
Rosetta System-Level Description Language Draft Standard
1. Overview

1.1 Scope

This standard defines the Rosetta system-level description language. It specifies the concrete syntax, abstract syntax
and denotational semantics of the language. It also specifies the predefined libraries, predefined packages and prede-
fined domains for models of computation.

1.2 Purpose

The discipline of systems engineering benefits from formal models of systems under design. Such models allow sys-
tems engineers to analyze and predict properties of systems, including behavior, performance, power and adherence
to requirements and constraints.

Large systems comprise a complex assembly of heterogeneous elements, including digital, analog and radio-frequency
electronics, software, mechanical, hydraulic and thermal elements. Different models of computation are appropriate
for representing aspects of these elements and their interactions. Models of computation include discrete and continu-
ous state-based representations in time, space, frequency, or abstract state, and trace-based representations.

Rosetta is a language that can be used to describe aspects, or facets, of elements of a system in different models of
computation and to describe the interactions between the facets. The language is extensible, allowing domains for spe-
cific modeling disciplines to be described as extensions of basic domains. The language has formal semantics, ex-
pressed using denotational semantic techniques, thus admitting of formal analysis of descriptions.

1.3 Structure of this standard
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 1

Draft Standard Draft Standard for the
2 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
2. References

This clause defines ...
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 3

Draft Standard Draft Standard for the
4 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
3. Definitions

This clause defines ...
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 5

Draft Standard Draft Standard for the
6 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
4. Acronyms and abbreviations

This clause defines ...
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 7

Draft Standard Draft Standard for the
8 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
5. Values and types

This clause defines the values that are denoted by Rosetta specification. It also defines the notions of types and sub-
types.

5.1 The Rosetta value space

Specifications and expressions in Rosetta shall denote abstract values defined according to the mathematics of domain
theory. The Rosetta value space shall be the domain of all denotable values, defined by the following equation:

(1)

where

⎯Values is the domain of denotable values
⎯Numbers is the domain of complex number values, including complex values with infinite real or imagi-
nary components
⎯Characters is the domain of Unicode character values
⎯Labels is the domain of label values
⎯Powerdomain is the powerdomain of values from V
⎯Unions is the disjoint union of disjoint unions of products of subdomains of V
⎯Functions is the domain of functions from subdomains of V to subdomains of V
⎯Facets is the domain of categories of coalgebras representing facets and facet-equivalents
⎯the operator + is the disjoint union operator on domains

In addition, each of the domains shall contain the undefined value denoted by the lexical token _|_.

5.2 Types

The domain of Rosetta types, T, shall be the union of:

⎯Powerdomain,
⎯Facets, and
⎯The subdomain of Functions containing functions that map to T

A Rosetta type shall be a value that is a member of T. The undefined value _|_ shall be a member of every type.

A type that is a member of Powerdomain or Facets shall be called a monomorphic type. A type that is a function whose
domain values are types shall be called a polymorphic type. A type that is a function whose domain values are not
types shall be called a dependent type.

NOTES:

1 — Since the definition of T is recursive, the value is defined by the fixed-point solution of the recursive equation for T.

2 — Usually, only facet values that are declared using domain declarations are used as types.

Given two types T1 and T2, T1 shall be called a subtype of T2 if and only if every member of T1 is also a member of
T2. T1 shall be called a proper subtype of T2 if and only if T1 is a subtype of T2 and T1 is not equal to T2. T1 shall be
called a supertype of T2 if and only if T2 is a subtype of T1. T1 shall be called a proper supertype of T2 if and only if
T2 is a proper subtype of T1.

Values Numbers Characters Labels Powerdomain Unions Functions Facets+ + + + + +=
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 9

Draft Standard Draft Standard for the
10 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
6. The Rosetta kernel language

The Rosetta kernel language shall be a subset of the full Rosetta language. The abstract syntax of the kernel language
shall be represented by the type rosetta.lang.reflect.kernel.kernel_nonterminal. A specification
in the kernel language shall be ascribed an interpretation by the denotational semantics in this standard. The denotation
of a specification in the full language shall be the denotation of the equivalent kernel language specification derived
thorough the process of elaboration (see 20.2).
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 11

Draft Standard Draft Standard for the
12 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
7. Lexical Elements

This clause defines the lexical elements used to write a Rosetta specification. A Rosetta specification shall consist of
one or more design files. A design file shall contain a sequence of lexical elements, each of which shall consist of one
or more characters.

A lexical element shall be one of:

⎯A token
⎯A label
⎯A literal

7.1 Character set

The text of a Rosetta design file shall comprise a sequence of characters drawn from the Unicode character set defined
in The Unicode Standard, Version 4.0.1 (hereafter referred to as the Unicode Standard). An implementation may
choose to store and transmit characters of a Rosetta specification using using the UTF-32, UTF-16 or UTF-8 encodings
defined in the Unicode Standard. However, all characters in the specification shall be interpretted as UTF-32 charac-
ters when the specification is processed by an implementation.

The means by which an implementation renders characters into glyphs is implementation dependent. In this standard,
characters are specified using either character names or short identifiers, as defined in Unicode Standard. Where the
character name is used, it is written using small capital letters.

NOTE — The Unicode UTF-32 character set is equivalent to the UCS-4 character set defined in ISO/IEC 10646.

7.1.1 Separators

A separator shall be a separator character, the end of a line or a comment. A separator character shall be one of:

⎯A character in the Separator class defined in the Unicode Standard
⎯The HORIZONTAL TABULATION character
⎯The VERTICAL TABULATION character
⎯The CARRIAGE RETURN character
⎯The LINE FEED character
⎯The FORM FEED character

The cause a line end is implementation defined. An implementation may interpret a specific control character or a
specific sequence of control characters as a line end. Alternatively, it may determine a line end using some mechanism
other than by interpretation of a character.

Lexical elements may be separated by one or more separators. If the characters of two successive lexical elements can,
without an intervening separator, be interpreted as a single lexical element, one or more separators shall be included
between the lexical elements. In any case, separators may be included between lexical tokens to enhance readability
of a specification.

7.1.2 Comments

A comment shall be either a single-line comment or a delimited comment. The purpose of a comment is to document
the specification for the human reader. The presence of a comment shall not influence the legality or semantics of a
Rosetta specification.
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 13

Draft Standard Draft Standard for the
A single line comment shall comprise a sequence of characters starting with two consecutive SOLIDUS characters (//)
that are not included within a string literal and extending to the end of the line. If an implementation signifies the end
of the line with one or more control characters, those control characters shall not form part of the single-line comment.

A delimited comment shall comprise a sequence of characters starting with a SOLIDUS character immediately followed
by an ASTERISK character (/*), both not included within a string literal. The delimited comment shall extend to include
the first subsequent pair consisting of an ASTERISK character immediately followed by a SOLIDUS character (*/). The
closing character pair may be on the same line as the opening character pair or on a subsequent line.

Examples:

// A comment containing documentation.
// A comment that is too long for one line may be
// split over several lines

/* A comment that extends over
 more than one line. */

/* Delimited comments may be used to exclude part of a specification...
a :: real; // A variable that we might want later.
 ... provided the excluded part contains no nested delimited comments. */

NOTE — Delimited comments do not nest. The first */ character pair encountered after an opening /* character pair closes the
first-encountered delimited comment.

7.2 Tokens

A token shall be one of

⎯A keyword
⎯A delimiter

7.2.1 Keywords

A keyword is a sequence of characters that forms a token. If a sequence of characters conforms to the rules for forming
a label and is included in the list of keywords below, it shall be interpreted as a keyword. The keywords are listed in
Table 1. A sequence of characters that differs from a keyword listed in Table 1 only in the case of letters shall be con-
sidered equivalent to that keyword.
14 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
Table 1—Rosetta keywords

7.2.2 Delimiters

A delimiter token is a sequence of characters listed in Table 2. A sequence of characters listed in Table 2 shall be
interpreted as a single delimiter, unless it occurs as part of a larger sequence of characters forming a lexical element.
Sequences of characters listed together in a cell of Table 2 shall be considered as equivalent delimiter tokens.

all enumeration mod

and export nand

assumptions facet nor

be if not

begin implications or

body implies package

case in rem

component instance sub

constant interaction subtype

data interface then

definitions is type

div justification use

domain let where

else library with

elsif max xnor

end min xor
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 15

Draft Standard Draft Standard for the
Table 2—Delimiters

7.3 Labels

A label shall be a sequence of characters that may be used as a name. A label shall be a simple label or an operator
interpretation label.

Two labels that differ only by one or more characters in the formatting code class shall be considered the same label.
Furthermore, two labels that differ only in the case of letters shall be considered the same label. Two labels differ only
in case if and only if they fold to the same Unicode character sequence when folded using the simple-case-folding map-
ping defined in Section 3.13 of the Unicode Standard.

Concrete syntax:

label ::=
simple_label | operator_interpretation_label

7.3.1 Simple labels

A simple label may be used as the name of an item or a term.

Concrete syntax:

simple_label ::=
label_start_character { [label_connecting_character] label_extending_character }

A label start character is a Unicode character in one of the classes uppercase letter, lowercase letter, titlecase letter,

" ` == ≡

' << => ⇒

% >> <= ⇐

& < /= ≠

&& = =< ≤

> >= ≥

(@ ::

) [,..

*] ||

+ ^ -> →

, _ <*

- { *>

. | {*

/ } *}

: >>> ~

; =>>
16 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
modifier letter, other letter or letter number defined in the Unicode Standard. A label extending character is a label
start character or a character in one of the classes nonspacing mark, spacing combining mark, decimal number or for-
matting code defined in the Unicode Standard. A label connecting character is a character in the class connector punc-
tuation defined in the Unicode Standard.

A sequence of characters that conforms to the rules for a simple label and that can be interpreted as a keyword shall
be interpreted as a keyword and not as a simple label.

7.3.2 Operator interpretation labels

An operator interpretation label is used as the name of a function that provides a semantic interpretation of an operator.
The operator interpretation labels are listed in Table 3. A sequence of characters that differs from an operator inter-
pretation label listed in Table 3 only in the case of letters shall be considered equivalent to that operator interpretation
label.

Table 3—Operator interpretation labels

7.4 Literals

A literal is a sequence of characters that denotes a value.

Concrete syntax:

literal ::=
undefined_literal | real_literal | infinity_literal | character_literal | string_literal | bitvector_literal

7.4.1 The undefined literal

The undefined literal shall denote the undefined value ⊥ in the Rosetta value space.

Concrete syntax:

not__ __nor__ __sub__

+__ __xor__ __+__

-__ __xnor__ __-__

*__ __max__ __&__

#__ __and__ __&&__

%__ __nand__ __||__

~__ __min__ __*__

__>>>__ __=__ __/__

__=>>__ __/=__ __mod__

__==__ __<__ __div__

__=>__ __>__ __rem__

__implies__ __=<__ __^__

__<=__ __>=__ __::__

__or__ __in__
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 17

Draft Standard Draft Standard for the
undefined_literal ::=
| | ⊥

7.4.2 The infinity literal

The infinity literal shall denote the infinite number value in the Rosetta value space.

Concrete syntax:

infinity_literal ::=
∞

7.4.3 Real literals

A real literal denotes a value of the type .

Concrete syntax:

real_literal ::=
decimal_literal | based_literal

decimal_literal ::=
decimal_digits [. decimal_digits] [exponent]

exponent ::=
(e | E) [+ | -] decimal_digits

decimal_digits ::=
decimal_digit { decimal_digit }

decimal_digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

based_literal ::=
base \ based_digits [. based_digits] \ [exponent]

base ::=
decimal_digits

based_digits ::=
based_digit { based_digit }

based_digit ::=
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | A | b | B | c | C | d | D | e | E | f | F

A decimal literal shall consist of a sequence of decimal digits representing the whole-number part of a value in decimal
radix, an optional post-decimal-point sequence of decimal digits representing the fractional part of the value in decimal
radix, and an optional exponent.

A based literal shall consist of a sequence of decimal digits representing the radix of a value, a sequence of based digits
representing the whole-number part of a value in the specified radix, an optional post-radix-point sequence of based
digits representing the fractional part of the value in the specified radix, and an optional exponent.

Both the base number and the exponent shall be interpretted as decimal numbers. The value denoted by the literal shall
be the value specified by the whole-number and post-radix-point parts multiplied by the radix raised to the power of
18 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
the exponent.

The based digits a and A shall have the value 10, b and B shall have the value 11, c and C shall have the value 12, d
and D shall have the value 13, e and E shall have the value 14, and f and F shall have the value 15. In a based literal,
the radix shall be in the range 2 to 16 inclusive, and only the based digits between 0 inclusive and the radix exclusive
shall be used.

NOTE — No distinction is made between real literals and literal values of type rational, integer, natural or bit, as all
of these types are subtypes of real. For example, the real literal 3.0 has the integer value 3, and so is a member of the types real,
rational, integer and natural.

7.4.4 Character literals

A character literal denotes a value of the type rosetta.lang.prelude.character.

