : : : : : : : : : : : 30

4-2 Block diagram of simulation strategy : : : : : : : : : : : : : : : : 33

4-3 Simulation input speech �le coded at 19.2 kbps : : : : : : : : : : 37

4-4 Rate transition points with no silence detection : : : : : : : : : : 37

vii

4-5 Rate transition points with silence detection : : : : : : : : : : : : 37

5-1 System model: voice and data sources accessing a concentrator : : 42

5-2 Blocking probabilities for voice and data calls, C=8 : : : : : : : : 46

5-3 Fractional Link Utilization, C=8 : : : : : : : : : : : : : : : : : : : 46

5-4 Fairness index for voice calls, C=8 : : : : : : : : : : : : : : : : : : 47

5-5 Comparison of Average QOS on voice calls with di�erent link ca-

pacities : 48

5-6 Comparison of Link Utilization with di�erent link capacities : : : 48

5-7 Blocking probabilities for voice and data calls, C=9 : : : : : : : : 49

5-8 Voice call blocking probabilities with thresholding : : : : : : : : : 50

5-9 Data call blocking probabilities with thresholding : : : : : : : : : 51

5-10 Comparison of Average QOS for di�erent thresholds : : : : : : : : 51

5-11 Comparison of link utilization for di�erent thresholds : : : : : : : 52

A-1 CONNECTION REQUEST : 56

A-2 CONNECTION INDICATION : : : : : : : : : : : : : : : : : : : 56

A-3 CONNECTION RESPONSE : 56

A-4 MODIFY REQUEST/INDICATION : : : : : : : : : : : : : : : : 57

A-5 MODIFY RESPONSE : 57

A-6 TRANSFORM : 57

A-7 OPEN CHANNEL : 57

A-8 MODIFY SOURCE : 58

A-9 ACKNOWLEDGEMENT : 58

viii

Chapter 1

Introduction

Tra�c integration in communication networks is currently the focus of research

activity in the telecommunications and computer communications communities.

The last decade has witnessed the evolution of standards such as ISDN (Inte-

grated Services Digital Network) for end-to-end digital transport of voice and

data, and B-ISDN (Broadband ISDN) for support of high-bandwidth services

over high-speed links. While these technologies are based on increasing band-

width availability due to the �ber revolution [25], parallel developments in the

�elds of cellular and wireless communications must contend with rapidly deplet-

ing link capacities due to spectrum congestion. These developments underline the

need for the implementation of integrated networks in a narrowband environment,

especially for services such as digital mobile radio and personal communications.

Narrowband integrated networks gain importance also as an interim or alternative

low-cost solution for the integration of voice and data over existing telecommuni-

cation networks.

Limitations in bandwidth availability have also fueled interest in voice com-

pression. Research in speech coding has demonstrated that high quality voice can

be achieved at much lower bit rates than was deemed possible a few years ago

[7]. Hence low bit-rate coding techniques are �nding application in secure low-

1

speed communications, voice mail systems, multimedia services, and in ISDN.

The developments in speech coder technology are closely linked to the design of

integrated voice/data networks.

The work presented here is part of the design of an adaptive voice/data switch,

which demonstrates the application of the Sinusoidal Transform Coder (STC) to

the implementation of integrated networks. The Sinusoidal Transform Coder has

been developed at MIT Lincoln Laboratory, with Air Force support, and has

been shown to possess exibility not present in other coders that can be used to

enhance overall system performance [9]. The adaptive switches are connected by

modem, and support up to four voice or data connections. The switches allocate

bandwidth based on the number of connections and change the bit-rate of the

coded speech accordingly. The protocols and control software required to exploit

the unique capabilities of the coder for bandwidth reallocation and congestion

control in a multirate integrated applications environment are described in this

work. The performance of the switch under various bandwidth allocation schemes

is predicted using the BONeS simulation tool.

Today, several vendors are o�ering products such as fractional-T1 multiplexers

that integrate voice and data tra�c over a 64 kb/s leased line; however, the adap-

tive switch possesses congestion control capabilities not present in these units,

especially in a multi-hop network environment. An example application envi-

ronment for an adaptive voice/data network based on the techniques described

above is the Air Force command and control network [9]. Such a network has lim-

ited spectrum allocations, and hence limited transmission capacity, so spectrum

congestion is possible, particularly during times of crisis when communication

facilities are most needed. The rate transformation capabilities of the adaptive

voice/data switch can be used to dynamically re-allocate spectrum resources to

allow more e�cient and exible resource usage.

2

Chapter 2

Background

2.1 Speech Coding

A large variety of algorithms exist for digital coding of speech signals. The appro-

priate coding technique for a particular application depends on system require-

ments such as bit rate, coding delay, complexity, speech quality, robustness to

errors, and cost. Recent developments in speech coding focus on medium and

low bit rate speech coding techniques. The following sections outline the di�erent

types of coding schemes and their applications.

2.1.1 Applications

� Narrowband communications - Low bit rate speech coding can be used to

provide e�cient resource usage on low bandwidth links such as cellular radio

or satellite links.

� Sub-rate Multiplexers - The use of low bit rate speech coders enables the

multiplexing of several voice connections over a single channel. For example,

one 64 kb/s PCM channel can be replaced by eight channels of speech coded

at 8 kb/s [21]. The extra bandwidth can also be used to accommodate data

3

channels.

� Voice Storage - Voice compression can be used for memory e�cient storage of

voice signals. Some example applications are voice mail systems, telephone

answering machines, and spoken help messages on personal computers.

� Encryption - With the use of speech coding, encryption of voice messages

can be easily accomplished. This is useful for secure military and business

communications.

2.1.2 Overview of Coding Techniques

The general classes of speech coding techniques are described below. A large

number of variations of these basic techniques exist; each using a di�erent strategy

for removal of redundancy from the speech signal and allocation of bits available

for coding. In general, as the bit rate is reduced, speech quality is degraded.

Higher quality at a given bit rate can be achieved by using a more complex

coding algorithm; the price paid for this is increased cost, and possibly, coding

delay. Speech coding schemes must thus trade-o� these four parameters - bit rate,

quality, complexity and delay [12].

Waveform Coders

Waveform coders attempt to approximate the shape of the input speech wave-

form at the coder output. These coders usually operate at medium to high bit

rates. Since they attempt to reproduce the input waveform without regard to its

properties, these coders are not speech speci�c, and are able to successfully code

non-speech signals, background noise and multiple speakers [21].

Pulse Code Modulation (PCM) is a widely known waveform coding technique

currently in use for voice transmission over the Public Switched Telephone Net-

work (PSTN). The analog speech waveform is sampled at a rate of 8 kHz and

4

quantized using 8 bits per sample to yield a 64 kb/s digital waveform at the coder

output. The decoder performs the reverse operation.

The number of bits required to quantize each sample can be reduced by encod-

ing the di�erence between successive samples rather than the samples themselves;

this technique is called Di�erential Pulse Code Modulation (DPCM). Improve-

ment in speech quality can be achieved by using nonlinear quantization to ac-

curately represent low amplitudes in the speech signal at some cost to the large

amplitudes, which can tolerate larger degrees of quantization error. This tech-

nique, called Adaptive Di�erential Pulse Code Modulation (ADPCM), has been

standardized by CCITT for use in telecommunications applications.

Vocoders

Parametric coders or vocoders attempt to describe the speech signal in terms of

parameters of a speech production model. Vocoders can operate at much lower

bit rates than waveform coders, but they are computationally demanding and

generally output speech of a lower quality. The speech output is intelligible, but

synthetic in nature, hence it may not be possible to identify the speaker. Vocoders

traditionally perform badly in the presence of background noise and with multiple

speakers and non-speech signals.

The speech production model used in a typical vocoder is shown in Figure

2-1. The model is based on an excitation signal feeding a linear �lter, which

simulates the behavior of the human vocal tract [21]. A set of parameters is

derived at the coder, encoded, and transmitted to the decoder. The decoder

uses these parameters to control speech production. For voiced speech or speech

produced by the vibration of the vocal chords resulting in quasi-periodic pulses of

air which are acoustically �ltered by the vocal tract [22], the excitation signal is

modeled by a periodic impulse train at the pitch frequency. For unvoiced speech,

the excitation signal is the output of a pseudorandom noise generator. The gain

5

Gain
Vocal
Tract
Filter

Switch
Voiced/Unvoiced

Noise

T

1/T=Pitch

Synthesized Speech

Figure 2-1: Vocoder speech production model

controls the level of excitation, and the shaping of the excitation signal by the

vocal tract is modelled by a time-varying linear �lter.

Linear Predictive Coding (LPC) vocoders represent the vocal tract �lter as

a linear combination of previous speech samples. LPC is the basis for the U.S.

Government Standard LPC-10e vocoder, and is commonly used for secure mili-

tary communications at 2.4 kb/s. Sinusoidal Transform Coding (STC) is another

vocoding technique which forms the basis for this work. This coder is described

in detail in a later section.

Hybrid Coders

Hybrid coders, or \soft" vocoders [12] combine features from both waveform coders

and vocoders to provide communication quality speech at medium bit rates. Hy-

brid coders use a speech production model similar to the one used by vocoders,

but the excitation signal is carefully optimized to yield high-quality speech.

Multipulse excited LPC (MPLPC) is a hybrid coding technique in which the

excitation signal is a series of non-uniformly spaced pulses with di�erent ampli-

tudes [3]. The same excitation model is used for both voiced and unvoiced speech

segments. A Multipulse speech codec operating at 9.6 kb/s is used in a world-wide

aeronautical satellite telecommunications service known as Skyphone [3].

Code Excited Linear Prediction (CELP) uses a codebook of excitation se-

quences and selects the optimum excitation by minimizing the error between the

6

input speech signal and the synthesized speech. The address of the code is trans-

mitted to the receiver, rather than the code itself, in order to reduce the number of

bits required to quantize the excitation signal. This technique is known as vector

quantization. CELP has been standardized at 4.8 kb/s for military applications

and at 16 kb/s by CCITT for video conferencing support [21].

2.1.3 Limitations of Standard Coder Technology

It is evident from the above discussion that an extremely large variety of al-

gorithms have been developed for speech coding at medium and low bit rates

(approximately 2.4 kb/s to 32 kb/s). These coders provide e�cient and good

quality speech output, but su�er from the inherent limitation of poor interoper-

ability with coders at di�erent rates, even if the coders involved are based on the

same model. This has been referred to as the 'Tower of Babel' problem.

Standard speech coders also do not adequately support the source- indepen-

dent rate translation capability, which limits their exibility in an integrated net-

work environment. Source-independent rate translation involves the capability to

transform the bit rate of the coded speech stream at any intermediate node in the

network, without interaction with the source. One approach is to use embedded

coding. In embedded coders, the parameters of the lower rate coder are embed-

ded in the parameters of the higher rate coder [5]. To reduce the bit rate, the

higher rate parameters are stripped o�. However, this technique implies that the

higher and lower rate coders must be co-designed, which limits the speech quality

achievable at any one bit rate. Another approach is to revert to a PCM represen-

tation of the speech signal and subsequently code this signal at the desired rate.

Tandeming of coders in this manner may result in unacceptable degradation in

speech quality due to the cumulative e�ect of coding distortion and quantization

noise introduced at each stage of compression.

The Sinusoidal Transform Coder (STC) allows interoperability between coders

7

operating at di�erent rates and source-independent rate translation using simple

parameter manipulation techniques. STC-based schemes can also be used in a nar-

rowband conferencing environment involving multiple speakers, an area in which

other vocoders traditionally perform very poorly. The speech quality obtained us-

ing STC methods is signi�cantly higher than with any of the techniques described

above.

2.2 Sinusoidal Transform Coder

The Sinusoidal Transform Coder [14, 15, 16, 18, 17] is a vocoding technique which

represents the excitation signal as a sum of sine waves of arbitrary amplitudes,

frequencies and phases [19]. The sine wave components are harmonically related

when the excitation is voiced, and aharmonic when it is unvoiced. Feeding this

sine wave excitation to the vocal tract �lter results in a sinusoidal representation

for the speech signal. The STC is based on a frequency domain analysis/synthesis

model [8]. The spectral envelope is determined using the FFT and is used to

generate a set of cepstral coe�cients which are coded and transmitted along with

the excitation parameters.

STC is a multirate coder - it can operate at several discrete rates from 8

kb/s to 2.4 kb/s. Optimization at higher rates, up to 19.2 kb/s, is currently

being investigated. The speech quality degrades somewhat linearly with bit rate.

Multirate coders are distinct from variable rate coders in that the instantaneous

coder bit rate is �xed, and is based on the requirements of the transmission channel

rather than on the requirements of the speech signal. This type of coder is well

suited for the implementation of integrated networks with �xed capacity circuits.

8

2.2.1 Parameter Space Transformations

Source coders (or vocoders) such as the STC generate a parametric description of

the speech signal. The STC coding technique is extremely robust to manipulation

in the parameter space [4]. This characteristic greatly enhances its exibility.

Transformations in the parameter space can be used to reduce the bit rate of

the coded speech. Bit rate reduction may be achieved by 1) parameter de-scoping

- coarsening the resolution allowed to the quantized parameters; and 2) frame dila-

tion - coarsening the time resolution between speech samples [8]. Rate translation

thus involves the use of signal processing algorithms to perform transformations

from one parameter set to another. Generation of a waveform representation of

the signal is not required, and the coder can be optimized separately at each bit

rate. The transformed speech is comparable in intelligibility and quality to speech

directly coded in the fundamental coder technology at the �nal rate. Thus, the

STC can be used for multi-stage compression, without interaction with the source.

Source-independent rate transformations can be used to reduce the bit rate of

the incoming speech at a network node during periods of congestion, to momen-

tarily increase channel capacity for the purpose of transmitting signaling messages

or adding error protection, or to accommodate data tra�c [1]. Another applica-

tion is narrowband voice conferencing. Low bit rate coders perform poorly with

multiple speakers, hence conferencing in a narrowband environment has not been

considered practical. This problem can be avoided by running the coders at higher

rates and transforming to lower rates when necessary [8].

Since the STC parameters exhibit good time stability, techniques such as

parameter freezing and parameter interpolation can be used to reconstruct lost

frames in harsh data loss environments [8]. Experiments with these schemes sug-

gest that a high channel error rate can be tolerated.

The STC parameter space transformation technique is used in this work to im-

plement novel congestion control schemes and dynamic re-allocation of resources

9

in a narrowband integrated voice/data network.

2.3 Adaptive Voice/Data Switch

Narrowband integrated voice/data networks require that congestion control and

bandwidth management techniques be implemented in order to provide the desired

quality of service [1]. The adaptive voice/data switch exploits the capabilities

of the Sinusoidal Transform Coder to address these requirements. The switch

allocates bandwidth based on its load, and performs adaptive rate transformations

on the coded speech to trade o� quality versus channel availability. The unique

features of the speech coding technique and the control protocols allow for e�cient

and exible resource usage, particularly under conditions of high load.

2.3.1 Network Con�guration

The integrated voice/data network con�guration is shown in Figure 2-2. The

switches can be connected by a point-to-point link, via modem or by a wireless

link. The current implementation supports the modem con�guration. Several

digital terminals are hooked up to the switch. These terminals are envisioned as

integrated voice/data units which incorporate the speech coder. The switch access

link and the long distance link are both narrowband. The terminals compete for

bandwidth on the outgoing link; the switch allocates this bandwidth dynamically

depending on a number of criteria such as load and negotiated quality of service.

2.3.2 Switch Architecture

The adaptive voice/data switch is a bus-based switch with four input/output

ports; a port can be connected to an integrated voice/data terminal or to a mo-

dem. The switch supports connections between terminals as well as connections

to remote switches via the telephone network. The switch architecture is shown

10

Adaptive

 Switch
Voice/Data

Terminal

Terminal

Modem
Adaptive

 Switch
Voice/Data

Terminal

Terminal

Modem

Base
Station Station

Base
Wireless Link

PSTN

Point-to-Point Link

Figure 2-2: Adaptive voice/data switch network con�guration

in Figure 2-3, and the functions of the various switch components are described

below.

Universal Synchronous Asynchronous Receivers/Transmitters (USARTs)

The USARTs interface to external devices which include voice/data terminals

and modems. The data rate for communication is selectable from a set of discrete

rates in the range of 1.2 kb/s to 19.2 kb/s. The USARTs receive serial streams

from external devices and output byte-wide data on the input bus in response to

polling from the bus control logic. The USARTs read byte-wide data from the

output bus on receiving a 'data ready' indication from the bus control logic and

transmit a serial stream to the external devices. Communication in synchronous

or asynchronous mode is possible.

Switch Bus Controllers (SBCs)

The Switch Bus Controllers bu�er the incoming voice/data bytes and switch the

data to the destination port through the output bus. The SBCs are also responsi-

ble for demultiplexing the speech, data and control information. Speech bytes are

passed to the associated DSP through a serial interface, received from the DSP

after processing, and held for transmission on the output bus. Control bytes are

11

I/P bus O/P bus

MODEM

SWITCH

SWITCH

Terminal/Handset

SPEECH

SPEECH

A/D SPEECHD/A

USART

USART

USART

USART

DATA

USART STC A/D
D/A

USART STC A/D
D/A

USART STC

DATA

SBC

SBC

SBC

DSP

DSP

SBC

PSCSCP

Figure 2-3: Integrated voice/data switch architecture

passed to the SCP on an interrupt basis. The SBCs insert idle bytes in the output

stream if data is not available to �ll the output time slot.

Polling Schedule Controller (PSC)

The Polling Schedule Controller schedules and controls access to the input and

output buses. Signals sent to the SBCs and USARTs indicate which devices should

read and write the bus at any instant. Bus scheduling is accomplished through a

time-slotted polling scheme, where each port is serviced in a round-robin fashion.

The input and output buses operate at high speed relative to the access link.

Digital Signal Processors (DSPs)

The Digital Signal Processors receive speech bytes from the SBCs and perform

rate transformations on the coded speech if necessary. Each DSP is capable of

handling two voice streams in real-time, hence two DSP chips are required to

12

support four ports.

Switch Control Processor (SCP)

The Switch Control Processor controls the switch initialization process, connec-

tion setup, modi�cation of connection parameters while a call is in progress, and

connection tear-down. The SCP controls scheduling and routing via control reg-

isters in the the Polling Scheduler and System Bus Controllers, and sets the rate

translation parameters on the DSPs.

