
Rosetta Functional Specification DomainsRosetta Functional Specification Domains

Perry AlexanderPerry Alexander
EECS Department / ITTCEECS Department / ITTC

The University of The University of KanasasKanasas

What is What is RosettaRosetta??

•• Rosetta is a language for describing systemsRosetta is a language for describing systems
–– Presently the focus is on complex Presently the focus is on complex electronicelectronic systems systems --> SOC> SOC
–– Being explored for complex Being explored for complex mechanicalmechanical systemssystems

•• Rosetta defines systems by writing and composing Rosetta defines systems by writing and composing
modelsmodels
–– Each model is defined with respect to one domainEach model is defined with respect to one domain
–– Composition provides definition from multiple perspectivesComposition provides definition from multiple perspectives

•• Rosetta consists of a Rosetta consists of a syntaxsyntax (a set of legal (a set of legal
descriptions)descriptions) and a and a semanticssemantics (a meaning associated (a meaning associated
with each description)with each description)

Domains and InteractionsDomains and Interactions

•• A Rosetta A Rosetta domaindomain provides a vocabulary for model provides a vocabulary for model
specificiationspecificiation
–– Defines commonly used abstractionsDefines commonly used abstractions
–– Defines state and timeDefines state and time

•• A Rosetta A Rosetta interaction interaction provides a definition of how provides a definition of how
specification domains interactspecification domains interact
–– Defines when facts from one domain cause facts to be true in Defines when facts from one domain cause facts to be true in

anotheranother
–– Causes information to cross domains when models are composedCauses information to cross domains when models are composed

Understanding Facet DefinitionsUnderstanding Facet Definitions

facet trigger(x::in real; y::out bit) is
s::bit;

begin continuous
t1: s@t+1ns =

if s=1 then if x>=0.4 then 1 else 0 endif;
else if x=<0.7 then 0 else 1 endif;

t2: y@t+10ns=s;
end trigger;

Facet Name Parameter List

Variables

Domain

Terms

•• Facets provide mechanisms for defining models Facets provide mechanisms for defining models
and grouping definitionsand grouping definitions

The Logic DomainThe Logic Domain

•• The logic domain provides a basic set of mathematical The logic domain provides a basic set of mathematical
expressions, types and operationsexpressions, types and operations
–– Number and character types and operationsNumber and character types and operations
–– Boolean and bit types and operationsBoolean and bit types and operations
–– Compound types and operationsCompound types and operations

»» bunch, set, sequence, arraybunch, set, sequence, array
–– Aggregate types and operationsAggregate types and operations

»» record, tuplerecord, tuple
–– Function function and operation definitionFunction function and operation definition

•• Best thought of as the mathematics facetBest thought of as the mathematics facet
–– No temporal or state conceptsNo temporal or state concepts

The StateThe State--Based DomainBased Domain

•• The The statestate--basedbased domain supports defining behavior by domain supports defining behavior by
referencing the current and next statereferencing the current and next state

•• Basic additions in the Basic additions in the statestate--basedbased domain include:domain include:
–– S S –– The state typeThe state type
–– next::[Snext::[S-->S] >S] –– Relates the current state to the next stateRelates the current state to the next state
–– x@sx@s -- Value ofValue of x x in statein state ss
–– x’ x’ –– Standard shorthand for Standard shorthand for x@next(s)x@next(s)

Defining State Based SpecificationsDefining State Based Specifications

•• Define important elements that describe stateDefine important elements that describe state
•• Define properties in the current state that specify Define properties in the current state that specify

assumptions for correct operationassumptions for correct operation
–– Frequently called a preconditionFrequently called a precondition

•• Define properties in the next state that specify how the Define properties in the next state that specify how the
model changes it’s environmentmodel changes it’s environment
–– Frequently called a postconditionFrequently called a postcondition

•• Define properties that must hold for every stateDefine properties that must hold for every state
–– Frequently called invariantsFrequently called invariants

The Pulse Processor SpecificationThe Pulse Processor Specification

facet pp-function(inPulse:: in PulseType;
inPulseTime:: in time;
o:: out command) is

use timeTypes; use pulseTypes;
pulseTime :: time;
pulse :: PulseType;

begin state-based
L1: pulseTime >= 0;
L2: pulse=A1 and inPulse=A2 => pulse’=none;
L3:pulse=A1 and inPulse=A1 => pulse’=none and

o’=interpret(pulseTime,inPulseTime);
end pp-function;

When to use the StateWhen to use the State--Based DomainBased Domain

•• Use stateUse state--based specification when:based specification when:
–– When a generic input/output relation is known without detailsWhen a generic input/output relation is known without details
–– When specifying software componentsWhen specifying software components

•• Do not use stateDo not use state--based specification when:based specification when:
–– Timing constraints and relationships are importantTiming constraints and relationships are important
–– Composing specifications is anticipatedComposing specifications is anticipated

The Finite State domainThe Finite State domain

•• The The finitefinite--statestate domain supports defining systems domain supports defining systems
whose state space is known to be finitewhose state space is known to be finite

