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Abstract 
This paper describes a design case-study 
undertaken as part of the language design 
validation for the Rosetta System Level 
Description Language.  The system under 
consideration is a dual- spring mechanical 
system.  A physical model is constructed, 
describing the static characteristics of 
springs and the requirements and 
constraints applying to the system.  It is 
demonstrated that the declarative 
modelling style used in Rosetta is a 
powerful modelling tool.  Furthermore, the 
formal semantic basis of the language 
allows analysis of models and interfaces 
with other tools. 

2. Introduction 
Rosetta [1,2,3] is a system-level design 
language, being developed by two of the 
authors, Alexander and Barton, as part of 
the SLDL Initiative [4] currently sponsored 
by Accellera (formerly VHDL 
International) and ECSI.  The SLDL 
Initiative was originally sponsored by the 
EDA Industry Council, and moved under 
the auspices of VI and ECSI in 1999.  
Rosetta addresses a need for a language in 
which designers can specify the 
requirements and constraints on a system 
that spans multiple design domains.  
Requirements describe functional 
behaviour that a system must exhibit, and 
constraints describe operational bounds 
within which the system must remain.  The 
different design domains include digital 
and analogue electronic subsystems, and 

the mechanical, optical, fluidic and thermal 
subsystems with which they interact. 
Various computational models are most 
appropriate to describe aspects of systems 
in different domains.  Example 
computational models include finite and 
infinite state-based, discrete event, discrete 
time, and continuous time.  The Rosetta 
language is extensible to allow designs to 
be expressed using each of these 
computational models, and to allow 
expression of the interactions between 
descriptions in each computational model.  
The language achieves this extensibility be 
being based on a formal semantic 
underpinning and by including facilities for 
reflection.  In combination, these features 
allow definition of syntax and semantics of 
new Rosetta domains for expressing 
requirements and constraints using 
different computational models. 
This paper describes a model of a dual-
spring mechanical system, developed as a 
design case study in Rosetta.  The design 
was originally specified informally using a 
combination of English language and 
mathematical equations.  The information 
in this specification formed the basis of a 
Rosetta specification, in which the 
requirements and constraints are expressed 
formally in a manner that is amenable to 
analysis and computation.  The model is 
expressed in the logic domain in terms of 
continuous mathematical equations that 
describe the mechanical system. 



2. Overview of the Rosetta 
language 
The key language feature in Rosetta for 
describing a system is a facet.  A facet 
captures one aspect of a system, describing 
properties of interest in one chosen domain.  
A given system may be described by a 
number of different facets, each 
characterising the system in a different do-
main.  The various facets may be combined 
to provide a multi-faceted description, 
which might be instantiated as part of a 
larger system.  In this section, we present a 
very brief overview of facets to enable the 
reader to understand the spring model that 
follows. 
A facet, in its textual rendition, is a named 
unit comprising a parameter list, a 
collection of declarations, a domain 
identifier, and a collection of labelled 
terms.  An illustrative example of a 
requirements facet for a sorter device is: 
 
facet trigger(x::in real; y::out 

bit) is 

 s:: bit; 

begin continuous-time 

 t1:  if s = 1 then 

    if x >= 0.4 then s' = 1 

else s' = 0 endif; 

   else 

    if x =< 0.7 then s' = 0 

else s' = 1 endif; 

   endif; 

 t2: y@t+10ns = s; 

end trigger; 

 

The facet is named trigger, and represents 
the behaviour of a Schmidt trigger device.  
The two parameters, x and y, each are of 
type bit.  The parameter modes, in and out, 
are simply assertions whose meaning is 
defined in the domain of the facet.  The 
domain is identified after the keyword 
begin, continuous-time in this example, 
representing the predefined continuous-
time domain.  The declaration before the 
keyword begin names the variable s and 
specifies its type as bit.  The two terms t1 
and t2 are assertions about the values of the 
parameters and the variables that must be 
true at all times.  The variable t is implicitly 