13

Chapter 3

Integrated Network

Management Protocol

Amanagement and control protocol for an integrated voice/data network has been

developed. The network architecture was described in the previous chapter; the

services to be o�ered by the network will now be de�ned. The signaling protocol

which de�nes the procedures needed to support these services is described in

this chapter. In addition, a technique for multiplexing speech, data and control

information on the same media is presented, and the format of the control messages

is speci�ed.

3.1 Network Services

The Adaptive Voice/Data Switch essentially functions in two modes: as an in-

tegrated switch (for local conversations and data exchanges) or as an integrated

multiplexer (for transmission of compressed speech and data streams over tele-

phone lines). In addition to local and remote communications connectivity, the

protocol supports several unique features which are outlined below.

14

Multimedia Calls

Users can set up a call by dialing a number, and then choose to speak or send data,

or both, over the same connection. Thus, applications such as voice-annotated

text message exchange and transmission of graphical information to be displayed

on a screen during a voice conversation, are possible.

Service Request Modi�cation

The service request parameters can be modi�ed at any time during the call. The

user can switch between voice and data tra�c and change the rate dynamically.

The user speci�es a peak rate at call setup time. Subsequent requests for call

modi�cation are granted if the aggregated voice and data rate does not exceed

the peak rate, and if the necessary resources are available.

Channel availability versus speech quality

Users can trade speech quality for increased voice channel capacity or higher data

throughput on the modem link. This capability may be used to increase channel

availability when the line is oversubscribed.

The signaling protocol must de�ne the necessary procedures to support these

services.

3.2 Signaling Protocol

A protocol is needed to control the transmission of data between integrated

voice/data terminals and switches, and for switch to switch communication. The

protocol suite includes link layer, network layer and transport layer functions.

This protocol suite is not meant as a replacement for sophisticated protocols such

as the ISDN suite, but as a testbed for the development and evaluation of unique

digital speech processing algorithms and their application to integrated network

implementation.

15

Physical

Data Link

Network

Transport

Physical

Data Link

Network

Transport

RS-232C

Synchronization, Framing

connection setup, tear-down, multiplexing

Routing, Congestion control

Receiver/Transmitter
Asynchronous

Universal

Controllers
Switch Bus

Switch Control

Processor

Figure 3-1: Switch Protocol Suite and functionality. Hardware components asso-
ciated with the protocol layers are listed on the left.

3.2.1 Protocol Functions

The functions to be performed at each level of the protocol stack are described

below. The protocol functions, and the switch components that implement the

various protocol layers are summarized in Figure 3-1.

Physical Layer

A simple RS-232C interface is used between terminals and switches and between

switches and modems. RS-232C is a universal standard, hence interfacing equip-

ment (cables, connectors) is readily available. Since data rates up to 20 kb/s are

permitted [26], it is ideal for narrowband applications.

Only a subset of the protocol functionality is implemented. Figure 3-2 shows

the circuits that are used in the interface. An additional (non-RS232C) signal,

SYNCDET, is provided for synchronous communication between the terminal and

switch.

Data Link Layer

The link layer functions implemented by this protocol are synchronization and

data framing. The lowest level of synchronization provided by the data link layer

is byte synchronization [24]. An asynchronous or start-stop DLC (Data Link

Control) protocol is used. The transmission format is shown in Figure 3-3. Simple

16

TxD (2)

RxD (3)

RTS (4)

CTS (5)

DSR (6)

DTR (8)

GND (6)

Switch

Voice/Data

Adaptive

Modem

or

Terminal

Not Used (1)

SYNCDET (9)

Figure 3-2: The RS-232C interface circuits. The pin numbers are given in paren-
thesis

Time

S
ta

rt
 b

it

D0 D1 D2 D3 D4 D5 D6 D7

Logic 1 (Mark)

Logic 0 (Space)
Stop bits

1-2 bit timescharacter

5 to 8 bits

Parity
Odd, Even
or Unused

Figure 3-3: Asynchronous transmission format

error control is possible by the use of a parity bit. These functions are implemented

using UARTs. The transmission parameters (character length, parity bit, STOP

bit duration) can be controlled by programming the UARTs. This simple DLC

protocol is adopted since the link between the terminal and switch is assumed to

be slow-speed and relatively error free. If these assumptions are violated (as in a

wireless system), more comprehensive functionality may be needed.

The data link layer is also responsible for content synchronization [24], or dis-

tinguishing control (or signaling) information from user data. This is accomplished

in the following way. When a terminal is idle, all messages exchanged between

the terminal and switch are control messages. When a terminal is engaged in a

conversation with another terminal, control bytes are inserted at �xed intervals

in the data stream. Control bytes can be identi�ed by counting the data bytes

between one control byte and the next. The distance (N) in bytes between con-

17

C = control byte
X = idle byte

S = speech byte
D = data byte

D D

S S S S SS S S

C
Control Buffer

Data Buffer

Speech Buffer

Mux

Data

Voice
Coder

Mux

Xmitter

9.6 kb/s

2.4 kb/s

Voice

Data

De-
Mux

Decoder

Rcvr2.4 kb/s

12 kb/s

Adaptive Voice/Data
Switch

....CSSSSDSSSSD.......CSSSSD....

120 bytes

Handset 1

Handset 2

....CSSSSDSSXXD......CSSSXD....

120 bytes

De-
Mux

9.6 kb/s
12 kb/s

to SCP

from SCP

Figure 3-4: Multiplexing and demultiplexing of 9.6 kb/s voice and 2.4 kb/s data
on a single connection

secutive control bytes is the ratio of the total data rate and the signaling rate,

i.e. N = Rtotal=Rsig, where Rtotal is the sum of the voice and data rates on the

connection, i.e. Rtotal = Rvoice +Rdata.

Content synchronization includes multiplexing and demultiplexing of speech

and data on a single connection. This is performed on a link-by-link basis since

the rate translation algorithm at each network node operates only on the speech

stream. Speech and data is byte multiplexed in a manner dependent on the ratio

Rvoice=Rdata. Figure 3-4 shows the multiplexing and demultiplexing of voice, data

and control information for a connection supporting 9.6 kb/s voice and 2.4 kb/s

data. Hence Rvoice = 9.6 kb/s, Rdata = 2.4 kb/s, Rtotal = 12 kb/s and Rvoice=Rdata

= 4:1. For a signaling rate Rsig = 100 b/s, N = 120, i.e. a control byte will be

transmitted every 120 user data bytes.

The multiplexing scheme described above depends upon the relative ordering

of bytes in the transmitted byte stream. This byte order must be preserved at

all times to ensure that synchronization is maintained. This requires that \�ller"

18

bytes be transmitted in place of voice or data bytes when there is no information

to be sent. The bit pattern 01111110 is used as a �ller byte. This bit pattern is

prevented from occurring in the voice/data stream by bit stu�ng. In this tech-

nique, a \0" bit is inserted following �ve consecutive '1" bits appearing anywhere

in the input bit stream. The bit stu�ng operation is performed separately on the

voice and data streams. The tra�c streams are then multiplexed and transmitted,

with �ller bytes being inserted if necessary. At the receiver, the voice and data

streams are demultiplexed, �ller bytes are discarded, and then de-stu�ng is per-

formed i.e. any \0" bit following �ve consecutive \1" bits is removed. The �ller

byte insertion scheme borrows some features from the HDLC (High-Level Data

Link Control) protocol [24] [11]. Figure 3-4 shows how �ller bytes are inserted in

a multiplexed tra�c stream.

Network Layer

The network layer performs call routing and congestion control. Since the Adap-

tive Voice/Data Switch is a circuit switch, the network layer is static except during

call setup, when switches are con�gured.

Call Routing

Control messages containing addresses are used to initiate connections within a lo-

cal switch, and between two switches connected via the public switched telephone

network (PSTN). A port address is used for local connections. For connections

across the telephone network, a telephone number is required in addition to the

port address.

Congestion Control

The network layer dynamically reallocates link bandwidth when the modem link

experiences congestion. The bandwidth reallocation scheme is based on com-

pressing the existing speech streams on the congested link to increase channel

availability. Speech compression is performed by the switch in real time using the

19

Modem Modem

19.2 kbps

9.6 kbps

Port 0

Port 1

Port 2

Switch
Voice/Data
Integrated

Port 3 Port 3

Telephone Line

Port 0

Port 1

Port 2

Voice/Data
Switch

Integrated

9.6 kbps

9.6 kbps

19.2 kbps

Figure 3-5: Control of call congestion using rate transformation

rate transformation capability of the STC speech coding technique.

Rate translation is illustrated in Figure 3-5. In this scenario, initially a con-

nection exists between two terminals across the PSTN at 19.2 kb/s. Another call

arrives at the originating switch, requesting a connection to a terminal on the far

end switch. The switch drops the rate on the previous call to 9.6 kb/s and uses the

extra bandwidth to exchange control messages with the switch at the other end.

If the connection goes through (the terminal at the other end is not busy), a new

transport layer connection is established on the outgoing link to accommodate

the new call. If the connection fails, the old call reverts to the higher rate, and

the new call request is rejected. Incoming call requests are granted or rejected

on the basis of the resources available and the QOS required to be maintained

on existing calls. The de�nition of this QOS and the fairness issues involved are

discussed in a later chapter.

Figure 3-5 shows two switches connected via the PSTN. It is possible to con-

struct a network of adaptive speech/data switches, in which case a single call may

span multiple hops, and rate transformation may occur at any intermediate node

in the network which is experiencing congestion.

Rate transformation is performed without interaction with the source coder.

However, the decoder at the destination must be informed of the rate change.

Control messages must be generated to perform the handshaking necessary to

drop or increase the voice rate on a connection.

20

The network layer can also perform ow control by telling the source to throttle

down. This \brute force" form of ow control may be used during periods of severe

congestion.

Transport Layer

The transport layer is the highest layer implemented in the Adaptive Voice/Data

Switch architecture. Its main functions are connection management and multi-

plexing. The transport layer is an end-to-end layer, i.e transport layer messages

are exchanged between the endpoints of the connection, and simply forwarded by

intermediate nodes in the network.

The transport layer manages the three phases of a connection: connection

setup, data transfer and connection tear-down. The protocol supports modi�ca-

tion of service parameters while a call is in progress. The transport layer also

performs call multiplexing, or multiplexing of multiple calls on a single network

layer connection. The multiplexing problem is complicated by the fact that nei-

ther the voice and data rates on a connection nor the total bandwidth occupied

by di�erent calls need be equal.

The multiplexing technique used is Time-Division Multiplexing (TDM). Since

the switching system supports multirate circuit switching [6], every connection is

built as a multiple of the basic channel rate of 2.4 kb/s. Thus, a 9.6 kb/s con-

nection occupies 4 output time slots, and, in general, an N � 2.4 kb/s connection

occupies N output time slots.

The inputs are polled in a round-robin fashion. Incoming speech/data bytes

are read from the input bus and stored in an internal bu�er for each port. The

appropriate voice/data byte is placed on the output bus when the destination

port is selected. For multiplexed connections on the modem link, the internal

queues are polled in modi�ed round-robin fashion according to the bandwidth

requirements of each connection. When a new connection is established, the

21

MODEM LINK
19.2 kb/s

PORT 1

PORT 2

PORT 3 9.6 kb/s

2.4 kb/s

4.8 kb/s

3

Frame 1 Frame 2

idle flag

3 3 32 23 1 3 2 1

Figure 3-6: Multiplexing of multirate circuits on the modem link

switches at both ends synchronize, and establish the order in which time slots will

be �lled. For example, if ports 1, 2 and 3 are connected to port 4 at rates of 2.4

kb/s, 4.8 kb/s and 9.6 kb/s respectively, then the sequence in which the output

time slots will be �lled is as shown in Figure 3-6. Since the link capacity is 19.2

kb/s and only 16.8 kb/s is being utilized, idle bytes are transmitted in the empty

slots. The algorithm for �lling the slots is as follows:

1. Choose the highest rate stream and assign output slots.

2. Choose the next highest rate stream and so on, until all the streams have

been assigned slots.

3. Mark the remaining slots idle.

The steps involved in assigning output time slots with the con�guration in

Figure 3-6 are shown in Figure 3-7.

3.3 Protocol Description

3.3.1 Control Messages

This section describes the di�erent types of control messages and their formats.

The control messages can be classi�ed under the following categories.

22

time slot #

channel assignment

8

323323

1

STEP 2

time slot #

channel assignment

1

3 2 3 1 3 2 3

8

STEP 3

time slot #

channel assignment

8

3231323

1

STEP 4

time slot #

channel assignment 3

1

3 3 3

8

STEP 1

Figure 3-7: Time-slot assignment on the output link

Initialization

On power-on, or when a handset is plugged into the switch, start-up control mes-

sages need to be exchanged between the switch and the handset, before voice/data

transmission can begin. The handset must communicate to the switch a \port

active" signal, the data transmission rate and, in case of a modem, an indication

that the port is connected to the PSTN. The switch must assign a \port id" to

each active port. The data rate and handset/modem signal are set via jumpers

on the switch board. A null control message from the handset to the switch acts

as a port active indication, and the switch responds with the assigned port id.

Call Setup and Tear-Down

Control messages are required for setting up a connection between two ports on

the switch. The maximum bandwidth required on the link is negotiated at call

setup time. The voice connection rate can be speci�ed as 2.4 kb/s, 4.8 kb/s, 9.6

kb/s or 19.2 kb/s depending on the rate supported by the coder. The allowable

data rate is derived from these parameters. The data rate per call is limited to 9.6

kb/s in order to ensure fairness in the allocation of bandwidth, since bandwidth

23

allocated to data cannot be reallocated for the duration of the call. Call setup

control messages include: Connection Request, Connection Indication, Connec-

tion Response and Connect Acknowledge. Call tear-down is needed to terminate

a connection between two ports, and is accomplished using a Disconnect message.

Call Modi�cation

The signaling protocol allows for modi�cation of call parameters while the call is

in progress, if the necessary resources are available. Call modi�cation can be user-

controlled or switch-controlled. It is possible for the user to switch between voice

and data tra�c and to multiplex both types of tra�c on the same connection. The

switch can drop the rate on the voice stream without interaction with the source

during periods of congestion. Call modi�cation is accomplished using control

messages inserted into the data stream. These messages include: Modify Request,

Modify Indication, Modify Response, Modify Acknowledge and Restart[Modify]

(for user-controlled modi�cation), and Transform Rate, Transform Acknowledge

and Restart[Transform] (for switch-controlled modi�cation).

Connection Management

The switch can multiplex several transport layer connections on a single network

layer connection. Logical channels are assigned channel ids, and the transport

layer entities at either end of the connection are resynchronized at the connection

boundaries. Connection management is accomplished using Open Channel, Open

Channel Acknowledge, Restart[Transport] and Close Channel control messages.

Flow Control

A Modify Source Rate control message is provided to allow the switch to throt-

tle the source. This form of ow control is used only during periods of severe

congestion.

24

Message Type Direction Function

Call Setup and Tear-down Messages

Connection Request u ! n Initiates call establishment

Connection Indication n ! u Indicates incoming call

Connection Response n ! u Indicates call progress - proceeding/granted/rejected

Connect Ack u $ n Indicates call establishment successful

Disconnect u $ n Requests/Indicates call termination

Call Modi�cation Messages

Modify Request u ! n Initiates call parameter modi�cation

Modify Indication n ! u Indicates call parameter modi�cation

Modify Response n ! u Indicates modi�cation request granted/rejected

Modify Ack u $ n Indicates call modi�cation successful

Call Modi�ed u $ n Indicates call restarted with modi�ed parameters

Transform Rate n ! u Initiates voice rate transformation

Transform Ack u ! n Indicates rate transformation request received

Rate Transformed u $ n Indicates call restarted with transformed voice rate

Connection Management Messages

Open Channel n ! n Initiates establishment of transport layer connection

Open Channel Ack n ! n Indicates transport layer connection established

Start Channel n ! n Indicates transport layer restarted

Flow Control Messages

Modify Source Rate n ! u Indicates source must throttle down

Modify Source Ack u ! n Indicates source rate modi�ed

Table 3.1: Control Message types and functions

Table 3.1 summarizes the di�erent types of control messages and their func-

tions. The direction of message ow is also indicated (u = user, n = network).

The control message formats are illustrated in Appendix A.

3.3.2 Call Setup Example

An example of the use of the protocol to setup a call across the PSTN is shown

in Figure 3-8. When the caller lifts the handset and dials a number, a CON-

NECTION REQUEST is generated and sent to the switch. The CONNECTION

REQUEST speci�es the destination type (local or remote), destination address,

tra�c type and data rates. Some means must be provided in the handset for

the caller to select these parameters. For instance, the destination type may be

25

Calling Terminal

Connection Request
Connection Response

Connect ACK

Modify Request
Modify Response

Modify ACK

Disconnect

Voice/Data flow

Voice/Data flow

Connection Indication

Connect ACK

Modify Indication

Modify ACK

Disconnect

Called Terminal

Network (PSTN)

Adaptive Switch Adaptive Switch

Call Modified Call Modified

Figure 3-8: Control message ow diagram for a typical call

indicated in a manner similar to that used in PBX systems - all calls are assumed

to be local, and a special digit must be dialed before dialing a remote destination.

On receiving a CONNECTION REQUEST, the local switch forwards this re-

quest to the remote switch, and sends a CONNECTIONRESPONSE to the calling

terminal indicating that the call is proceeding. If the resources required for the

call were not available, i.e. if the modem line were connected to a di�erent des-

tination or could not accommodate a new call, the CONNECTION RESPONSE

would indicate that the call was rejected. When the CONNECTION REQUEST

reaches the remote switch, it sends a CONNECTION INDICATION to the called

terminal, which generates a ringing tone. When the called party lifts the handset,

a CONNECT ACK is sent back to the calling terminal. A connection now exists

between the two handsets, and voice/data transmission can begin.

If the user at either end desires to modify the call parameters, he/she may do

26

Terminal B Terminal A Adaptive Switch Adaptive Switch Terminal X Terminal Y

Network (PSTN)

Voice/Data flow

Voice/Data flow

Connection Request
[dest=Y]

Connection Response

Connect ACK

Connection Request
[dest=Y]

Transform

Transform ACK

Rate Transformed

Connection Indication

Connect ACK

Figure 3-9: Control message ow diagram for a call using rate transformation

so by sending a MODIFY REQUEST to the local switch. This request is handled

in a manner similar to the CONNECTION REQUEST, except that a three-way

handshake is used to ensure synchronization between the two endpoints. When

one of the users hangs up, a DISCONNECT message is sent to the local switch,

forwarded to the remote switch and from there to the handset at the other end,

and the connection is terminated.

