e

Rosetta Functional Specification Domains

Perry Alexander
EECS Department / ITTC
The University of Kanasas

P O=ett=

What is Rosetta?

» Rosetta is a language for describing systems
— Presently the focus is on complex electronic systems -> SOC
— Being explored for complex mechanical systems
 Rosetta defines systems by writing and composing
models
— Each model is defined with respect to one domain
— Composition provides definition from multiple perspectives
« Rosetta consists of a syntax (a set of legal

descriptions) and a semantics (a meaning associated
with each description)

P O=ett=

Domains and Interactions

* A Rosetta domain provides a vocabulary for model
specificiation
— Defines commonly used abstractions
— Defines state and time
» A Rosetta interaction provides a definition of how
specification domains interact

— Defines when facts from one domain cause facts to be true in
another

— Causes information to cross domains when models are composed

e

Understanding Facet Definitions

» Facets provide mechanisms for defining models
and grouping definitions

Facet Name Parameter List

Variables — facet trigger(x::in real; y::out bit) is
s::bit; -
begin continuous <+ <
tl: s@t+1ns =
Terms 4 if s=1 then if x>=0.4 then 1 else 0 endif;
else if x=<0.7 then O else 1 endif;
t2: y@t+10ns=s;
end trigger:;

P O=ett=

The Logic Domain

 The logic domain provides a basic set of mathematical
expressions, types and operations

— Number and character types and operations
— Boolean and bit types and operations

— Compound types and operations
» bunch, set, sequence, array

— Aggregate types and operations
» record, tuple

— Function function and operation definition

« Best thought of as the mathematics facet
— No temporal or state concepts

P O=ett=

The State-Based Domain

e The state-based domain supports defining behavior by
referencing the current and next state

« Basic additions in the state-based domain include:
— S - The state type
— next::[S->S] - Relates the current state to the next state
— X@s - Value of x in state s
— X’ - Standard shorthand for x@next(s)

e

Defining State Based Specifications

Define important elements that describe state

Define properties in the current state that specify
assumptions for correct operation

— Frequently called a precondition

Define properties in the next state that specify how the
model changes it’s environment

— Frequently called a postcondition

Define properties that must hold for every state
— Frequently called invariants

e

The Pulse Processor Specification

facet pp-function(inPulse:: in PulseType;
inPulseTime:: in time;
0:: out command) is
use timeTypes; use pulseTypes;
pulseTime :: time;
pulse :: PulseType;
begin state-based
L1: pulseTime >= O;
L2: pulse=A1 and inPulse=A2 => pulse’=none;
L3:pulse=A1 and inPulse=A1 => pulse’=none and
o’ =interpret(pulseTime,inPulseTime);
end pp-function;

P O=ett=

When to use the State-Based Domain

« Use state-based specification when:
— When a generic input/output relation is known without details
— When specifying software components

Do not use state-based specification when:

— Timing constraints and relationships are important
— Composing specifications is anticipated

P O=ett=

The Finite State domain

e The finite-state domain supports defining systems
whose state space is known to be finite

« The finite-state domain is a simple extension of the
state-based domain where:

— S is defined to be or is provably finite

P O=ett=
Trigger Example

 There are two states representing the current output
value

— S:itype = 0++1;
* The next state is determined by the input and the
current state
— L1: next(0) = if i>=0.7 then 1 else 0 endif;
— L2: next(1) = if i=<0.3 then 0 else 1 endif;

 The output is the state

3 o=

] el M

The Trigger Specification

facet trigger(i:: in real; o:: out bit) is
S::itype = 0++1;

begin state-based
LT: next(0) = if i>=0.7 then 1 else 0 endif;
L2: next(1) = if i=<0.3 then 0 else 1 endif;
S0 —3

end trigger;

P O=ett=

When to use the Finite State Domain

« Use the finite-state domain when:
— Specifying simple sequential machines
— When it is helpful to enumerate the state space
« Do not use the finite-state domain when

— The state space cannot be proved finite

— Usage over specifies the properties of states and the next state
function

P O=ett=

The Infinite State Domain

e The infinite-state domain supports defining systems
whose state spaces are infinite

 The infinite—state domain is an extension to the state-
based domain and adds the following axiom:

— next(s) > s

e The infinite-state domain asserts a total ordering on
the state space

— A state can never be revisited

e

The Pulse Processor Revisited

The Initial pulse arrival time must be greater than zero
— LT1: pulseTime >= 0;