defined in the continuous time domain to 
refer to the “current” time, and each term in 
the facet is implicitly universally quantified 
over all times.  It is important to note that 
the operator “=” is an equality operator, not 
assignment.  Thus the terms should be read 
as statements about what must be true at all 
times, rather than as operational definitions 
of events. 
The notation s' denotes the value of s at the 
next instant after the current time.  As 
shown in the example model, this allows 
descriptions of discontinuities in the value 
of a variable over time.  The notation 
y@t+10ns denotes the value of the variable 
y at a time 10ns later than the current time 
t.  This allows expression of temporal 
relationships between values of variables. 
The example model shown above uses 
simple bit-valued and real-valued types for 
variables.  Rosetta has a very rich type 
system, including scalar discrete and 
continuous types, and type constructors for 
arrays, records, tuples and sequences.  
Furthermore, it permits definition of 
higher-order types, namely, types whose 
values are functions.  The type system has 
well-founded mathematical semantics.  
This, in conjunction with the formal 
semantic definition of facets and their 
constituents, makes formal analysis and 
verification of Rosetta models feasible. 
Facets, such as the one shown above, can 
be instantiated as terms in other facets, with 
variables or expressions being associated 
with the formal parameters.  This provides 
a form of structural composition of models.  
As an illustration, the Schmidt trigger facet 
might be instantiated in a sensor model as 
follows: 
 
facet sensor (...) is 

 data_in:: real; 

 quantized_data:: bit; 

 ... 

begin continuous 

 s1: 

trigger(data_in,quantized_data); 

  ... 

end sensor; 

Furthermore, different facets of a given 
system can be composed using facet 
operators to form a description covering the 



different aspects of the system.  One of the 
more common compositions is facet 
conjunction using the facet operator “and”, 
which requires that all terms of both 
operand facets be true.  Other composition 
operators include “or” for describing a 
system that may have several variants, 
“<=>” for asserting equivalence of two 
facets, and “=>” (implication) for asserting 
that one facet is a refinement of a more 
abstract facet.  These and other com-
position operators are described in more 
detail in The Rosetta Usage Guide [1]. 
The domains referred to in the above 
descriptions are predefined sets of 
definitions that enlarge the syntactic and 
semantic vocabulary of the base language 
for particular kinds of modelling or 
computation.  A domain definition consists 
of a collection of declarations and terms 
that are included in facets based on the 
domain.  For example, the continuous facet 
used in the example model above defines 
the time variable t, and also defines the 
syntax and semantics of the “'” and “@” 
symbols.  Rosetta predefines a number of 
domains that will be used in a wide variety 
of models.  The fundamental domain is 
called logic, and includes definitions of the 
basic mathematical types, operators and 
expressions.  Other predefined domains 
inherit from the logic domain, as shown in 
the following figure.  The arrows represent 
homomorphism from more- abstract 
domains to domains which are more 
concrete in their representation of state or 
time. 
Where a model is composed of facets from 
different domains, Rosetta interactions 
define the way in which terms in one 
domain imply properties in other domains.  
For example, an interaction that deals with 
conjunction of the logic domain and the 
continuous time domain might include a 
rule specifying that each term in the logic-
domain facet is true for all time in the 
continuous-time domain. 
While the Rosetta language is extensible 
through the definition of new domains and 
interactions, it is anticipated that most 
designers will only need to use the 
predefined domains and interactions.  
Development of new domains and 
interactions requires a deep understanding 

of the underlying semantics, and is 
expected to be performed by a relatively 
small number of application developers. 

3. Overview of the spring 
example 
The dual-spring design example is a case 
study specified by The US Air Force 
Materials Directorate to demonstrate an 
end-to-end Rosetta-based design activity.  
The case study requires design of a system 
comprising two coaxial wire springs, one 
shorter than the other.  The inner spring 
must fit over a 1.0” diameter tube and must 
fit inside the outer spring.  The outer spring 
must fit inside a 2.5” diameter tube.  The 
maximum uncompressed length of the 
longer spring is 12.0”, and the system must 
allow deflection of 6.0”.  For the first 4.0” 
of deflection, the system must exhibit a rate 
(force per unit deflection) of 50 lb/in, and 
for deflection between 4.0” and 6.0”, the 
system must exhibit a rate of 75lb/in.   
In addition to these problem-related 
requirements and constraints, equations are 
provided that relate the performance 
properties of a spring (rate and free length) 
to its physical properties (wire diameter, 
coil diameter and pitch, number of coils).  
Further constraints are specified for a 
spring to ensure that it does not assume a 
permanent deformation due to excessive 
compression.  These constraints are 
expressed as inequalities in terms of the 
materials properties of the spring wire, 
including its modulus of rigidity, shear 
stress and shear yield stress. 