The control message ow diagram for call setup over a link using rate transfor-

mation is shown in Figure 3-9. In this scenario, the modem link is being utilized

for data transmission between Terminal A and Terminal X. When Terminal B

requests a connection to Terminal Y, the necessary resources are freed by sending

a TRANSFORM message to Terminal X. The freed-up resources are then used

to setup a connection between Terminal B and Terminal Y, and subsequently, for

data transfer between them.

The above ow diagrams do not explicitly indicate the switch-to-switch hand-

27

Network (PSTN)

Adaptive Switch Adaptive Switch

setup network
layer connection using

modem commands

Connection Request

Start Channel [Ch Id#]

Open Channel ACK [Ch Id#]

Open Channel [Ch Id#]

modems connected

Calling Terminal

Connection Request

Disconnect Disconnect

Called Terminal

network-to-network
signaling

end-to-end
signaling

terminates transport
layer connection

Figure 3-10: Switch-to-switch handshaking for connection setup

shaking required to setup and release connections. The standard modem com-

mands (the AT commands) are used to establish a connection between the modems,

i.e. a network layer connection. The control messages used to setup a transport

layer connection between the two ends are shown in Figure 3-10.

28

Chapter 4

Protocol Simulation

This chapter describes the development of a software testbed for the evaluation

of the speech coding technique and network management protocols. The manage-

ment and control software is integrated with the speech coder software to form a

system for emulating an integrated network environment. Con�guration �les are

used to select particular inputs and test scenarios. Several simulated conversa-

tions are used to test the control protocols under various network load conditions,

and to evaluate the transformation algorithm.

4.1 Switch Modeling

The switch architecture described in Chapter 2 shows the distribution of hard-

ware tasks among the switch components. For simulation purposes, these tasks

are lumped together into three main components as shown in Figure 4-1, in order

to simplify the switch model. The control software developed emulates the func-

tion of the switch control processor (SCP). The rate translation and speech �le

processing functions are performed o�-line (using shell scripts).

The switch is modeled as having four input-output ports, each of which is

connected either to a handset or to the PSTN via a modem. The switch supports

29

VOICE/DATA
 SWITCH

INPUT/OUTPUT
speech/data in

speech/data outCONTROL
SWITCHING

TRANSLATION
RATE

Figure 4-1: Simpli�ed model of adaptive voice/data switch

connections between its ports as well as connections to remote switches via the

telephone network. Each port sends and receives streams of bytes, which contain

signaling messages multiplexed with voice and data. Binary �les are used to

represent the input and output byte streams for each port. The switch polling

mechanism is simulated by reading a byte at a time from the input �les in a

round-robin fashion.

4.2 Simulation Goals

The main objectives of the simulation are to verify the control protocols and to

observe the e�ects of call modi�cation, in particular rate translation, on perceived

speech quality.

Protocol veri�cation includes the following tasks:

� Delineation of control messages and user data in the incoming byte stream.

� Veri�cation of the capability of the protocol to handle the following types

of requests for service:

{ requests for connection (call setup),

{ requests for modifying call parameters within negotiated limits (call

modi�cation),

{ congestion control and bandwidth management (rate translation),

30

{ requests for disconnection (call teardown).

Tests on speech quality involve observing the speech output when the voice

stream is subjected to multiple rate transformations at the switch.

4.3 Simulation Strategy

The simulation process is illustrated in Figure 4-2. The simulation essentially

consists of the �ve phases described below.

1. Phase I: Speech Analysis

In this phase, the speech �le for each input port is analyzed using stc ana,

the STC analysis program.

2. Phase II: Control Message Insertion

The coded speech for each input port is merged with the corresponding

control message stream to produce a composite input �le for that port. The

formats and types of control messages inserted depends on the test scenario.

3. Phase III: Switching

The switching module reads the composite speech �le for each input port,

extracts signaling information from the byte stream, and takes appropriate

action on detecting a control message. Call control and supervision is accom-

plished by maintaining \state" for each active port. The switching module

then routes the incoming data stream to the appropriate destination, and

inserts signaling messages in the outgoing stream as necessary.

4. Phase IV: Control Message Removal

The output �le for each port is decomposed into control and voice streams.

The control stream can be examined to verify the functioning of the protocol,

and the voice stream is submitted to the next phase for processing.

31

5. Phase V: Rate Transformation and Speech Synthesis

Rate Transformation is performed on the voice (if necessary) using stc xform,

the STC transform program, followed by synthesis of the speech using

stc syn, the STC synthesis program. The speech output can now be played

back to observe the change in quality.

The simulation programs were developed in 'C' on a Unix platform. Worksta-

tion audio devices and associated audio tools were used to record and play back

speech. Appendix B contains the code listing for the program used to parse the

con�guration �les and insert control messages into coded speech �les. A sam-

ple con�guration �le is also included. Appendix C contains the listing for the

simulation program.

4.4 Test Cases

The switch protocols were tested and veri�ed using various test scenarios includ-

ing local and remote call setup between two terminals with di�erent sets of call

parameters, handling of blocked calls due to contention for a destination port or

resource unavailability and call modi�cation. Of particular interest is the rate

transformation algorithm involving the speech coder. A two-state rate translation

algorithm was developed and subsequently enhanced to accomplish multi-stage

rate translations. In addition to the speech and control message �les generated

as output, the simulation program can be made to output text messages to the

screen when operating in \verbose" mode. This provides a convenient method

for examining the switching actions performed. The screen output for a two-stage

rate translation scenario is reproduced below. In this scenario, port 1 is connected

to a modem, and ports 0, 2 and 3 are connected to terminals.

1 time slot #0 cntrl byte = 0x1a
2 Received CONN REQ on port 0
3 Connection Request parameters:

32

Insert
Control

bits

Insert
Control

bits
Control

bits

Remove

1 1

2 2

33

4 4

Input

Input

Output

Output

STC
Analysis

STC
Analysis

Input

Input

Coded
Speech

Coded
Speech

Speech

Speech

Control
bits

Remove STC

STC

Xform

Xform

Coded
Speech

Coded
Speech

STC
Synthesis

STC
Synthesis

Output

OutputXform
Speech

Xform
Speech

Speech

Speech

Configuration file

Configuration file

Switching
Module

F
igu

re
4-2:

B
lock

d
iagram

of
sim

u
lation

strategy

33

4 destination type = 1
5 destination address = 2
6 time slot #1 cntrl byte = 0xbe
7 voice on = 1
8 data on = 0
9 maximum rate = 7
10 voice rate = 3
11 time slot #2 cntrl byte = 0x50
12 coder init = 5
13 time slot #3 cntrl byte = 0x39
14 time slot #4 cntrl byte = 0x31
15 time slot #5 cntrl byte = 0x33
16 time slot #6 cntrl byte = 0x38
17 time slot #7 cntrl byte = 0x36
18 time slot #8 cntrl byte = 0x34
19 time slot #9 cntrl byte = 0x37
20 time slot #10 cntrl byte = 0x37
21 time slot #11 cntrl byte = 0x33
22 time slot #12 cntrl byte = 0x38
23 Request parameters received from port 0
24 Sent WAIT...CALL PROCEEDING to port 0
25 Dialing telephone number on port 1(modem)
26 The dialing sequence is: ATDT 9138647738
27 time slot #13 cntrl byte = 0x31
28 Port 1: Modem result code = CONNECT
29 Sent OPEN CHANNEL to port 1(modem)
30 time slot #14 cntrl byte = 0xf0
31 Received OPEN CHANNEL ACK from port 1
32 Sent CONN REQ on external line (port 1) ch 1
33 time slot #16 cntrl byte = 0xf9
34 Recd CONN ACK from port 1(dest) ch 1
35 coder init = 9
36 Sent CONN ACK to port 0(src)
37 time slot #2400 cntrl byte = 0x1b
38 Received CONN REQ on port 2
39 Connection Request parameters:
40 destination type = 1
41 destination address = 3
42 time slot #2401 cntrl byte = 0xbe
43 voice on = 1
44 data on = 0
45 maximum rate = 7

34

46 voice rate = 3
47 time slot #2402 cntrl byte = 0x50
48 coder init = 5
49 time slot #2403 cntrl byte = 0x39
50 time slot #2404 cntrl byte = 0x31
51 time slot #2405 cntrl byte = 0x33
52 time slot #2406 cntrl byte = 0x38
53 time slot #2407 cntrl byte = 0x36
54 time slot #2408 cntrl byte = 0x34
55 time slot #2409 cntrl byte = 0x37
56 time slot #2410 cntrl byte = 0x37
57 time slot #2411 cntrl byte = 0x33
58 time slot #2412 cntrl byte = 0x38
59 Request parameters received from port 2
60 Outgoing line busy...trying to multiplex connection
61 Physical connection to dest exists, checking bandwidth available
62 Bandwidth currently not available...trying to transform rate
63 Sent CONN RESP to port 2
64 Sent TRANSFORM to port 1(modem) ch 1
65 Pending request from port 2(src) to port 1(dest)
66 time slot #2413 cntrl byte = 0xf0
67 Received TRANSFORM ACK from port 4
68 Enable DSP
69 Wait for Started Xform signal from DSP
70 Started Xform signal received
71 Sent START XFORM to port 4
72 Sent OPEN CHANNEL to port 1(modem)
73 time slot #2414 cntrl byte = 0xf0
74 Received OPEN CHANNEL ACK from port 1
75 Sent CONN REQ on external line (port 1) ch 2
76 time slot #2416 cntrl byte = 0xf9
77 Recd CONN ACK from port 1(dest) ch 2
78 coder init = 9
79 Sent CONN ACK to port 2(src)
80 Reached EOF on port 0
81 Reached EOF on port 4
82 Reached EOF on port 1
83 Reached EOF on port 2
84 Reached EOF on port 3
85 Reached EOF on port 5

Whenever a non-null control byte is received from any port, it is displayed in

35

hexadecimal format. The time slot counter is incremented each time one complete

round-robin cycle is traversed. Since the input bus is time-division multiplexed,

with a slot assigned to each port, one round-robin cycle can be considered as an

input bus \frame", and hence the time slot counter value actually represents the

frame count. The control message types are displayed in capital letters.

On receiving a connection request from port 0 (lines 1-23), a switch-to-switch

connection is �rst established (lines 25-28) using the modem. A virtual circuit is

now established and assigned a channel id (lines 29-31), and call setup is com-

pleted (lines 32-36). Call setup for the subsequent connection request from port 2

proceeds similarly except that the voice rate on channel 1 must �rst be dropped

(lines 64-71) in order to accommodate an additional channel. A three-stage rate

dropping scenario can similarly be envisioned.

4.5 Results

Informal listening tests were performed to evaluate the speech quality in the pres-

ence of rate transformation. The following discussion is based on a three-stage

rate dropping scenario; similar observations hold for the general case of n-stage

rate transformation. Initially, the rate was dropped at arbitrary points in the

speech stream. The tests performed showed a perceivable degradation in speech

quality at the receive end when transitioning from a higher rate to a lower rate.

The e�ects observed included audible 'clicks', fading and distortion of the spoken

syllable. It is interesting to note that the steady-state rate change was not as

easily perceivable as the transition point. These observations suggested the use

of silence detection to improve speech quality.

Figure 4-3 is a representation of the input speech �le coded at 19.2 kb/s using

the STC. The sound segments are displayed as boxes and the silence regions are

displayed as lines connecting these boxes. These pauses usually indicate breaks

36

Figure 4-3: Simulation input speech �le coded at 19.2 kbps

transition 1(0:34) transition 2(1:07)

Figure 4-4: Rate transition points with no silence detection

transition 1(0:32:20) transition 2(1:06)

Figure 4-5: Rate transition points with silence detection

37

Output Speech Quality
no silence detection with silence detection

audible clicks, fading transition point
at transition point inaudible

Table 4.1: Simulation results

between sentences or phrases. Time is measured along the horizontal axis. Figure

4-4 shows the points at which rate transitions occur with no silence detection.

Point A represents a transition from 19.2 kb/s to 9.6 kb/s and Point B represents

a further down translation to 4.8 kb/s. In Figure 4-5 the transition points are

shifted so as to coincide with silence intervals. The transitions are no longer

noticeable in the audio output. The results are tabulated in Table 4.1.

These results suggest the use of silence detection at the switch accompanied

by synchronization of rate translation instances with silence periods to achieve a

smoother transition between discrete speech rates. Silence detection can be ac-

complished by stealing a bit from each speech frame for speech activity indication.

A simple thresholding algorithm can be incorporated in the STC analyzer to mark

the activity bit. The signal processing algorithm for performing rate translation

at the switch can be modi�ed so that a rate transition occurs only after N suc-

cessive inactive frames. The parameter N depends on the stationary properties

of the speech waveform, and must be determined by studying the speech produc-

tion model used by the coder. A time-out mechanism may be needed to force a

transition in case of anomalous speech conditions.

38

Chapter 5

Congestion Control

5.1 Overview of Bandwidth Allocation Algo-

rithms for Circuit-Switched Environments

Traditionally, in a connection-oriented network (such as the telephone network),

bandwidth is dedicated to the user for the duration of the call, and new con-

nections are refused if insu�cient bandwidth is available. Thus, performance is

predictable once a connection is set up. Connectionless networks, on the other

hand, have the ability to allocate bandwidth dynamically, but respond to over-

loads by degrading the performance seen by all users. This is due, in large part,

to their limited ability to restrict access to the network. The term congestion

control is mostly used with reference to packet-switched networks to mean \the

collection of methods used to ensure each user acceptable performance under a

variety of load conditions" [27]. Quality of service (QOS) negotiations have also

been traditionally associated with packet-switched systems.

Most of the previous work on bandwidth allocation in circuit-switched com-

munication networks with integrated tra�c focuses on the access control problem.

A user is granted or refused access to the network based on a policy designed to

meet some performance criterion (such as minimum blocking or maximum utiliza-

39

tion). The simplest bandwidth allocation policy is complete sharing, in which an

incoming call is always accepted if su�cient resources are available. However, this

policy is unfair in situations where a heavily loaded tra�c stream monopolizes the

available bandwidth. A complete partitioning policy overcomes this drawback by

allocating a �xed amount of the total bandwidth to each tra�c stream. However,

this approach could lead to wasted capacity if the load o�ered by a tra�c stream

drops below its allocated capacity. Several other bandwidth allocation schemes

have been developed which lie between these two extremes - for example, the

thresholding policy advocated in [10]).

The policies described above fall under the category of static bandwidth al-

location schemes. Bandwidth allocation schemes which dynamically track net-

work load variations have also been proposed. These include moveable boundary

schemes [2, 20], in which slots in a TDM frame (or channels on a link) are par-

titioned among di�erent tra�c streams, and the partitioning varies dynamically

with instantaneous tra�c levels. Only very recently, mention of dynamic rate

control mechanisms appears in the literature. These schemes use a variable rate

source coder for dynamic rate adjustment based on load [13, 28].

5.2 Congestion Control in Adaptive Voice/Data

Networks

The previous section discusses bandwidth allocation schemes employed for exist-

ing network architectures. The dynamic bandwidth reallocation and congestion

control capabilities of adaptive voice/data networks are now examined, and con-

trasted with the features described above.

The adaptive voice/data switch operates essentially as a circuit switch. Re-

sources are allocated when the connection is established, and held for the duration

of the connection. However, due to the unique capabilities of the speech coder

40

and the control protocols, it is possible to retrieve allocated resources from exist-

ing connections and reallocate these resources dynamically. This is accomplished

using the rate transformation capability of the STC coding technique. In par-

ticular, this capability can be used to free up bandwidth to accommodate new

connections during periods of overload. Thus, a mechanism for connection-level

overload control is available, based on degrading the quality of service provided to

all the users in the system. The overload control is only e�ective, however, until

the maximum limit on the number of users is reached. All subsequent connection

requests are blocked.

It is evident from the above discussion that the adaptive switch possesses

dynamic bandwidth allocation capabilities similar to those of connectionless net-

works, while retaining the access control capabilities of connection-oriented net-

works. A congestion control scheme is needed that exploits these unique capabil-

ities, and addresses the issues of fairness and QOS guarantees.

5.3 Adaptive Switch Performance Evaluation

A comparative simulation study of switch performance under a variety of chan-

nel assignment schemes is conducted. A model is developed for the adaptive

voice/data switch that incorporates the rate transformation algorithm. A set of

performance measures that can be used as �gures of merit for di�erent resource

allocation schemes is identi�ed. The modeling and simulation tool used is the

Block Oriented Network Simulator (BONeS).

5.3.1 Modeling

Figure 5-1 shows the top-level block diagram of the switch model. For commu-

nication over the PSTN, the switch functions as a tra�c concentrator. Several

voice/data terminals compete for bandwidth on the outgoing link. The termi-

41

C
O
N
C
E
N
T
R
A
T
O
R

telephones

data terminals

modem
outgoing link

Figure 5-1: System model: voice and data sources accessing a concentrator

nals are modeled as independent voice and data sources rather than as integrated

voice/data sources in order to simplify the source model. This simpli�cation has

the e�ect that the arrival processes for voice and data calls are not correlated.

Voice and data call arrivals are assumed to occur according to a Poisson process,

and the service time is assumed to be exponentially distributed. The bandwidth

requested by each type of call (voice or data), the mean call holding time, the

o�ered load per source and the capacity of the outgoing link are parameters that

can be set at simulation time.

The main component of the simulation model is the concentrator that multi-

plexes voice and data calls onto the outgoing link. The algorithm used to modify

voice calls is as follows. A voice call requires a bandwidth of V slots. If V slots

are available, the call is accepted. If V slots are not available, an attempt is made

to grant V/2 slots. If V/2 unused slots cannot be found, a V-slot call currently

in service is transformed to a V/2-slot call to free up V/2 slots. If no V-slot call

is currently in progress, an attempt is made to grant V/4 slots to the incoming

42

request, either directly (if available), or by transforming a V/2-slot call currently

in progress to a V/4-slot call. In the model, data calls are accepted or rejected

on the basis of unused resource units available at the instant the call arrives, i.e.

voice quality is not degraded in order to accommodate data calls.

The higher rate call to be victimized is chosen in a random manner. This is

partly due to the modeling di�culties faced in assuming otherwise (BONeS 'al-

locate resource' blocks do not have provision for preemption). A solution to this

problem which would allow the call to be transformed to be selected in a determin-

istic manner was not pursued since the aim was to keep the model simple. Such

an assumption is considered to be reasonable, as long as the results obtained are

interpreted in the light of the modeling assumptions made. Actually, it turns out

(due to the implementation method) that the call selected for rate-transformation

is most likely (but not necessarily) the one that has been in service the longest.