•• The The finitefinite--statestate domain is a simple extension of the domain is a simple extension of the
statestate--based based domain where:domain where:
–– SS is defined to be or is provably finiteis defined to be or is provably finite

Trigger ExampleTrigger Example

•• There are two states representing the current output There are two states representing the current output
valuevalue
–– S::type = 0++1;S::type = 0++1;

•• The next state is determined by the input and the The next state is determined by the input and the
current statecurrent state
–– L1: next(0) = if i>=0.7 then 1 else 0 L1: next(0) = if i>=0.7 then 1 else 0 endifendif;;
–– L2: next(1) = if i=<0.3 then 0 else 1 L2: next(1) = if i=<0.3 then 0 else 1 endifendif;;

•• The output is the stateThe output is the state
–– L3: o’=s;L3: o’=s;

The Trigger SpecificationThe Trigger Specification

facet trigger(i:: in real; o:: out bit) is
S::type = 0++1;

begin state-based
L1: next(0) = if i>=0.7 then 1 else 0 endif;
L2: next(1) = if i=<0.3 then 0 else 1 endif;
L3: o’=s;

end trigger;

When to use the Finite State DomainWhen to use the Finite State Domain

•• Use the Use the finitefinite--statestate domain when:domain when:
–– Specifying simple sequential machinesSpecifying simple sequential machines
–– When it is helpful to enumerate the state spaceWhen it is helpful to enumerate the state space

•• Do not use the Do not use the finitefinite--statestate domain whendomain when
–– The state space cannot be proved finiteThe state space cannot be proved finite
–– Usage over specifies the properties of states and the next stateUsage over specifies the properties of states and the next state

functionfunction

The Infinite State DomainThe Infinite State Domain

•• The The infiniteinfinite--statestate domain supports defining systems domain supports defining systems
whose state spaces are infinitewhose state spaces are infinite

•• The The infiniteinfinite--statestate domain is an extension to the domain is an extension to the statestate--
basedbased domain and adds the following axiom:domain and adds the following axiom:
–– next(s) > snext(s) > s

•• The The infiniteinfinite--statestate domain asserts a total ordering on domain asserts a total ordering on
the state spacethe state space
–– A state can never be revisitedA state can never be revisited

The Pulse Processor RevisitedThe Pulse Processor Revisited

•• The initial pulse arrival time must be greater than zeroThe initial pulse arrival time must be greater than zero
–– L1:L1: pulseTimepulseTime >= 0;>= 0;

•• Adding the infinite state restriction assures that time Adding the infinite state restriction assures that time
advancesadvances

•• If the initial pulse is of type A1 and the arriving pulse is If the initial pulse is of type A1 and the arriving pulse is
of type A2, reset and wait for another pulseof type A2, reset and wait for another pulse
–– L2: pulse=A1 and L2: pulse=A1 and inPulseinPulse=A2 implies =A2 implies pulse’=nonepulse’=none

•• If the initial pulse is of type A1 and the arriving pulse if If the initial pulse is of type A1 and the arriving pulse if
of type A1, then output commandof type A1, then output command
–– L3: pulse=A1 and L3: pulse=A1 and inPulseinPulse=A1 implies pulse’=none and =A1 implies pulse’=none and

o’=interpret(o’=interpret(pulseTimepulseTime,,inPulseTimeinPulseTime););

The Discrete Time DomainThe Discrete Time Domain

•• The The discretediscrete--timetime domain supports defining systems domain supports defining systems
in discrete timein discrete time

•• The The discretediscrete--timetime domain is a special case of the domain is a special case of the
infiniteinfinite--statestate domain with the following definitiondomain with the following definition
–– next(t)=t+delta;next(t)=t+delta;

•• The constantThe constant delta>=0delta>=0 defines a single time stepdefines a single time step
•• The state typeThe state type TT is the set of all multiples of is the set of all multiples of deltadelta
•• All other definitions remain the sameAll other definitions remain the same

–– next(t) next(t) satisfies satisfies next(t)>tnext(t)>t

Discrete Time Pulse ProcessorDiscrete Time Pulse Processor

facet pp-function(inPulse::in PulseType;
o::out command) is

use pulseTypes;
pulseTime :: T;
pulse :: PulseType;

begin discrete-time
L2: pulse=A1 and inPulse=A2 => pulse@t+delta=none;
L3:pulse=A1 and inPulse=A1 => pulse@t+delta=none and

o@t+2*delta=interpret(pulseTime,t);
end pp-function;

Discrete Time Pulse ProcessorDiscrete Time Pulse Processor

•• State is the last pulse received and its arrival time or State is the last pulse received and its arrival time or
nonenone

•• The initial pulse arrival time must be greater than zeroThe initial pulse arrival time must be greater than zero
–– Guaranteed by definition of timeGuaranteed by definition of time

•• If the initial pulse is of type A1 and the arriving pulse is If the initial pulse is of type A1 and the arriving pulse is
of type A2, reset and wait for another pulseof type A2, reset and wait for another pulse
–– L2: pulse=A1 andL2: pulse=A1 and inPulseinPulse=A2 implies =A2 implies pulse@t+delta=nonepulse@t+delta=none

