
A Dual Spring System Case-Study Model in Rosetta

Peter J. Ashenden
Dept. Computer Science

Adelaide University
Adelaide, SA 5005,

Australia
petera@cs.adelaide.edu.au

Perry Alexander
The University of Kansas

EECS Dept. / ITTC
2291 Irving Hill Rd.

Lawrence, KS 66044, USA
alex@ittc.ukans.edu

David L. Barton
Averstar

1593 Spring Hill Road,
Suite 700

Vienna, VA 22182-2249,
USA

dlb@averstar.com

Abstract
This paper describes a design case-study
undertaken as part of the language design
validation for the Rosetta System Level
Description Language. The system under
consideration is a dual- spring mechanical
system. A physical model is constructed,
describing the static characteristics of
springs and the requirements and
constraints applying to the system. It is
demonstrated that the declarative
modelling style used in Rosetta is a
powerful modelling tool. Furthermore, the
formal semantic basis of the language
allows analysis of models and interfaces
with other tools.

2. Introduction
Rosetta [1,2,3] is a system-level design
language, being developed by two of the
authors, Alexander and Barton, as part of
the SLDL Initiative [4] currently sponsored
by Accellera (formerly VHDL
International) and ECSI. The SLDL
Initiative was originally sponsored by the
EDA Industry Council, and moved under
the auspices of VI and ECSI in 1999.
Rosetta addresses a need for a language in
which designers can specify the
requirements and constraints on a system
that spans multiple design domains.
Requirements describe functional
behaviour that a system must exhibit, and
constraints describe operational bounds
within which the system must remain. The
different design domains include digital
and analogue electronic subsystems, and

the mechanical, optical, fluidic and thermal
subsystems with which they interact.
Various computational models are most
appropriate to describe aspects of systems
in different domains. Example
computational models include finite and
infinite state-based, discrete event, discrete
time, and continuous time. The Rosetta
language is extensible to allow designs to
be expressed using each of these
computational models, and to allow
expression of the interactions between
descriptions in each computational model.
The language achieves this extensibility be
being based on a formal semantic
underpinning and by including facilities for
reflection. In combination, these features
allow definition of syntax and semantics of
new Rosetta domains for expressing
requirements and constraints using
different computational models.
This paper describes a model of a dual-
spring mechanical system, developed as a
design case study in Rosetta. The design
was originally specified informally using a
combination of English language and
mathematical equations. The information
in this specification formed the basis of a
Rosetta specification, in which the
requirements and constraints are expressed
formally in a manner that is amenable to
analysis and computation. The model is
expressed in the logic domain in terms of
continuous mathematical equations that
describe the mechanical system.

2. Overview of the Rosetta
language
The key language feature in Rosetta for
describing a system is a facet. A facet
captures one aspect of a system, describing
properties of interest in one chosen domain.
A given system may be described by a
number of different facets, each
characterising the system in a different do-
main. The various facets may be combined
to provide a multi-faceted description,
which might be instantiated as part of a
larger system. In this section, we present a
very brief overview of facets to enable the
reader to understand the spring model that
follows.
A facet, in its textual rendition, is a named
unit comprising a parameter list, a
collection of declarations, a domain
identifier, and a collection of labelled
terms. An illustrative example of a
requirements facet for a sorter device is:

facet trigger(x::in real; y::out

bit) is

 s:: bit;

begin continuous-time

 t1: if s = 1 then

 if x >= 0.4 then s' = 1

else s' = 0 endif;

 else

 if x =< 0.7 then s' = 0

else s' = 1 endif;

 endif;

 t2: y@t+10ns = s;

end trigger;