Concrete syntax:

character_literal ::=
graphic_character_literal | character_code_literal

graphic_character_literal ::=
' character '

character_code_literal ::=
' character_code_specifier '

character_code_specifier
short_character_code_specifier | full_character_code_specifier

short_character_code_specifier ::=
(u | U) + [[based_digit] based_digit] based_digit based_digit based_digit based_digit

full_character_code_specifier ::=
(u | U) - based_digit based_digit based_digit based_digit based_digit based_digit based_digit based_digit

The value denoted by a graphic character literal shall be the Unicode character enclosed between the two APOSTROPHE
characters.

The value denoted by a character code literal shall be the Unicode character whose character code is an eight-digit
hexadecimal value specified by the character code specifier. A short character code specifier shall specify a hexadec-
imal value formed from the based digits in the short character code specifier extended to the left with sufficient 0 digits
to form a total of eight digits. A full character code specifier shall specify all eight digits of the character code.

Examples:

'A' // LATIN CAPITAL LETTER A
' ' // SPACE
''' // APOSTROPHE
'U+00B1' // PLUS-MINUS SIGN (±)
'u+274F' // LOWER RIGHT DROP-SHADOWED WHITE SQUARE
'U+10347’ // GOTHIC LETTER IGGWS
'U+00FFFF' // not a character
'U-0001040F' // DESERET CAPITAL LETTER YEE
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 19

Draft Standard Draft Standard for the
NOTE — A graphic character literal may contain a Unicode character that cannot be rendered by an implementation.

7.4.5 String literals

A string literal shall denote a value of the type rosetta.lang.prelude.string. A string literal shall be
formed by enclosing a sequence of zero or more Unicode characters between two QUOTATION MARK characters.

Concrete syntax:

string_literal ::=
" { character } "

The value denoted by a string literal shall be the sequence of characters contained between the QUOTATION MARK char-
acters. If there are no characters between the QUOTATION MARK characters, the value denoted by the string literal shall
be the empty sequence. Otherwise, the first character in the string literal shall be the first element of the value and
subsequent characters in the string literal shall be subsequent elements of the value, in the same order, except that two
successive QUOTATION MARK characters in a string literal shall denote a single occurrence of a QUOTATION MARK char-
acter in the sequence of characters denoted by the string literal. The first QUOTATION MARK character that is not im-
mediately followed by another QUOTATION MARK character shall be the terminating QUOTATION MARK character of the
string literal.

Examples:

"Enter command: " // A prompt string
"¿Que?" // Almost any character can appear in a string literal
"" // An empty string
"++""++" // A string containing a QUOTATION MARK character
"This string extends "
 & "over two lines."
"This string contains" & 'U+000A' & "a line separator character."

NOTE — A string literal cannot extend over more than one line. A string can be written on two lines by concatenating two sub-
strings, each written on a separate line. A string containing a line separator character can be formed by concatenating string literals
and an character code literal denoting the line separator character.

7.4.6 Bitvector literals

A bitvector literal shall denote a value of the type rosetta.lang.prelude.bitvector.

Concrete syntax:

bitvector_literal ::=
binary_bitvector_literal | octal_bitvector_literal | hexadecimal_bitvector_literal

binary_bitvector_literal ::=
(b | B) " binary_digit { binary_digit } "

binary_digit ::=
0 | 1

octal_bitvector_literal ::=
(o | O) " octal_digit {octal_digit } "

octal_digit ::=
20 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

hexadecimal_bitvector_literal ::=
(x | X) " based_digit {based_digit } "

The binary digit 0 shall denote bitvector values as listed in Table 4.

Table 4—Values denoted by binary digits

The octal digits shall denote bitvector values as listed in Table 5.

Table 5—Values denoted by octal digits

The hexadecimal digits shall denote bitvector values as listed in Table 6.

Table 6—Values denoted by hexadecimal digits

Let the rightmost digit of a bitvector literal be called d0, and the remaining digits from right to left be called d1, d2, and
so on. Let the bitvector value denoted by d0 be called s0, by d1 be s1, and so on. Then the bitvector literal shall denote
the concatenation

s0 & s1 & s2 & ...

Examples:

Binary digit Bitvector value

0 [0]

1 [1]

Octal digit Bitvector value Octal digit Bitvector value

0 [0, 0, 0] 4 [0, 0, 1]

1 [1, 0, 0] 5 [1, 0, 1]

2 [0, 1, 0] 6 [0, 1, 1]

3 [1, 1, 0] 7 [1, 1, 1]

Hexadecimal digit Bitvector value Hexadecimal digit Bitvector value

0 [0, 0, 0, 0] 8 [0, 0, 0, 1]

1 [1, 0, 0, 0] 9 [1, 0, 0, 1]

2 [0, 1, 0, 0] a A [0, 1, 0, 1]

3 [1, 1, 0, 0] b B [1, 1, 0, 1]

4 [0, 0, 1, 0] c C [0, 0, 1, 1]

5 [1, 0, 1, 0] d D [1, 0, 1, 1]

6 [0, 1, 1, 0] e E [0, 1, 1, 1]

7 [1, 1, 1, 0] f F [1, 1, 1, 1]
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 21

Draft Standard Draft Standard for the
b"001101" == [1, 0, 1, 1, 0, 0]
O"35" == [1, 0, 1, 1, 1, 0]
x"71" == [1, 0, 0, 0, 1, 1, 1, 0]

NOTE — An octal bitvector literal always denotes a sequence that is a multiple of three in length, and a hexadecimal bitvector
literal always denotes a sequence that is a multiple of four in length.
22 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
8. Expressions

This clause defines the various forms of Rosetta expressions. The abstract syntax definitions in this clause are declared
in the package rosetta.lang.reflect.abstract_syntax. The simplification definitions are declared in
the package rosetta.lang.reflect.simplification.

An expression shall denote a value. Expressions shall be formed by combining primary expressions with operators.
The concrete syntax for expressions shall determine the precedence of operators. Where operators in an expression are
of equal precedence, the expression shall be interpreted by applying operators in left-to-right order.

Concrete Syntax:

expression ::=
precedence_0_expression

optional_expression_list ::=
[expression { , expression }]

precedence_0_expression ::=
precedence_1_expression
| precedence_0_operation

precedence_0_operation ::=
left_operand:precedence_0_expression operator:precedence_0_operator

right_operand:precedence_1_expression

precedence_0_operator ::=
>>> | =>>

precedence_1_expression ::=
precedence_2_expression
| precedence_1_operation

precedence_1_operation ::=
left_operand:precedence_1_expression operator:precedence_1_operator

right_operand:precedence_2_expression

precedence_1_operator ::=
==

precedence_2_expression ::=
precedence_3_expression
| precedence_2_operation

precedence_2_operation ::=
left_operand:precedence_2_expression operator:precedence_2_operator

right_operand:precedence_3_expression

precedence_2_operator ::=
=> | implies | <=

precedence_3_expression ::=
precedence_4_expression
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 23

Draft Standard Draft Standard for the
| precedence_3_operation

precedence_3_operation ::=
left_operand:precedence_3_expression operator:precedence_3_operator

right_operand:precedence_4_expression

precedence_3_operator ::=
or | nor | xor | xnor | max

precedence_4_expression ::=
precedence_5_expression
| precedence_4_operation

precedence_4_operation ::=
left_operand:precedence_4_expression operator:precedence_4_operator

right_operand:precedence_5_expression

precedence_4_operator ::=
and | nand | min

precedence_5_expression ::=
precedence_6_expression
| precedence_5_operation

precedence_5_operation ::=
left_operand:precedence_5_expression operator:precedence_5_operator

right_operand:precedence_6_expression

precedence_5_operator ::=
= | /= | < | =< | > | >= | in

precedence_6_expression ::=
precedence_7_expression
| precedence_6_operation

precedence_6_operation ::=
left_operand:precedence_6_expression operator:precedence_6_operator

right_operand:precedence_7_expression

precedence_6_operator ::=
sub

precedence_7_expression ::=
precedence_8_expression
| precedence_7_operation

precedence_7_operation ::=
left_operand:precedence_7_expression operator:precedence_7_operator

right_operand:precedence_8_expression

precedence_7_operator ::=
+ | - | & | && | ||

precedence_8_expression ::=
24 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
precedence_9_expression
| precedence_8_operation

precedence_8_operation ::=
left_operand:precedence_8_expression operator:precedence_8_operator

right_operand:precedence_9_expression

precedence_8_operator ::=
* | / | div | mod | rem

precedence_9_expression ::=
precedence_10_expression
| precedence_9_operation

precedence_9_operation ::=
left_operand:precedence_9_expression operator:precedence_9_operator

right_operand:precedence_10_expression

precedence_9_operator ::=
^ | #

precedence_10_expression ::=
precedence_11_expression
| precedence_10_operation

precedence_10_operation ::=
operator:precedence_10_operator operand:precedence_10_expression

precedence_10_operator ::=
not | + | - | % | # | ~

precedence_11_expression ::=
precedence_12_expression
| at_operation

at_operation ::=
left_operand:name @ right_operand:precedence_12_expression

precedence_12_expression ::=
precedence_13_expression
| function_application
| facet_instantiation

precedence_13_expression ::=
primary
| precedence_13_operation

precedence_13_operation ::=
left_operand:primary operator:precedence_13_operator right_operand:primary

precedence_13_operator ::=
::

primary ::=
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 25

Draft Standard Draft Standard for the
parenthesized_expression
| literal
| name
| tick_operation
| anonymous_function
| anonymous_facet
| set_formation
| multiset_formation
| sequence_formation
| type_formation
| let_expression
| if_expression
| case_expression
| quantified_expression
| template_expression

Abstract syntax:

 prefix_unary_operation :: ...

 infix_binary_operation :: ...

 expression :: ...

 optional_expression :: ...

 optional_expression_list :: ...

 precedence_0_expression :: ...

 precedence_0_operation :: ...

 precedence_0_operator :: ...

 precedence_1_expression :: ...

 precedence_1_operation :: ...

 precedence_1_operator :: ...

 precedence_2_expression :: ...

 precedence_2_operation :: ...

 precedence_2_operator :: ...

 precedence_3_expression :: ...

 precedence_3_operation :: ...

 precedence_3_operator :: ...

 precedence_4_expression :: ...
26 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
 precedence_4_operation :: ...

 precedence_4_operator :: ...

 precedence_5_expression :: ...

 precedence_5_operation :: ...

 precedence_5_operator :: ...

 precedence_6_expression :: ...

 precedence_6_infix_binary_operation :: ...

 precedence_6_binary_operator :: ...

 precedence_7_expression :: ...

 precedence_7_operation :: ...

 precedence_7_operator :: ...

 precedence_8_expression :: ...

 precedence_8_operation :: ...

 precedence_8_operator :: ...

 precedence_9_expression :: ...

 precedence_9_operation :: ...

 precedence_9_operator :: ...

 precedence_10_expression :: ...

 precedence_10_operation :: ...

 precedence_10_operator :: ...

 precedence_11_expression :: ...

 at_operation :: ...

 precedence_12_expression :: ...

 precedence_13_expression :: ...

 precedence_13_operation :: ...

 precedence_13_operator :: ...

NOTE — There is no abstract syntax corresponding to the concrete nonterminal template_expression, since a template
expression is expanded into an equivalent anstract syntax tree during parsing of a Rosetta specification.
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 27

Draft Standard Draft Standard for the
Simplification:

 simplified_expression :: ...

 simplified_optional_expression_list :: ...

 simplified_singleton_expression_list :: ...

 simplify_expression ...

NOTE — The function simplify_expression yields a simplified expression according to the subtype of the given Rosetta
expression. In the case of an at operation, the result is a simplified tick operation in which the operand is the left operand of the at
operation, and the tick operator list contains one element where the tick label is “at”, and the tick arguement list is a singleton list
containing the right operand of the at operation. In the case of an expression that is a literal or a name, the expression is also the
simplified expression.

Examples:

The Rosetta expression #e simplifies to the expression #__ (e).

The Rosetta expression e1 * e2 simplifies to the expression __*__ (e1, e2).

The Rosetta expression n @ e simplifies to the expression n'at (e).

Name Expansion:

 resolved_expression :: ...

 resolved_optional_expression_list :: ...

 resolved_singleton_expression_list :: ...

 expand_names_in_expression ...

NOTE — The function expand_names_in_expression yields a resolved expression according to the subtype of the given
simplified expression. If the given expression is a name that is a label list, the resolved expression is an equivalent value of roset-
ta.lang.reflect.name_expansion.resolved_reference, while if the given expression is a name that is a resolved
reference then the given name is yielded as is.

8.1 Operators

Static semantics:

For each operator, their shall be a corresponding operator interpretation function label, given in Table 7. If a given
operator occurs in an expression, an item with the corresponding operator interpretation function label shall be directly
visible at the place of the expression, and that item shall denote a function, called the operator interpretation function.
An expression that is an operation shall be equivalent to an expression that is a function application in which the ap-
plied function expression is the operator interpretation function name. For unary operators, the operator interpretation
function shall be applied to the single operand of the operator. For binary operators, the operator interpretation function
shall be applied with the left operand as the first argument and the right operand as the second argument.
28 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
Table 7—Operator interpretation function names

NOTE — Operator interpretation functions for all operators except >>> and =>> are defined in the package roset-
ta.lang.prelude, which is used in most domains. Hence the functions will usually be directly visible. Operator interpretation
functions for >>> and =>> are defined in the package rosetta.lang.reflect.semantics. These functions can be made
directly visible by means of a use clause referring to the package.