This is in fact a good candidate for rate reduction.

5.3.2 Performance Measures

The �gures of merit used to compare the performance of di�erent resource allo-

cation schemes are listed below.

1. Fractional Utilization: This is the ratio of the average number of resource

units allocated to the total capacity.

2. Blocking Probability: The voice call blocking probability is conditional

on the amount of modi�cation allowed. Hence, three di�erent de�nitions

of blocking exist for voice calls; the fraction of voice calls rejected with (a)

no modi�cation allowed, (b) modi�cation to half-rate, and (c) modi�cation

to quarter-rate. A voice call is said to be ultimately blocked if it cannot be

accepted even after modi�cation to quarter rate [23]. The data call blocking

probability is the ratio of the number of data calls rejected to the total

43

number of data calls.

3. Average quality of service (QOS): This performance measure is de�ned

to indicate the average grade of service on voice calls. Assuming that voice

quality degrades linearly with rate (this is a feature of the coding scheme,

which is approximately true), the Average QOS for voice calls is the mean

of the per call QOS, which is de�ned as:

QOS/call =
1 � TV + 0:5� TV=2 + 0:25� TV=4

P
N

(5:1)

where Ti is the duration of time spent in the i-slot state. It is assumed that a

V slot voice call corresponds to a QOS of 1 i.e. the QOS is normalized with

respect to the maximum voice call bandwidth. It must be noted that the

average QOS is de�ned only for those calls that ultimately receive service,

i.e. this measure does not account for blocking.

4. Fairness Index: From the user's viewpoint, an indication of the uniformity

of quality of service provided by the network can be obtained by measuring

the uctuation of the average QOS about the mean value. A fairness index

is thus de�ned as:

Fairness Index = �2(QOS) or var(QOS) (5:2)

5.3.3 Simulation Results

The parameters used for the simulation studies conducted are listed in Table

5.1. The link capacity (C), and the bandwidth required per call are measured in

\slots". One slot refers to the smallest bandwidth unit available on the outgoing

link. Data tra�c is modeled as being constant and low-load. The performance

of the system is measured under overload conditions by allowing the o�ered voice

44

Parameter Value

Number of voice terminals 4
Number of data terminals 4
Voice call bandwidth 8 slots
Data call bandwidth 2 slots
Average voice call holding time 6 minutes
Average data call holding time 12 minutes
Average o�ered load per data terminal 0.25

Table 5.1: Simulation parameters

load to vary over a range of values. This approach allows us to examine the

e�ect of a highly loaded tra�c stream on itself, and on non-interfering tra�c of a

di�erent type.

Complete Sharing System with C=8

Figures 5-2 and 5-3 show the blocking probabilities and average link utilization

for a link capacity of 8 slots. The improvement in blocking performance that

can be obtained at the cost of voice quality can be estimated from Figure 5-2.

It is observed that data calls experience higher blocking than voice calls with

modi�cation allowed to 2 slots/call even though the data bandwidth is also 2

slots/call. This is reasonable, because voice calls can \borrow" bandwidth from

higher rate calls when resources are not available, whereas data calls are cleared.

Figure 5-3 shows that the link utilization does not saturate even when the link is

overloaded by a factor of 4. In Figure 5-4, the average QOS is plotted as a function

of the load. The length of the vertical bars represents the QOS variance. It can

be observed that the complete sharing scheme treats the users with increasing

uniformity as the load increases.

45

Figure 5-3: Fractional Link Utilization, C=8

46

Figure 5-4: Fairness index for voice calls, C=8

Comparison of Performance with Di�erent Link Capacities

Figures 5-5 and 5-6 compare the average QOS and utilization for di�erent link ca-

pacities. A 20% improvement in average voice QOS can be obtained by increasing

the link capacity from C=8 slots to C=10 slots (i.e. by 25%) with only a marginal

reduction in utilization. An interesting observation is that with C=9, the QOS on

voice calls actually degrades drastically. The reason for this can be inferred from

Figure 5-7. It appears that data calls grab that one \extra" slot (since the data

blocking probability improves considerably) which is then never released, so that

voice calls can never be allocated 8 slots. This factor must be considered when

choosing link capacities that are non-integer multiples of the minimum required

bandwidth for voice calls.

47

Figure 5-6: Comparison of Link Utilization with di�erent link capacities

48

Figure 5-7: Blocking probabilities for voice and data calls, C=9

Thresholding Policy for Data Calls

Foschini et al [10] suggest that the optimum channel allocation policy for a system

with two tra�c classes is a thresholding policy, i.e. a policy that restricts the

maximum number of channels allocated to one tra�c class. Figures 5-8 through

5-11 show the results obtained by setting the data threshold to 1, 2 and 3 calls. An

exact analytical proof to determine the optimal policy is not attempted. However,

the following inferences can be made from the graphs.

1. The optimal policy for maximum utilization is one which limits the maxi-

mum number of data calls to 3.

2. If minimum overall blocking is desired, the objective function to be mini-

mized can be expressed as

Jmin blocking = PBv � �v + PBd � �d (5:3)

49

Figure 5-8: Voice call blocking probabilities with thresholding

where PBv=voice call blocking probability, PBd=data call blocking proba-

bility, �v=o�ered voice load and �d =o�ered data load.

3. The thresholding policy is more e�ective in improving the QOS delivered on

voice calls than it is in reducing the voice call blocking probability.

5.3.4 Conclusions

A model is developed for the adaptive voice/data switch that can be used to

predict performance. The advantages of using a simulation tool are: the ability to

model the unique call modi�cation capabilities of the adaptive switch, exibility

in choosing resource request parameters (such as tra�c characteristics) and the

ability to model a wide range of resource allocation policies. A set of performance

metrics is identi�ed that can adequately describe the behavior of the system.

The simulation results verify that the improvement in overload control resulting

50

Figure 5-10: Comparison of Average QOS for di�erent thresholds

51

Figure 5-11: Comparison of link utilization for di�erent thresholds

from the use of rate transformation is indeed substantial. These results can be

used to determine the required link capacity given some performance constraints.

The e�ect of a simple access control scheme in enhancing the overload control

capabilities of the switch is demonstrated.

52

Chapter 6

Conclusion and Future Work

A protocol has been developed for the management and control of a narrowband

integrated voice/data network. The protocol architecture, the services o�ered

and the procedures needed to support these services have been de�ned. The

control protocol has several unique features, including in-call service re-negotiation

and voice rate modi�cation. The protocol exploits the novel capabilities of the

Sinusoidal Transform Coder to implement dynamic bandwidth reallocation in a

narrowband communication environment.

A software testbed was constructed to verify the control functionality and to

demonstrate the interaction of the protocols with the speech coder. The software

developed can be ported to a real application environment with minor modi�ca-

tions, hence the use of the code is two-fold.

Scope for further work exists in several areas. The protocol does not incor-

porate any error correction mechanisms (except for parity detection at the link

layer). This is irrelevant for voice tra�c, but has signi�cance for data trans-

mission, especially in harsh data loss environments (such as cellular or wireless

transmissions). Enhancements to the protocol that make it more robust in the

presence of channel errors will greatly aid its application in wireless environments.

The performance evaluation conducted served to illustrate the interrelation

53

between the di�erent performance metrics. It would be instructive to extend

these studies to a multi-hop network environment. Another interesting subject

for further study would be to compare the performance of a source-coder based

dynamic rate control scheme to the STC-based rate transformation scheme in a

multi-hop network environment.

The quality of service (QOS) de�nition in this work is 'open-loop', i.e. there is

no mechanism for the user to demand a certain QOS level. This is mainly due to

the di�culty in anticipating the users' demands. For an application in which users

require QOS guarantees, it may be necessary to include a �eld in the connection

establishment control messages for QOS negotiation.

Another area for future investigation is the design of integrated voice/data

terminals which will support the protocol developed. One approach is to use a

general-purpose PC with audio input/output capabilities and an add-on DSP card

for speech processing.

54

Appendix A

Control Messages

55

1 8 16
0 0 0 1 X

24

destination type

0=local, 1=remote

X X X X

destination address
(000-111)

1=voice on
1=data on

coder initialization

(10-digit telephone number)Remote Destination Address

digit 2.....

25 32 104

digit 1 (ascii)

voice rate (see Table A.1)

maximum rate (see Table A.3)

Figure A-1: CONNECTION REQUEST

0 0 1 0 XX

1=voice on
1=data on

voice rate

1 168

data rate

coder initialization

(see Table A.1)
(see Table A.2)

Figure A-2: CONNECTION INDICATION

1 168
0 0 1 1 X X X

1=voice on

X X X X

voice rate
(see Table A.1)

1=data on

0=call rejected
1=call proceeding

Figure A-3: CONNECTION RESPONSE

56

X
1 8

rate

0=change
1=multiplex

message id

1000=modify indication
0110=modify request

Figure A-4: MODIFY REQUEST/INDICATION

X
1 8

0 01 1

0=granted

XX

1=rejected

Figure A-5: MODIFY RESPONSE

X
1 8
1 0 1 1 X

transformed rate

Figure A-6: TRANSFORM

X
1 8
1 1 X1 0

channel id

(0-3)

ch#1 ch#2 ch#3 ch#4

synchronization pattern

Figure A-7: OPEN CHANNEL

57

X
1 8

00 0 0

0=voice
1=data

rate

Figure A-8: MODIFY SOURCE

1 8
1 1 1 1

coder initialization (Connect Ack)

XXXX (Transform Ack,
Modify Ack, Modify Src Ack)

channel id (Open Channel Ack)

Figure A-9: ACKNOWLEDGEMENT

58

BIT PATTERN VOICE RATE

00 2400 bps
01 4800 bps
10 9600 bps
11 19200 bps

Table A.1: Voice rates

BIT PATTERN DATA RATE

00 2400 bps
01 4800 bps
10 9600 bps
11 illegal

Table A.2: Data rates

BIT PATTERN MAXIMUM
CONNECTION RATE

000 2400 bps
001 4800 bps
010 7200 bps
011 9600 bps
100 12000 bps
101 14400 bps
110 16800 bps
111 19200 bps

Table A.3: Maximum connection rates

59

MESSAGE TYPE ID PARAMETERS

Connection Request 0001 Destination (local/remote), Destination Address,
Tra�c Type (Voice/Data/Multiplexed), Data Rate,
Coder Initialization

Connection Indication 0010 Tra�c Type (Voice/Data/Multiplexed), Voice Rate,
Data Rate, Coder Initialization

Connection Response 0011 Proceeding/Refused, Tra�c Type, Voice Rate
Alerting 0100 {
Disconnect 0101 {
Modify Request 0110 Change/Multiplex, Rate
Modify Indication 1000 Change/Multiplex, Rate
Modify Response 1001 Granted/Rejected
Call Modi�ed 1010 {
Transform Rate 1011 New Rate
Rate Transformed 1100 {
Open Channel 1101 Channel Id, Synchronization pattern
Start Channel 1110 {
Modify Source 0000 Voice/Data, Rate
Null Message 0111 {
ACK 1111 {

Table A.4: Control Message IDs and parameters

60

Appendix B

Parser Source Code

61

B.1 C Programs

/�

���������������

� Name: main.c

���������������

�

� Purpose: parse the con�guration �le and

� insert control messages in coded speech �les

�/

#include<stdio.h>

#include<string.h>

#include "common.h"

#include "event.h"

#include "queue.h"

#de�ne NULL MSG 0x7e

void main(int argc, char �argv[]) f

signaling event �event;

queue item �q head, �q tail;

unsigned char msgs array[NUM PORTS][MAX MSGS];

char �cmd line, line[200], cmd comp[3][20];

int i, j, ret val, line num=0;

FILE �fp con�g;

if (argc 6= 2) f

printf("usage: %s <configuration file>\n", argv[0]);

exit(�1);

g

fp con�g = fopen(argv[1], "r");

/�

� Fill message array with NULL messages

�/

for(i=0; i<NUM PORTS; i++) f

62

for(j=0; j<MAX MSGS; j++) f

msgs array[i][j] = NULL MSG;

g

g

event = (signaling event �)malloc(sizeof(signaling event));

init event(event);

q head = (queue item �)malloc(sizeof(queue item));

q tail = q head;

while ((cmd line = fgets(line, 200, fp con�g)) 6= (char �)0) f

line num++;

/�

� Parse the command line

�/

parse cmd line(cmd line, cmd comp);

ret val = store event(cmd comp, event);

if (ret val < 0) f

/�

� remove the end-of-line character

�/

cmd line[strlen(cmd line)�1] = \0;

fprintf(stderr, "error in line %d: %s\n", line num, cmd line);

exit(�1);

g

else if (ret val > 0) f

/�

� end of current event

�/

q tail = (queue item �)insert msgs(event, msgs array, q tail);

g

g

#ifdef DEBUG

printf("startup file parsed\n");

63

printf("inserting control messages in speech files\n");

#endif

insert speech(msgs array, q head);

g

64

/�

���������������

� Name: init.c

���������������

�

� Purpose: routines to initialize state and

� event structs

�/

#include<stdio.h>

#include "common.h"

#include "state.h"

void init state(port state state[], int num ports) f

int port;

/�

� Initialize state struct for each port

�/

for (port = 0; port < num ports; port++) f

state[port].active = FALSE;

state[port].talk = FALSE;

state[port].voice frame = 0;

state[port].fp speech = (FILE �)0;

state[port].fp out = (FILE �)0;

g

g

#include "event.h"

void init event(signaling event �event) f

/�

� Initialize the event struct to avoid processing

� parameters from previous events

�/

65

event!event time = (int �)0;

event!event type = (char �)0;

event!port = (int �)0;

event!dest = (int �)0;

event!dest type = (int �)0;

event!tra�c type = (int �)0;

event!max rate = (int �)0;

event!voice conn rate = (int �)0;

event!stc init = (char �)0;

event!tel no = (char �)0;

event!grant reject = (int �)0;

event!modem code = (char �)0;

event!change mux = (int �)0;

event!modify rate = (int �)0;

event!active = (int �)0;

event!talk = (int �)0;

event!voice frame = (int �)0;

event!speech�le = (char �)0;

event!output�le = (char �)0;

g

#include "queue.h"

void init queue(queue item �item) f

/�

� Initialize the next item in the event countdown queue

�/

item!next = (queue item �)0;

item!time = (int �)0;

item!port = (int �)0;

item!active = (int �)0;

item!talk = (int �)0;

item!voice frame = (int �)0;

item!speech�le = (char �)0;

item!output�le = (char �)0;

g

66

/�

����������������

� Name: parse.c

����������������

�

� Purpose: parse a command line and �nd the components

� (X,operator,Y) of the command. A command is of the

� form: "X<space>operator<space>Y<newline>"

�/

#include<stdio.h>

#include<string.h>

#de�ne SEPARATOR " "

void parse cmd line(char �cmd line, char �cmd comp[3]) f

char �cmd, �newline ptr;

int next = 0;

cmd = (char �)malloc(strlen(cmd line)+1);

strcpy(cmd, cmd line);

#ifdef DEBUG

printf("----->%s<-----\n", cmd);

#endif

/�

� Find the components of the command

�/

cmd comp[next] = (char �)malloc(strlen(cmd line)+1);

cmd comp[next] = strtok(cmd, SEPARATOR);

do f

#ifdef DEBUG

printf ("cmd_comp = --->%s<---\n", cmd comp[next]);

#endif

next++;

67

g while ((cmd comp[next] = strtok((char �)0, SEPARATOR)) 6= (char �)0);

/�

� Remove the "nn" from the last command component

�/

if ((newline ptr = strchr(cmd comp[2], \n)) 6= NULL) f

�newline ptr = \0;

g

g

68

/�

����������������

� Name: event.c

����������������

�

� Purpose: store the command parameters in the event

� struct

�

� Return values:

� -1 => failure

� 0 => success

� 1 => end of event

�/

#include<stdio.h>

#include<string.h>

#include "event.h"

int store event(char �cmd comp[3], signaling event �event) f

int ret val;

/�

� Check for NULL command

�/

if (cmd comp[0] == (char �)0) f

/�

� No command, so do nothing

�/

#ifdef DEBUG

printf("did nothing\n");

#endif

return(0);

g

/�

� Check for end of event

69

�/

if (strcmp(cmd comp[0], "\n") == 0) f

if (event!event type 6= NULL) f

/�

� End of current event

�/

#ifdef DEBUG

printf("event done\n");

#endif

return(1);

g

return(0);

g

/�

� Store event parameter in event struct

�/

if (strcmp(cmd comp[0], "time") == 0) f

event!event time = (int �)malloc(sizeof(int));

�event!event time = atoi(cmd comp[2]);

g

else if (strcmp(cmd comp[0], "event") == 0) f

event!event type = (char �)malloc(strlen(cmd comp[2]+1));

strcpy(event!event type, cmd comp[2]);

g

else f

if ((ret val = get params(event, cmd comp)) < 0) f

return(�1);

g

g

return(0);

g

70

/�

�����������������

� Name: params.c

�����������������

�

� Purpose: parse the event parameters and store the

� parameter values in the event struct

�/

#include <stdio.h>

#include<string.h>

#include "common.h"

#include "event.h"

#include "params.h"

int get params(signaling event �event, char �param comp[]) f

/�

� Macro to print error message for invalid parameter

� value

�/

#de�ne printerr fprintf(stderr,"invalid parameter value:%s\n", param value); n

return(�1)

int param index = 0, rate index = 0;

char param name[20], param value[20];

char �workstring, �separators, �str pointer, �tmp1, �tmp2;

strcpy(param name, param comp[0]);

strcpy(param value, param comp[2]);

while (strcmp(param name, params array[param index]) 6= 0) f

param index++;

if (param index == MAX PARAMS) f

fprintf(stderr, "invalid param type: %s\n", param name);

return(�1);

g

71

g

#ifdef DEBUG

printf ("param_name = %s\n", param name);

printf ("param_value = %s\n", param value);

#endif

switch(param index) f

case PORT:

event!port = (int �)malloc(sizeof(int));

�event!port = atoi(param value);

#ifdef DEBUG

printf("port = 0x%x\n", �event!port);

#endif

break;

case DEST:

event!dest = (int �)malloc(sizeof(int));

�event!dest = atoi(param value);

#ifdef DEBUG

printf("destination = 0x%x\n", �event!dest);

#endif

break;

case DEST TYPE:

event!dest type = (int �)malloc(sizeof(int));

if (strcmp(param value, "INTERNAL") == 0) f

�event!dest type = 0;

g

else if (strcmp(param value, "EXTERNAL") == 0) f

�event!dest type = 1;

g

else f

printerr;

g

break;