The facet is named trigger, and represents
the behaviour of a Schmidt trigger device.
The two parameters, x and y, each are of
type bit. The parameter modes, in and out,
are simply assertions whose meaning is
defined in the domain of the facet. The
domain is identified after the keyword
begin, continuous-time in this example,
representing the predefined continuous-
time domain. The declaration before the
keyword begin names the variable s and
specifies its type as bit. The two terms t1
and t2 are assertions about the values of the
parameters and the variables that must be
true at all times. The variable t is implicitly

defined in the continuous time domain to
refer to the “current” time, and each term in
the facet is implicitly universally quantified
over all times. It is important to note that
the operator “=” is an equality operator, not
assignment. Thus the terms should be read
as statements about what must be true at all
times, rather than as operational definitions
of events.
The notation s' denotes the value of s at the
next instant after the current time. As
shown in the example model, this allows
descriptions of discontinuities in the value
of a variable over time. The notation
y@t+10ns denotes the value of the variable
y at a time 10ns later than the current time
t. This allows expression of temporal
relationships between values of variables.
The example model shown above uses
simple bit-valued and real-valued types for
variables. Rosetta has a very rich type
system, including scalar discrete and
continuous types, and type constructors for
arrays, records, tuples and sequences.
Furthermore, it permits definition of
higher-order types, namely, types whose
values are functions. The type system has
well-founded mathematical semantics.
This, in conjunction with the formal
semantic definition of facets and their
constituents, makes formal analysis and
verification of Rosetta models feasible.
Facets, such as the one shown above, can
be instantiated as terms in other facets, with
variables or expressions being associated
with the formal parameters. This provides
a form of structural composition of models.
As an illustration, the Schmidt trigger facet
might be instantiated in a sensor model as
follows:

facet sensor (...) is

 data_in:: real;

 quantized_data:: bit;

 ...

begin continuous

 s1:

trigger(data_in,quantized_data);

 ...

end sensor;

Furthermore, different facets of a given
system can be composed using facet
operators to form a description covering the

different aspects of the system. One of the
more common compositions is facet
conjunction using the facet operator “and”,
which requires that all terms of both
operand facets be true. Other composition
operators include “or” for describing a
system that may have several variants,
“<=>” for asserting equivalence of two
facets, and “=>” (implication) for asserting
that one facet is a refinement of a more
abstract facet. These and other com-
position operators are described in more
detail in The Rosetta Usage Guide [1].
The domains referred to in the above
descriptions are predefined sets of
definitions that enlarge the syntactic and
semantic vocabulary of the base language
for particular kinds of modelling or
computation. A domain definition consists
of a collection of declarations and terms
that are included in facets based on the
domain. For example, the continuous facet
used in the example model above defines
the time variable t, and also defines the
syntax and semantics of the “'” and “@”
symbols. Rosetta predefines a number of
domains that will be used in a wide variety
of models. The fundamental domain is
called logic, and includes definitions of the
basic mathematical types, operators and
expressions. Other predefined domains
inherit from the logic domain, as shown in
the following figure. The arrows represent
homomorphism from more- abstract
domains to domains which are more
concrete in their representation of state or
time.
Where a model is composed of facets from
different domains, Rosetta interactions
define the way in which terms in one
domain imply properties in other domains.
For example, an interaction that deals with
conjunction of the logic domain and the
continuous time domain might include a
rule specifying that each term in the logic-
domain facet is true for all time in the
continuous-time domain.
While the Rosetta language is extensible
through the definition of new domains and
interactions, it is anticipated that most
designers will only need to use the
predefined domains and interactions.
Development of new domains and
interactions requires a deep understanding

of the underlying semantics, and is
expected to be performed by a relatively
small number of application developers.

3. Overview of the spring
example
The dual-spring design example is a case
study specified by The US Air Force
Materials Directorate to demonstrate an
end-to-end Rosetta-based design activity.
The case study requires design of a system
comprising two coaxial wire springs, one
shorter than the other. The inner spring
must fit over a 1.0” diameter tube and must
fit inside the outer spring. The outer spring
must fit inside a 2.5” diameter tube. The
maximum uncompressed length of the
longer spring is 12.0”, and the system must
allow deflection of 6.0”. For the first 4.0”
of deflection, the system must exhibit a rate
(force per unit deflection) of 50 lb/in, and
for deflection between 4.0” and 6.0”, the
system must exhibit a rate of 75lb/in.
In addition to these problem-related
requirements and constraints, equations are
provided that relate the performance
properties of a spring (rate and free length)
to its physical properties (wire diameter,
coil diameter and pitch, number of coils).
Further constraints are specified for a
spring to ensure that it does not assume a
permanent deformation due to excessive
compression. These constraints are
expressed as inequalities in terms of the
materials properties of the spring wire,
including its modulus of rigidity, shear
stress and shear yield stress.