4. The Rosetta spring model 
The Rosetta model for the design example 
is comprised of two parts, presented in full 
in the Appendix to this paper.  The first 
part is a parameterised model of a single 
spring, expressed as a Rosetta facet in the 
logic domain.  We use this domain since 
we are dealing with a static model, not a 
dynamic model. 
 
The formal parameters to the facet describe 
the physical characteristics of the spring: 
the wire diameter (d), the coil inner 
diameter (ID) and outer diameter (OD), the 



Modulus of Rigidity of the wire (G), the 
number of coils (N), and the coil pitch (p).  
Within the facet, a number of internal items 
are defined, representing the derived 
quantities mentioned in the spring 
equations.  These include the spring rate 
(R) and desired free length (L) used in de-
termining the performance of the spring, 
and the material properties used in the 
constraints. 
The spring facet models a spring in terms 
of equations and inequalities that relate 
these parameters and derived quantities.  
We use the convention of labelling 
constraint terms with labels C1, C2, etc., 
formula terms with labels F1, F2, etc., and 
assertion terms with labels A1, A2, etc.  
Term C1 simply relates the inner and outer 
diameters to the wire diameter.  C2 and C3 
are constraints on the spring constant and 
number of coils determined from 
experience and given in the problem 
statement.  F1 is given in the problem 
statement as a formula relating several 
variables as follows: 
This is simply translated into Rosetta using 
predefined mathematical operators.  
Formulas represented in F2 and F3 are 
likewise given in the problem statement.  N 
is the total number of coils.  This, 
multiplied by the wire diameter, gives the 
height of the full compressed spring.  F4 
gives the minimum free (uncompressed) 
length of the spring (Lm): the fully 
compressed height (H) plus the maximum 
compression that will be applied.  
However, since the spring rate is non-linear 
over the last 20% of compression, the 
desired free length (L) is set to be longer 
than the minimum free length.  This is 
expressed in F5.  The next term, F6, 
expressed the coil pitch (p) in terms of the 
free length, wire diameter and number of 
active coils.  C4 is a constraint that ensures 
that the spring is “spring-like” rather than 
being a column of wire. 
The remaining terms in the spring facet 
define the corrected shear force applied to 
the spring on full deflection (Sk) and the 
shear yield strength of the wire (Sy).  These 
terms are transliterations of the formulas 
provided in the problem statement.  Finally 
C5 is the constraint that prevents the 
applied shear force exceeding the yield 

strength.  If this constraint is violated, the 
spring “takes on a set,” that is, it suffers a 
permanent deformation. 
The second part of the Rosetta model for 
the design example is a facet that describes 
the composite system.  The spring_system 
facet declares a number of variables 
representing properties of the inner and 
outer springs, as well as the overall system 
deflection and applied force.  The facet also 
includes two instances of the single-spring 
facet, and a collection of equations and 
constraints that parallel the informal 
specification provided in the problem 
statement. 
In particular, the facet includes equations 
that relate the overall system deflection to 
the deflections of the individual springs, 
and the overall system rate to the rates of 
the individual springs.  The Modulus of 
Rigidity of the springs is given in the 
problem specification, but the other phys-
ical characteristics are required to be 
determined from the required overall rate 
and the physical constraints.  Hence the 
actual parameters for the spring instances, 
describing the physical characteristics, are 
free variables.  Their values depend on the 
rate for each of the springs, determined 
from the overall rate, and the various 
constraints that apply to the individual 
springs and to the composite system. 
The apparent complexity of the formulas 
describing deflection of the system and the 
individual springs comes about from the 
fact that the problem does not specify 
which of the two springs is the longer.  For 
the system rate (the sum of the two spring 
rates) to change at a deflection of 4”, one 
spring must be 4” longer than the other.  
The longer spring must have a rate of 
50ln/in, and the shorter, engaged when the 
deflection reaches 4”, must have a rate of 
an additional 25lb/in.  In principle, this 
could be achieved with either spring being 
the longer.  Care was taken in constructing 
the formula not to bias the solution.  If only 
one alternative is feasible, that fact should 
be a consequence of the constraints upon 
the system rather than an a priori statement 
in the model. 
The formula F6 and the assertion A1 are 
not strictly required in the model.  