Simplification:

 simplify_prefix_unary_operation ...

NOTE — The function simplify_prefix_unary_operation yields the simplification of a function application in which
the applied function expression is a label formed by appending “__” to the operator token and the argument is the operand expres-
sion.

 simplify_infix_binary_operation ...

Operator Operator interpretation
function label

Operator Operator interpretation
function label

>>> __>>>__ + (binary) __+__

=>> __=>>__ - (binary) __-__

== __==__ & __&__

=> __=>__ && __&&__

implies __implies__ || __||__

<= __<=__ * __*__

or __or__ / __/__

nor __nor__ div __div__

xor __xor__ mod __mod__

xnor __xnor__ rem __rem__

max __max__ ^ __^__

and __and__ # (binary) __#__

nand __nand__ not not__

min __min__ + (unary) +__

= __=__ - (unary) -__

/= __/=__ % %__

< __<__ # (unary) #__

=< __=<__ ~ ~__

> __>__ :: __::__

>= __>=__

in __in__

sub __sub__
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 29

Draft Standard Draft Standard for the
NOTE — The function simplify_infix_binary_operation yields the simplification of a function application in which
the applied function expression is a label formed by prefixing and appending “__” to the operator token, the first argument is the
left operand expression, and the second arguement is the right operand expression.

8.2 Primaries

This clause defines the various forms of primary that shall be used to form expressions.

8.2.1 Parenthesized expressions

Concrete syntax:

parenthesized_expression ::=
(contained_expression:expression)

Abstract syntax:

 parenthesized_expression :: ...

Simplification:

 simplify_parenthesized_expression ...

NOTE — The function simplify_parenthesized_expression yields the simplification of the contained expression.

8.2.2 Literals

The value denoted by a primary that is a literal shall be the value of the literal.

NOTE — Literals are defined in 7.4.

8.2.3 Names

To do: sort this out properly.

Concrete syntax:

name ::=
label [{ . label }]

Abstract syntax:

 name :: ...

Name Expansion:

 resolved_reference :: ...

 referable_item :: ...

NOTE — The type referable_item is the union of those resolved AST types that declare an item or term or define a parameter.

 get_resolved_reference ...
30 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
NOTE — Given a visibility context corresponding to the declarative region in which a label list occurs as a name, and a label list
occuring as a name, the function get_resolved_reference yields a value of rosetta.lang.re-
flect.name_expansion.resolved_reference that denotes the label of the declared item or declared term or defined
parameter that is visible within the given context and is refered to by the given name.

8.2.4 Tick operations

Concrete syntax:

tick_operation ::=
operand:name operators:tick_operator_list

tick_operator_list ::=
tick_operator { tick_operator }

tick_operator ::=
' [tick_label:label [(tick_arguments:expression_list)]]

Abstract syntax:

 tick_operation :: ...

 tick_operator_list :: ...

 tick_operator :: ...

Simplification:

 simplified_tick_operation :: ...

 simplified_tick_operator :: ...

 simplified_tick_operator_list :: ...

 simplify_tick_operation ...

NOTE — The function simplify_tick_operation yields a simplified tick operation with the same left operand. For each
tick operator, the result simplified tick operation has a corresponding tick operator with the same operator label, but with each ar-
gument expression simplified.

Name Expansion:

 resolved_tick_operation :: ...

 resolved_tick_operator :: ...

 resolved_tick_operator_list :: ...

 resolve_tick_operation ...

NOTE — The function resolve_tick_operation yields a resolved tick operation where the left operand is a resolved ref-
erence corresponding to the name denoted by the left operand. For each simplified tick operator, the result has a corresponding tick
operator with the same operator label, but where any names within each argument expression are expanded.
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 31

Draft Standard Draft Standard for the
8.2.5 Set formations

Concrete syntax:

set_formation ::=
{ set_formation_contents:set_formation_content }

set_formation_content ::=
optional_expression_list
| range

range ::=
lower_bound:expression ,.. upper_bound:expression

Abstract syntax:

 set_formation :: ...

 set_formation_content :: ...

 range :: ...

Simplification:

 simplify_set_formation ...

NOTE — The function simplify_set_formation yields a simplified expression formed as follows:

⎯If the set formation content is an optional expression list, each element of the list is wrapped as the argument in a func-
tion application expression in which the applied function is the name rosetta.lang.prelude.singleton_set.
The resulting expressions are wrapped as arguments in nested function application expressions in which each applied
function is the name rosetta.lang.prelude.set_union, starting with the name rosetta.lang.prel-
ude.empty_set as the degenerate case for an empty expression list. The nested function application expression is sim-
plifed to yield the final result.
⎯If the set formation content is a range, the result is the simplification of a function application in which the applied func-
tion is the name rosetta.lang.prelude.range_set, the first argument is the lower bound of the set content, and
the second argument is the upper bound of the set content.

Examples:

The Rosetta expression { } simplifies to the expression

 rosetta.lang.prelude.empty_set

The Rosetta expression { e } simplifies to the expression

 rosetta.lang.prelude.set_union (
 rosetta.lang.prelude.empty_set,
 rosetta.lang.prelude.singleton_set (e))

The Rosetta expression { e1, e2, e3 } simplifies to the expression

 rosetta.lang.prelude.set_union (
 rosetta.lang.prelude.set_union (
 rosetta.lang.prelude.set_union (
32 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
 rosetta.lang.prelude.empty_set,
 rosetta.lang.prelude.singleton_set (e1)),
 rosetta.lang.prelude.singleton_set (e2)),
 rosetta.lang.prelude.singleton_set (e3))

The Rosetta expression { e1,..e2 } simplifies to the expression

 rosetta.lang.prelude.range_set (e1, e2)

8.2.6 Multiset formations

Concrete syntax:

multiset_formation ::=
{* multiset_formation_contents:multiset_formation_content *}

multiset_formation_content ::=
optional_multiset_expression_list
| range

optional_multiset_expression_list ::=
[multiset_expression { , multiset_expression }]

multiset_expression ::=
occurrences:optional_occurrence_count value:expression

optional_occurrence_count ::=
[expression :]

Abstract syntax:

 multiset_formation :: ...

 multiset_formation_content :: ...

 optional_multiset_expression_list :: ...

 multiset_expression :: ...

Simplification:

 simplify_multiset_formation ...

NOTE — The function simplify_multiset_formation yields a simplified expression formed as follows:

⎯If the multiset formation content is an optional multiset expression list, each element of the list is wrapped as the second
argument in a function application expression in which the applied function is the name rosetta.lang.prel-
ude.single_value_multiset. The first argument is either the occurrence count, if present, or the literal 1 other-
wise. The resulting expressions are wrapped as arguments in nested function application expressions in which each
applied function is the name rosetta.lang.prelude.multiset_union, starting with the name roset-
ta.lang.prelude.empty_multiset as the degenerate case for an empty multiset expression list. The nested
function application expression is simplifed to yield the final result.
⎯If the multiset formation content is a range, the result is the simplification of a function application in which the applied
function is the name rosetta.lang.prelude.range_multiset, the first argument is the lower bound of the
multiset content, and the second argument is the upper bound of the multiset content.
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 33

Draft Standard Draft Standard for the
Examples:

The Rosetta expression {* *} simplifies to the expression

 rosetta.lang.prelude.empty_multiset

The Rosetta expression {* c:e *} simplifies to the expression

 rosetta.lang.prelude.multiset_union (
 rosetta.lang.prelude.empty_multiset,
 rosetta.lang.prelude.single_value_multiset (c, e))

The Rosetta expression {* e *} simplifies to the expression

 rosetta.lang.prelude.multiset_union (
 rosetta.lang.prelude.empty_multiset,
 rosetta.lang.prelude.single_value_multiset (1, e))

The Rosetta expression {* c1:e1, c2:e2, c3:e3 *} simplifies to the expression

 rosetta.lang.prelude.multiset_union (
 rosetta.lang.prelude.multiset_union (
 rosetta.lang.prelude.multiset_union (
 rosetta.lang.prelude.empty_multiset,
 rosetta.lang.prelude.single_value_multiset (c1, e1)),
 rosetta.lang.prelude.single_value_multiset (c2, e2)),
 rosetta.lang.prelude.single_value_multiset (c3, e3))

The Rosetta expression {* e1,..e2 *} simplifies to the expression

 rosetta.lang.prelude.range_multiset (e1, e2)

8.2.7 Sequence formations

Concrete syntax:

sequence_formation ::=
[sequence_content:sequence_formation_content]

sequence_formation_content ::=
optional_expression_list
| range

Abstract syntax:

 sequence_formation :: ...

 sequence_formation_content :: ...

Simplification:

 simplify_sequence_formation ...

NOTE — The function simplify_sequence_formation yields a simplified expression formed as follows:
34 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
⎯If the sequence formation content is an optional expression list, the expressions are wrapped as arguments in nested
function application expressions in which each applied function is the name rosetta.lang.prelude.cons, start-
ing with the name rosetta.lang.prelude.empty_sequence as the degenerate case for an empty expression
list. The nested function application expression is simplifed to yield the final result.
⎯If the sequence formation content is a range, the result is the simplification of a function application in which the ap-
plied function is the name rosetta.lang.prelude.range_sequence, the first argument is the lower bound of
the sequence content, and the second argument is the upper bound of the sequence content.

Examples:

The Rosetta expression [] simplifies to the expression

 rosetta.lang.prelude.empty_sequence

The Rosetta expression [e] simplifies to the expression

 rosetta.lang.prelude.cons (
 e,
 rosetta.lang.prelude.empty_sequence)

The Rosetta expression [e1, e2, e3] simplifies to the expression

 rosetta.lang.prelude.cons (
 e1,
 rosetta.lang.prelude.cons (
 e2
 rosetta.lang.prelude.cons (
 e3,
 rosetta.lang.prelude.empty_sequence)))

The Rosetta expression [e1,..e2] simplifies to the expression

 rosetta.lang.prelude.range_sequence (e1, e2)

8.2.8 Type formations

Concrete syntax:

type_formation ::=
subtype_formation
| universal_type_formation
| function_type_formation

subtype_formation ::=
subtype (base_type:expression)

universal_type_formation ::=
type

Abstract syntax:

 type_formation :: ...

 subtype_formation :: ...
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 35

Draft Standard Draft Standard for the
 universal_type_formation :: ...

Simplification:

To do: revise the following to take account of types that are functions returning types. Specifically, having type sim-
plify to set(universal) is not sufficient, since types denoted by functions returning types are not sets.

 simplify_type_formation ...

NOTE — If the type formation is a subtype formation or a universal type formation, the function
simplify_type_formation yields the simplification of a function application in which the applied function is the name ro-
setta.lang.prelude.set and the argument is the base type expression of the subtype formation or the name roset-
ta.lang.prelude.universal, respectively. If the type formation is a function type formation, the function
simplify_type_formation yields the simplification of the function type formation.

Examples:

The Rosetta expression subtype (T) simplifies to the expression

 rosetta.lang.prelude.set (T)

The Rosetta expression type simplifies to the expression

 rosetta.lang.prelude.set (rosetta.lang.prelude.universal)

8.2.9 Let expressions

Concrete syntax:

let_expression ::=
let

binding_list:let_binding_list
in

encapsulated_expression:expression
end let

let_binding_list ::=
let_binding { let_binding_list }

let_binding ::=
let_function_binding
| let_parameter_binding

let_function_binding ::=
function_label:label signature:function_signature be

encapsulated_expression:expression ;

let_parameter_binding ::=
parameter:parameter_definition be bound_expression:expression ;

Abstract syntax:

 let_expression :: ...

 let_binding_list :: ...
36 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
 let_binding :: ...

 let_function_binding :: ...

 let_parameter_binding :: ...

Static semantics:

The labels of all of the let bindings in a let expression shall be distinct.

Simplification:

 simplified_let_expression :: ...

 simplified_let_binding_list :: ...

 simplified_let_binding :: ...

 labels_from_simplified_let_binding_list ...

NOTE — The function labels_from_simplifed_list_binding_list yields a list of the labels of the parameters in
the given simplified let binding list.

 simplify_let_expression ...

NOTE — The function simplify_let_expression yields a let expression in which the elements of the binding list are the
simplification of the binding list elements of the given let expression, and the encapsulated expression is the simplification of the
encapsulated expression of the given let expression.

 simplify_let_binding ...

NOTE — The function simplify_let_binding yields a simplified let function binding if the let binding is a let function
binding, or a simplified let parameter binding if the let binding is a let parameter binding.

 simplify_let_function_binding ...

NOTE — The function simplify_let_function_binding yields the simplification of a let parameter binding in which
the parameter label is the label of the given let function binding, the parameter type is a function type formation with the same sig-
nature as the given let function binding. The and the bound expression is an anonymous function in which the signature is that of
the given let function binding and the encapsulated expression is that of the given let function binding.

 simplify_let_parameter_binding ...