72

case TRAFFIC TYPE:

event!tra�c type = (int �)malloc(sizeof(int));

if (strcmp(param value, "VOICE") == 0) f

�event!tra�c type = 2;

g

else if (strcmp(param value, "DATA") == 0) f

�event!tra�c type = 1;

g

else if (strcmp(param value, "MULTIPLEXED") == 0) f

�event!tra�c type = 3;

g

else f

printerr;

g

break;

case MAX RATE:

event!max rate = (int �)malloc(sizeof(int));

while (strcmp(param value, total rates[rate index]) 6= 0) f

rate index++;

if (rate index > MAX TOTAL RATES) f

printerr;

g

g

�event!max rate = rate index;

break;

case VOICE CONN RATE:

event!voice conn rate = (int �)malloc(sizeof(int));

while (strcmp(param value, voice data rates[rate index]) 6= 0) f

rate index++;

if (rate index > MAX VOICE RATES) f

printerr;

g

g

�event!voice conn rate = rate index;

break;

case STC INIT:

event!stc init = (char �)malloc(sizeof(char));

�event!stc init = (char)atoi(param value);

73

break;

case TEL NO:

workstring = param value;

separators = "()-";

tmp1 = (char �)malloc(strlen(workstring)+1);

tmp2 = (char �)malloc(strlen(workstring)+1);

while (�separators 6= \0) f

str pointer = strchr(workstring, �separators);

strcpy(tmp1, (str pointer+1));

�str pointer++ = \0;

strcpy(tmp2, workstring);

workstring = strcat(tmp2, tmp1);

separators++;

g

event!tel no = (char �)malloc(strlen(workstring)+1);

str pointer = event!tel no;

while (�workstring 6= \0) f

�str pointer++ = �workstring++;

g

�str pointer = \0;

break;

case GRANT REJECT:

event!grant reject = (int �)malloc(sizeof(int));

if (strcmp(param value, "GRANTED") == 0) f

�event!grant reject = 1;

g

else if (strcmp(param value, "REJECTED") == 0) f

�event!grant reject = 0;

g

else f

printerr;

g

break;

case MODEM CODE:

event!modem code = (char �)malloc(sizeof(char));

74

�event!modem code = �param value;

break;

case CHANGE MUX:

event!change mux = (int �)malloc(sizeof(int));

if (strcmp(param value, "CHANGE") == 0)

�event!change mux = 0;

else if (strcmp(param value, "MULTIPLEX") == 0)

�event!change mux = 1;

else f

printerr;

g

break;

case MODIFY RATE:

event!modify rate = (int �)malloc(sizeof(int));

while (strcmp(param value, voice data rates[rate index]) 6= 0) f

rate index++;

if (rate index == MAX VOICE RATES) f

printerr;

g

g

�event!modify rate = rate index;

break;

case STATE:

event!active = (int �)malloc(sizeof(int));

if (strcmp(param value, "ACTIVE") == 0) f

�event!active = TRUE;

g

else if (strcmp(param value, "INACTIVE") == 0) f

�event!active = FALSE;

g

else f

printerr;

g

break;

case ACTIVITY:

event!talk = (int �)malloc(sizeof(int));

if (strcmp(param value, "TALK") == 0) f

�event!talk = TRUE;

75

g

else if (strcmp(param value, "IDLE") == 0) f

�event!talk = FALSE;

g

else f

printerr;

g

break;

case VOICE FRAME:

event!voice frame = (int �)malloc(sizeof(int));

�event!voice frame = atoi(param value);

break;

case SPEECHFILE:

event!speech�le = (char �)malloc(strlen(param value)+1);

strcpy(event!speech�le, param value);

break;

case OUTPUTFILE:

event!output�le = (char �)malloc(strlen(param value)+1);

strcpy(event!output�le, param value);

break;

g

return(1);

g

76

/�

����������������������

� Name: insert msgs.c

����������������������

�

� Purpose: read the event struct and perform the

� necessary action depending on the event type

� event type = control message

� => construct control message and insert into

� control message array

� event type = change port state

� => store new port state in event queue

�

� Return value: pointer to the current position

� in the event queue

�/

#include <stdio.h>

#include "common.h"

#include "event.h"

#include "queue.h"

#include "msgs.h"

queue item �insert msgs(signaling event �event, unsigned char msgs[][MAX MSGS], queue item

�q ptr) f

/�

� Debugging printf macro

�/

#de�ne dprintf(a) printf("time=%d port=%d %s=0x%x\n",tnow,port,a,msgs[port][tnow])

unsigned char ctrl byte, �ptr;

int tnow, port;

int bits left, zeros = 0x00;

tnow = �event!event time;

port = �event!port;

77

#ifdef DEBUG

printf("event time = %d\n", �event!event time);

printf("event type = %s\n", event!event type);

#endif

/�

�

� CONNECTION REQUEST

�

�/

if (strcmp(event!event type, "CONN_REQ") == 0) f

/�

� BYTE 1

� message id = 4 bits

� destination type = 1 bit

� internal address = 3 bits

�/

bits left = pack bits(CONN REQ, nbits.msg id, &msgs[port][tnow]);

bits left = pack bits(�event!dest type, nbits.dest type, &msgs[port][tnow]);

bits left = pack bits(�event!dest, nbits.dest add, &msgs[port][tnow]);

#ifdef DEBUG

dprintf("CONN_REQ_1");

#endif

/�

� BYTE 2

� tra�c type = 2 bits

� maximum rate = 3 bits

� voice rate = 2 bits

� XXXX = 1 bit

�/

tnow++;

bits left = pack bits(�event!tra�c type, nbits.tra�c type, &msgs[port][tnow]);

bits left = pack bits(�event!max rate, nbits.max rate, &msgs[port][tnow]);

bits left = pack bits(�event!voice conn rate, nbits.voice rate, &msgs[port][tnow]);

78

bits left = pack bits(zeros, bits left, &msgs[port][tnow]);

#ifdef DEBUG

dprintf("CONN_REQ_2");

#endif

/�

� BYTE 3

� stc initialization = 4 bits

� XXXX = 4 bits

�/

tnow++;

bits left = pack bits(�event!stc init, nbits.coder init, &msgs[port][tnow]);

bits left = pack bits(zeros, bits left, &msgs[port][tnow]);

#ifdef DEBUG

dprintf("STC_INIT");

#endif

/�

� external address

�/

tnow++;

if (�event!dest type == EXTERNAL) f

ptr = event!tel no;

while (�ptr 6= \0) f

msgs[port][tnow] = �ptr;

ptr++;

tnow++;

g

#ifdef DEBUG

printf("time=%d port=%d TEL NUMBER=%s\n", tnow, port, event!tel no);

#endif

g

g

/�

�

79

� CONNECTION RESPONSE

�

�/

if (strcmp(event!event type, "CONN_RESP") == 0) f

/�

� BYTE 1:

� message id = 4 bits

� call proceeding/rejected = 1 bit

� XXXX = 3 bits

�/

bits left = pack bits(CONN RESP, nbits.msg id, &msgs[port][tnow]);

bits left = pack bits(�event!grant reject, nbits.ag, &msgs[port][tnow]);

bits left = pack bits(zeros, bits left, &msgs[port][tnow]);

#ifdef DEBUG

dprintf("CONN_RESP_1");

#endif

if (�event!grant reject == GRANTED) f

/�

� BYTE 2

� tra�c type = 2 bits

� voice rate = 2 bits

� XXXX = 4 bits

�/

tnow++;

bits left = pack bits(�event!tra�c type, nbits.tra�c type, &msgs[port][tnow]);

bits left = pack bits(�event!voice conn rate, nbits.voice rate, &msgs[port][tnow]);

bits left = pack bits(zeros, nbits.ag, &msgs[port][tnow]);

#ifdef DEBUG

dprintf("CONN_RESP_2");

#endif

g

g

80

/�

�

� CONNECT ACK

�

�/

if (strcmp(event!event type, "CONN_ACK") == 0) f

bits left = pack bits(CONN ACK, nbits.msg id, &msgs[port][tnow]);

bits left = pack bits(�event!stc init, nbits.coder init, &msgs[port][tnow]);

#ifdef DEBUG

dprintf("CONN_ACK");

#endif

g

/�

�

� ALERTING

�

�/

if (strcmp(event!event type, "ALERTING") == 0) f

bits left = pack bits(ALERTING, nbits.msg id, &msgs[port][tnow]);

bits left = pack bits(zeros, bits left, &msgs[port][tnow]);

#ifdef DEBUG

dprintf("ALERTING");

#endif

g

/�

�

� MODEM RESULT CODE

�

�/

if (strcmp(event!event type, "MODEM_RESPONSE") == 0) f

81

msgs[port][tnow] = �event!modem code;

#ifdef DEBUG

dprintf("MODEM_CODE");

#endif

g

/�

�

� OPEN CHANNEL ACK

�

�/

if (strcmp(event!event type, "OPEN_CH_ACK") == 0) f

bits left = pack bits(OPEN CH ACK, nbits.msg id, &msgs[port][tnow]);

bits left = pack bits(zeros, bits left, &msgs[port][tnow]);

#ifdef DEBUG

dprintf("OPEN_CH_ACK");

#endif

g

/�

�

� MODIFY

�

�/

if (strcmp(event!event type, "MODIFY_REQ") == 0) f

/�

� Modify Request

� message id = 4 bits

� change/mux = 1 bit

� rate = 2 bits

� XXXX = 1 bit

�/

bits left = pack bits(MODIFY REQ, nbits.msg id, &msgs[port][tnow]);

82

bits left = pack bits(�event!change mux, nbits.change mux, &msgs[port][tnow]);

bits left = pack bits(�event!modify rate, nbits.modify rate, &msgs[port][tnow]);

bits left = pack bits(zeros, bits left, &msgs[port][tnow]);

#ifdef DEBUG

dprintf("MODIFY_REQ");

#endif

g

/�

�

� START MODIFY

�

�/

if (strcmp(event!event type, "START_MODIFY") == 0) f

bits left = pack bits(START MODIFY, nbits.msg id, &msgs[port][tnow]);

bits left = pack bits(zeros, bits left, &msgs[port][tnow]);

#ifdef DEBUG

dprintf("START_MODIFY");

#endif

g

/�

�

� MODIFY ACK

�

�/

if (strcmp(event!event type, "MODIFY_ACK") == 0) f

bits left = pack bits(MODIFY ACK, nbits.msg id, &msgs[port][tnow]);

bits left = pack bits(zeros, bits left, &msgs[port][tnow]);

#ifdef DEBUG

dprintf("MODIFY_ACK");

#endif

g

83

/�

�

� TRANSFORM ACK

�

�/

if (strcmp(event!event type, "TRANSFORM_ACK") == 0) f

bits left = pack bits(TRANSFORM ACK, nbits.msg id, &msgs[port][tnow]);

bits left = pack bits(zeros, bits left, &msgs[port][tnow]);

#ifdef DEBUG

dprintf("TRANSFORM_ACK");

#endif

g

/�

�

� DISCONNECT

�

�/

if (strcmp(event!event type, "DISCONNECT") == 0) f

bits left = pack bits(DISCONNECT, nbits.msg id, &msgs[port][tnow]);

bits left = pack bits(zeros, bits left, &msgs[port][tnow]);

#ifdef DEBUG

dprintf("DISCONNECT");

#endif

g

/�

�

� CHANGE STATE

�

�/

#de�ne intalloc (int �)malloc(sizeof(int))

84

if (strcmp(event!event type, "CHANGE_STATE") == 0) f

/�

� Schedule the state change by adding an event to the

� event countdown queue

�/

if (q ptr!time 6= NULL) f

/�

� Allocate memory for next queue item

�/

q ptr!next = (queue item �)malloc(sizeof(queue item));

q ptr = q ptr!next;

g

q ptr!time = intalloc;

�q ptr!time = tnow;

q ptr!port = intalloc;

�q ptr!port = port;

if (event!active 6= NULL) f

q ptr!active = intalloc;

�q ptr!active = �event!active;

g

else f

q ptr!active = NULL;

g

if (event!talk 6= NULL) f

q ptr!talk = intalloc;

�q ptr!talk = �event!talk;

g

else f

q ptr!talk = NULL;

g

if (event!voice frame 6= NULL) f

q ptr!voice frame = intalloc;

�q ptr!voice frame = �event!voice frame;

g

else f

q ptr!voice frame = NULL;

85

g

if (event!speech�le 6= NULL) f

q ptr!speech�le = (char �)malloc(strlen(event!speech�le)+1);

strcpy(q ptr!speech�le, event!speech�le);

g

else f

q ptr!speech�le = NULL;

g

if (event!output�le 6= NULL) f

q ptr!output�le = (char �)malloc(strlen(event!output�le)+1);

strcpy(q ptr!output�le, event!output�le);

g

else f

q ptr!output�le = NULL;

g

q ptr!next = NULL;

g

/�

� initialize event struct to avoid processing previous

� events

�/

init event(event);

return(q ptr);

g

86

/�

����������������

� Name: state.c

����������������

�

� Purpose: store the con�guration for each port in the

� state struct

�/

#include<stdio.h>

#include<string.h>

#include "common.h"

#include "state.h"

void store state(char �cmd comp[3], port state state[]) f

char �port, �lename[20];

static int port num;

if (strcmp(cmd comp[0], "PORT") == 0) f

port num = atoi(cmd comp[2]);

state[port num].active = TRUE;

g

else if (strcmp(cmd comp[0], "STATE") == 0) f

if (strcmp(cmd comp[2], "TALK") == 0) f

state[port num].talk = TRUE;

g

g

else if (strcmp(cmd comp[0], "VOICE_FRAME") == 0) f

state[port num].voice frame = atoi(cmd comp[2]);

g

else if (strcmp(cmd comp[0], "speechfile") == 0) f

strcpy(�lename, cmd comp[2]);

state[port num].fp speech = fopen(�lename, "r");

printf("speech file = %s \n", �lename);

g

87

else if (strcmp(cmd comp[0], "outputfile") == 0) f

strcpy(�lename, cmd comp[2]);

state[port num].fp out = fopen(�lename, "w");

printf("output file = %s\n", �lename);

g

g

88

/�

������������������������

� Name: insert speech.c

������������������������

�

� Purpose: This routine reads the control message array

� and inserts control messages in the input speech

� �les. It also examines the event countdown queue and

� modi�es the port states if required.

�/

#include<stdio.h>

#include "common.h"

#include "queue.h"

#include "state.h"

/�

� Maximum length speech frame

� = 20ms speech frame at 19.2 kb/s

� = 384 bits

� = 48 bytes

�/

#de�ne BUFFERLENGTH 48

void insert speech(unsigned char msgs[][MAX MSGS], queue item �q head) f

int port, tnow, len;

port state state[NUM PORTS];

unsigned char bu�er[BUFFERLENGTH];

FILE ��leptr;

init state(state, NUM PORTS);

for (tnow=0; tnow < MAX MSGS; tnow++) f

/�

� Check the event queue and update port states if

89

� necessary

�/

while((q head 6= NULL) && (�q head!time == tnow)) f

if (q head!active 6= NULL) f

state[�q head!port].active = �q head!active;

g

if (q head!talk 6= NULL) f

state[�q head!port].talk = �q head!talk;

g

if (q head!voice frame 6= NULL) f

state[�q head!port].voice frame = �q head!voice frame;

g

if (q head!speech�le 6= NULL) f

if ((�leptr = fopen(q head!speech�le, "r")) == NULL) f

printf("file %s could not be opened for reading\n", q head!speech�le);

exit(�1);

g

else f

state[�q head!port].fp speech = �leptr;

g

g

if (q head!output�le 6= NULL) f

if ((�leptr = fopen(q head!output�le, "w")) == NULL) f

printf("file %s could not be opened for writing\n", q head!output�le);

exit(�1);

g

else f

state[�q head!port].fp out = �leptr;

g

g

q head = q head!next;

g

for (port=0; port < NUM PORTS; port++) f

90

if (state[port].active) f

if (state[port].talk) f

/�

� If port is in the "talk" state, check for EOF on speech

� �le

�/

if (len = fread(&bu�er,1,state[port].voice frame,state[port].fp speech) > 0) f

/�

� Read control byte from array and write to output �le

�/

fwrite(&msgs[port][tnow],1,1,state[port].fp out);

/�

� Read speech frame from the input �le and write to

� output �le

�/

fwrite(&bu�er,1,state[port].voice frame,state[port].fp out);

g

else f

/�

� If EOF is reached on the speech �le, terminate control

� message �le

�/

printf("EOF reached on port %d\n", port);

state[port].active = FALSE;

fclose(state[port].fp speech);

fclose(state[port].fp out);

g

g

else f

/�

� If port is not in the "talk" state, write only the

� control byte

�/

fwrite(&msgs[port][tnow],1,1,state[port].fp out);

g

g

g

g

g

91

/�

��������������������

� Name: pack bits.c

��������������������

�

� Purpose: this routine takes parameters (param) of given

� length (index bits) and packs them into control

� bytes. The resulting control byte is written to chptr.

