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Abstract. The essence of systems-level design is the need to integrate models
representing different system facets to understand the impacts of local decisions
on global requirements. Unfortunately, these models may be defined in disparate
semantic systems making composition and integrated analysis challenging. As a
part of the Rosetta systems-level design effort, a collection of mechanisms based
on coalgebraic semantics has been defined to transform and compose models.
Functors define mechanisms for moving models between specification domains;
coproducts define mechanisms for composing multiple specifications; and trans-
lator functions define mechanisms for structurally compose specifications. To-
gether these techniques provide specification composition support for integrating
formal, systems-level analysis activities.

1 Introduction

The essence of systems engineering and systems-level design is understanding
understanding the impacts of local design decisions on global system properties.

System-level requirements represent requirements that must be assessed in the whole
system and cannot be met by simple budgeting across components. Examples of such
requirements include power consumption, security, and cost. Designers cannot simply
decompose security and assign elements to system components. Although power can
be budgeted, interactions between components complicate meeting local and global

power requirements. Like power, cost can be budgeted among components, but
integration costs complicate system-level cost calculations.

The distributed and heterogeneous nature of systems-level design complicates systems
engineering. Local design decisions frequently have systems-level impacts because
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engineering domains are not orthogonal. For example, how software is written can
significantly impact power consumption in the computer system it runs on. Yet, few

software engineers are taught to think about power consumption. Engineering domains
adopt their own vocabularies and formalisms making communicating information

difficult or impossible. Software representations and power modeling representations
use radically different vocabularies making it difficult to understand their interaction.

It is neither economically feasible or mathematically sensible to represent all
requirements models using the same underlying semantics. Engineers looking at

different system facets in different domains necessarily use different formalisms and
vocabularies. These intellectual tools are adopted due to their utility within the domain,
not the ease of integrating with intellectual tools from other domains. Asking engineers
to move their work to a different set of design formalisms will fail for both social and

technical reasons. Thus the challenge of systems engineering – bringing together
intellectually distant information from across multiple domains during systems design.

The Rosetta systems-level design language [1, 2] attempts to address these issues in
providing systems engineers with a systems description language. Sponsored by the

Accellera [3] electronic design automation standards body, Rosetta provides designers
with mechanisms for representing systems level requirements using multiple domains

while supporting composition of heterogeneous models and synthesis of hardware
components.

To support the needs of systems-engineers, Rosetta provides explicit support for: (i)
composing models from different domains; (ii) moving models between domains; and
(iii) passing communicated information between models in different domains. Rosetta
uses a co-algebraic semantics for system models. Model composition is achieved using

a pullback over this co-algebra semantics. Moving models between domains is
achieved by defining functors that move a model from one domain type to another.

Finally, moving information between facets is achieved by defining translator
functions used at component interfaces to perform translation.

Having provided a modeling language and semantics for systems level modeling, we
have accomplished little if we cannot predict behavior from specifications.

Rhaskell [4], the Rosetta support environment provides and integrated collection of
verification tools and a standard means for integrating new tools and semantics.
Current capabilities include a theorem prover [5], static analysis, advanced type

checking, and evaluation tools [4], and specification composition tools [6]. Raskell
tools provide the beginnings of an integrated formal analysis environment both

combining analysis techniques and transforming models between analysis domains.

2 Background

To understand Rosetta’s model composition and transformation capabilities, it is
necessary to understand the semantics of Rosetta models [7–9] and the domain
semi-lattice [2] central to Rosetta’s modeling paradigm. It is not necessary to

understand the full Rosetta language to make use of its model composition semantics.



A Rosetta model, referred to as a facet, uses a coalgebraic semantics to define
observations on a component’s abstract state. The abstract state is never directly
visible, but observed only through facet declarations. In effect, the declaration

i :: integer defines an observation i whose values are restricted to the set integer on its
associated facet’s abstract state.