NOTE — The function simplify_let_parameter_binding yields a let parameter binding in which the parameter label
is that of the given let parameter binding, the parameter type is the simplification of the type of the given let parameter binding, and
the bound expression is the simplification of the bound expression of the given let parameter binding.

Example:

The Rosetta expression

 let
 f (x :: T) :: R be e1
 in
 e2
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 37

Draft Standard Draft Standard for the
 end let

simplifies to the expression

 let
 f :: <* (x :: T) :: R > be <* (x :: T) :: R is e1 *>
 in
 e2
 end let

Name expansion:

 resolved_let_expression :: ...

 resolved_let_binding_list :: ...

 resolved_let_binding :: ...

 expand_names_in_let_expression ...

NOTE — The function expand_names_in_let_expression yields a resolved let expression in which the elements of the
binding list are the resolved let bindings corresponding to the bindings of the given simplified let expression, and the encapsulated
expression is the resolved expression corresponding to the encapsulated expression of the given simplified let expression in which
any names are resolved references.

 expand_names_in_let_binding ...

NOTE — The function expand_names_in_let_binding yields a resolved let binding in which the parameter label is that
of the given simplified let binding, the parameter type corresponds to the type of the given simplified let binding in which any names
are resolved references, and the bound expression corresponds to the bound expression of the given simplified let binding in which
any names are resolved references.

Denotational semantics:

The value denoted by a let expression shall be the value denoted by the encapsulated expression interpreted in a context
formed by adding bindings for the parameter labels in the binding list to the head of the context in which the let ex-
pression is interpreted. The binding for each parameter label shall consist of an item whose label is the parameter label
and whose value is the value denoted by the corresponding bound expression. The bindings may be mutually recursive,
in which case a least-fixpoint solution to the bindings shall be determined.

8.2.10 If expressions

Concrete syntax:

if_expression ::=
if if_condition:expression then

true_alternative:expression
elsif_alternatives:optional_elsif_expression_list
false_alternative:optional_else_expression

end if

optional_elsif_expression_list ::=
{ elsif_expression }

elsif_expression ::=
38 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
elsif elsif_condition:expression then
elsif_alternative:expression

optional_else_expression ::=
[else expression]

Abstract syntax:

 if_expression :: ...

 optional_elsif_expression_list :: ...

 elsif_expression :: ...

 optional_else_expression :: ...

Simplification:

 simplified_if_expression :: ...

 simplify_if_expression ...

NOTE — The function simplify_if_expression yields an if expression in which the if condition and true expression are
the simplified if condition and true expression, respectively of the given if expression. The false expression is formed from zero or
more nested if expressions. The innermost false expression is either the simplified false expression of the given if expression, if
present, or the bottom token otherwise. This is wrapped as the false expression in nested if expressions, starting from the last elsif
expression of the given if expression and working outward to the first elsif expression. For each nested if expression, the if condition
is the simplified form of the corresponding elsif condition and the true alternative is the simplified form of the corresponding elsif
alternative.

Examples:

The Rosetta expression

 if c1 then
 e1
 end if

simplifies to the expression

 if c1 then
 e1
 else
 |
 end if

The Rosetta expression

 if c1 then
 e1
 elsif c2 then
 e2
 elsif c3 then
 e3
 end if
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 39

Draft Standard Draft Standard for the
simplifies to the expression

 if c1 then
 e1
 else
 if c2 then
 e2
 else
 if c3 then
 e3
 else
 |
 end if
 end if
 end if

The Rosetta expression

 if c1 then
 e1
 elsif c2 then
 e2
 elsif c3 then
 e3
 else
 e4
 end if

simplifies to the expression

 if c1 then
 e1
 else
 if c2 then
 e2
 else
 if c3 then
 e3
 else
 e4
 end if
 end if
 end if

Name Expansion:

 resolved_if_expression :: ...

 expand_names_in_if_expression ...

NOTE — The function expand_names_in_if_expression yields a resolved if expression in which the if condition, true
expression, and false expression correspond to the if condition, true expression, and false expression, respectively of the given sim-
plified if expression but where any names are resolved references. The else if alternatives of the yielded value is an empty list.
40 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
Denotational semantics:

The value denoted by the condition expression in an if expression shall be of type rosetta.lang.prel-
ude.boolean.

The value denoted by an if expression shall depend on the value denoted by the condition. If the value denoted by the
condition is _|_, the value denoted by the if expression shall be _|_. If the value denoted by the condition is true,
the value denoted by the if expression shall be the value denoted by the true alternative expression. If the value denoted
by the condition is false, the value denoted by the if expression shall be the value denoted by the false alternative.

8.2.11 Case expressions

Concrete syntax:

case_expression ::=
case selector:expression is

alternatives:case_alternative_list
end case

case_alternative_list ::=
case_alternative { | case_alternative }

case_alternative ::=
tag:expression -> result:expression

Abstract syntax:

 case_expression :: ...

 case_alternative_list :: ...

 case_alternative :: ...

Simplification:

 simplify_case_expression ...

NOTE — The function simplify_case_expression yields the simplification of an if expression in which there is a nested
if expression for each case alternative, with the first case alternative corresponding to the outermost if expression and the last case
alternative corresponding to the innermost if expression. For each if expression, the if condition is an application of the function
rosetta.lang.prelude.type_member in which the first argument is the selector of the given case expression and the second argument
is the tag expression of the corresponding alternative of the given case expression. The true alternative is the result expression of the
corresponding alternative of the given case expression. There are no elsif expressions, and the false alternative is the next nested if
expression. The false expression for the innermost if expression is absent.

Examples:

The Rosetta expression

 case s is
 t1 -> e1
 end case

simplifies to the expression
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 41

Draft Standard Draft Standard for the
 if rosetta.lang.prelude.universal_type_member (s, t1) then
 e1
 end if

The Rosetta expression

 case s is
 t1 -> e1 |
 t2 -> e2 |
 t3 -> e3
 end case

simplifies to the expression

 if rosetta.lang.prelude.universal_type_member (s, t1) then
 e1
 else
 if rosetta.lang.prelude.universal_type_member (s, t2) then
 e1
 else
 if rosetta.lang.prelude.universal_type_member (s, t3) then
 e3
 end if
 end if
 end if

NOTES:

1 — The values of the tag expressions need not be mutually exclusive.

2 — The effect of a default alternative, to be selected when no other alternative is selected, can be achieved by writing an alternative
with the tag expression universal as the last alternative in a case expression. For example:

case char is
 {'.'} -> ... // result for decimal point
 | {'0',..'9'} -> ... // result for digit
 | character -> ... // result for other character
 | universal -> ... // result for non-character
end case

8.2.12 Quantified expressions

Concrete syntax:

quantified_expression ::=
quantifier_name:name (parameters:parameter_list | encapsulated_expression:expression)

Abstract syntax:

 quantified_expression :: ...

Simplification:

 simplify_quantified_expression ...
42 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
NOTE — The function simplify_quantified_expression yields a simplified nested function application. The param-
eter list of the quantified expression is expanded to obtain a list of individual parameter definitions. Starting with the last parameter
definition in the list, the encapsulated expression of the quantified expression is wrapped as the encapsulated expression in an anon-
ymous function, in which the anonymous function parameter definition is the last parameter definition of the list, and the return type
expression is rosetta.lang.prelude.universal. The anonymous function then forms the argument of a function appli-
cation in which the applied function is the quantifier name of the quantified expression. The resulting function application is further
wrapped as the encapsulated expression in a similar anonymous function and function application, once for each of the parameter
definitions in the list, if any.

Examples:

The Rosetta expression

 q (x1 :: T1; x2 :: T2 | e)

simplifies to the expression

 q (<* (x1 :: T1) :: rosetta.lang.prelude.universal is
 q (<* (x2 :: T2) :: rosetta.lang.prelude.universal is
 e *>) *>)

8.2.13 Template expressions

Concrete syntax:

template_expression ::=
<< nonterminal_name:label template_elements:template_element_list >>

template_element_list ::=
template_element { template_element }

template_element ::=
non_template_token
| template_quoted_expression

template_quoted_expression ::=
` quoted_expression:expression `

A non template token shall be any lexical token except <<, >> or `.

A template expression shall be expanded into an abstract syntax tree during parsing of the concrete syntax of the Ro-
setta specification. The abstract syntax tree shall be formed by parsing the lexical tokens in the template element list.
The goal nonterminal of the parse shall be the nonterminal of the Rosetta concrete syntax that corresponds to the ab-
stract syntax type in rosetta.lang.reflect.abstract_syntax with the nonterminal name label of the
template expression. The abstract syntax tree shall be of type rosetta.lang.re-
flect.abstact_syntax.expression and shall represent nested application of abstract syntax constructor
functions that construct the parse of the sequence of template elements.

Where the parse encounters a literal in the sequence of template elements, the literal value shall be used as the abstract
syntax subtree corresponding to the place of the literal in the parse.

Where the parse encounters a label in the sequence of template elements, the abstract syntax subtree corresponding to
the place of the label in the parse shall be an abstract syntax tree for a function application. The applied function ab-
stract syntax tree shall be an abstract syntax tree for a qualified name representing the item rosetta.lang.re-
flect.labels.make_label, and the argument abstract syntax tree shall be a list of one element, that element
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 43

Draft Standard Draft Standard for the
being a string literal containing the characters of the label.

Where the parse encounters a terminal token, other than a literal or a label, that represents itself in an abstract syntax
tree, the value of type rosetta.lang.reflect.lexical_elements.token corresponding to the encoun-
tered token shall be used as the abstract syntax subtree corresponding to the place of the token in the parse.

Where the parse encounters a template quoted expression in the sequence of template elements, a type assertion oper-
ation shall take the place of an abstract syntax subtree constructor application. The type assertion operation constructor
application shall have as its left operand argument the quoted expression and as its right operand argument a qualified
name constructor application that shall construct a qualified name for the expected nonterminal type in roset-
ta.lang.reflect.abstract_syntax. The expected nonterminal type shall be the most general nonterminal
that can satisfy the parse goal at the point of the template quoted expression in the template element sequence.

Examples:

The template expression

<<expression x + 2>>

is expanded into an abstract syntax tree that corresponds to the Rosetta expression

make_infix_binary_operation (
 rosetta.lang.reflect.make_label ("x"), plus_token, 2)

The template expression

<<name rosetta.lang.prelude.empty_set>>

is expanded into an abstract syntax tree that corresponds to the Rosetta expression

make_qualified_name (
 make_qualified_name (
 make_qualified_name (
 rosetta.lang.reflect.make_label ("rosetta"),
 rosetta.lang.reflect.make_label ("lang")),
 rosetta.lang.reflect.make_label ("prelude")),
 rosetta.lang.reflect.make_label ("empty_set"))

The template expression

<<optional_export_clause export all>>

is expanded into an abstract syntax tree that corresponds to the Rosetta expression

present (all_token)

The template expression

<<function_type_formation <* `signature(n)` *> >>

is expanded into an abstract syntax tree that corresponds to the Rosetta expression

make_function_type_formation (
 (signature(n)) :: function_signature)
44 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
The template expression

<<function_application
 `applied_function(n)` (`[head(arguments(n))]`) (`tail(arguments(n))`)>>

is expanded into an abstract syntax tree that corresponds to the Rosetta expression

make_funtion_application (
 make_function_application (
 (applied_function(n)) :: expression,
 ([head(arguments(n))]) :: argument_list),
 (tail(arguments(n))) :: argument_list)

NOTE — In this example, the quoted expression [head(arguments(n))] is expected to be on the nonterminal type
argument_list, since that is the most general nonterminal type that can be substituted at that point in the parse. Hence, the value
of head(arguments(n)) is formed into a single-element list to meet the type requirement.

8.3 Constant expressions

Certain expressions are said to be constant expressions. The value denoted by such expressions shall not be dependent
upon any state variable defined in a domain. A constant expression shall be an expression formed according to the fol-
lowing rules:

⎯ a literal
⎯a name that denotes an item whose declaration includes a constant expression or the keyword constant
⎯a name that denotes a parameter of kind rosetta.lang.static.design
⎯...

8.4 Static expressions

Certain constant expressions are said to be static expressions. The value denoted by such expressions shall be deter-
mined at the time of elaboration of the specification containing expressions.
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 45

Draft Standard Draft Standard for the
46 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
9. Functions

This clause defines Rosetta function type formations, anonymous function values, function declarations and function
application. The abstract syntax definitions in this clause are declared in the package rosetta.lang.re-
flect.abstract_syntax. The simplification definitions are declared in the package rosetta.lang.re-
flect.simplification.

9.1 Function signatures

A function signature shall define the parameter labels and types and the return type for a function type formation or an
anonymous function.

Concrete syntax:

function_signature ::=
(parameters:parameter_list) :: return_type:expression

parameter_list ::=
parameter_list_element { ; parameter_list_element }

parameter_list_element ::=
multiple_parameter_definition
| parameter_definition

multiple_parameter_definition ::=
parameter_labels:label_list :: parameter_type:expression

label_list ::=
label { , label }

parameter_definition ::=
parameter_label:label :: parameter_type:expression

Abstract syntax:

 function_signature :: ...

 parameter_list :: ...

 optional_parameter_list :: ...

 parameter_list_element :: ...

 multiple_parameter_definition :: ...

 label_list :: ...

 parameter_definition :: ...