�

� Return value: the number of bits left in the current byte

�/

#include<stdio.h>

#include<math.h>

#de�ne WORD 8

static int count = 0;

static int bits left index, bits left count;

static char bitpack;

static short masks[] = f 0, 0x01, 0x03, 0x07, 0x0f,

0x01f, 0x03f, 0x07f, 0x0�,

0x01�, 0x03�, 0x07�, 0x0�f,

0x01�f, 0x03�f, 0x07�f, 0x0�� g;

int pack bits(short param, int index, char �chptr)f

short part1, part2;

bits left count = WORD � count;

if (index < bits left count) f

bitpack = bitpack�index;

bitpack += param;

count += index;

g else if (bits left count == index) f

bitpack = bitpack�index;

92

bitpack += param;

�chptr = bitpack;

count = 0;

bitpack = 0;

g else f

bits left index = index � bits left count;

part1 = (param�bits left index) & masks[bits left count];

bitpack = bitpack�bits left count;

bitpack += part1;

�chptr = bitpack;

bitpack=0;

if (bits left index � WORD) f

bits left count = WORD;

bits left index = bits left index � bits left count;

part1 = (param�bits left index) & masks[bits left count];

bitpack = bitpack�bits left count;

bitpack += part1;

�chptr = bitpack;

g

bitpack = param & masks[bits left index];

count = bits left index;

g

bits left count = WORD � count;

return(bits left count);

g

93

B.2 Header Files

/�����������������

� Name: common.h

�����������������/

#de�ne NUM PORTS 8

#de�ne MAX MSGS 6000

#de�ne TRUE 1

#de�ne FALSE 0

/�

����������������

� Name: event.h

����������������

�

� De�nes the data structure used to store

� signaling events and their parameters

� (event struct)

�/

typedef struct f

int �event time;

char �event type;

int �port;

/�

� parameters for control messages

�/

int �dest;

int �dest type;

int �tra�c type;

int �max rate;

int �voice conn rate;

char �stc init;

char �tel no;

int �grant reject;

char �modem code;

94

int �change mux;

int �modify rate;

/�

� parameters for port state

�/

int �active;

int �talk;

int �voice frame;

char �speech�le;

char �output�le;

g signaling event;

/�

����������������

� Name: queue.h

����������������

�

� De�nes the structure describing an element

� in the event queue

�/

struct Queue Item f

struct Queue Item �next;

int �time;

int �port;

int �active;

int �talk;

int �voice frame;

char �speech�le;

char �output�le;

g;

typedef struct Queue Item queue item;

/�

����������������

� Name: state.h

����������������

95

�

� Structure for storing the current state of each port

�/

typedef struct f

int active;

int talk;

int voice frame;

FILE �fp speech;

FILE �fp out;

g port state;

/�

�����������������

� Name: params.h

�����������������

�

� Header �le de�ning control message

� parameters

�/

#de�ne PORT 0

#de�ne DEST 1

#de�ne DEST TYPE 2

#de�ne TRAFFIC TYPE 3

#de�ne MAX RATE 4

#de�ne VOICE CONN RATE 5

#de�ne STC INIT 6

#de�ne TEL NO 7

#de�ne GRANT REJECT 8

#de�ne MODEM CODE 9

#de�ne CHANGE MUX 10

#de�ne MODIFY RATE 11

#de�ne STATE 12

#de�ne ACTIVITY 13

#de�ne VOICE FRAME 14

#de�ne SPEECHFILE 15

#de�ne OUTPUTFILE 16

96

#de�ne TRUE 1

#de�ne FALSE 0

#de�ne MAX PARAMS 17

#de�ne MAX TOTAL RATES 7

#de�ne MAX VOICE RATES 3

static char �params array[] = f "PORT", "DEST", "DEST_TYPE", "TRAFFIC_TYPE",

"MAX_RATE", "VOICE_CONN_RATE", "STC_INIT",

"TEL_NO", "GRANT_REJECT", "MODEM_CODE",

"CHANGE_MUX", "MODIFY_RATE", "STATE",

"ACTIVITY", "VOICE_FRAME", "SPEECHFILE",

"OUTPUTFILE" g;

static char �total rates[] = f "2400", "4800", "7200", "9600",

"12000", "14400", "16800", "19200" g;

static char �voice data rates[] = f "2400", "4800", "9600", "19200" g;

/�

���������������

� Name: msgs.h

���������������

�

� Header �le de�ning Message IDs and

� bit allocations for control messages

�/

#de�ne EXTERNAL 1

#de�ne INTERNAL 0

#de�ne GRANTED 1

#de�ne REJECTED 0

/�

� Structure de�ning number of bits for message

� components

97

�/

struct f

int msg id;

int dest type;

int dest add;

int tra�c type;

int max rate;

int voice rate;

int coder init;

int change mux;

int modify rate;

int ag;

g nbits = f 4, 1, 3, 2, 3, 2, 4, 1, 2, 1 g;

/�

� Message IDs

�/

#de�ne NIL 0x07

#de�ne CONN REQ 0x01

#de�ne CONN IND 0x02

#de�ne CONN RESP 0x03

#de�ne ALERTING 0x04

#de�ne CONN ACK 0x0f

#de�ne DISCONNECT 0x05

#de�ne MODIFY REQ 0x06

#de�ne MODIFY IND 0x08

#de�ne MODIFY RESP 0x09

#de�ne MODIFY ACK 0x0f

#de�ne START MODIFY 0x0a

#de�ne TRANSFORM 0x0b

#de�ne TRANSFORM ACK 0x0f

#de�ne START XFORM 0x0c

#de�ne OPEN CH 0x0d

#de�ne OPEN CH ACK 0x0f

#de�ne START CH 0x0e

#de�ne MODIFY SRC 0x00

#de�ne MODIFY SRC ACK 0x0f

98

B.3 Sample Con�guration File

The following is a sample con�guration �le for a 3-stage rate translation scenario.

time = 0

event = CHANGE_STATE

PORT = 0

STATE = ACTIVE

ACTIVITY = IDLE

OUTPUTFILE = port0.out

SPEECHFILE = sona.19200.bits

time = 0

event = CHANGE_STATE

PORT = 1

STATE = ACTIVE

ACTIVITY = IDLE

OUTPUTFILE = port1.out

SPEECHFILE = sona.19200.bits

time = 0

event = CHANGE_STATE

PORT = 2

STATE = ACTIVE

ACTIVITY = IDLE

OUTPUTFILE = port2.out

SPEECHFILE = sona.19200.bits

time = 0

event = CHANGE_STATE

PORT = 3

STATE = ACTIVE

ACTIVITY = IDLE

OUTPUTFILE = port3.out

SPEECHFILE = sona.19200.bits

time = 0

event = CONN_REQ

PORT = 0

DEST = 2

DEST_TYPE = EXTERNAL

TRAFFIC_TYPE = VOICE

99

MAX_RATE = 19200

VOICE_CONN_RATE = 19200

STC_INIT = 5

TEL_NO = (913)864-7738

time = 13

event = MODEM_RESPONSE

PORT = 1

MODEM_CODE = 1

time = 14

event = OPEN_CH_ACK

PORT = 1

time = 14

event = CHANGE_STATE

PORT = 4

STATE = ACTIVE

ACTIVITY = IDLE

OUTPUTFILE = port4.out

SPEECHFILE = sona.19200.bits

time = 14

event = CONN_RESP

PORT = 4

GRANT_REJECT = GRANTED

TRAFFIC_TYPE = VOICE

VOICE_CONN_RATE = 19200

time = 16

event = CONN_ACK

PORT = 4

STC_INIT = 9

time = 17

event = CHANGE_STATE

PORT = 0

ACTIVITY = TALK

VOICE_FRAME = 48

time = 17

event = CHANGE_STATE

100

PORT = 4

ACTIVITY = TALK

VOICE_FRAME = 48

time = 1683

event = CONN_REQ

PORT = 2

DEST = 3

DEST_TYPE = EXTERNAL

TRAFFIC_TYPE = VOICE

MAX_RATE = 19200

VOICE_CONN_RATE = 19200

STC_INIT = 5

TEL_NO = (913)864-7738

time = 1696

event = TRANSFORM_ACK

PORT = 4

time = 1697

event = OPEN_CH_ACK

PORT = 1

time = 1697

event = CHANGE_STATE

PORT = 5

STATE = ACTIVE

ACTIVITY = IDLE

OUTPUTFILE = port5.out

SPEECHFILE = sona.19200.bits

time = 1697

event = CONN_RESP

PORT = 5

GRANT_REJECT = GRANTED

TRAFFIC_TYPE = VOICE

VOICE_CONN_RATE = 19200

time = 1699

event = CONN_ACK

PORT = 5

STC_INIT = 9

101

time = 1700

event = CHANGE_STATE

PORT = 2

ACTIVITY = TALK

VOICE_FRAME = 48

time = 1700

event = CHANGE_STATE

PORT = 5

ACTIVITY = TALK

VOICE_FRAME = 48

time = 3333

event = CONN_REQ

PORT = 3

DEST = 1

DEST_TYPE = EXTERNAL

TRAFFIC_TYPE = VOICE

MAX_RATE = 19200

VOICE_CONN_RATE = 19200

STC_INIT = 7

TEL_NO = (913)864-7738

time = 3346

event = TRANSFORM_ACK

PORT = 4

time = 3347

event = OPEN_CH_ACK

PORT = 1

time = 3347

event = CHANGE_STATE

PORT = 6

STATE = ACTIVE

ACTIVITY = IDLE

OUTPUTFILE = port6.out

SPEECHFILE = sona.19200.bits

time = 3347

event = CONN_RESP

102

PORT = 6

GRANT_REJECT = GRANTED

TRAFFIC_TYPE = VOICE

VOICE_CONN_RATE = 19200

time = 3349

event = CONN_ACK

PORT = 6

STC_INIT = 9

time = 3350

event = CHANGE_STATE

PORT = 3

ACTIVITY = TALK

VOICE_FRAME = 48

time = 3350

event = CHANGE_STATE

PORT = 6

ACTIVITY = TALK

VOICE_FRAME = 48

103

Appendix C

Simulation Source Code

104

C.1 C Programs

/�

� NAME: main.c

�

� PURPOSE:

� Simulate the function of the control processor

� in the Adaptive Voice/Data Switch

�/

#include <stdio.h>

#include "scp.h"

int more messages()

f

int i, ag;

ag = 0;

for (i = 0; i � LOGICAL PORTS; i++)

ag = ag jj !feof(state[i].fp in);

return(ag);

g

void main(int argc, char �argv[]) f

int time, i, j, ch;

unsigned char byte in;

char indir[64], outdir[64];

char �in[8], �out[8], �cntrl[8], �speech[8], �xform[8];

if(argc < 2) f

printf("usage: switch.out <inputdir> <outputdir>\n");

exit(1);

g

strcpy(indir, argv[1]);

strcpy(outdir, argv[2]);

105

/�

� Initialization

�/

in[0] = "/sp_port_0";

in[1] = "/sp_port_1";

in[2] = "/sp_port_2";

in[3] = "/sp_port_3";

in[4] = "/sp_port_4";

in[5] = "/sp_port_5";

in[6] = "/sp_port_6";

in[7] = "/sp_port_7";

out[0] = "/outfile0";

out[1] = "/outfile1";

out[2] = "/outfile2";

out[3] = "/outfile3";

out[4] = "/outfile4";

out[5] = "/outfile5";

out[6] = "/outfile6";

out[7] = "/outfile7";

cntrl[0] = "/control0";

cntrl[1] = "/control1";

cntrl[2] = "/control2";

cntrl[3] = "/control3";

cntrl[4] = "/control4";

cntrl[5] = "/control5";

cntrl[6] = "/control6";

cntrl[7] = "/control7";

speech[0] = "/speech0";

speech[1] = "/speech1";

speech[2] = "/speech2";

speech[3] = "/speech3";

speech[4] = "/speech4";

speech[5] = "/speech5";

speech[6] = "/speech6";

speech[7] = "/speech7";

106

xform[0] = "/drop1";

xform[1] = "/drop2";

xform[2] = "/drop3";

xform[3] = "/drop4";

for (i = 0; i � MAX PORTS; i++) f

strcpy(state[i].in �le, indir);

strcat(state[i].in �le, in[i]);

strcpy(state[i].out �le, outdir);

strcat(state[i].out �le, out[i]);

strcpy(state[i].cntrl, outdir);

strcat(state[i].cntrl, cntrl[i]);

strcpy(state[i].speech, outdir);

strcat(state[i].speech, speech[i]);

for(j=0; j < MAX CH; j++) f

strcpy(state[i].xform �le[j], outdir);

strcat(state[i].xform �le[j], xform[j]);

g

g

for (i = 0; i � MAX PORTS; i++) f

state[i].alive = ON;

state[i].modem = OFF;

state[i].idle = ON;

state[i].connect = OFF;

state[i].busy = OFF;

state[i].xform = OFF;

state[i].data on = OFF;

state[i].voice on = OFF;

state[i].req ag = OFF;

state[i].master = i;

state[i].ch id = 0;

state[i].frame count = 0;

state[i].eof ag = 0;

state[i].idle to busy = OFF;

state[i].xform count = 0;

g

state[MODEM].modem = ON;

for (i = 0; i � PHYSICAL PORTS; i++) f

107

state[i].fp in = fopen(state[i].in �le, "r");

state[i].fp out = fopen(state[i].out �le, "w");

state[i].fp speech = fopen(state[i].speech, "w");

state[i].fp cntrl = fopen(state[i].cntrl, "w");

g

#ifdef VERBOSE

printf("finished init\n");

#endif

/�

� Main loop to read control messages from ports

� 0x7e => NULL message

�/

time = 0;

LOGICAL PORTS = 3;

while(more messages()) f

for(i = 0; i � LOGICAL PORTS; i++) f

if((ch = fgetc(state[i].fp in)) 6= EOF) f

byte in = (char)ch;

if(state[i].frame count == 0) f

if((byte in & 0x�) 6= 0x7e) f

#ifdef VERBOSE

printf("time slot #%d \t cntrl byte = 0x%x \n", time, (int)byte in);

#endif

con�gure(i, byte in);

fputc(byte in, state[i].fp cntrl);

g

if(state[i].busy) f

if(state[i].idle to busy == OFF) f

state[i].frame count = state[i].voice frame;

for(j = 0; j < state[i].voice frame; j++) f

108

ch = (char)fgetc(state[i].fp in);

fputc(ch, state[state[i].talk to].fp speech);

state[i].frame count��;

g

g

else

state[i].idle to busy = OFF;

g

g

g

else f

if(!state[i].eof ag) f

#ifdef VERBOSE

printf("Reached EOF on port %d\n", i);

#endif

state[i].eof ag = 1;

g

g

g

time++;

g

g

109

/�

� NAME: con�gure.c

�

� PURPOSE:

� Perform the appropriate action depending on the control byte

�

� INPUTS:

� port: port number

� cntrl in: control byte received from port

�

� OUTPUT:

� The switch state (the "state" struct) is updated

�/

#include <stdio.h>

#include "scp.h"

#include "msgs.h"

void con�gure(int port, unsigned char cntrl in) f

char cntrl out, new tra�c;

int line count, no line free, no ckt exists;

int modify, other end;

int msg id, bits left;

msg id = unpack bits(NBITS MSG ID, &cntrl in);

/�

� IDLE state

�/

if(state[port].idle) f

if(msg id == CONN REQ) f

#ifdef VERBOSE

printf("Received CONN_REQ on port %d\n", port);

#endif

state[port].idle = OFF;

state[port].connect = ON;

110

state[port].req ag = ON;

state[port].req count = 0;

g

g

/�

� CONNECT state

� (establishing a connection)

�/

if(state[port].connect) f

if(state[port].req ag == ON) f

/�

� Receiving request parameters

�/

state[port].req count++;

switch(state[port].req count)

f

case 1 :

state[port].dest type = unpack bits(NBITS DEST TYPE, (char �)0);

state[port].talk to = unpack bits(NBITS DEST ADD, (char �)0);

state[port].conn req 1 = cntrl in;

#ifdef VERBOSE

printf("Connection Request parameters:\n");

printf("\tdestination type = %d\n", state[port].dest type);

printf("\tdestination address = %d\n", state[port].talk to);

#endif

if(state[port].dest type == EXTERNAL)

state[port].max req = REMOTE REQ LEN;

else

state[port].max req = LOCAL REQ LEN;

state[state[port].talk to].talk to = port;

break;

case 2 :

state[port].voice on = unpack bits(NBITS FLAG, &cntrl in);

state[port].data on = unpack bits(NBITS FLAG, (char �)0);

state[port].max rate = unpack bits(NBITS MAX RATE, (char �)0);

state[port].voice rate = unpack bits(NBITS VOICE RATE, (char �)0);

state[port].xform voice = state[port].voice rate;

state[port].conn req 2 = cntrl in;

111

#ifdef VERBOSE

printf("\tvoice on = %d\n", state[port].voice on);

printf("\tdata on = %d\n", state[port].data on);

printf("\tmaximum rate = %d\n", state[port].max rate);

printf("\tvoice rate = %d\n", state[port].voice rate);

#endif

break;

case 3 :

state[port].stc init = unpack bits(NBITS CODER INIT, &cntrl in);

state[port].conn req 3 = cntrl in;

#ifdef VERBOSE

printf("\tcoder init = %d\n", state[port].stc init);

#endif

break;

case 4 :

case 5 :

case 6 :

case 7 :

case 8 :

case 9 :

case 10:

case 11:

case 12:

case 13:

state[port].phone no[state[port].req count�4] = cntrl in;

break;

g

g /� end of "if(state[port].req ag == ON)" �/

if(state[port].req ag == OFF) f

if(msg id == CONN ACK) f

state[port].stc init = unpack bits(NBITS CODER INIT, (char �)0);

#ifdef VERBOSE

printf("Recd CONN_ACK from port %d(dest) ch %d\n", state[port].master, state[port].ch id);

printf("\tcoder init = %d\n", state[port].stc init);

#endif

cntrl out = cntrl in;

fputc(cntrl out, state[state[port].talk to].fp out);

#ifdef VERBOSE

112

printf("Sent CONN_ACK to port %d(src)\n", state[port].talk to);

#endif

state[state[port].talk to].idle = OFF;

state[state[port].talk to].connect = OFF;

state[state[port].talk to].busy = ON;

state[port].idle = OFF;

state[port].connect = OFF;

state[port].busy = ON;

state[port].idle to busy = ON;

state[port].voice on = state[state[port].talk to].voice on;

state[port].data on = state[state[port].talk to].data on;

state[port].max rate = state[state[port].talk to].max rate;

state[port].voice rate = state[state[port].talk to].voice rate;

state[port].xform voice = state[state[port].talk to].xform voice;

state[port].data rate = state[state[port].talk to].data rate;

state[port].voice frame = frame length(state[port].voice rate, v);

state[state[port].talk to].voice frame = state[port].voice frame;

state[port].data frame = frame length(state[port].data rate, d);

state[state[port].talk to].data frame = state[port].data frame;

g

else if(msg id == CONN RESP) f

cntrl out = cntrl in;

fputc(cntrl out, state[state[port].talk to].fp out);

#ifdef VERBOSE

printf("Recd CONN_RESP from port %d(modem) ch %d, fwd to port %d(src)\n",

state[port].master, state[port].ch id, state[port].talk to);

#endif

if(unpack bits(NBITS FLAG, (char �)0) == NO) f

/�

� connection refused

�/

state[state[port].master].num ch��;

LOGICAL PORTS��;

state[state[port].talk to].connect = OFF;

state[state[port].talk to].idle = ON;

#ifdef VERBOSE

printf("Destination is busy\n");

#endif

g

g

g /� end of "if(state[port].req ag == OFF)" �/

113

if((state[port].req count == state[port].max req) && (state[port].req ag == ON)) f

state[port].req ag = OFF;

#ifdef VERBOSE

printf("Request parameters received from port %d\n", port);