However, they are derived from statements 
in the problem definition that serve as 
clarifications of the rate specifications.  
They can be seen as “sanity checks,” and so 
were included in the model as assertions for 
this purpose. 

5. Evaluation of the model 
The dual-spring system case study is one of 
the first modelling problems specified 
externally to the language development 
team to be attempted as part of the 
language validation process.  It was 
undertaken largely by the first author after 
briefly reviewing the preliminary 
documentation on the language.  Most of 
the effort in developing the model was 
spent in understanding the English-
language and equation-based informal 
specification.  Thereafter, expression in 
Rosetta was relatively straightforward.  The 
major difficulties lay in determining which 
properties of the springs should be 
specified as parameters and which as 
exported properties.  This question is still 
not clear, and we expect it will be treated as 
a matter of modelling style. 
An important benefit of the declarative 
nature of the Rosetta description became 
evident during development of the model.  
The spring facet was developed from the 
perspective of starting with the physical 
parameters of the spring (e.g., wire 
diameter, coil diameter, etc.) and deriving 
the behavioural properties (rate, free 
length).  However, when the facet was 
instantiated in a system model, the 
behavioural properties were given and the 
physical properties were to be determined.  
The declarative nature of the equations 
makes it possible to “drive the model 
backwards” in this way.  Were the model 
expressed in an operational style, with 
variables being assigned from inputs, such 
an approach would be much more difficult. 
In order to validate the Rosetta model, the 
first author prepared an Excel spreadsheet 
that encapsulated the formulas in the 
model.  In fact, two spreadsheets were 
developed, one structured with the inner 
spring being the longer, and the other 
structured with the outer spring being the 
longer.  This was done to make the Excel 

model manageable and solvable.  The 
author attempted to solve the dual spring 
problem in each variation by using the 
solver facility in Excel.  This facility allows 
the user to specify goals on dependent 
variable, constraints on independent vari-
able, and to find values of independent 
variables that imply the goals.  The author 
was not able to find a feasible solution to 
the dual-spring problem as specified.  It 
remains unclear whether this is because the 
problem really is overconstrained, or 
whether the Excel model is too simplistic to 
allow identification of a feasible solution. 
In addition to the Excel translation, an 
interface between Rosetta and the 
MATLAB environment has been 
developed.  The MATLAB translation 
system takes parsed output from the 
standard Rosetta parser and generates 
equations suitable for evaluation in the 
MATLAB environment.  An evaluation 
script was developed to evaluate the model 
over it operational environment. The model 
resulting from the automatic transformation 
evaluated favourably with respect to the 
hand generated Excel result. 

6. Conclusion 
The design case study described in this 
paper demonstrates the effectiveness of 
Rosetta as a specification and constraint 
language for describing physical systems 
such as the dual-spring system.  In 
principle, the formal semantic basis of the 
language enables automatic tool-based 
analysis, such as checking for 
inconsistency, and automatic solution of 
equations.   
While the power of Rosetta has been 
demonstrated in the domain of continuous, 
static systems, it is by no means limited to 
this domain.  Other predefined domains 
allow description of the dynamic behaviour 
of system, including continuous-time, 
discrete-time and state-based models.  it is 
expected that further case studies will 
demonstrate the use of the language for 
requirements and constraint specification in 
these domains.  However, one of the most 
exciting capabilities will be the expression, 
with a formal semantic basis, of the 
interactions between these domains.  This 



remains one of the most significant 
contributions of the Rosetta language 
development effort. 
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Appendix: The Rosetta spring model 
facet spring ( d :: real;       // wire diameter 

               OD :: real;      // outside diameter of spring 

               ID :: real;      // inside diameter of spring 

               G :: real;       // Modulus of Rigidity of wire 

               N :: real;       // total number of coils 

               p :: real        // pitch 

             ) is 

 

   export R, L; 

 

   pi :: real is 3.1415926435898; 

 