Simplification:

 simplified_function_signature :: ...
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 47

Draft Standard Draft Standard for the
 simplified_singleton_parameter_list :: ...

 simplified_optional_parameter_list :: ...

 simplified_parameter_definition :: ...

 label_from_simplified_singleton_parameter_list ...

NOTE — The function label_from_simplified_singleton_parameter_list yields the label of the single param-
eter definition in the given parameter list.

 labels_from_simplified_optional_parameter_list ...

NOTE — The function labels_from_simplified_optional_parameter_list yields a list of the labels of the pa-
rameter definitions, if any, in the given parameter list.

 expand_parameter_list ...

NOTE — The function expand_parameter_list yields a parameter list that contains the concatenation of the results of ex-
panding each element of the given parameter list. An empty list is yielded if the given list is empty.

 expand_multiple_parameter_definition ...

NOTE — The function expand_multiple_parameter_definition yields a parameter list in which, for each label of
the given multiple parameter definition, there is a parameter definition consisting of the label and the type expression of the given
multiple parameter definition.

 expand_parameter_definition ...

NOTE — The function expand_parameter_definition yields a singleton parameter list containing the given parameter
definition.

 simplify_parameter_definition ...

NOTE — The function simplify_parameter_definition yields a parameter definition in which the label is the label of
the given parameter definition and the type expression is the simplification of the type expression of the given parameter definition

Examples:

The parameter list

 p1 :: T1; p2, p3, p4 :: T2

expands to the parameter list

 p1 :: T1; p2 :: T2; p3 :: T2; p4 :: T2

Name Expansion:

 resolved_function_signature :: ...

 expand_names_in_function_signature ...

NOTE — The function expand_names_in_function_signature yields a resolved function signature in which the pa-
rameter definition label is the parameter definition label of the given function signature, the parameter definition type expression
48 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
corresponds to the parameter definition type expression of the given function signature where all names are resolved references, and
the return type expression corresponds to the return type expression of the given function signature where all names are resolved
references.

Denotational Semantics:

A parameter definition defines a label and a type for a parameter. The value denoted by the parameter type expression
in a parameter definition shall be a type value, and is called the type of the parameter.

The value denoted by the return type expression of a function signature shall be a type value, and is called the return
type of the function signature.

9.2 Function type formations

A function type formation shall denote a set of function values.

Concrete syntax:

function_type_formation ::=
<* signature:function_signature *>

Abstract syntax:

 function_type_formation :: ...

Simplification:

 simplified_function_type_formation :: ...

 simplify_function_type_formation ...

NOTE — The function simplify_function_type_formation yields a function type formation in which the return type
is a nested function type formation, recursively, with the innermost return type being the simplification of the return type of the given
function type formation. There is a nested function type formation corresponding to each parameter definition in the expanded pa-
rameter definition list derived from the parameter list of the given function type formation, with the first expanded parameter defi-
nition corresponding to the outermost type formation and the last parameter list correponding to the innermost type formation. For
each of the nested type formations, there is a single parameter definition consisting of the simplification of the corresponding ex-
panded parameter definition from the given function type formation.

Examples:

The Rosetta expression

 <* (p1 :: T1; p2 :: T2) :: R *>

simplifies to the expression

 <* (p1 :: T1) :: <* (p2 :: T2) :: R *> *>

Name Expansion:

 resolved_function_type_formation :: ...

 expand_names_in_function_type_formation ...
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 49

Draft Standard Draft Standard for the
NOTE — The function expand_names_in_function_type_formation yields a resolved function type formation in
which the signature corresponds to the signature of the given function type formation where any names are resolved references.

Denotational semantics:

A function type formation shall denote the set of all function values whose domains are supertypes of the type of the
parameter of the signature and whose ranges are subtypes of the return type of the signature.

NOTE — The domain of a function value that is a member of the type denoted by a type formation need not be a proper supertype
of the type of the parameter of the signature. Similarly, the range of the function need not be a proper subtype of the return type of
the signature.

9.3 Anonymous functions

An anonymous function expression shall denote a function value.

Concrete syntax:

anonymous_function ::=
<* universally_quantified_variables:optional_universally_quantified_variable_list

signature:function_signature is encapsulated_expression:expression *>

optional_universally_quantified_variable_list ::=
[[parameter_list]]

NOTE — The inner square brackets enclosing the parameter list in the rule for an optional univesally quantified variable list are
delimiter tokens in the concrete syntax. The outer square brackets are EBNF meta-symbols.

Abstract syntax:

 anonymous_function :: ...

Simplification:

 simplified_anonymous_function :: ...

 simplify_anonymous_function ...

NOTE — The function simplify_anonymous_function yields an anonymous function in which the universally quantified
variable list contains the simplifications of the elements of the expanded universally quantified variable list of the given anonymous
function. Further,

⎯If the expanded parameter list of the signature of the given anonymous function is singleton, then
•The parameter of the signature of the resulting anonymous function is the simplification of that element,
•The return type of the signature of the resulting anonymous function is the simplification of the result type of sig-
nature of the given anonymous function, and
•The encapsulated expression of the resulting anonymous function is the simplification of the encapsulated expres-
sion of the given anonymous function.

⎯Otherwise,
•The parameter of the signature of the resulting anonymous function is the simplification of the first element of the
expanded parameter list of the signature of the given anonymous function,
•The return type of the signature of the resulting anonymous function is the simplification of a function type forma-
tion where the parameter list contains those elements of the expanded parameter list of the given anonymous func-
tion other than the first and the return type is the simplification of the return type of the signature of the given
anonymous function, and
•The encapsulated expression of the resulting function is the simplification of an anonymous function which has no
universally quantified variables, a parameter list that contains those elements of the expanded parameter list of the
50 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
given anonymous function other than the first, a return type that is the simplification of the return type of the signa-
ture of the given anonymous function, and an encapsulated expression that is the simplification of the encapsulated
expression of the given anonymous function.

Name Expansion:

 resolved_anonymous_function :: ...

 expand_names_in_anonymous_function ...

NOTE — The function expand_names_in_anonymous_function yields a resolved anonymous function in which the uni-
versally quantified variable list corresponds to the universally quantified variable list of the given anonymous function where any
names are resolved references, the signature corresponds to the signature of the given anonymous function where any names are
resolved references, and the encapsulated expression corresponds to the encapsulated expression of the given anonymous function
where any names are resolved references.

 expand_names_in_optional parameter list ...

NOTE — The function expand_names_in_optional_parameter_list yields a resolved optional parameter list in
which the parameters correspond to the parameters of the given optional parameter list where any names in the type expressions of
the parameters are resolved references.

Denotational semantics:

An anonymous function shall denote a function value.

If the universially quantified variable list is absent, the function value shall be of a monomorphic type. The domain of
the function value shall be the type of the parameter of the signature. For each value in the domain, the image shall be
the value denoted by the encapsulated expression interpreted in a context formed by adding a binding for the parameter
to the head of the context in which the anonymous function is interpreted. The binding for the parameter shall consist
of an item whose label is the parameter label and whose value is the domain value. The image value shall be a member
of the return type of the signature of the anonymous function. The range of the function value shall be the set of image
values for all values in the domain of the function value.

If the universally quantified variable list is present, the function value shall be of a polymorphic or dependent type.
The function value shall be determined by considering each possible combination of binding the labels of the univer-
sally quantified variable list to values of their corresponding types. The domain of the function value shall be the union
of all of the types denoted by the type expression of the signature interpreted in each of the contexts given by the com-
binations of bindings for the universally quantified variables. For each value in the domain, the image shall be the value
denoted by the encapsulated expression interpreted in a context formed by adding a binding for the parameter and the
corresponding bindings for the universally quantified variables to the head of the context in which the anonymous
function is interpreted. The binding for the parameter shall consist of an item whose label is the parameter label and
whose value is the domain value. The image value shall be a member of the type denoted by the return type expression
of the signature of the anonymous function, interpreted in the same context as the encapsulated expression. The range
of the function value shall be the set of image values for all values in the domain of the function value.

NOTE — Since the undefined value _|_ is a member of every type, it is a member of the domain of every function value. A
function need not be strict; that is, the image of _|_ need not be _|_.

9.4 Function declarations

Concrete syntax:

function_declaration ::=
function_label:label
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 51

Draft Standard Draft Standard for the
universally_quantified_variables:optional_universally_quantified_variable_list
signature:function_signature
definition:optional_definition_clause property:optional_property_clause ;

Abstract syntax:

 function_declaration :: ...

Simplification:

 simplify_function_declaration ...

NOTE — The function simplify_function_declaration yields the simplification of a variable declaration where

⎯The label is that of the given function declaration;
⎯The declared type is either

•A function type formation with the same signature as the given function declaration, if the list of universally quan-
tified variables of the given function declaration is empty, otherwise
•An anonymous function with a parameter list that is the same as the universally quantified variable list of the given
function declaration, type as the return type, and a function type formation with the same signature as the given func-
tion declaration as the encapsulated expression;

⎯The definition is one of
•Absent, if the definition of the given function declaration is absent,
•The function definition is constant, if the definition of the given function declaration is constant, otherwise
•An anonymous function where the universally quantified variable list is the same as that of the given function dec-
laration, the signature is the same as that of the given function declaration, and the encapsulated expression is the
same as the expression of the definition of the given function declaration;

⎯The property clause is either
•Absent, if the property clause of the given function declaration is absent, otherwise
•A quantified expression where the quantifier is rosetta.lang.prelude.forall, the parameter list is the
concatenation of the universally quantified variable list and parameter list of the given function declaration, and the
encapsulated expression is the expression of the property clause of the given function declaration.

Examples:

The Rosetta function declaration

f (x1 :: T1; x2 :: T2) :: Tr;

simplifies to the simplification of the declaration

f :: <* (x1 :: T1; x2 :: T2) :: Tr *>;

The Rosetta function declaration

f [v1 :: Tv1; v2 :: Tv2] (x1 :: T1; x2 :: T2) :: Tr;

simplifies to the simplification of the declaration

f :: <* (v1 :: Tv1; v2 :: Tv2) :: type is
 <* (x1 :: T1; x2 :: T2) :: Tr *> *>;

The Rosetta function declaration

f (x1 :: T1; x2 :: T2) :: Tr is E;

simplifies to the simplification of the declaration
52 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
f :: <* (x1 :: T1; x2 :: T2) :: Tr *> is
 <* (x1 :: T1; x2 :: T2) :: Tr is E *>;

The Rosetta function declaration

f [v1 :: Tv1; v2 :: Tv2] (x1 :: T1; x2 :: T2) :: Tr is E;

simplifies to the simplification of the declaration

f :: <* (v1 :: Tv1; v2 :: Tv2) :: type is
 <* (x1 :: T1; x2 :: T2) :: Tr *> *> is
 <* [v1 :: Tv1; v2 :: Tv2] (x1 :: T1; x2 :: T2) :: Tr is E *>;

The Rosetta function declaration

f (x1 :: T1; x2 :: T2) :: Tr is constant;

simplifies to the simplification of the declaration

f :: <* (x1 :: T1; x2 :: T2) :: Tr *> is constant;

The Rosetta function declaration

f [v1 :: Tv1; v2 :: Tv2] (x1 :: T1; x2 :: T2) :: Tr is constant;

simplifies to the simplification of the declaration

f :: <* (v1 :: Tv1; v2 :: Tv2) :: type is
 <* (x1 :: T1; x2 :: T2) :: Tr *> *> is constant;

The Rosetta function declaration

f (x1 :: T1; x2 :: T2) :: Tr where P (x1, x2);

simplifies to the simplification of the declaration

f :: <* (x1 :: T1; x2 :: T2) :: Tr *>
 where rosetta.lang.prelude.forall (x1 :: T1; x2 :: T2 | P (x1, x2));

The Rosetta function declaration

f [v1 :: Tv1; v2 :: Tv2] (x1 :: T1; x2 :: T2) :: Tr
 where P (v1, v2, x1, x2);

simplifies to the simplification of the declaration

f :: <* (v1 :: Tv1; v2 :: Tv2) :: type is
 <* (x1 :: T1; x2 :: T2) :: Tr *> *>
 where rosetta.lang.prelude.forall (v1 :: Tv1; v2 :: Tv2; x1 :: T1; x2 :: T2 |
 P (v1, v2, x1, x2));

The Rosetta function declaration

f (x1 :: T1; x2 :: T2) :: Tr is E where P (x1, x2);
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 53

Draft Standard Draft Standard for the
simplifies to the simplification of the declaration

f :: <* (x1 :: T1; x2 :: T2) :: Tr *> is
 <* (x1 :: T1; x2 :: T2) :: Tr is E *>
 where rosetta.lang.prelude.forall (x1 :: T1; x2 :: T2 | P (x1, x2));

The Rosetta function declaration

f [v1 :: Tv1; v2 :: Tv2] (x1 :: T1; x2 :: T2) :: Tr is E
 where P (v1, v2, x1, x2);

simplifies to the simplification of the declaration

f :: <* (v1 :: Tv1; v2 :: Tv2) :: type is
 <* (x1 :: T1; x2 :: T2) :: Tr *> *> is
 <* [v1 :: Tv1; v2 :: Tv2] (x1 :: T1; x2 :: T2) :: Tr is E *>
 where rosetta.lang.prelude.forall (v1 :: Tv1; v2 :: Tv2; x1 :: T1; x2 :: T2 |
 P (v1, v2, x1, x2));

The Rosetta function declaration

f (x1 :: T1; x2 :: T2) :: Tr is constant where P (x1, x2);

simplifies to the simplification of the declaration

f :: <* (x1 :: T1; x2 :: T2) :: Tr *> is constant
 where rosetta.lang.prelude.forall (x1 :: T1; x2 :: T2 | P (x1, x2));

The Rosetta function declaration

f [v1 :: Tv1; v2 :: Tv2] (x1 :: T1; x2 :: T2) :: Tr is constant
 where P (v1, v2, x1, x2);

simplifies to the simplification of the declaration

f :: <* (v1 :: Tv1; v2 :: Tv2) :: type is
 <* (x1 :: T1; x2 :: T2) :: Tr *> *> is constant
 where rosetta.lang.prelude.forall (v1 :: Tv1; v2 :: Tv2; x1 :: T1; x2 :: T2 |
 P (v1, v2, x1, x2));

9.5 Function application

Concrete syntax:

function_application ::=
applied_function:precedence_12_expression (arguments:expression_list)

expression_list ::=
expression { , expression }

Abstract syntax:

 function_application :: ...
54 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
 expression_list :: ...