#endif

if(state[port].dest type == EXTERNAL) f

line count = 0;

no line free = TRUE;

while((no line free) && (line count < PHYSICAL PORTS)) f

if(line count 6= port) f

if(state[line count].modem == ON) f

if((state[line count].busy == OFF) && (state[line count].connect == OFF)

&& (state[line count].modem resp == OFF))

no line free = FALSE;

else

line count++;

g

else

line count++;

g

else

line count++;

g

if(no line free) f

#ifdef VERBOSE

printf("Outgoing line busy...trying to multiplex connection\n");

#endif

line count = 0;

no ckt exists = TRUE;

while((no ckt exists) && (line count < PHYSICAL PORTS)) f

if(line count 6= port) f

if(state[line count].modem == ON) f

if(cmp phone(state[line count].talk to, port) == 1) f

#ifdef VERBOSE

printf("Physical connection to dest exists, checking bandwidth available\n");

#endif

no ckt exists = FALSE;

g

else

114

line count++;

g

else

line count++;

g

else

line count++;

g

g

if(!no line free) f

state[port].ext = state[port].talk to;

state[port].talk to = line count;

state[line count].pending req = port;

bits left = pack bits(CONN RESP, NBITS MSG ID, &cntrl out);

bits left = pack bits(YES, NBITS FLAG, &cntrl out);

bits left = pack bits(0, bits left, &cntrl out);

fputc(cntrl out, state[port].fp out);

bits left = pack bits(state[port].voice on, NBITS FLAG, &cntrl out);

bits left = pack bits(state[port].data on, NBITS FLAG, &cntrl out);

bits left = pack bits(state[port].voice rate, NBITS VOICE RATE, &cntrl out);

bits left = pack bits(0, bits left, &cntrl out);

fputc(cntrl out, state[port].fp out);

#ifdef VERBOSE

printf("Sent WAIT...CALL PROCEEDING to port %d\n", port);

printf("Dialing telephone number on port %d(modem)\n", state[port].talk to);

#endif

dial(port, state[port].talk to);

state[state[port].talk to].idle = OFF;

state[state[port].talk to].modem resp = ON;

g

if(no line free && !no ckt exists) f

state[port].ext = state[port].talk to;

state[line count].pending req = port;

if(check bandwidth(port, line count) == 0) f

#ifdef VERBOSE

printf("Bandwidth currently not available...trying to transform rate\n");

#endif

if(transform (port, line count) == 0) f

#ifdef VERBOSE

printf("Sorry, cant transform\n");

115

#endif

g

else f

if(state[port].xform ag == ON) f

state[port].xform ag = OFF;

bits left = pack bits(CONN RESP, NBITS MSG ID, &cntrl out);

bits left = pack bits(YES, NBITS FLAG, &cntrl out);

bits left = pack bits(0, bits left, &cntrl out);

fputc(cntrl out, state[port].fp out);

bits left = pack bits(state[port].voice on, NBITS FLAG, &cntrl out);

bits left = pack bits(state[port].data on, NBITS FLAG, &cntrl out);

bits left = pack bits(state[port].voice rate, NBITS VOICE RATE, &cntrl out);

bits left = pack bits(0, bits left, &cntrl out);

fputc(cntrl out, state[port].fp out);

#ifdef VERBOSE

printf("Sent CONN_RESP to port %d\n", port);

#endif

g

if(state[line count].xform ag == ON) f

state[line count].xform ag = OFF;

state[state[line count].port map[state[line count].xform ch]].xform ag = OFF;

bits left = pack bits(TRANSFORM, NBITS MSG ID, &cntrl out);

bits left = pack bits(state[state[line count].port map[state[line count].xform ch]].xform voice,

NBITS VOICE RATE, &cntrl out);

fputc(cntrl out, state[state[line count].port map[state[line count].xform ch]].fp out);

#ifdef VERBOSE

printf("Sent TRANSFORM to port %d(modem) ch %d\n", line count, state[line count].xform ch)

#endif

state[state[line count].port map[state[line count].xform ch]].xform = ON;

#ifdef VERBOSE

printf("Pending request from port %d(src) to port %d(dest)\n", port, line count);

#endif

g

g

g

else f

bits left = pack bits(CONN RESP, NBITS MSG ID, &cntrl out);

bits left = pack bits(YES, NBITS FLAG, &cntrl out);

bits left = pack bits(0, bits left, &cntrl out);

fputc(cntrl out, state[port].fp out);

bits left = pack bits(state[port].voice on, NBITS FLAG, &cntrl out);

bits left = pack bits(state[port].data on, NBITS FLAG, &cntrl out);

116

bits left = pack bits(state[port].voice rate, NBITS VOICE RATE, &cntrl out);

bits left = pack bits(0, bits left, &cntrl out);

fputc(cntrl out, state[port].fp out);

#ifdef VERBOSE

printf("Sent WAIT...CALL PROCEEDING to port %d\n", port);

#endif

bits left = pack bits(OPEN CH, NBITS MSG ID, &cntrl out);

bits left = pack bits(0, bits left, &cntrl out);

fputc(cntrl out, state[line count].fp out);

#ifdef VERBOSE

printf("Sent OPEN_CHANNEL to port %d(modem)\n", line count);

#endif

state[line count].open ch = ON;

g

g

g

if(state[port].dest type == INTERNAL) f

if(state[state[port].talk to].busy) f

bits left = pack bits(CONN RESP, NBITS MSG ID, &cntrl out);

bits left = pack bits(NO, NBITS FLAG, &cntrl out);

bits left = pack bits(0, bits left, &cntrl out);

fputc(cntrl out, state[port].fp out);

#ifdef VERBOSE

printf("port %d(dest) busy, sent CONN_RESP (NO) to port %d(src)\n", state[port].talk to,

port);

#endif

state[port].connect = OFF;

g

else f

#ifdef VERBOSE

printf("Setting up connection to port %d(dest)\n", state[port].talk to);

#endif

setup conn(port);

g

g

g

g/� end of "if(state[port].connect)" �/

/�

117

� MODEM RESULT state

� (waiting for modem result code)

�/

else if(state[port].modem resp) f

state[port].modem resp = OFF;

if(cntrl in == 1) f

#ifdef VERBOSE

printf("Port %d: Modem result code = CONNECT\n", port);

#endif

state[port].busy = ON;

cntrl out = OPEN CH;

fputc(cntrl out, state[port].fp out);

#ifdef VERBOSE

printf("Sent OPEN_CHANNEL to port %d(modem)\n", port);

#endif

state[port].open ch = ON;

g

else f

#ifdef VERBOSE

if(cntrl in == 6) f

printf("Port %d: Modem result code = NO DIALTONE\n", port);

g

if(cntrl in == 7) f

printf("Port %d: Modem result code = BUSY\n", port);

g

if(cntrl in == 8) f

printf("Port %d: Modem result code = NO ANSWER\n", port);

g

#endif

bits left = pack bits(CONN RESP, NBITS MSG ID, &cntrl out);

bits left = pack bits(NO, NBITS FLAG, &cntrl out);

bits left = pack bits(0, bits left, &cntrl out);

fputc(cntrl out, state[state[port].talk to].fp out);

#ifdef VERBOSE

printf("Sent CONN_RESP (NO) to port %d \n", state[port].talk to);

#endif

state[state[port].pending req].connect = OFF;

state[state[port].pending req].idle = ON;

g

g

118

/�

� BUSY state

� (talking to another port)

�/

else if(state[port].busy) f

if(msg id == MODIFY REQ) f

#ifdef VERBOSE

printf("Received MODIFY_REQ from port %d \t",port);

#endif

state[port].mod type = unpack bits(NBITS CHANGE MUX, (char �)0);

state[port].mod rate = unpack bits(NBITS MODIFY RATE, (char �)0);

modify = OFF;

if(state[port].mod type == CHANGE) f

if(state[port].voice on)

new tra�c = d;

if(state[port].data on)

new tra�c = v;

if(decode(state[port].mod rate, new tra�c) � decode(state[port].max rate, t))

modify = ON;

g

if(state[port].mod type == MULTIPLEX) f

if(state[port].voice on) f

if(decode(state[port].voice rate,v) + decode(state[port].mod rate,d) �

decode(state[port].max rate,t))

modify = ON;

g

if(state[port].data on) f

if(decode(state[port].data rate,d) + decode(state[port].mod rate,v) �

decode(state[port].max rate,t))

modify = ON;

g

g

if(modify) f

bits left = pack bits(MODIFY RESP, NBITS MSG ID, &cntrl out);

bits left = pack bits(YES, NBITS FLAG, &cntrl out);

fputc(cntrl out, state[port].fp out);

119

#ifdef VERBOSE

printf("Sent a Modify Response (YES) to port %d (source) \n", port);

#endif

bits left = pack bits(MODIFY IND, NBITS MSG ID, &cntrl out);

bits left = pack bits(state[port].mod type, NBITS CHANGE MUX, &cntrl out);

bits left = pack bits(state[port].mod rate, NBITS MODIFY RATE, &cntrl out);

fputc(cntrl out, state[state[port].talk to].fp out);

#ifdef VERBOSE

printf("Sent MODIFY_IND: port %d (dest) \n", state[port].talk to);

#endif

state[port].busy = OFF;

state[port].modify = ON;

state[port].mod src = ON;

state[state[port].talk to].busy = OFF;

state[state[port].talk to].modify = ON;

state[state[port].talk to].mod src = OFF;

g

else f

bits left = pack bits(MODIFY RESP, NBITS MSG ID, &cntrl out);

bits left = pack bits(NO, NBITS FLAG, &cntrl out);

fputc(cntrl out, state[port].fp out);

#ifdef VERBOSE

printf("Sent MODIFY_RESP (NO): port %d (src) \n", port);

#endif

g

g

if(msg id == DISCONNECT) f

#ifdef VERBOSE

printf("Received DISCONNECT from port %d\n", port);

#endif

other end = state[state[port].talk to].master;

if(state[port].modem jj state[other end].modem) f

printf("....reconfiguring modem \n");

g

if(state[port].master 6= port) f

state[state[port].master].num ch��;

LOGICAL PORTS��;

g

state[port].idle = ON;

state[port].busy = OFF;

cntrl out = DISCONNECT;

120

fputc(cntrl out, state[state[port].talk to].fp out);

#ifdef VERBOSE

printf("Sent DISCONNECT to port %d ch %d\n", state[state[port].talk to].master,

state[state[port].talk to].ch id);

#endif

if(state[state[port].talk to].master 6= state[port].talk to) f

state[state[state[port].talk to].master].num ch��;

LOGICAL PORTS��;

g

state[state[port].talk to].idle = ON;

state[state[port].talk to].busy = OFF;

g

if(state[port].open ch == ON) f

if(msg id == OPEN CH ACK) f

state[port].open ch = OFF;

#ifdef VERBOSE

printf("Received OPEN_CHANNEL_ACK from port %d\n", port);

#endif

add channel(port);

cntrl out = state[state[port].pending req].conn req 1 & 0xdf; /� ip dest type �/

fputc(cntrl out, state[LOGICAL PORTS].fp out);

cntrl out = state[state[port].pending req].conn req 2;

fputc(cntrl out, state[LOGICAL PORTS].fp out);

cntrl out = state[state[port].pending req].conn req 3;

fputc(cntrl out, state[LOGICAL PORTS].fp out);

#ifdef VERBOSE

printf("Sent CONN_REQ on external line (port %d) ch %d\n", port,

state[LOGICAL PORTS].ch id);

#endif

g

g

if(state[port].xform == ON) f

if(msg id == TRANSFORM ACK) f

state[port].xform count++;

state[port].xform = OFF;

#ifdef VERBOSE

printf("Received TRANSFORM_ACK from port %d \n", port);

printf("Enable DSP\n");

printf("Wait for Started Xform signal from DSP\n");

121

printf("Started Xform signal received\n");

#endif

cntrl out = START XFORM;

fputc(cntrl out, state[port].fp out);

#ifdef VERBOSE

printf("Sent START_XFORM to port %d\n", port);

#endif

strcpy(state[port].speech, state[port].xform �le[state[port].xform count�1]);

state[port].fp speech = fopen(state[port].speech, "w");

cntrl out = OPEN CH;

fputc(cntrl out, state[state[port].master].fp out);

#ifdef VERBOSE

printf("Sent OPEN_CHANNEL to port %d(modem)\n", state[port].master);

#endif

state[state[port].master].open ch = ON;

g

g

g

else if(state[port].modify) f

if(state[port].mod src == ON) f

if(msg id == START MODIFY) f

#ifdef VERBOSE

printf("Received CALL MODIFIED: port %d \n", port);

#endif

if(state[port].voice on) f

if(state[port].mod type == CHANGE)

state[port].voice on = OFF;

state[port].data on = ON;

state[port].data rate = state[port].mod rate;

g

if(state[port].data on) f

if(state[port].mod type == CHANGE)

state[port].data on = OFF;

state[port].voice on = ON;

state[port].voice rate = state[port].mod rate;

g

state[port].modify = OFF;

state[port].busy = ON;

state[state[port].talk to].modify = OFF;

state[state[port].talk to].busy = ON;

122

g

g

g

g /� end of con�gure �/

123

/�

� NAME: code decode rate.c

�

� PURPOSE:

� These routines perform code conversion

�

� encoded rate j decoded rate

� binary j voice data

� 00 j 1 1

� 01 j 2 2

� 10 j 4 4

� 11 j 8 4

�/

#include<stdio.h>

int decode(int code in, char type) f

int rate;

static int voice rate[]=f1, 2, 4, 8g;

static int data rate[]=f1, 2, 4, 4g;

if(type == t)

rate = code in + 1;

else if(type == v)

rate = voice rate[code in];

else if(type == d)

rate = data rate[code in];

return(rate);

g

int code(int rate, char type) f

int code out;

static int voice code[]=f0, 0, 1, 0, 2, 0, 0, 0, 3g;

static int data code[]=f0, 0, 1, 1, 2, 2, 2, 2, 2g;

124

if(type == v)

code out = voice code[rate];

else if(type == d)

code out = data code[rate];

return(code out);

g

125

/�

� NAME: frame length.c

�

� PURPOSE:

� This routine returns the frame length in bytes

� for a given rate and tra�c type

�

� INPUTS:

� rate: voice/data rate (00,01,10,11)

� frame type: voice/data

�

� RETURN VALUE:

� frame length in bytes

�/

#include <stdio.h>

int frame length(int rate, char frame type) f

int length;

static int data frame len[] = f 64, 64, 64, 0 g;

static int voice frame len[] = f 6, 12, 24, 48 g;

switch(frame type) f

case d: length = data frame len[rate];

break;

case v: length = voice frame len[rate];

break;

g

return(length);

g

126

/�

� NAME: cmp phone.c

�

� PURPOSE:

� This routine compares the remote destination addresses

� (telephone numbers) for two calls to determine if call

� multiplexing is possible

�

� INPUTS:

� port1, port2 : calling ports

�

� RETURN VALUE:

� 1 => phone numbers not matched

� 0 => phone numbers are identical

�/

#include<stdio.h>

#include "scp.h"

int cmp phone(int port1, int port2) f

int cmp ag=1, i=0;

while (cmp ag && (i�PHYSICAL PORTS))

f

if (state[port1].phone no[i] == state[port2].phone no[i])

cmp ag = 1;

else

cmp ag = 0;

i++;

g

return(cmp ag);

g

127

/�

� NAME: dial.c

�

� PURPOSE:

� This routine uses the AT command set to dial

� a phone number on the modem

�

� INPUTS:

� src: calling port

� modem: modem port

�/

#include <stdio.h>

#include "scp.h"

void dial(int src, int modem) f

int i;

char cntrl out;

cntrl out = A;

fputc (cntrl out, state[modem].fp out);

cntrl out = T;

fputc (cntrl out, state[modem].fp out);

cntrl out = D;

fputc (cntrl out, state[modem].fp out);

cntrl out = T;

fputc (cntrl out, state[modem].fp out);

#ifdef VERBOSE

printf ("The dialing sequence is: ATDT ");

for (i=0; i < PHONE NO; i++) f

cntrl out = state[src].phone no[i];

fputc (cntrl out, state[modem].fp out);

printf ("%c", state[src].phone no[i]);

g

printf ("\n");

#endif

g

128

/�

� NAME: setup conn.c

�

� PURPOSE:

� This routine sets up a connection between

� src and state[src].talk to

�/

#include <stdio.h>

#include "scp.h"

#include "msgs.h"

void setup conn(src)

int src;

f

int total, voice, data, bits left;

char temp, cntrl out;

total = decode(state[src].max rate, t);

voice = decode(state[src].voice rate, v);

data = total � voice;

state[src].data rate = code(data, d);

if (state[src].voice on)

state[src].voice frame = frame length(state[src].voice rate, v);

else

state[src].voice frame = 0;

if (state[src].data on)

state[src].data frame = frame length(state[src].data rate, d);

else

state[src].data frame = 0;

bits left = pack bits(CONN RESP, NBITS MSG ID, &cntrl out);

bits left = pack bits(YES, NBITS FLAG, &cntrl out);

bits left = pack bits(0, bits left, &cntrl out);

fputc (cntrl out, state[src].fp out);

bits left = pack bits(state[src].voice on, NBITS FLAG, &cntrl out);

bits left = pack bits(state[src].data on, NBITS FLAG, &cntrl out);

bits left = pack bits(state[src].voice rate, NBITS VOICE RATE, &cntrl out);

bits left = pack bits(0, bits left, &cntrl out);

fputc (cntrl out, state[src].fp out);

#ifdef VERBOSE

129

printf ("Sent CONN_RESP to port %d \t");

#endif

bits left = pack bits(CONN IND, NBITS MSG ID, &cntrl out);

bits left = pack bits(0, 2, &cntrl out);

bits left = pack bits(state[src].voice on, NBITS FLAG, &cntrl out);

bits left = pack bits(state[src].data on, NBITS FLAG, &cntrl out);

fputc (cntrl out, state[state[src].talk to].fp out);

bits left = pack bits(state[src].voice rate, NBITS VOICE RATE, &cntrl out);

bits left = pack bits(state[src].data rate, NBITS DATA RATE, &cntrl out);

bits left = pack bits(state[src].stc init, NBITS CODER INIT, &cntrl out);

fputc (cntrl out, state[state[src].talk to].fp out);

#ifdef VERBOSE

printf ("Sent CONN_IND to port %d (dest) \n", state[src].talk to);

#endif

state[state[src].talk to].connect = ON;

state[state[src].talk to].pending req = src;

g

130

/�

� NAME: add channel.c

�

� PURPOSE:

� This routine opens a transport layer connection

� on an existing modem link. This is simulated by

� activating a virtual "port", setting up the

� necessary �le pointers for that port, and then

� redirecting all i/o to or from the modem on that

� channel to the new port.

