
A Proposal for Defining Interactions

Perry Alexander
The University of Kansas - ITTC

June 27, 2005

1 Declaration and Definition

1.1 Interactions

Interactions are simply packages that define translator functions and functors. Everything defined
in the translator and functor blocks is implicitly exported.

interaction name(parameters) between D1 and D2 [as D3]is
[export exportList | all];
localDecls

begin
begin translators

[translatorDecls]
end translators ;
begin functors

[functorDecls]
end functors
begin combinators
end combinators;

[combinatorDecls]
end interaction name;

D1 and D2 are the source domains for models. The optional D3 value is the common super-type
of D1 and D2 for forming pullbacks using the ∗ operation. The default value for D3 is the least
common super-type of D1 and D2. The super-type is guaranteed to exist due to the nature of the
semi-lattice. It is possible that D1 = D2 in situations where translator functions must lift values
from included facets into facets of the same type. Functors may also be written in such interactions,
but the identity functor will suffice in most cases.

Parameters must be of kind design. Locally defined items must be constant and cannot be exported.

1.2 Translator Functions

name(parameters) from x::Tsrc in Dsrc to Tdest in Ddest

[is expression]
[where expression];

1

Dsrc is the source domain and Ddest is the destination domain. Both must be either D1 or D2

defined in the interaction header. Tsrc and Tdest are the source and destination types. They will
frequently be the same. x is a parameters for use in the translator definition. expression is an
expression of type Tdest that transforms x into a new value defined in Ddest. The value of an
translator is a function value. The concrete syntax simply assures appropriate definitions.

The is and where definitions behave like normal function definitions. Both can be left out to define
a variable translator. Why anyone would do this is uncertain, but it keeps the definition consistent
with function definition.

1.3 Functor Definitions

name(parameters) from x::Dsrc to Ddest

[is expression]
[where expression];

Functor definition is nearly identical to translator definition except the x parameter is a facet of
type Dsrc rather than a value defined in that domain. The functor is in all ways a function with
syntactic sugar added to the defintion to enhance readability and correct functor definition.

1.4 Combinator Definition

name(parameters) from x::Dsrc1 and y::Dsrc2 to Ddest

[is expression]
[where expression];

Combinator definition is nearly identical to functor definition except the x and y parameters repre-
sent facets from the two source domains rather than a single source domain. The combinator is in
all ways a function with syntactic sugar added to the definition to enhance readability and correct
combinator specification.

2 Usage

2.1 Interaction Usage

Interactions are included like packages with the use clause:

use interaction(parameters);

This use clause makes translator functions and functors defined in the interaction available in the
scope of the instance.

2.2 Translator Usage

Translators are applied to facet parameters when one facet instantiates another.

label : facet(p’t,...);

2

where facet is the instantiated facet name, p is an actual parameter instantiating the associated
formal parameter and t is the translator function used to move information from the included facet
domain to the including facet domain.

Whether the formal parameter associated with p is an input or output parameter to facet, instan-
tiating it with p ’t asserts that the application of t to p must result in a value compatible with
constraints on the formal parameter. This holds whether the parameter is an input or an output.

2.3 Functor Usage

Functor usage is identical to function application:

functor(p0,p1,...,F)

evaluates to the application of a functor to a facet F . The facet is a required parameter. Other
specified parameters, p0...pk, precede the facet parameter in the argument list. This is done to
allow currying to specialize functors.

2.4 Combinator Usage

Combinator usage is identical to function application:

combinator(p0,p1,...,F1,F2)

elaborates to the application of a combinator to facets F1 and F2. The facets are required parame-
ters. Other specified parameters, p0...pk, precede the facets parameters in the parameter list. This
is done to allow currying to specialize combinators.

3 Interactions and Use Clauses

It is unweildy to specify interactions elements whenever they are used in a specification. This is
particularly true of translator functions that can clutter interfaces and reduce readability. Thus
the use clause defines default interactions for a given specification. An interaction is specified in a
use clause in the same manner as a package. The interaction is named and parameteters specified
when required:

use name(p0,p1,...,pn);

The use clause specifies identifies specific interaction definitions in the same manner as packages
using the dote notation to identify where the interaction exists:

use p0.p1...name(p0,p1,...,pn);

where pk are package names.

A specific element of an interaction can be used by identifying it in the use clause:

use p0.p1...name(p0,p1,...,pn).n;

3

where n is the name of a functor, translator or combinator function defined in the interaction.

When an interaction is used by a package, the export clause controls visibility in the same manner
as for a package use. The only distinction is that for translator functions, the translator domains
are used to select a translator when none is explicitly defined. Specifically, if a facet Fsrc ::Dsrc is
included in a facet Fdest ::Ddest and translator functions are not specified for parameters of Fsrc,
the domains Dsrc and Ddest select the translator function. If a single translator function is visible
that translates between from Dsrc to Ddest, then that translator is used. If multiple translators are
visible, then the user must disambiguate in the specifications.

Situations that require the user to expicitly specify translator functions include:

1. Multiple translators exported from a single interaction.
2. Multiple interactions between the same domains each exporting translators
3. No default translator visible between domains

4 Notes and Issues

• Need to decide if we need universal variables for translators, functors and combinators.

• Do functors manipulate facet values or facet AST representations? My preference is AST
representations that denote facet values. Need to make this call before defining functors.

5 Change Log

• Sun May 22 22:08:45 CDT 2005 - Added definition for combinator; moved optional parameters
for functors and combinators to the beginning of the parameter list to facilitate currying;
suggest use clause as a possible default specification capability; minor corrections.

• Mon Jun 27 16:17:33 CDT 2005 - Added syntax for the combinator definition section in the
main interaction definition block; defined an initial proposal for specifying default translator
functions.

4