Simplification:

 simplified_function_application :: ...

 simplify_function_application ...

NOTE — If the argument list of the given function application is a singleton list, then the result of the
simplify_function_application function is a function application where the applied function is the simplification of the
applied function of the given function application and the argument is the simplification of the argument of the given function ap-
plication. Otherwise, the result is the simplification of a Curried function application where

⎯The applied function is itself a function application in which the applied function is the applied function of the given
function application and the single argument is the first argument of the given function application,
⎯The arguments are those of the given function application excluding the first element.

Examples:

The Rosetta function application f (x) elaborates to a function application of the same form in the kernel language.

The Rosetta function application

f (e1, e2, e3)

simplifies to the function application

f (e1) (e2) (e3)

Name Expansion:

 resolved_function_application :: ...

 expand_names_in_function_application ...

NOTE — The function expand_names_in_function_application yields a resolved function application in which the
applied function corresponds to the applied function of the given function application where any names are resolved references, and
the argument list corresponds to the argument list of the given function application where any names are resolved references.

Denotational semantics:

The applied function expression of a function application shall denote a function value, called the applied function val-
ue. The value denoted by the argument expression shall be a member of the domain type of the applied function value.
The value denoted by the function application, called the result value, shall be the image of the value denoted by the
argument expression mapped by the applied function value.
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 55

Draft Standard Draft Standard for the
56 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
10. Declarations

This clause defines declarations that may be included in facets, packages, components and domains. The abstract syn-
tax definitions in this clause are declared in the package rosetta.lang.reflect.abstract_syntax.

10.1 Declaration lists

Concrete syntax:

optional_declaration_list ::=
{ declaration }

declaration ::=
variable_declaration
| enumeration_type_declaration
| constructed_type_declaration
| function_declaration
| facet_declaration
| package_declaration
| component_declaration
| domain_declaration
| interaction_declaration
| use_clause

Abstract syntax:

 optional_declaration_list :: ...

 declaration :: ...

A declaration list element shall declare one or more items in the declarative region containing the optional declaration
list. The labels of the all of the declared items, both explicitly declared and implicitly declared, in a declarative region
shall be distinct.

Static semantics:

A declaration list element shall declare one or more items in the declarative region containing the optional declaration
list. The labels of the all of the declared items, both explicitly declared and implicitly declared, in a declarative region
shall be distinct.

Simplification:

 simplified_declaration :: ...

 simplified_optional_declaration_list :: ...

 labels_from_simplified_optional_declaration_list ...

NOTE — The function labels_from_simplified_optional_declaration_list yields a list of the labels implic-
itly and explicitly declared by each of the declarations, if any, in the given declaration list.

 labels_from_simplified_declaration ...
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 57

Draft Standard Draft Standard for the
NOTE — The function labels_from_simplified_declaration yields a list of labels as follows:

⎯In the case of a variable declaration and property simplification, the list of labels resulting from application of the func-
tion labels_from_variable_declaration_and_property_simplification to the given simplified
declaration.
⎯In the case of a constructed type declaration, the list of labels resulting from application of the function
labels_from_constructed_type_declaration to the given simplified declaration.
⎯In the case of a domain declaration, the domain label of the domain declaration.
⎯In the case of a use clause, the empty list.

 simplify_optional_declaration_list ...

NOTE — The function simplify_optional_declaration_list yields a list of simplifications that result from

⎯Applying simplify_variable_declaration to any variable declarations in the given declaration list,
⎯Applying simplify_enumeration_declaration to any enumeration type declarations in the given declara-
tion list,
⎯Applying simplify_constructed_type_declaration to any constructed type declarations in the given
declaration list,
⎯Applying simplify_facet_declaration_list to the list of any facet declarations (be they complete, inter-
face, or body declarations) in the given declaration list,
⎯Applying simplify_package_declaration_list to the list of any package declarations (be they complete,
interface, or body declarations) in the given declaration list,
⎯Applying simplify_compenent_declaration_list to the list of any component declarations (be they com-
plete, interface, or body declarations) in the given declaration list,
⎯Applying simplify_domain_declaration to any domain declarations in the given declaration list,
⎯Applying simplify_interaction_declaration to any interaction declarations in the given declaration list,
and
⎯Any use clauses in the given declaration list.

10.2 Variable declarations

Concrete syntax:

variable_declaration ::=
labels:label_list :: declared_type:expression

definition:optional_definition_clause property:optional_property_clause ;

optional_definition_clause ::=
[is definition_clause]

definition_clause ::=
expression | constant

optional_property_clause ::=
[where expression]

Abstract syntax:

 variable_declaration :: ...

 optional_definition_clause :: ...

 definition_clause :: ...

 optional_property_clause :: ...

Static semantics:
58 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
The declared type expression shall be a constant expression. If the definition is present and take the form of an expres-
sion, the expression shall be a constant expression.

NOTE — An item declared with the keyword constant may have its value specified by the interpretations of terms in the spec-
ification, or it may remain unspecified.

Simplification:

 variable_declaration_and_property_simplification :: ...

 variable_declaration_simplification :: ...

 variable_declaration_simplification_list :: ...

 labels_from_variable_declaration_and_property_simplification ...

NOTE — The function labels_from_variable_declaration_and_property_simplification yields a list of
labels of the simplified variable declarations in the given simplification.

 simplify_variable_declaration ...

NOTE — The function simplify_variable_declaration yields a simplification containing of a list of simplified variable
declarations. For each label of the given variable declaration, there is a variable declaration simplification in which:

⎯The label is the label from the given variable declaration.
⎯ The declared type is the simplification of the declared type of the given variable declaration.
⎯If the given variable declaration has a definition that is an expression, the definition term is present and is the simplifi-
cation of a simple term in which the term expression is a function application. The applied function is the name roset-
ta.lang.prelude.universal_equals, the first argument is the label, and the second argument is the definition
expression of the given variable declaration.
⎯If the given variable declaration has a definition that is constant, the definition term is present and is the simplification
of a simple term in which the term expression is a tick operation. The operand of the tick operation is the label, and the
single tick operator has the tick label is_constant with no tick arguments.
⎯If the given variable declaration has no definition, the definition term is absent.

If the given variable declaration has a property clause, the property term is present in the result and is the simplification of a simple
term where the term expression is the expression of the property clause. Otherwise, the property term is absent in the result.

Examples:

The Rosetta variable declaration

v :: T;

simplifies to a single variable declaration simplification with no definition term and no property term.

The Rosetta variable declaration

v1, v2, v3 :: T;

simplifies to three variable declaration simplifications corresponding to the declarations

v1 :: T;
v2 :: T;
v3 :: T;

The Rosetta variable declaration
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 59

Draft Standard Draft Standard for the
v :: T is E;

simplifies to a variable declaration simplification corresponding to the declaration

v :: T;

combined with the definition term that is the simplification of the term

v = E;

The Rosetta variable declaration

v :: T is constant;

simplifies to a variable declaration simplification corresponding to the declaration

v :: T;

combined with the definition term that is the simplification of the term

T'is_constant;

The Rosetta variable declaration

v :: T where P (v);

simplifies to a variable declaration simplification corresponding to the declaration

v :: T;

and with no definition term. The simplification includes the property term that is the simplification of the term

P (v);

The Rosetta variable declaration

v1, v2, v3 :: T is E where P (v1, v2, v3);

simplifies to three variable declarations simplification corresponding to the declarations

v1 :: T;
v2 :: T;
v3 :: T;

combined with the definition terms that are, respectively, the simplifications of the terms

v1 = E;
v2 = E;
v3 = E;

The simplification includes the property term that is the simplification of the term

P (v1, v2, v3);
60 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
The Rosetta variable declaration

v1, v2, v3 :: T is constant where P (v1, v2, v3);

simplifies to three variable declarations simplification corresponding to the declarations

v1 :: T;
v2 :: T;
v3 :: T;

combined with the definition terms that are, respectively, the simplifications of the terms

v1'is_constant;
v2'is_constant;
v3'is_constant;

The simplification includes the property term that is the simplification of the term

P (v1, v2, v3);

Name Expansion:

 resolved_variable_declaration_and_property_simplification :: ...

 resolved_variable_declaration_simplification :: ...

 resolved_variable_declaration_simplification_list :: ...

 expand_names_in_variable_declaration_and_property_simplification ...

NOTE — The function expand_names_in_variable_declaration_and_property_simplification yields a
resolved simplification containing of a list of resolved variable declarations. For each variable declaration of the given simplifica-
tion, there is a corresponding variable declaration in which any names are resolved references. If the given variable declaration has
a property clause, the property term is present in the result and corresponds to the given property clause where any names are re-
solved references. Otherwise, the property term is absent in the result.

 expand_names_in_variable_declaration ...

NOTE — The function expand_names_in_variable_declaration yields a resolved variable declaration in which the
variable label is that of the given declaration, the declared type corresponds to the declared type of the given declaration where any
names are resolved references, and the definition expression corresponds to the definition expression of the given declaration where
any names are resolved references.

Denotational semantics:

A variable declaration shall declare an item whose label is the label in the variable declaration simplification and whose
type is the value denoted by the declared type.

10.3 Enumeration type declarations

Concrete syntax:

enumeration_type_declaration ::=
type_label:label :: subtype:subtype_or_universal_type_formation is

enumeration_formation:enumeration_type_formation ;
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 61

Draft Standard Draft Standard for the
subtype_or_universal_type_formation ::=
subtype_formation
 | universal_type_formation

enumeration_type_formation ::=
enumeration (values:label_list)

Abstract syntax:

 enumeration_type_declaration :: ...

 subtype_or_universal_type_formation :: ...

 enumeration_type_formation :: ...

Simplification:

 simplify_enumeration_type_declaration ...

NOTE — The function simplify_enumeration_type_declaration yields the simpification of a constructed type dec-
laration where the type label is that of the given enumeration type declaration, there are no parameters, the subtype is that of the
given enumeration type declaration, and the alternatives list is such that, for each value of the given enumeration type declaration,
there is a constructor with the same constructor label, no observers, and no recognizer label.

Example:

The Rosetta declaration

T :: type is enumeration (a, b, c);

simplifies to the declaration

T :: type is data a | b | c;

10.4 Constructed type declarations

Concrete syntax:

constructed_type_declaration ::=
type_label:label parameters:optional_parameter_list
:: subtype:subtype_or_universal_type_formation is data
alternatives:constructor_definition_list ;

optional_parameter_list ::=
[(parameter_list)]

constructor_definition_list ::=
constructor_definition { | constructor_definition }

constructor_definition ::=
constructor_label:label observers:optional_parameter_list recognizer_label:optional_recognizer

optional_recognizer ::=
[:: label]
62 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
Abstract syntax:

 constructed_type_declaration :: ...

 constructor_definition_list :: ...

 constructor_definition :: ...

 optional_recognizer :: ...

Simplification:

 simplified_constructed_type_declaration :: ...

 simplified_constructor_definition :: ...

 labels_from_simplified_constructed_type_declaration ...

NOTE — The function labels_from_simplified_constructed_type_declaration yields a list of the labels ex-
plicitly and implicitly declared by the given constructed type declaration. The type label is the only explicitly declared label. The
implicitly declare labels are, for each alternative, the constructor label, the label of the recognizer, if present, and the label of each
observer, if any.

 simplify_constructed_type_declaration ...

NOTE — The function simplify_constructed_type_declaration yields a constructed type declaration where the
type label is that of the given constructed type declaration, the parameter list contains simplifications of the parameter definitions
that result from applying expand_parameter_list to the parameter list of the given constructed type declaration, the subtype
expression that is the simplification of the subtype expression of the given constructed type declaration, and the constructor alter-
natives are the simplifications of the constructor alternatives of the given constructed type declaration.

 simplify_constructor_definition ...