The Rosetta semi-lattice defines a collection of domains that provide vocabulary and
model-of-computation semantics for facets. All facets formally extend a domain to

define a specific component model. Domains denote facet types by defining the final
algebra of a category constructed using extension. Thus, the type associated with a

domain is the collection of facets written by extending the domain.

2.1 Co-algebraic Facet Semantics

A Rosetta facet’s semantics is defined as a coalgebra over a hidden, abstract state X .
We extend the notation from Jacobs [10] to define a coalgebra:

F = 〈ι〉 : X → τ | T

where ι are state observers, X is the hidden abstract state, τ are the signatures of the
observers where ιk : τk, and T is the set of terms defining the observers. Facet

semantics introduces the restriction that X cannot appear in τ – the abstract state is
observable only through functions listed in ι.

Thus, the Rosetta facet model:

facet andGate(x,y::input bit ; z :: output bit ):: state based is
begin

driver : z’ = x ∗ y;
end facet andGate;

is represented by the coalgebra:

〈x, y, z, s, at〉 : X → bit,bit,bit,state,<∗[T1,T2::type ](i::T1; s::state)::T2∗> |
z’at(next(s)) = x’at(s) ∗ y’at(s );

The transformation from facet specification to coalgebra involves: (i) introducing the
abstract state; (ii) expanding the facet domain; and (iii) elaborating definitions.

Introducing the abstract state simply defines the abstract state associated with the
resulting coalgebra. Expanding the facet domain imports vocabulary and definitions

from the facet’s domain into the coalgebra as observations of the abstract state. Finally,
elaborating definitions reduces abstract definitions to kernel Rosetta using definitions

from the domain and other included facets.

The abstract state, X , is the hidden abstract state of the coalgebra. Although its value
cannot be observed directly, the value of every item defined in a facet is defined with
respect to a particular abstract state. Thus, specific properties of the abstract state can



be directly observed through variables and functions. Observing the abstract state
rather than making it concrete is essential to mechanisms used to compose

specifications and build specific definitions from domains.

The domain defines the specification vocabulary define for the facet. Domains define
everything from the model-of-computation to engineering vocabulary used to define a
specification. When writing a specification, the domain is extended to define a specific

model embodying properties of interest. This example uses the state based domain
that defines a vocabulary including the concrete state type (state), the current concrete
state (s), the next state (next(s)) and how symbols are dereferenced with respect to to

concrete state ( ’ at(s)).

Elaboration translates the high-level Rosetta specification into an equivalent kernel
Rosetta specification. We will not show the full elaboration here, but simply the first

step that involves translating common shorthands into full definitions using the
domain. The result of elaborating the single term driver is:

z’at(next(s)) = x’at(s) and y’at(s)

x’at(s) refers to the value of x in the current state, s, and is written in the specification
simply as x. Similarly for y. z’at(next(s)) refers to the value of z in the state following

x and can be written using the shorthand z’next(s) or simply z’ as in the original
specification. The state value, s, is an observation of X just like any other symbol.

This is critical to our composition and refinement mechanisms because it allows the
same hidden state to be observed by different concrete state types. Making X concrete

would complicate defining heterogeneous, interacting observations difficult.

2.2 The Domain Semi-Lattice

Critical to Rosetta specifications is the concept of a domain that provides vocabulary
and model-of-computation information to a model. Figure 1 defines a semi-lattice of

domains where arrows represent extension. An domain lower in the lattice is a
sub-domain while the domain higher is a super-domain. The set of facets written by

extending a domain defines the type associated with that domain. Kong and
Alexander [9, 11] have shown that each domain’s associated type is a category of

facets with extensions as arrows. Furthermore, the category of facets associated with a
domain is a sub-category of its super-domain’s category defining a subtype/super-type

relationship.

When we write:

facet lowpassFilter
( i :: in real ; o ::out real ; frequence::design real)::continuous time is

begin
...

end facet lowpassFilter;

we are defining a facet that extends continuous time. Thus, it is of type continuous time
and takes its vocabulary and model-of-computation from the continuous time domain

model.