4. The Rosetta spring model
The Rosetta model for the design example
is comprised of two parts, presented in full
in the Appendix to this paper. The first
part is a parameterised model of a single
spring, expressed as a Rosetta facet in the
logic domain. We use this domain since
we are dealing with a static model, not a
dynamic model.

The formal parameters to the facet describe
the physical characteristics of the spring:
the wire diameter (d), the coil inner
diameter (ID) and outer diameter (OD), the

Modulus of Rigidity of the wire (G), the
number of coils (N), and the coil pitch (p).
Within the facet, a number of internal items
are defined, representing the derived
quantities mentioned in the spring
equations. These include the spring rate
(R) and desired free length (L) used in de-
termining the performance of the spring,
and the material properties used in the
constraints.
The spring facet models a spring in terms
of equations and inequalities that relate
these parameters and derived quantities.
We use the convention of labelling
constraint terms with labels C1, C2, etc.,
formula terms with labels F1, F2, etc., and
assertion terms with labels A1, A2, etc.
Term C1 simply relates the inner and outer
diameters to the wire diameter. C2 and C3
are constraints on the spring constant and
number of coils determined from
experience and given in the problem
statement. F1 is given in the problem
statement as a formula relating several
variables as follows:
This is simply translated into Rosetta using
predefined mathematical operators.
Formulas represented in F2 and F3 are
likewise given in the problem statement. N
is the total number of coils. This,
multiplied by the wire diameter, gives the
height of the full compressed spring. F4
gives the minimum free (uncompressed)
length of the spring (Lm): the fully
compressed height (H) plus the maximum
compression that will be applied.
However, since the spring rate is non-linear
over the last 20% of compression, the
desired free length (L) is set to be longer
than the minimum free length. This is
expressed in F5. The next term, F6,
expressed the coil pitch (p) in terms of the
free length, wire diameter and number of
active coils. C4 is a constraint that ensures
that the spring is “spring-like” rather than
being a column of wire.
The remaining terms in the spring facet
define the corrected shear force applied to
the spring on full deflection (Sk) and the
shear yield strength of the wire (Sy). These
terms are transliterations of the formulas
provided in the problem statement. Finally
C5 is the constraint that prevents the
applied shear force exceeding the yield

strength. If this constraint is violated, the
spring “takes on a set,” that is, it suffers a
permanent deformation.
The second part of the Rosetta model for
the design example is a facet that describes
the composite system. The spring_system
facet declares a number of variables
representing properties of the inner and
outer springs, as well as the overall system
deflection and applied force. The facet also
includes two instances of the single-spring
facet, and a collection of equations and
constraints that parallel the informal
specification provided in the problem
statement.
In particular, the facet includes equations
that relate the overall system deflection to
the deflections of the individual springs,
and the overall system rate to the rates of
the individual springs. The Modulus of
Rigidity of the springs is given in the
problem specification, but the other phys-
ical characteristics are required to be
determined from the required overall rate
and the physical constraints. Hence the
actual parameters for the spring instances,
describing the physical characteristics, are
free variables. Their values depend on the
rate for each of the springs, determined
from the overall rate, and the various
constraints that apply to the individual
springs and to the composite system.
The apparent complexity of the formulas
describing deflection of the system and the
individual springs comes about from the
fact that the problem does not specify
which of the two springs is the longer. For
the system rate (the sum of the two spring
rates) to change at a deflection of 4”, one
spring must be 4” longer than the other.
The longer spring must have a rate of
50ln/in, and the shorter, engaged when the
deflection reaches 4”, must have a rate of
an additional 25lb/in. In principle, this
could be achieved with either spring being
the longer. Care was taken in constructing
the formula not to bias the solution. If only
one alternative is feasible, that fact should
be a consequence of the constraints upon
the system rather than an a priori statement
in the model.
The formula F6 and the assertion A1 are
not strictly required in the model.