NOTE — The function simplify_constructor_definition yields a constructor definition where the constructor label
is that of the given constructor, the observer list contains the simplifications of the observer definitions that result from applying
expand_parameter_list to the observer list of the given constructor definitiion, and the recongnizer label is that of the given
constructor definition.

Example:

The Rosetta declaration

Tc (x1, x2 :: Tx) :: subtype (Ts) is data
 c1 (p1, p2 :: Tp) :: r1
 | c2 (p3 :: Tp) :: r2;

simplifies to the declaration

Tc (x1 :: Tx; x2 :: Tx) :: subtype (Ts) is data
 c1(p1 :: Tp; p2 :: Tp) :: r1
 | c2(p3 :: Tp) :: r2;

Name Expansion:

 resolved_constructed_type_declaration :: ...
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 63

Draft Standard Draft Standard for the
 resolved_constructor_definition :: ...

 expand_names_in_constructed_type_declaration ...

NOTE — The function expand_names_in_constructed_type_declaration yields a resolved constructed type dec-
laration where the type label is that of the given constructed type declaration, the parameter list corresponds to the result from ap-
plying expand_names_in_optional_parameter_list to the parameter list of the given constructed type declaration, the
subtype expression corresponds to the subtype expression of the subtype expression of the given constructed type declaration, and
the constructor alternatives are the constructor alternatives that result from applying
expand_names_in_constructor_definition to the constructor definitions of the given constructed type declaration.

 expand_names_in_constructor_definition ...

NOTE — The function expand_names_in_constructor_definition yields a constructor definition where the con-
structor label is that of the given constructor, the observer list corresponds to the observer list of the given constructor definitiion
where any names in the type expressions are resolved references, and the recongnizer label is that of the given constructor definition.

Denotational semantics:

A constructed type declaration shall declare in the declarative region containing the constructed type declaration an
item, called the constructed type item. The label of the constructed type item shall be the type label of the constructed
type declaration. The type of the constructed type item shall be the value denoted by the subtype of the constructed
type declaration.

If the constructed type declaration omits the optional constructed type parameters, the constructed type item shall have
a monomorphic type as its value. The value shall be the disjoint union of the types of the constructor items correspond-
ing to constructor definitions with no observers, if any, and the ranges of the values of the constructor items corre-
sponding to constructor definitions with observers, if any.

If the constructed type declaration includes a parameter list, the constructed type item shall have a polymorphic or de-
pendent type as its value. The value shall be a function whose parameters are the parameters of the constructed type
declaration and whose return type is the value denoted by the universal type formation. The result yielded by the func-
tion shall be the disjoint union of the types of the constructor items corresponding to constructor definitions no observ-
ers, if any, and the ranges of the values of the constructor items corresponding to constructor definitions with
observers, if any.

A constructed type declaration shall also implicitly declare items corresponding to the constructor definitions. These
implicit declarations shall be included in the declarative region containing the constructed type declaration.

10.4.1 Constructor definitions with no observers

Corresponding to a constructor definition in which the observers parameter list is empty, the facet equivalent contain-
ing the constructed type declaration shall contain an implicitly declared item, called the constructor item correspond-
ing to the constructor definition. The label of the constructor item shall be the constructor label of the constructor
definition. The type of the constructor item shall be the domain-theoretic Unit domain, namely, the domain containing
just one value in addition to . The value of the constructor item shall be the non- value of the Unit domain tagged
as being a member of the alternative of the disjoint union corresponding to the constructor definition.

If the constructor definition includes a recognizer label, the facet equivalent containing the constructed type declara-
tion shall contain an implictly declared item, called the recognizer item corresponding to the constructor definition.
The label of the recognizer item shall be the recognizer label of the constructor definition. The type of the recognizer
item shall be the function type consisting of function values whose domain is the value of the constructed type item
and whose return type is rosetta.lang.prelude.boolean. The value of the recognizer item shall be the func-
tion that maps the value of the constructor item to true and other values in its domain to false.

⊥ ⊥
64 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
10.4.2 Constructor definitions with observers

A constructor definition in which the observers parameter list is not empty shall specify the type that is a domain-the-
oretic product being the range of the constructor item value specified in this clause.

Corresponding to the constructor definition, the facet equivalent containing the constructed type declaration shall con-
tain an implicitly declared item, called the constructor item corresponding to the constructor definition. The label of
the constructor item shall be the constructor label of the constructor definition.

If the constructed type declaration omits the optional constructed type parameters, the constructor item shall have a
function of monomorphic type as its value. The type of the constructor item shall be the function type whose parameter
list is the observers parameter list of the constructor definition and whose return type is the value of the constructed
type item.

Example:

Given the constructed type declaration

Tc :: subtype(Ts) is data
 C (O1 :: T1; O2 :: T2) :: R;

the type of the constructor item corresponding to C is

<* (O1 : T1; O2 :: T2) :: Tc *>

If the constructed type declaration includes a parameter list, the constructor item shall have a function of polymorphic
or dependent type as its value. The type of the constructor item shall be a function whose parameters are the parameters
of the constructed type declaration and whose return type is the value denoted by the universal type formation. The
result yielded by the function shall be the function type whose parameter list is the observers parameter list of the con-
structor definition and whose return type is the value of the constructed type item.

Example:

Given the constructed type declaration

Tc (x :: Tp) :: subtype(Ts) is data
 C (O1 :: T1; O2 :: T2) :: R;

the type of the constructor item corresponding to C is

<* (x :: Tp) :: type is <* (O1 : T1; O2 :: T2) :: Tc *> *>

The value of the constructor item shall be a function that is a member of the type of the constructor item and that yields
a tuple formed from the function arguments in the order of occurrence of the arguments. The tuple shall be tagged as
being a member of the alternative of the disjoint union corresponding to the constructor definition.

Corresponding to each parameter definition in the observers parameter list of the constructor definition, the facet
equivalent containing the constructed type declaration shall contain an implictly declared item, called the observer
item corresponding to the parameter definition. The label of the observer item shall be the parameter label of the ob-
server parameter definition. The type of the observer item shall be the function type consisting of function values
whose domain is the range of the value of the constructor item and whose return type is the value denoted by the pa-
rameter type of the observer parameter definition. The value of the observer item shall be the function item that
projects a tuple component from the argument. The component projected is the component in the position correspond-
ing to the position of the observer parameter definition in the observers parameter list of the constructor definition.
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 65

Draft Standard Draft Standard for the
If the constructor definition includes a recognizer label, the facet equivalent containing the constructed type declara-
tion shall contain an implictly declared item, called the recognizer item corresponding to the constructor definition.
The label of the recognizer item shall be the recognizer label of the constructor definition. The type of the recognizer
item shall be the function type consisting of function values whose domain is the value of the constructed type item
and whose return type is rosetta.lang.prelude.boolean. The value of the recognizer item shall be the func-
tion that maps values in the range of the value of the constructor item to true and other values in its domain to false.
66 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
11. Terms

This clause defines the syntax and semantics of terms. The abstract syntax definitions in this clause are declared in
the package rosetta.lang.reflect.abstract_syntax. The simplification definitions are declared in the
package rosetta.lang.reflect.simplification.

Concrete syntax:

optional_term_list ::=
{ term }

term_list ::=
term { term }

term ::=
simple_term
| let_term

simple_term ::=
term_label:optional_label term_expression:expression justification:optional_justification;

optional_label ::=
[label :]

optional_justification ::=
[justification expression]

let_term ::=
let

binding_list:let_binding_list
in

terms:term_list
end let ;

Abstract syntax:

 optional_term_list :: ...

 term_list :: ...

 term :: ...

 simple_term :: ...

 optional_label :: ...

 let_term :: ...

Static semantics:

A simple term declares the term label, if present, and specifies a term expression.

The term expression in a simple term shall be a facet expression or an expression of type rosetta.lang.prel-
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 67

Draft Standard Draft Standard for the
ude.boolean. If the term expression in a simple term is a facet expression, the term label shall be present in the
simple term. If the justification exists in a simple term, the expression in the justification shall be an expression of type
rosetta.lang.prelude.string.

NOTE — Justifications are used to record the reason that a term is believed to be true. The result of the string expression is outside
the semantics of the language, and may be used by a tool or may be used as a documentation device by the user.

Simplification:

 simplified_optional_term_list :: ...

 simplified_term_list :: ...

 simplified_term :: ...

 simplified_optional_justification :: ...

 labels_from_simplified_term_list ...

NOTE — The function labels_from_simplified_term_list yields a list of labels of simple terms in the given term list.
If a simple term is labelled, its label is included in the result. If a simple term is not labelled, no label corresponding to that term is
included in the result.

 expand_optional_term_list ...

NOTE — The function expand_optional_term_list yields the concatenation of the lists that result from expansion of
each element in the given term list. For a simple term the expansion is a singleton list containing the simple term. For a let term, the
expansion is a list of simple terms in which, for each term in the term list of the given let term, there is a simple term in which the
term label is that of the given let term and the term expression is a let expression with the same binding list as the given let term
term and the same encapsulated expression as the given let term term.

 simplify_simple_term ...

NOTE — The function simplify_simple_term yields a simple term in which the term label is that of the given simple term,
the term expression is the simplification of the term expression of the given simple term, and the justification is the simplification
of the justification expression of the given simple term, if the justification expression is present, or absent otherwise.

 expand_and_simplify_optional_term_list ...

NOTE — The function expand_and_simplify_optional_term_list yields a list of simplified terms where the ele-
ments are the simplifications of the elements of the expansion of the given term list.

Examples:

A simple term expands to a term of the same form.

The let term

let
 v :: T be E_v
in
 L1 : E1;
 L2 : E2;
end let;

expands and simplifies to the same sequence of simple terms as the simple terms
68 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
L1 : let
 v :: T be E_v
 in
 E1
 end let;
L2 : let
 v :: T be E_v
 in
 E2
 end let;

The let term

let
 v1 :: T1 be E_v1
in
 L1 : E1;
 let
 v2 :: T2 be E_v2
 in
 L2 : E2;
 L3 : E3;
 end let;
end let;

expands and simplifies to the same sequence of simple terms as the simple terms

L1 : let
 v1 :: T1 be E_v1
 in
 E1
 end let;
L2 : let
 v1 :: T1 be E_v1
 in
 let
 v2 :: T2 be E_v2
 in
 E2
 end let
 end let;
L3 : let
 v1 :: T1 be E_v1
 in
 let
 v2 :: T2 be E_v2
 in
 E3
 end let
 end let;

Name Expansion:

 resolved_optional_term_list :: ...
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 69

Draft Standard Draft Standard for the
 resolved_term_list :: ...

 resolved_term :: ...

 resolved_optional_justification :: ...

 expand_names_in_optional_term_list ...

NOTE — The function expand_names_in_optional_term_list yields the list of resolved terms that result from appli-
cation of the function simplify_simple_term to each member of the given list.

 expand_names_in_term ...

NOTE — The function expand_names_in_term yields a resolved term in which the label is that of the given term, the ex-
pression corresponds to the expression of the given term where any names are resolved references, and the justification corresponds
to the justification of the given term where any names are resolved references.

Denotational semantics:

To do: complete cross refs...

If the term expression is of type rosetta.lang.prelude.boolean, the expression shall be interpreted as a con-
straint that applies to the items referenced by the expression (see ??—clause defining denotation of a facet). If the term
expression is a facet expression, the facet value denoted by the term expression shall be included in the facet denoted
by the immediately enclosing facet (see ??—clause defining facet inclusion).

The value denoted by the justification expression, if present, shall not affect the interpretation of a Rosetta specifica-
tion.
70 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
12. Facets

This clause defines facets. The abstract syntax definitions in this clause are declared in the package roset-
ta.lang.reflect.abstract_syntax.

12.1 Facet signatures

Concrete syntax:

facet_signature ::=
parameters:optional_facet_parameter_list :: facet_domain:expression

optional_facet_parameter_list ::=
[(facet_parameter { ; facet_parameter })]

facet_parameter ::=
multiple_facet_parameter_definition
| facet_parameter_definition

multiple_facet_parameter_definition ::=
parameter_labels:label_list :: parameter_kind:optional_kind parameter_type:expression

facet_parameter_definition ::=
parameter_label:label :: parameter_kind:optional_kind parameter_type:expression

optional_kind ::=
[kind]

kind ::=
label

Abstract syntax:

 facet_signature :: ...

 optional_facet_parameter_list :: ...

 facet_parameter :: ...

 multiple_facet_parameter_definition :: ...

 facet_parameter_definition :: ...

 optional_kind :: ...

 kind :: ...

Static semantics:

The domain expression of a facet signature shall be a static domain expression. The domain value denoted by the do-
main expression shall be called the domain of the facet signature.
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 71

Draft Standard Draft Standard for the
NOTE — The domain expression is usually the name of a domain declared using a domain declaration.

If a facet parameter definition includes a parameter kind label, that label shall be the label of a function declared in the
domain of the facet signature.

Simplification:

 simplified_facet_signature :: ...

 simplified_optional_facet_parameter_list :: ..

 simplified_facet_parameter_definition :: ...

 simplified_optional_kind :: ...

 facet_parameter_list_simplification :: ...

 labels_from_simplified_facet_parameter_list ...