Fig. 1 The domain semi-lattice with arrows representing extensions.
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3 Transforming and Composing Semantics

To achieve our goal of systems engineering support it is not sufficient to simply allow
specifications to use different semantics within the same language. To support

predictive modeling, we must support model composition and transformation of
information from one modeling domain to another.

Rosetta supports composition and transformation using an interaction construct that
defines functors, translators, and algebra combinators and indirectly product and

coproduct operations for composing models. Functors move a facet model from one
domain to another. Such operations are simply functions whose signatures specify

facet types as domain and range values. Translators enable moving data through facet
interfaces between domains. Such operations allow facet models defined in one
domain to communicate with facets defined in another. Products and coproducts
compose specifications by finding the limit or colimit of two specifications in the
domain semi-lattice. Pullback and pushout constructs are used to construct new

models. Finally, Algebra combinators generate new specifications from products and
coproducts. They are used to convert products into specifications that can be used for

analysis or synthesis.x

3.1 Functors

A functor between categories is an operation that maps arrows to arrows and object to
objects in different categories. Because objects in the domain semi-lattice are facet

types, Rosetta functors transform facets of one type into facets of another. Each
domain defines a category of facets that in turn defines a facet type. Associating a

functor with two domains provides a function that transforms facets from one type into
facets of another.

An excellent example of a functor between facet types corresponding with a common
mathematical transformation is using a Fourier transform to move a model from the



time domain to the frequency domain. Figure 2 graphically shows a fourier transfer
functor and two instances of the transformation. The dashed arrow labeled F between
domains frequency and continuous time defines the functor. Explicit instances of the
functor between facets comprise the functor and define fourier transforms on specific
models. In this case, fourier transforms exist between time and frequency models of

highpass and lowpass filters.

Fig. 2 A functor representing fourier transform and two specific instances of fourier
transform between models in the time and frequency domain.

infinite_state

continuous_time

discrete time

frequency F

lowPass lowPassF
highPass highPassF

Functor definitions play two important roles in Rosetta modeling. First, they are used
to move information between domains to perform analysis. If a domain exists for

discrete event simulation, a functor could be written to transform a time-based
specification to the simulation domain. The new model can then be simulated to
predict behavior. This functor corresponds to the types of analysis performed in

engineering design.

Second, functors are used to move information between domains to switch modeling
abstractions. The fourier transform is an example of this functor type. We take fourier
transforms of time-based models to use a different set of abstractions for modeling and

analysis. Examining a filter’s transfer function in the frequency domain reveals
information about the filter’s behavior that is difficult to directly address in the time

domain. Such transformations are exceptionally common in engineering design.

Note that all the arrows between domains in the domain semi-lattice are functors.
These arrows represent extensions that form more detailed modeling domains from

less detailed domains. Because they are defined only over domains and every facet in a
domain’s category is an extension of that domain, they equally apply to facet’s in the
domain. These functors are constructed when the semi-lattice is extended, but are no

less functors than those written by hand or automatically generated.

3.2 Translator Functions

Translator functions or simply translators are special operations that move data across
facet boundaries. Functors transform entire facets into new facets in new domains.



Translators enable communication by transforming data in one domain into data in
another while accounting for differences in computation models. Consider the

translator function for moving an analog signal into the digital domain:

a2bit () from x::real in continuous time to bit in discrete time is
let dt be floor (continuous time.t) in

if x@dt =< 2.5 then 0 else 1 end if;

The a2bit translator is used to transform analog signals into digital signals in discrete
time. The following facet instance transforms analog signals into digital signals using

the a2bit translator function.

l1 : and(x’a2bit,y’a2bit ,z’a2bit );

It may seem odd that the translator is applied to input parameters as well as output
parameters. However, the direction of the parameter is not material. As long as the

signal satisfies constraints specified by the translator on both side of the facet interface,
the model is consistent. Facet inputs are independent variables that can be driven to

any value. Facet outputs are dependent variables that must satisfy constraints placed on
them by their associate translator functions.