Adding the infinite state restriction assures that time
advances

If the initial pulse is of type A1 and the arriving pulse is
of type A2, reset and wait for another pulse

— L2: pulse=A1 and inPulse=A2 implies pulse’=none

If the initial pulse is of type A1 and the arriving pulse if
of type A1, then output command

— L3: pulse=A1 and inPulse=A1 implies pulse’=none and
o’ =interpret(pulseTime,inPulseTime);

e

The Discrete Time Domain

The discrete-time domain supports defining systems
Iin discrete time

The discrete-time domain is a special case of the
infinite-state domain with the following definition

— next(t)=t+delta;
The constant delta>=0 defines a single time step
The state type T is the set of all multiples of delta

All other definitions remain the same
— next(t) satisfies next(t)>t

e

Discrete Time Pulse Processor

facet pp-function(inPulse::in PulseType;
o::out command) is
use pulseTypes;
pulseTime :: T;
pulse :: PulseType;
begin discrete-time
L2: pulse=A1 and inPulse=A2 => pulse@t+delta=none;
L3:pulse=A1 and inPulse=A1 => pulse@t+delta=none and
o@t+2*delta=interpret(pulseTime,t);
end pp-function;

e

Discrete Time Pulse Processor

State is the last pulse received and its arrival time or
none

The initial pulse arrival time must be greater than zero
— Guaranteed by definition of time

If the initial pulse is of type A1 and the arriving pulse is
of type A2, reset and wait for another pulse

— L2: pulse=A1 and inPulse=A2 implies pulse@t+delta=none

If the initial pulse is of type A1 and the arriving pulse if
of type A1, then output command in under 2 time
quanta

— L3: pulse=A1 and inPulse=A1 implies pulse@t+delta=none
and o@t+2*delta=interpret(pulseTime,t);

No state should ever have a negative time value
— Guaranteed by the definition of time

P O=ett=

When to use the Discrete Time Domain

« Use the discrete-time domain when:

— Specifying discrete time digital systems

— Specifying concrete instances of systems level specifications
« Do not use the discrete-time domain when:

— Timing Is not an issue

— More general state-based specifications work equally well

P O=ett=

The Continuous Time Domain

* The continuous-time domain supports defining
systems in continuous time

e The continuous-time domain has no notion of next
state

— The time value is continuous — no next function
— The “@” operation is still defined

» Alternatively define functions over t in the canonical fashion
» Derivative, indefinite and definite integrals are available

P O=ett=

Continuous Time Pulse Processor

* Not particular interesting or different from the discrete
time version

— Can reference arbitrary time values
— Cannot use the next function

— No reference to discrete time — must know what delta is

e

Continuous Time Pulse Processor

facet pp-function(inPulse::in PulseType;
o::out command) is
use pulseTypes;
pulseTime :: T;
pulse :: PulseType;
begin discrete-time
L2: pulse=A1 and inPulse=A2 => pulse@t+5ms=none;
L3:pulse=A1 and inPulse=A1 => pulse@t+5ms=none and
o@t+10ms=interpret(pulseTime,t);
end pp-function;

P O=ett=

Understanding the Continuous Time Pulse
Processor

» Discrete time references are replaced by absolute time
references with respect to the current time

— Using 5ms and 10ms intervals rather than the fixed time quanta

P O=ett=

Using the Continuous Time Domain

» Use the continuous-time domain when
— Arbitrary time values must be specified
— Describing analog, continuous time subsystems
Do not use the continuous-time domain when:

— Describing discrete time systems
— State based specifications would be more appropriate

P O=ett=

Specialized Domain Extensions

« The domain mechanical is a special extension of the

logic and continuous time domains for specifying
mechanical systems

« The domain constraints is a special extension of the
logic domain for specifying performance constraints

« Other extensions of domains are anticipated to
represent:

— New specification styles
— New specification domains such as optical and MEMS subsystems

e

Domains and Interactions

Monotonic Logic

State-Based > Continuous Time

Finite State Infinite State

Discrete Time

Example Requirements definition domains and standard interactions
— Solid lines represent homomorphsisms
— Dashed lines represent incomplete interactions

P O=ett=

More Information?

 The new Rosetta web page is available at:
http://www.ittc.ukans.edu/Projects/SLDG/rosetta
 Email the authors at:
alex@ittc.ukans.edu
dib@averstar.com

« Come to the tutorial yesterday!
— Slides will be available via the web page