•• If the initial pulse is of type A1 and the arriving pulse if If the initial pulse is of type A1 and the arriving pulse if
of type A1, then output command in under 2 time of type A1, then output command in under 2 time
quantaquanta
–– L3: pulse=A1 andL3: pulse=A1 and inPulseinPulse=A1 implies pulse@t+delta=none =A1 implies pulse@t+delta=none

and o@t+2*delta=interpret(and o@t+2*delta=interpret(pulseTimepulseTime,t);,t);
•• No state should ever have a negative time valueNo state should ever have a negative time value

–– Guaranteed by the definition of timeGuaranteed by the definition of time

When to use the Discrete Time DomainWhen to use the Discrete Time Domain

•• Use the Use the discretediscrete--timetime domain when:domain when:
–– Specifying discrete time digital systemsSpecifying discrete time digital systems
–– Specifying concrete instances of systems level specificationsSpecifying concrete instances of systems level specifications

•• Do not use the Do not use the discretediscrete--timetime domain when:domain when:
–– Timing is not an issueTiming is not an issue
–– More general stateMore general state--based specifications work equally wellbased specifications work equally well

The Continuous Time DomainThe Continuous Time Domain

•• The The continuouscontinuous--timetime domain supports defining domain supports defining
systems in continuous timesystems in continuous time

•• The The continuouscontinuous--timetime domain has no notion of next domain has no notion of next
statestate
–– The time value is continuous The time value is continuous –– no next functionno next function
–– The The “@”“@” operation is still definedoperation is still defined

»» Alternatively define functions over t in the canonical fashionAlternatively define functions over t in the canonical fashion

•• Derivative, indefinite and definite integrals are availableDerivative, indefinite and definite integrals are available

Continuous Time Pulse ProcessorContinuous Time Pulse Processor

•• Not particular interesting or different from the discrete Not particular interesting or different from the discrete
time versiontime version
–– Can reference arbitrary time valuesCan reference arbitrary time values
–– Cannot use the Cannot use the nextnext functionfunction
–– No reference to discrete time No reference to discrete time –– must know what delta ismust know what delta is

Continuous Time Pulse ProcessorContinuous Time Pulse Processor

facet pp-function(inPulse::in PulseType;
o::out command) is

use pulseTypes;
pulseTime :: T;
pulse :: PulseType;

begin discrete-time
L2: pulse=A1 and inPulse=A2 => pulse@t+5ms=none;
L3:pulse=A1 and inPulse=A1 => pulse@t+5ms=none and

o@t+10ms=interpret(pulseTime,t);
end pp-function;

Understanding the Continuous Time Pulse Understanding the Continuous Time Pulse
ProcessorProcessor

•• Discrete time references are replaced by absolute time Discrete time references are replaced by absolute time
references with respect to the current timereferences with respect to the current time
–– Using 5ms and 10ms intervals rather than the fixed time quantaUsing 5ms and 10ms intervals rather than the fixed time quanta

Using the Continuous Time DomainUsing the Continuous Time Domain

•• Use the Use the continuouscontinuous--timetime domain whendomain when
–– Arbitrary time values must be specifiedArbitrary time values must be specified
–– Describing analog, continuous time subsystemsDescribing analog, continuous time subsystems

•• Do not use the Do not use the continuouscontinuous--timetime domain when:domain when:
–– Describing discrete time systemsDescribing discrete time systems
–– State based specifications would be more appropriateState based specifications would be more appropriate

Specialized Domain ExtensionsSpecialized Domain Extensions

•• The domain The domain mechanicalmechanical is a special extension of the is a special extension of the
logic and continuous time domains for specifying logic and continuous time domains for specifying
mechanical systemsmechanical systems

•• The domain The domain constraintsconstraints is a special extension of the is a special extension of the
logic domain for specifying performance constraintslogic domain for specifying performance constraints

•• Other extensions of domains are anticipated to Other extensions of domains are anticipated to
represent:represent:
–– New specification stylesNew specification styles
–– New specification domains such as optical and MEMS subsystemsNew specification domains such as optical and MEMS subsystems

Domains and InteractionsDomains and Interactions

Monotonic Logic

State-Based

Infinite StateFinite State

Discrete Time

Continuous Time

•• Example Requirements definition domains and standard interactionExample Requirements definition domains and standard interactionss
–– Solid lines represent Solid lines represent homomorphsismshomomorphsisms
–– Dashed lines represent incomplete interactionsDashed lines represent incomplete interactions

More Information?More Information?

•• The new Rosetta web page is available at:The new Rosetta web page is available at:
http://www.ittc.ukans.edu/Projects/SLDG/rosettahttp://www.ittc.ukans.edu/Projects/SLDG/rosetta

•• Email the authors at:Email the authors at:
alex@ittc.ukans.edualex@ittc.ukans.edu
ddlb@averstar.comlb@averstar.com

•• Come to the tutorial yesterday!Come to the tutorial yesterday!
–– Slides will be available via the web pageSlides will be available via the web page