3.3 Specification Products and Coproducts

Products and coproducts are among the most common mechanisms for defining
composition in language semantics. Specifically, defining record and variant structures

using these primitives is a standard approach in many semantic systems. The sum
operation defines a disjoint union while the product defines a record. By making these
first-class operations over models in Rosetta, we provide a mechanism for composing

specifications in a similar manner. Facet sum provides a mechanism for defining
different specification scenarios while facet product provides a mechanism for defining

simultaneous aspects.

The Rosetta product operation corresponds with forming a limit using a pullback.
Likewise, the sum operation corresponds with forming a colimit using a pushout. The

notation F1 ∗ F2 signifies a product forming a limit while the notation F1 + F2

signifies a coproduct forming a colimit. Rosetta forms each construction using the
domain semi-lattice and the types of the facets being composed. For illustration,

assume the following definitions:

facet addFn(x,y,cin:: input bit ; z :: output bit ):: state based is begin
update: z’ = x xor y xor cin; end facet addFn;

facet carryFn(x,y,cin :: input bit ; cout ::output bit ):: state based is
begin

update: c’ = (x ∗ y) + (x ∗ cin) + (y ∗ cout);
end facet carryFn;

If we wish to define a new model, adder, that embodies properties of both addFn and
carryFn we use the product operator:



adder :: state based is addFn ∗ carryFn;

The new component, adder, is of type state based and combines the original models
to form a full adder. Specifically, the adder is both an add function and a carry function
in precisely the same way that a tuple is the collection of its fields. Both are examples

of product constructions.

The pullback is formed with the least common facet type involved in the operation as
the operation’s shared part. Both facets forming adder are from the state based

domain, thus finding the least common type is trivial. The pullback is graphically
represented in Figure 3.

Fig. 3 Pullback formed from two specifications from the same domain. The shared part
defining a common vocabulary between specifications is the domain itself.
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In Figure 3, D represents the shared domain of the facet specifications F1 and F2.
Because D is shared, declarations from D appear in both F1 and F2 and refer to the

same specification objects. In keeping with Smith [12, 13], we frequently refer to this
as the shared part because it is shared between specifications. The shared part is vital

because it provides a common frame of reference for the composed specifications.
Without it, there is no means for both specifications to simultaneously describe the

same observations of the abstract state, X .

f and g represent extensions of D that provide specifics of the actual model. A domain
is included in all facet definitions, thus all facets extend a domain and f and g always
exist for any facet pair. There is no prescriptive guarantee that these extensions will be

conservative, complicating the process of writing specifications. However, Rosetta
language design goals place expression above interpretation justifying this design

decision.

D′ represents the immediate super-type of D. Without modification, the semi-lattice is
a tree. Thus, D′ is the only direct super-type of D. However, other supertypes can exist

in the tree above D′. The formation of the pullback requires that D be final in the



Fig. 4 Pullback formed from two specifications from the same domain in the context of
the domain semi-lattice.

addFn carryFn

adder = addFn  * carryFn
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null

category. This is trivially true because f and g are simply extension morphisms. A
special case exists when D is the static domain and has no proper supertype. In this

case, D must be final because there are no arrows leaving it in the semi-lattice.

If we examine the commutative diagram within the domain semi-lattice, it reinforces
the idea that the pullback in fact defines a final object as is required. Figure 4

graphically shows this result. state based represents the final coalgebra, D. The
dashed arrow represents the implicit morphism that exists due to the coproduct. Thus,

the resulting adder specification is a subtype of state based.

Fig. 5 A power consumption specification for a two input device.

facet adderPower
(x,y :: input bit ; p ::output real; pinc :: design real ):: continuous time is
consumedPower::real;

begin
st : consumedPower’ = consumedPower +

if (event(x) or event(y))
then pinc
else 0.0

end if ;
update: p = consumedPower;

end facet adderPower;

The adder example is trivial because the two facet specifications start in the same
domain and their associated operations are orthogonal. What we have done here is
similar in nature to the schema conjunction operation in Z [14]. The product and



coproduct operations are far more interesting when specifications being composed are
of different types.