However, they are derived from statements
in the problem definition that serve as
clarifications of the rate specifications.
They can be seen as “sanity checks,” and so
were included in the model as assertions for
this purpose.

5. Evaluation of the model
The dual-spring system case study is one of
the first modelling problems specified
externally to the language development
team to be attempted as part of the
language validation process. It was
undertaken largely by the first author after
briefly reviewing the preliminary
documentation on the language. Most of
the effort in developing the model was
spent in understanding the English-
language and equation-based informal
specification. Thereafter, expression in
Rosetta was relatively straightforward. The
major difficulties lay in determining which
properties of the springs should be
specified as parameters and which as
exported properties. This question is still
not clear, and we expect it will be treated as
a matter of modelling style.
An important benefit of the declarative
nature of the Rosetta description became
evident during development of the model.
The spring facet was developed from the
perspective of starting with the physical
parameters of the spring (e.g., wire
diameter, coil diameter, etc.) and deriving
the behavioural properties (rate, free
length). However, when the facet was
instantiated in a system model, the
behavioural properties were given and the
physical properties were to be determined.
The declarative nature of the equations
makes it possible to “drive the model
backwards” in this way. Were the model
expressed in an operational style, with
variables being assigned from inputs, such
an approach would be much more difficult.
In order to validate the Rosetta model, the
first author prepared an Excel spreadsheet
that encapsulated the formulas in the
model. In fact, two spreadsheets were
developed, one structured with the inner
spring being the longer, and the other
structured with the outer spring being the
longer. This was done to make the Excel

model manageable and solvable. The
author attempted to solve the dual spring
problem in each variation by using the
solver facility in Excel. This facility allows
the user to specify goals on dependent
variable, constraints on independent vari-
able, and to find values of independent
variables that imply the goals. The author
was not able to find a feasible solution to
the dual-spring problem as specified. It
remains unclear whether this is because the
problem really is overconstrained, or
whether the Excel model is too simplistic to
allow identification of a feasible solution.
In addition to the Excel translation, an
interface between Rosetta and the
MATLAB environment has been
developed. The MATLAB translation
system takes parsed output from the
standard Rosetta parser and generates
equations suitable for evaluation in the
MATLAB environment. An evaluation
script was developed to evaluate the model
over it operational environment. The model
resulting from the automatic transformation
evaluated favourably with respect to the
hand generated Excel result.

6. Conclusion
The design case study described in this
paper demonstrates the effectiveness of
Rosetta as a specification and constraint
language for describing physical systems
such as the dual-spring system. In
principle, the formal semantic basis of the
language enables automatic tool-based
analysis, such as checking for
inconsistency, and automatic solution of
equations.
While the power of Rosetta has been
demonstrated in the domain of continuous,
static systems, it is by no means limited to
this domain. Other predefined domains
allow description of the dynamic behaviour
of system, including continuous-time,
discrete-time and state-based models. it is
expected that further case studies will
demonstrate the use of the language for
requirements and constraint specification in
these domains. However, one of the most
exciting capabilities will be the expression,
with a formal semantic basis, of the
interactions between these domains. This

remains one of the most significant
contributions of the Rosetta language
development effort.

References

 [1] Alexander, P,. C. Kong, and D. Barton,
“The Rosetta Usage Guide,” University of
Kansas Technical Report available at
http://www.ittc.ukans.edu/Projects/rosetta/

[2] Alexander, P., C. Kong, and D. Barton,
“The Rosetta Functional Requirements
Specification Domains,” Proceedings of

the Hardware Description Language
Conference (HDLCON'00), March 2000,
Los Angeles, CA.

[3] Alexander, P., R. Kamath, D. Barton,
“System Specification in Rosetta,” IEEE
Engineering of Computer Based Systems
Workshop and Symposium, April 2000,
Edinburgh, UK.