   D :: real is (OD + ID) / 2;  // mean diameter of spring 

   C :: real is D / d;          // spring constant 

 

   n :: real;                   // number of active coils 

   H :: real;                   // fully compressed height 

 

   R :: real;                   // Force/length (lb/inch) 

   P :: real;                   // force to fully deflect spring 

 

   l :: real;                   // maximum spring displacement 

   Lm :: real;                  // minimum free length 

   L :: real;                   // desired free length 

 

   Tu :: real;                  // ultimate tensile strength of wire 

   Ty :: real;                  // tensile yield strength 

   Sy :: real;                  // shear yield strength 

   S :: real;                   // uncorrected shear stress 

   k :: real;                   // correction factor 

   Sk :: real;                  // corrected shear factor 

 

begin logic 

 

   C1: (OD - ID) / 2 = d;       // dependencies between diameter parameters 

 

   C2: C >= 4 and C =< 20;      // empirical constraints on spring constant 

 

   F1: n = (G * d^4) / (8 * R * D^3); 



   C3: n >= 3;                  // empirical constraint on n 

 

   F2: N = n + 2;               // for closed and ground spring 

    

   F3: H = d * N; 

 

   F4: Lm = H + l; 

   F5: L = H + (l / 0.8); 

 

   F6: p = (L - 2*d) / n; 

   C4: p =< D;                  // pitch can't exceed coil diameter 

 

   F7: Tu = 200000 * D^(-0.14); 

   F8: Ty = 0.75 * Tu; 

   F9: Sy = Ty * 0.577; 

 

   F10: P = R * l; 

 

   F11: S = (8 * P * D) / (pi * d^3); 

   F12: k = (4*C - 1) / (4*C - 4) + 0.615 / C; 

   F13: Sk = S * k; 

 

   C5: Sk < Sy;                 // shear force < wire shear yield strength   

 

end spring; 

 

 

// ---------------------------------------------------------------- 

 

 

facet spring_system is 

 

   outer_d :: real; 

   outer_OD :: real; 

   outer_ID :: real; 

   outer_G :: real is 11.5E6;   // music wire 

   outer_N :: real; 

   outer_p :: real; 

   inner_d :: real; 

   inner_OD :: real; 

   inner_ID :: real; 

   inner_G :: real is 11.5E6;   // music wire 

   inner_N :: real; 

   inner_p :: real; 

 

   system_L :: real;            // system free length 

 

   system_R :: real;            // system rate 

   inner_R :: real; 

   outer_R :: real; 

 

   system_deflection :: real; 

   inner_deflection :: real; 

   outer_deflection :: real; 

 



   force :: real; 

 

begin logic 

 

   outer_spring: spring( outer_d, outer_OD, outer_ID, 

                         outer_G, outer_N, outer_p); 

 

   inner_spring: spring( inner_d, inner_OD, inner_ID, 

                         inner_G, inner_N, inner_p); 

 

   C1: outer_OD < 2.5;          // outer spring must fit inside 2.5" tube 

   C2: outer_ID > inner_OD;     // outer spring must fit over inner spring 

   C3: inner_ID > 1.0;          // inner spring must fit over 1.0" tube 

 

   F1: system_L = max(outer_spring.L, inner_spring.L); 

   C4: system_L < 12.0; 

 

   C5: system_deflection >= 0.0 and system_deflection =< 6.0; 

 

   F1: inner_deflection = 

          if system_deflection < (system_L - inner_spring.L) then 0 

          else system_deflection - (system_L - inner_spring.L); 

   F2: outer_deflection = 

          if system_deflection < (system_L - outer_spring.L) then 0 

          else system_deflection - (system_L - outer_spring.L); 

 

   F3: inner_R = 

          if inner_deflection = 0 then 0 

          else inner_spring.R; 

   F4: outer_R = 

          if outer_deflection = 0 then 0 

          else outer_spring.R; 

 

   F5: system_R = outer_R + inner_R; 

 

   C6: system_R = 

          if system_deflection <= 4.0 then 50 

          else 75; 

 

   F6: force = system_R * system_deflection; 

 

   A1: (system_deflection = 0 => force = 0) 

       and (system_deflection = 4.0 => force = 200) 

       and (system_deflection = 6.0 => force = 350); 

 

end spring_system; 

 