Consider a new specification of the same adder definition that defines power
consumption within the device. Specifically, whenever either of its inputs change the
CMOS implementation will consume power due to transistors changing state. One

model for this is shown in Figure 5.

The product is again used to define a complete adder as adder∗adderPower. Here the
domains are different. adder is of type state based while adderPower is

continuous time. The least common super-type of state based and continuous time is
state based, thus the type associated with the product must also be state based.

Figure 6(a) graphically shows the construction of the morphism from state based to
the adderPower facet verifying the subtype relationship. This allows us to formally

define the product:

adderP :: state based is adder∗adderPower

Fig. 6 Graphically constructing the pullback to form the integrated power model.

addFn carryFn
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null

continuous_time

adderPower

(a) Type relationship constructed be-
tween adderP and state based.

addFn carryFn

adder = addFn  * carryFn

static

state_based event_based

finite_state infinite_state

null

continuous_time

adderP = adder * adderPower

adderPower

(b) Pullback formed from two specifi-
cations from different domains.

The pullback in the semi-lattice is formed as before with state based defining the
shared part. Figure 6(b) graphically shows the pullback in the context of the

semi-lattice. The arrow between state based and adder is constructed from existing
arrow and is one arrow defining the pullback.

The structure of the semi-lattice ensures that any two facets will have a common
supertype, even if that supertype is static representing the base Rosetta mathematical
system. When composing specifications that share a type or involve composing few

errors, engineering abstractions remain relatively intact in the resulting product.



Examining the adder specifications reveals this – no abstractions are lost in forming
the product.

When specification composition involves intellectually distant domains, functors can
help preserve design abstractions by moving a specification in the semi-lattice.

Transforming specifications into a different domain closer to other domains involved
in the product avoids moving to the static domain where all design abstractions are

lost. Consider Figure 7 where an event based specification is composed with a
discrete time specification with and without first applying a function.

Fig. 7 Discrete time and signal-based specifications composed with and without a trans-
formation functor. Note the loss of abstractions when the functor is not included.
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(a) Composition without functor appli-
cation
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(b) Composition with functor applica-
tion

Figure 7(a) shows the result of composing specifications without first moving a
specification with a functor. The only abstractions that are shared in the resulting

specification are those defined in static . Thus, the concepts of time and event are lost
in the transformation.

Figure 7(b) results from moving the event based specification to the discrete time
domain, then forming the product. In this case, the time abstractions remain as well as

the stateful nature of the requirements specification. Of course, this assumes the
functor, F, can be written. This will not always be the case, but for many domains,

functors of this type are well known.

An alternate case involves taking a general specification and using semi-lattice
transformations to generate a more specific transformation. Exemplifying this

common technique is the task of moving a static power constraint into a temporal
domain. Figure 8 shows the construction of a temporal power constraint definition

from a static definition. A series of products are generated to incrementally move the
static specification through successive refinements to realize a temporal specification

that can be combined with the discrete time power model.



Fig. 8 Instantaneous power consumption limit moving down the semi-lattice for com-
position with power consumption model.
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3.4 Algebra Combinators

An algebra combinator is an operator that composes two algebras sharing an abstract
syntax into a single algebra. The signature of a typical algebra combinator is:

(F (a) → a) → (F (b) → b) → (F (a ◦ b) → a ◦ b)

where a and b are value spaces and F is an abstract syntax parameterized over a value
space. F (a) → a is thus a valuation function mapping elements of an abstract syntax
defined over the value space a to a. It defines requirements for evaluating elements of
F (a). Given two instances of F over distinct value spaces, the algebra combinator

generates a new algebra over the composition of the original value spaces. Informally,
it composes specifications that share abstract syntax elements.

Algebra combinators are used in conjunction with products and functors to generate
composite specifications. The product brings together two specifications and identifies

their shared abstract syntax. Functors assist this process by allowing the shared
abstract syntax to be as rich as possible. The algebra combinators take specifications
represented as sums and products and generates an integrated, single specification for

analysis.