[4] The VHDL International Systems Level
Design Language Committee Web page,
http://www.intermetrics.com/sldl

Appendix: The Rosetta spring model
facet spring (d :: real; // wire diameter

 OD :: real; // outside diameter of spring

 ID :: real; // inside diameter of spring

 G :: real; // Modulus of Rigidity of wire

 N :: real; // total number of coils

 p :: real // pitch

) is

 export R, L;

 pi :: real is 3.1415926435898;

 D :: real is (OD + ID) / 2; // mean diameter of spring

 C :: real is D / d; // spring constant

 n :: real; // number of active coils

 H :: real; // fully compressed height

 R :: real; // Force/length (lb/inch)

 P :: real; // force to fully deflect spring

 l :: real; // maximum spring displacement

 Lm :: real; // minimum free length

 L :: real; // desired free length

 Tu :: real; // ultimate tensile strength of wire

 Ty :: real; // tensile yield strength

 Sy :: real; // shear yield strength

 S :: real; // uncorrected shear stress

 k :: real; // correction factor

 Sk :: real; // corrected shear factor

begin logic

 C1: (OD - ID) / 2 = d; // dependencies between diameter parameters

 C2: C >= 4 and C =< 20; // empirical constraints on spring constant

 F1: n = (G * d^4) / (8 * R * D^3);

 C3: n >= 3; // empirical constraint on n

 F2: N = n + 2; // for closed and ground spring

 F3: H = d * N;

 F4: Lm = H + l;

 F5: L = H + (l / 0.8);

 F6: p = (L - 2*d) / n;

 C4: p =< D; // pitch can't exceed coil diameter

 F7: Tu = 200000 * D^(-0.14);

 F8: Ty = 0.75 * Tu;

 F9: Sy = Ty * 0.577;

 F10: P = R * l;

 F11: S = (8 * P * D) / (pi * d^3);

 F12: k = (4*C - 1) / (4*C - 4) + 0.615 / C;

 F13: Sk = S * k;

 C5: Sk < Sy; // shear force < wire shear yield strength

end spring;

// --

facet spring_system is

 outer_d :: real;

 outer_OD :: real;

 outer_ID :: real;

 outer_G :: real is 11.5E6; // music wire

 outer_N :: real;

 outer_p :: real;

 inner_d :: real;

 inner_OD :: real;

 inner_ID :: real;

 inner_G :: real is 11.5E6; // music wire

 inner_N :: real;

 inner_p :: real;

 system_L :: real; // system free length

 system_R :: real; // system rate

 inner_R :: real;

 outer_R :: real;

 system_deflection :: real;

 inner_deflection :: real;

 outer_deflection :: real;

 force :: real;

begin logic

 outer_spring: spring(outer_d, outer_OD, outer_ID,

 outer_G, outer_N, outer_p);

 inner_spring: spring(inner_d, inner_OD, inner_ID,

 inner_G, inner_N, inner_p);

 C1: outer_OD < 2.5; // outer spring must fit inside 2.5" tube

 C2: outer_ID > inner_OD; // outer spring must fit over inner spring

 C3: inner_ID > 1.0; // inner spring must fit over 1.0" tube

 F1: system_L = max(outer_spring.L, inner_spring.L);

 C4: system_L < 12.0;

 C5: system_deflection >= 0.0 and system_deflection =< 6.0;

 F1: inner_deflection =

 if system_deflection < (system_L - inner_spring.L) then 0

 else system_deflection - (system_L - inner_spring.L);

 F2: outer_deflection =

 if system_deflection < (system_L - outer_spring.L) then 0

 else system_deflection - (system_L - outer_spring.L);

 F3: inner_R =

 if inner_deflection = 0 then 0

 else inner_spring.R;

 F4: outer_R =

 if outer_deflection = 0 then 0

 else outer_spring.R;

 F5: system_R = outer_R + inner_R;

 C6: system_R =

 if system_deflection <= 4.0 then 50

 else 75;

 F6: force = system_R * system_deflection;

 A1: (system_deflection = 0 => force = 0)

 and (system_deflection = 4.0 => force = 200)

 and (system_deflection = 6.0 => force = 350);

end spring_system;