�/

#include <stdio.h>

#include "scp.h"

void add channel(modem)

int modem;

f

state[modem].num ch++;

LOGICAL PORTS++;

state[modem].port map[state[modem].num ch] = LOGICAL PORTS;

state[LOGICAL PORTS].active = ON;

state[LOGICAL PORTS].master = modem;

state[LOGICAL PORTS].ch id = state[modem].num ch;

state[LOGICAL PORTS].idle = OFF;

state[LOGICAL PORTS].connect = ON;

state[LOGICAL PORTS].talk to = state[modem].pending req;

state[LOGICAL PORTS].fp in = fopen (state[LOGICAL PORTS].in �le, "r");

state[LOGICAL PORTS].fp out = fopen (state[LOGICAL PORTS].out �le, "w");

state[LOGICAL PORTS].fp speech = fopen (state[LOGICAL PORTS].speech, "w");

state[LOGICAL PORTS].fp cntrl = fopen (state[LOGICAL PORTS].cntrl, "w");

state[state[modem].pending req].talk to = LOGICAL PORTS;

g

131

/�

� NAME: check bandwidth.c

�

� PURPOSE:

� This routine checks if bandwidth is available on

� the modem link to accomodate an additional caller

�

� INPUTS:

� caller = calling port

� modem = modem port

�

� RETURN VALUE:

� 1 => bandwidth available

� 0 => not available

�/

#include<stdio.h>

#include "scp.h"

#de�ne MAX LINK RATE 8

int check bandwidth(caller, modem)

int caller, modem;

f

int i, port;

int old total, old voice=0, old data=0;

int new total, new voice=0, new data=0;

for (i=1; i�state[modem].num ch; i++)

f

port = state[modem].port map[i];

if(state[port].active)

f

if(state[port].voice on)

f

old voice += decode(state[port].xform voice, v);

g

if(state[port].data on)

old data += decode(state[port].data rate,d);

g

132

g

old total = old voice + old data;

if(state[caller].voice on)

f

new voice = decode(state[caller].xform voice, v);

g

if(state[caller].data on)

new data = decode(state[caller].data rate,d);

new total = new voice + new data;

if((old total + new total) � MAX LINK RATE)

return(1);

else

return(0);

g

133

/�

� NAME: transform.c

�

� PURPOSE:

� Tries to accomodate new call by xforming rate on

� current and/or previous call(s). Priority for

� dropping rate: (i) Higher rate calls

� (ii) Older calls

�

� INPUTS:

� caller = calling port

� modem = modem port

�

� RETURN VALUE:

� 0 => transform not possible

� 1 => transform possible

�/

#include<stdio.h>

#include "scp.h"

int transform(caller, modem)

int caller, modem;

f

int caller voice, ch number, voice, port, high voice, high port, done ag;

int save caller voice, save high voice;

static int drop rate[] = f 0, 0, 1, 0, 2, 0, 0, 0, 4 g;

caller voice = decode(state[caller].voice rate, v);

ch number = 1;

high port = state[modem].port map[ch number];

high voice = decode(state[high port].xform voice, v);

while (ch number � state[modem].num ch)

f

ch number++;

port = state[modem].port map[ch number];

if (state[port].active)

voice = decode(state[port].xform voice, v);

else

134

voice = 0;

if (high voice < voice)

f

high voice = voice;

high port = port;

g

g

done ag = OFF;

while ((caller voice � high voice) && (done ag == OFF))

f

caller voice = drop rate[caller voice];

save caller voice = state[caller].xform voice;

state[caller].xform voice = code(caller voice, v);

state[caller].xform ag = ON;

if (check bandwidth(caller, modem) == 1)

done ag = ON;

g

if (done ag == OFF)

f

save high voice = state[high port].xform voice;

state[high port].xform voice = code(drop rate[high voice], v);

state[high port].xform ag = ON;

state[modem].xform ag = ON;

state[modem].xform ch = state[high port].ch id;

if (check bandwidth(caller, modem) == 1)

done ag = ON;

g

if (done ag == OFF)

f

state[caller].xform voice = save caller voice;

state[high port].xform voice = save high voice;

state[caller].xform ag = OFF;

state[high port].xform ag = OFF;

state[modem].xform ch = 0;

g

return(done ag);

g

135

/�

� NAME: pack bits.c

�

� PURPOSE:

� This routine takes parameters of given

� length and packs them into control bytes

�

� INPUTS:

� param: parameter to be packed

� index: #bits in param

� chptr: the packed control byte

�

� RETURN VALUE:

� the number of bits left in the current byte

�/

#include<stdio.h>

#include<math.h>

#de�ne WORD 8

static int count = 0;

static int bits left index, bits left count;

static char bitpack;

static short masks[] = f 0, 0x01, 0x03, 0x07, 0x0f,

0x01f, 0x03f, 0x07f, 0x0�,

0x01�, 0x03�, 0x07�, 0x0�f,

0x01�f, 0x03�f, 0x07�f, 0x0�� g;

int pack bits(short param, int index, char �chptr)f

short part1, part2;

bits left count = WORD � count;

if (index < bits left count) f

bitpack = bitpack�index;

bitpack += param;

count += index;

136

g else if (bits left count == index) f

bitpack = bitpack�index;

bitpack += param;

�chptr = bitpack;

count = 0;

bitpack = 0;

g else f

bits left index = index � bits left count;

part1 = (param�bits left index) & masks[bits left count];

bitpack = bitpack�bits left count;

bitpack += part1;

�chptr = bitpack;

bitpack=0;

if (bits left index � WORD) f

bits left count = WORD;

bits left index = bits left index � bits left count;

part1 = (param�bits left index) & masks[bits left count];

bitpack = bitpack�bits left count;

bitpack += part1;

�chptr = bitpack;

g

bitpack = param & masks[bits left index];

count = bits left index;

g

bits left count = WORD � count;

return(bits left count);

g

137

/�

� NAME: unpack bits.c

�

� PURPOSE:

� This subroutine unpacks parameters from control bytes

�

� INPUTS:

� index: #bits the variable param is to have

� chptr: control byte to be unpacked

�

� RETURN VALUE:

� param: the unpacked version

�/

#include<math.h>

#include<stdio.h>

#de�ne INT WORD 8

static int count = 0;

static int bits left index, bits left count;

static char bitpack;

int param;

static short masks[] = f 0, 0x01, 0x03, 0x07, 0x0f,

0x01f, 0x03f, 0x07f, 0x0�,

0x01�, 0x03�, 0x07�, 0x0�f,

0x01�f, 0x03�f, 0x07�f, 0x0�� g;

int unpack bits(int index, char �chptr)f

short part1, part2, middle part, left;

int nmbr;

if (chptr 6= (char �)0) f

bitpack = �chptr;

count = 0;

g

bits left count = INT WORD � count;

if (count == 0) f

138

bitpack = �chptr;

g

if (index � bits left count) f

left = bits left count � index;

param = (bitpack�left) & masks[index];

count+=index;

g

else f /� parameter longer than current word �/

bits left index = index � bits left count;

part1 = bitpack & masks[bits left count];

part1 = part1�bits left index;

if (bits left index > INT WORD) f

bits left count = INT WORD;

bits left index = bits left index � bits left count;

bitpack = �chptr;

middle part = bitpack & masks[bits left count];

middle part = middle part�bits left index;

part1 = part1 + middle part;

g

bitpack = �chptr;

left = INT WORD � bits left index;

part2 = bitpack�left;

part2 = part2 & masks[bits left index];

param = part1 + part2;

count = bits left index;

g

if (count == 8) f /� need a new word, but wait until next time �/

139

count = 0;

g

return(param);

g

140

C.2 Header Files

/�

� NAME: scp.h

�

� PURPOSE:

� Header �le de�ning the structure used to

� maintain port state

�

� Description of �elds in port struct:

�

� modem = modem port

� alive = port active

� idle = port not busy

� connect = call setup in progress

� modem resp = waiting for modem response

� busy = talking to another port

� xform = rate modi�cation in progress

� modify = call modi�cation in progress

� conn req 1 j

� conn req 2 j connection request

� conn req 3 j

� stc init = coder initialization

� dest type: 0=>local, 1=>remote

� talk to = port connected to

� ext = extension address for remote call

� phone no = 10-digit tel# (remote switch address)

� data on: 0=>no data, 1=>data

� voice on: 0=>no voice, 1=>voice

� max rate = maximum link rate

� voice rate = voice connection rate

� data rate = allowable data rate

� voice frame = voice frame length in bytes

� data frame = data frame length in bytes

� max req = number of bytes in connection request

� = 3 if destination is local

� = 8 if destination is remote

� req count = #connection request bytes received

� req ag = indicates end of request

� pending req: port with conn req pending

� open ch: waiting for open ch ack

� master = self => physical port

141

� = other => logical port

� ch id = channel number (if logical port)

� num ch = #channels active (if physical port)

� port map[x] = channel #x is mapped to logical

� port #port map[x]

� mod type: 0=>change, 1=>multiplex

� mod rate: rate for new tra�c

� mod src = waiting for modify source ack

� xform ch j

� xform voice j used to communicate with transform

� xform ag j routine

� xform count j

� in �le = input �le (coded speech+control)

� out �le = output �le (echoes control from in �le)

� cntrl = output control message �le

� speech = output speech �le (no rate translation)

� xform �le[n] = output speech �le after

� nth stage of rate translation

� frame count = #bytes left in current frame

� idle to busy = signi�es state transition

� eof ag: 1=>EOF reached on port

�/

#de�ne PHONE NO 10

#de�ne ON 1

#de�ne OFF 0

#de�ne TRUE 1

#de�ne FALSE 0

#de�ne YES 1

#de�ne NO 0

#de�ne CHANGE 0

#de�ne MULTIPLEX 1

#de�ne INTERNAL 0

#de�ne EXTERNAL 1

#de�ne MAX CH 4

#de�ne MAX PORTS 7

#de�ne PHYSICAL PORTS 3

#de�ne MAX PATH NAME 80

142

int LOGICAL PORTS;

struct PortState f

unsigned int modem : 1;

unsigned int alive : 1;

unsigned int idle : 1;

unsigned int connect : 1;

unsigned int modem resp : 1;

unsigned int busy : 1;

unsigned int xform : 1;

unsigned int modify : 1;

char conn req 1;

char conn req 2;

char conn req 3;

unsigned int dest type : 1;

unsigned int talk to : 3;

unsigned int data on : 1;

unsigned int voice on : 1;

unsigned int max rate : 3;

unsigned int voice rate : 2;

unsigned int data rate : 2;

char stc init;

char phone no[PHONE NO];

unsigned int ext : 3;

int voice frame;

int data frame;

int max req;

int req count;

unsigned int req ag : 1;

unsigned int pending req : 3;

unsigned int open ch : 1;

unsigned int master : 3;

int ch id;

int num ch;

unsigned int port map[MAX CH];

unsigned int mod type : 1;

unsigned int mod rate : 2;

unsigned int mod src : 1;

unsigned int xform ch;

unsigned int xform voice : 2;

unsigned int xform ag : 1;

143

int xform count;

char in �le[MAX PATH NAME], out �le[MAX PATH NAME];

char cntrl[MAX PATH NAME], speech[MAX PATH NAME];

char xform �le[MAX CH][MAX PATH NAME];

FILE �fp in, �fp out, �fp cntrl, �fp speech;

int frame count;

unsigned int idle to busy : 1;

unsigned int eof ag : 1;

g state[8];

144

/�

� NAME: msgs.h

�

� Header �le describing control

� message IDs and bit allocations

�/

/�

� De�nitions of number of bits

� for message components

�/

#de�ne NBITS MSG ID 4

#de�ne NBITS DEST TYPE 1

#de�ne NBITS DEST ADD 3

#de�ne NBITS TRAFFIC TYPE 2

#de�ne NBITS MAX RATE 3

#de�ne NBITS VOICE RATE 2

#de�ne NBITS DATA RATE 2

#de�ne NBITS CODER INIT 4

#de�ne NBITS CHANGE MUX 1

#de�ne NBITS MODIFY RATE 2

#de�ne NBITS FLAG 1

/�

� Misc control message defs

�/

#de�ne LOCAL REQ LEN 3

#de�ne REMOTE REQ LEN 13

/�

� Message Id's

�/

#de�ne NIL 0x07

#de�ne CONN REQ 0x01

#de�ne CONN IND 0x02

#de�ne CONN RESP 0x03

#de�ne ALERTING 0x04

145

#de�ne CONN ACK 0x0f

#de�ne DISCONNECT 0x05

#de�ne MODIFY REQ 0x06

#de�ne MODIFY IND 0x08

#de�ne MODIFY RESP 0x09

#de�ne MODIFY ACK 0x0f

#de�ne START MODIFY 0x0a

#de�ne TRANSFORM 0x0b

#de�ne TRANSFORM ACK 0x0f

#de�ne START XFORM 0x0c

#de�ne OPEN CH 0x0d

#de�ne OPEN CH ACK 0x0f

#de�ne START CH 0x0e

#de�ne MODIFY SRC 0x00

#de�ne MODIFY SRC ACK 0x0f

146

Bibliography

[1] Najeeb I. Ansari, Sona S. Kapadia, and Joseph B. Evans. A narrowband

adaptive voice/data switch. In IEEE Wichita Conference on Communica-

tions, Networking and Signal Processing, April 1994.

[2] O. A. Avellaneda, J. F. Hayes, and M. M. Nassehi. A capacity allocation

problem in voice-data networks. IEEE Trans. Comm., COM-30(7), July

1982.

[3] I. Boyd. Speech coding for telecommunications. In F. A. Westall and S. F. A.

Ip, editors, Digital Signal Processing in Telecommunications. Chapman &

Hall, 1993.

[4] T. G. Champion. Theory of parameter space transformation techniques.

Tech. rep., Rome Laboratories, to be published.

[5] T. G. Champion and J. B. Evans. A exible multirate speech coder. In Proc.

Int. Conf. Signal Proc. Appl. & Tech., pages 1440{1443, Sept 1993.

[6] Martin de Prycker. Asynchronous Transfer Mode Solution for Broadband

ISDN. Ellis Horwood Limited, 1992.

[7] Spiros Dimolitsas. Standardizing speech-coding technology for network ap-

plications. IEEE Communications Magazine, Nov 1993.

147

[8] J. B. Evans and T. G. Champion. Robust speech coding and reconstruction

techniques. In Proc. Int. Conf. Signal Proc. Appl. & Tech., pages 928{931,

Nov 1992.

[9] Joseph B. Evans and Timouthy Johnson. Adaptive voice/data networks.

Proposal to Rome Laboratories, University of Kansas, March 1993.

[10] G. J. Foschini, B. Gopinath, and J. F. Hayes. Optimum allocation of servers

to two types of competing customers. IEEE Trans. Comm., COM-29(7), July

1981.

[11] Dale Gulick. The basics of high-level data link control. In Gary R. McClain,

editor, The Handbook of International Connectivity Standards. Van Nostrand

Reinhold, 1992.

[12] N. S. Jayant. Coding speech at low bit rates. IEEE Spectrum, Aug 1986.

[13] Whay C. Lee and Michael G. Hluchyj. Dynamic connection management for

call-level QOS guarantee in integrated communication networks. In Proc.

IEEE Infocom, 1994.

[14] R. J. McAulay and T. G. Champion. Improved interoperable 2.4 kb/s

LPC using sinusoidal transform coder techniques. In Proc. IEEE Int. Conf.

Acoust., Speech, Signal Processing, pages 641{643, 1990.

[15] R. J. McAulay and T. F. Quatieri. Magnitude-only reconstruction using a

sinusoidal speech model. In Proc. IEEE Int. Conf. Acoust., Speech, Signal

Processing, pages 27.6.1{27.6.4, 1984.

[16] R. J. McAulay and T. F. Quatieri. Mid-rate speech coding based on a sinu-

soidal representation of speech. In Proc. IEEE Int. Conf. Acoust., Speech,

Signal Processing, pages 945{948, 1985.

148

[17] R. J. McAulay and T. F. Quatieri. Multirate sinusoidal transform coding at

rates from 2.4 kbps to 8 kbps. In Proc. IEEE Int. Conf. Acoust., Speech,

Signal Processing, pages 1645{1648, 1986.

[18] R. J. McAulay and T. F. Quatieri. Speech analysis-synthesis based on a

sinusoidal representation. IEEE Trans. Acoust., Speech, Signal Processing,

ASSP-34(4):744{754, Aug 1986.

[19] Robert J. McAulay and Thomas F. Quatieri. Low-rate speech coding based

on the sinusoidal model. In Sadaoki Furui and M. Mohan Sondhi, editors,

Advances in Speech Signal Processing. M. Dekker, 1991.

[20] Gopalkrishnan Meempat and Malur Sundareshan. Optimum channel alloca-

tion policies for access control of circuit-switched tra�c in isdn environments.

IEEE Trans. Comm., 41(2), Feb 1993.

[21] Amanda Moody, Cli� Parris, and Danny Wong. Selecting a speech coding

algorithm. DSP & Multimedia Technology, May 1994.

[22] D. Petr, L. DaSilva, and V. Frost. Priority discarding of speech in integrated

packet networks. IEEE Journ. Select. Areas Commun., SAC-7(5):644{656,

June 1989.

[23] David W. Petr, K. M. S. Murthy, Victor S. Frost, and Lyn A. Neir. Mod-

eling and simulation of the resource allocation process in a bandwidth-on-

demand satellite communications network. IEEE Journ. Select. Areas Com-

mun., 10(2), Feb 1992.

[24] John D. Spragins, Joseph L. Hammond, and Krzysztof Pawlikowski. Telecom-

munications Protocols and Design. Addison-Wesley Publishing Company,

1991.

149

[25] William Stallings. ISDN and Broadband ISDN. Macmillan Publishing Com-

pany, 1992.

[26] Andrew S. Tannenbaum. Computer Networks. Prentice Hall, Inc., 1988.

[27] Jonathan S. Turner. New directions in communications (or which way to the

information age. IEEE Commun. Mag., 24(10):8{15, Oct 1986.

[28] Nanying Yin and Michael G. Hluchyj. A dynamic rate control mechanism

for source coded tra�c in a fast packet network. IEEE Journ. Select. Areas

Commun., 9(7):1003{1012, Sept 1991.

150