As a trivial example of an algebra combinator, assume a power constraint written in
the static domain in composition with the power consumption model from Figure 5:

facet adderPowerConstraint(powerLimit::design real)::static is
begin

consumedPower =< powerLimit;
end facet adderPowerConstraint;

adderP :: state based is adderPowerConstraint and adderPower;

adderP should limit the instantaneous power consumption modeled by adderPower to
the value specified as powerLimit by adderPowerConstraint. A simple functor for

composing these specifications is:

limit power( lim :: static ; cons::continuous time)::continuous time is
add term(forall( t :: time | consumedPower@t < lim.consumedPower),cons);



This functor adds a term to the power consumption model limiting consumedPower to
the value specified in the power consumption constraint model. Although this is a

trivial functor, it does add the specified constraint to the consumption specification and
demonstrates capabilities for moving information among domains.

4 Power Analysis – An Example

Rosetta is intended to describe systems in a manner that allows predicting the results
of design decisions on system requirements. In particular, we are interested in

providing analysis early in the design cycle. To demonstrate Rosetta’s capabilities, we
have used several example systems including generating test vectors for a radio

transceiver [15], parametric modification for a dual spring system [16], power/design
trade-off analysis for a hydraulic actuator [1], and power analysis for implementation

technology selection in system design [17]. We will overview the latter system to
outline Rosetta capabilities on a real-world design problem.

The challenge is to determine whether it is best for a decimator for a TDMA receiver
to be implemented in software, FPGA or ASIC before prototyping the component. The

approach chosen uses an activity-based power estimation model and simulation to
determine activity in the component. We specialized the power model for each
implementation technology using a refinement on the basic power model. We

specialized the functional model similarly, changing the activity estimation based on
the implementation technology. We then composed the power model and the

functional model using a coproduct and applied a functor to generate a simulation
model. The simulation model was then executed to approximate power consumption.

Figure 9 graphically represents this construction for FPGA, CMOS and software
implementations.

The model generation process begins with the diagram in Figure 10(a). A segment of
the domain semi-lattice is shown with the three original models of the component

function, an activity-based power consumption model, and a power constraint model.
Each model is define in a domain appropriate for what it represents. The power

constraint is constant, the power consumption model is defined over state change, and
the functional model is a discrete time system. The remainder of Figure 9 is

constructed by defining morphisms on these original models.

To compose the three models, we could simply form to pullbacks using the static
domain as the shared part. However, this would eliminate all abstractions in our

models and make analysis virtually impossible. Thus, we refine the power
consumption and power constraint models so that they share a less abstract domain

with the functional model.

The refinement of the power constraint model that appears on the right side of Figure 9
is shown separately in Figure 10(b). Several pullbacks construct the morphism that

transforms the static power constraint model into a discrete time model. This
collection of transformations is actually quite trivial as we simply assert that if a



Fig. 9 Full diagram showing refinement and composition of device, power and con-
straint models.
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property is constant, it must hold at any time step. Because it is trivial, this
“transformation” is manually performed although the Rhaskell environment could

easily automate the task.

Figure 11(a) shows refinement of the power consumption model from the state based
domain into the discrete time domain. This one of three constructions that generate
FPGA, CMOS and software power consumption models on the left side of Figure 9.

Each of these refinements is similar in nature to the power constraint refinement,
except they are performed automatically operations written in the Raskell environment.

Following the transformation of each model into the discrete time domain, pullbacks
are used to construct a systems model. The functional model is used to generate

activity information for the FPGA, CMOS and software power consumption models
while the power constraint model simply asserts a condition that must hold

continuously in each model. In both cases, an algebra combinator is used to compose
information.

With the products formed, Figure 11(b) shows a functor applied to generate
simulations from the final models. This functor is simply a compiler that generates an
executable simulation model in the Raskell simulation framework. It should be noted
that the algebra combinator used to compose the functional and power consumption

model is actually applied during this compilation step.

Looking back at Figure 9 it should now be clear how the diagram is formed. The
original models are refined as necessary to generate discrete time models. These



Fig. 10 Original domains and models and refinement of a power constraint model.
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(a) Refinement of domains to a functional
model.
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power_constraint_is

power_constraint_dt
decimator_sw

decimator_sw_c

(b) Refinement of the power constraint to a
state-based model.

models are composed using products and a functor is used to generate simulation
models. The diagram is busy, but does represent the morphisms necessary to construct

the simulation models.

Fig. 11 Refinement of the CMOS power consumption model model and generating a
simulation model using a functor.
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(a) Refinement of a basic state-based power
model to a CMOS power consumption
model.
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decimator_cmos
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F

decimator_cmos_sim
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(b) A functor used to generate simulation
models from discrete time models.

5 Related Work

The use of category theoretic techniques to describe and manipulate specifications has
long history in language semantics. The composition and construction approaches we

employ have their origins in the work of Ehrig and Mahr [18] and Smith [13].



Using specification morphisms to generate and manipulate facet specifications is
attributable to Smith’s KIDS software synthesis system [12]. Approaches initially

explored in KIDS are generalized to classify various ways of defining specification
morphisms [13, 19]. Although Smith is not the only researcher examining such

techniques, the KIDS, PlanWare and SpecWare approaches have proven the most
widely useful to date.

Software morphism approaches typically employ theorem provers to derive
specification morphisms [20, 21, 12] rather than using constructive proofs to derive
actual specifications [22–24]. Such systems represent the larger class of software

engineering tools that use theorem provers [25, 26]. The proposed approach could use
theorem provers to derive morphisms, however we have found this untenable for our

user base. Thus, we use algebra combinators [6]. On particularly promising
implementation direction is the use of monad transformers [27–29]. In particular, the

work of Lüth [29] using coalgebras to compose monads has provided significant
insight.

Institutions [30, 31] represent a formal mechanism for moving information between
formal systems. Rosetta functors can implement a type of institution, but are neither as
general or as powerful as these formal constructions. We believe that our current facet
manipulation semantics is sufficient for our current activities. However, we continue to

examine the potential for incorporating institutions formally in the Rosetta system.

Viewpoints [32] represent a less formal mechanism for composing different views of
specifications. Quite similar to the domain semi-lattice, viewpoints model hierarchies

of alternative specifications [33] Originally from the software engineering domain,
Viewpoint analysis is becoming increasingly rigorous supporting examination of

inconsistent views [34] and formal analysis through model checking [35].

The Ptolemy [36, 37] system exemplify a simulation approach to heterogeneity. Unlike
Rosetta, Ptolemy II does not support model composition. However, it does provide
excellent, rigorously defined support for interaction between models from different
semantic domains. Unlike Rosetta models, Ptolemy models are executable and thus
lend themselves to simulation. Only operational techniques are applied in Ptolemy

examples we are aware of.

6 Conclusions and Future Work

This paper presents the specification componsition and transformation techniques use
by Rosetta and Rhaskell to analyze heterogeneous specifications. The approach
depends composing and transforming specifications rather than composing and

transforming analysis results. We have explored this approach in several domains and
continue refining semantics and implementing automated tool support.

Our continuing work explores the implementation of algebra combinators and
automating more specification morphisms. Algebra combinators are critical to

specification composition, yet can be brittle. An effective combinator between two



domains may not be at all useful between other domains that appear quite similar. We
are working on general frameworks as well as application to new domains such as

assurance and security. In addition, we are attempting to use combinators to perform
synthesis as well as analysis activities. Specifically, we are beginning to explore

hardware/software codesign techniques.

We continue to automate increasing numbers of functor and combinator applications.
Rosetta is reflective, supporting such automation. However, manipulating

specifications in a semantically sound fashion is known to be a difficult problem.
However, we are having success in attacking specific application domains such as

embedded systems and telecommunication systems.

The Rosetta language and semantics are currently undergoing standardization with
support from the Accellera EDA standards organization. We hope to being IEEE

standardization in early 2006. More information on this process can be obtained from
the authors.
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