NOTE — The function labels_from_simplified_facet_parameter_list yields a list of labels of parameters, if any,
in the given facet parameter list.

 expand_facet_parameter_list ...

NOTE — The function expand_facet_parameter_list yields a facet parameter list which contains the concatenation of
the results of expanding each element of the given facet parameter list, if any.

 expand_multiple_facet_parameter_definition ...

NOTE — The function expand_multiple_facet_parameter_definition yields a facet parameter list in which, for
each label of the given multiple facet parameter definition, there is a facet parameter definition consisting of the label, the kind of
the given multiple facet parameter definition, and the type expression of the given multiple facet parameter definition.

 expand_facet_parameter_definition ...

NOTE — The function expand_facet_parameter_definition yields a singleton facet parameter list containing the giv-
en facet parameter definition.

 simplify_facet_parameter_definition ...

NOTE — The function simplify_facet_parameter_definition yields a facet parameter list simplification. The pa-
rameter list part of the simplification is a singleton list containing a simplified parameter definition in which the label is that of the
given facet parameter definition, and the type expression is the elaboration of the type expression of the given facet parameter def-
inition. If the given facet parameter definition has a kind label, the term list part of the simplification is a simpified term in which
the term expression is a tick_operation where the operand is the label of the given facet parameter definition, the label of the single
tick operator is the kind label of the given facet parameter definition, and there are no tick arguments. Otherwise, the the term list
part of the simplification is the empty list.

 expand_and_simplify_facet_parameter_list ...

NOTE — The function expand_and_simplify_facet_parameter_list yields a facet parameter list simplification in
which the parameter list part and the term list part are the concatenations of the parameter list parts and term list parts, respectively,
of the simplifications of each of the facet parameter definitions resulting from expanding the given facet parameter list.

Examples:

The facet parameter definition
72 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
p :: k T

simplifies to a simplification containing the parameter definition

p :: T

and the term

p'k;

Name Expansion:

 resolved_facet_signature :: ...

 resolved_optional_facet_parameter_list :: ..

 resolved_facet_parameter_definition :: ...

 resolved_optional_kind :: ...

 expand_names_in_facet_parameter_list ...

NOTE — The function expand_names_in_facet_parameter_list yields a resolved facet parameter list in which there
are elements corresponding to each element of the given facet parameter list where any names are resolved references.

Denotational Semantics:

A simplified facet parameter definition defines a label and a type for a facet parameter. The value denoted by the pa-
rameter type expression in a simplified facet parameter definition shall be a type value, and is called the type of the
facet parameter.

12.2 Anonymous facets

Concrete syntax:

anonymous_facet ::=
facet signature:facet_signature is

exports:optional_export_clause
declarations:optional_declaration_list

begin
terms:optional_term_list

end facet

optional_export_clause ::=
[export export_list ;]

export_list ::=
label_list
| all

Abstract syntax:

 anonymous_facet :: ...
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 73

Draft Standard Draft Standard for the
 optional_export_clause :: ...

 export_list :: ...

Static semantics:

The parameters of an anonymous facet shall consist of the parameters defined in the parameter list of the signature of
the anonymous facet followed by the parameters of the domain of the signature of the anonymous facet.

The declared items of an anonymous facet shall consist of the explicitly and implicitly declared items of the domain
of the signature of the anonymous facet followed by the explictly and implicitly declared items of the optional decla-
ration list of the anonymous facet.

The use clauses of an anonymous facet shall consist of the use clauses of the domain of the signature of the anonymous
facet followed by the use clauses of the optional declaration list of the anonymous facet.

The terms of an anonymous facet shall consist of the terms of the domain of the signature of the anonymous facet fol-
lowed by the terms of the optional term list of the anonymous facet.

If an anonymous facet omits an export clause, only those labels exported by the domain of the signature of the anon-
ymous facet shall be exported by the anonymous facet. If an anonymous facet includes an export clause that includes
a label list, the labels in the label list shall be exported in addition to those labels exported by the domain of the signa-
ture of the anonymous facet. If a label occurs more than once in the label list, the effect shall be the same as if the label
occurred exactly once in the list. Each label in the label list shall be one of

⎯the label of a parameter in the parameter list of the signature of the anonymous facet
⎯the label of an explicitly declared item of the optional declaration list of the anonymous facet
⎯the label of an implitly declared item of the optional declaration list of the anonymous facet
⎯the label of a term of the optional term list of the anonymous facet

If an anonymous facet includes an export clause that includes the keyword all, then, in addition to those labels ex-
ported by the domain of the signature of the anonymous facet, the labels of all parameters in the parameter list of the
signature of the anonymous facet, all explicitly declared items of the optional declaration list of the anonymous facet,
all implitly declared items of the optional declaration list of the anonymous facet and all labeled terms of the optional
term list of the anonymous facet shall be exported.

NOTE — The exported labels of a domain are all exported by a facet that extends the domain. The facet can only add labels to the
collection of exported labels. This ensures that every facet that is of the type denoted by a domain exports at least the labels exported
by the domain.

Simplification:

 simplified_anonymous_facet :: ...

 simplified_optional_export_clause :: ...

 simplify_anonymous_facet ...

NOTE — The function simplify_anonymous_facet yields an anonymous facet where

⎯The parameter list contains the parameter definitions from expansion and simplification of the parameters of the given
anonymous facet;
⎯The domain is the simplification of the domain expression of the given anonymous facet;
⎯The export clause label list is present and contains a label list being one of
74 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
•An empty list, if the export clause of the given anonymous facet is absent,
•A list containing all parameter and definition labels and any term labels found in the result if the export clause of
the given anonymous facet is present and export all, or
•A list containing the same labels as the export clause of the given anonymous facet if the export clause of the given
anonymous facet is present and a label list;

⎯The declaration list contains the declarations from simplification of the declarations of the given anonymous facet; and
⎯The term list contains the terms from simplification of the parameters and declarations of the given anonymous facet,
and the simplification of the terms of the given anonymous facet.

Name Expansion:

 resolved_anonymous_facet :: ...

 resolved_optional_export_clause :: ...

 expand_names_in_anonymous_facet ...

NOTE — The function expand_names_in_anonymous_facet yields a resolved anonymous facet where

⎯The parameter list corresponds to the parameter definition list of the given anonymous facet in which any names are
resolved references;
⎯The domain expression corresponds to the domain expression of the given anonymous facet in which any names are
resolved references;
⎯The export clause label list is that of the given anonymous facet;
⎯The declaration list corresponds to the declarations of the given anonymous facet without use clauses and in which any
names are resolved references; and
⎯The term list corresponds to the term list of the given anonymous facet without use clauses and in which any names are
resolved references.

Denotational semantics:

An anonymous facet expression shall denote a value that is a member of the Facets semantic domain described in 5.1.

To do: Work out facet denotation. This should be based on the transformed facet that has all of the parent domain stuff
in it and is transformed into the null domain. May need to involve flattening of hierarchy by inclusion. Along the lines
of a category of coalgebras whose observers are denoted by the items of the transformed facet and whose behaviors
satisfy the boolean terms of the transformed facet.

12.3 Facet declarations

Concrete syntax:

facet_declaration ::=
complete_facet_declaration
| facet_interface_declaration
| facet_body_declaration

complete_facet_declaration ::=
facet facet_label:label signature:facet_signature is

exports:optional_export_clause
declarations:optional_declaration_list

begin
terms:optional_term_list

end facet [facet_label:label] ;
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 75

Draft Standard Draft Standard for the
facet_interface_declaration ::=
facet interface facet_label:label signature:facet_signature is

exports:optional_export_clause
declarations:optional_declaration_list

end facet interface [facet_label:label] ;

facet_body_declaration ::=
facet body facet_label:label is

declarations:optional_declaration_list
begin

terms:optional_term_list
end facet body [facet_label:label] ;

Abstract syntax:

 facet_declaration :: ...

 complete_facet_declaration :: ...

 facet_interface_declaration :: ...

 facet_body_declaration :: ...

Static semantics:

If a complete facet declaration includes a facet label after the keywords end facet, that facet label shall be the same
label as the label occurring at the beginning of the complete facet declaration. If a facet interface declaration includes
a facet label after the keywords end facet interface, that facet label shall be the same label as the label occurring
at the beginning of the facet interface declaration. If a facet body declaration includes a facet label after the keywords
end facet body, that facet label shall be the same label as the label occurring at the beginning of the facet body
declaration.

A facet may be declared by exactly one complete facet declaration or by a combination of exactly one facet interface
declaration and exactly one facet body declaration. A facet declared by a facet interface declaration and a facet body
declaration shall be equivalent to a facet declared by a complete facet declaration with the same label and signature as
the facet interface declaration; the concatenation of the declaration lists of the facet interface declaration and a facet
body declaration; and the term list of the facet body declaration.

If the facet interface declaration omits the export clause, the equivalent complete facet declaration shall also omit the
export clause. If the facet interface declaration includes an export clause that includes a list of labels, the equivalent
complete facet declaration shall include an export list with the same list of labels, and each label in the label list shall
be one of

⎯the label of a parameter in the parameter list of the signature of the facet interface declaration
⎯the label of an explicitly declared item of the optional declaration list of the facet interface declaration
⎯the label of an implitly declared item of the optional declaration list of the facet interface declaration

If the facet interface declaration includes an export clause that includes the keyword all, then the equivalent complete
facet declaration shall include an export list that includes a label list that includes the labels of all parameters in the
parameter list of the signature of the facet interface declaration, all explicitly declared items of the optional declaration
list of the facet interface declaration and all implitly declared items of the optional declaration list of the facet interface
declaration.

NOTE — The rules governing the export list of a facet interface declaration ensures that only those labels defined in the facet
76 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
interface declaration are exported (in addition to those exported by the domain of the facet). Labels defined in the corresponding
facet body declaration cannot be exported.

If a facet is declared by a facet interface declaration and a facet body declaration, those declarations shall occur in the
same declarative region. A facet body declaration shall not occur in an enclosing interface declaration part unless the
corresponding facet interface declaration also occurs in the enclosing interface declarative part. If a facet interface
declaration occurs in an enclosing interface declarative part, the corresponding facet body declaration may occur either
in the same enclosing interface declarative part or in the body declarative part corresponding to the enclosing interface
declarative part.

Simplification:

 simplify_facet_declaration_list ...

NOTE — The function simplify_facet_declaration_list yields a list of declaration simplifications that includes, for
each complete facet declaration in the given facet declaration list, the result of applying
simplify_complete_facet_declaration to the complete facet declaration, and for each matching pair of facet interface
and body declarations, the result of applying simplify_facet_interface_and_body to the pair.

 simplify_complete_facet_declaration ...

NOTE — The function simplify_complete_facet_declaration yields the simplification of a variable declaration
where the declaration label is that of the given facet declaration, the declared type is the domain of the given facet, the definition
expression is an anonymous facet, and the properry clause is absent. The signature, export clause, declaration list and term list of
the anonymous facet are those of the given facet declaration.

 simplify_facet_interface_and_body_declaration ...

NOTE — The function simplify_facet_interface_and_body_declaration yields the simplification of a complete
facet declaration where the label is that shared by the given facet interface and body declarations, the signature is that of the given
facet interface declaration, the export clause is that of the given facet interface declaration, the declaration list is the concatenation
of the declaration lists of the given facet interface and body declarations, and the term list is that of the given facet body declaration.

Examples:

The Rosetta facet declaration

facet F (x1 :: T1; x2, x3 :: T2) :: D is
 export y1, y2;
 ... declarations ...
begin
 ... terms ...
end facet F;

simplifies to the simplification of the variable declaration

F :: D is
 facet (x1 :: T1; x2, x3 :: T2) :: D is
 export y1, y2;
 ... declarations ...
 begin
 ... terms ...
 end facet;

The Rosetta facet declarations
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 77

Draft Standard Draft Standard for the
facet interface F (x1 :: T1; x2, x3 :: T2) :: D is
 export y1, y2;
 ... interface declarations ...
begin
 ... terms ...
end facet F;

facet body F is
 ... body declarations ...
begin
 ... terms ...
end facet F;

simplifies to the simplification of the variable declaration

F :: D is
 facet (x1 :: T1; x2, x3 :: T2) :: D is
 export y1, y2;
 ... interface declarations ...
 ... body declarations ...
 begin
 ... terms ...
 end facet;

12.4 Facet instantiation

Concrete syntax:

facet_instantiation ::=
instance instantiated_facet:expression (arguments:facet_instantiation_argument_list)

facet_instantiation_argument_list ::=
facet_instantiation_argument { , facet_instantiation_argument }

facet_instantiation_argument ::=
expression | _

Abstract syntax:

 facet_instantiation :: ...

 facet_instantiation_argument_list :: ...

 facet_instantiation_argument :: ...

Static semantics:

The instantiated facet expression shall be a facet expression.

Simplification:

 simplified_facet_instantiation :: ...
78 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
 simplified_facet_instantiation_argument_list :: ...

 simplify_facet_instatiation ...

NOTE — The function simplify_facet_instantiation yields a facet instantiation in which the instantiated facet is the
simplification of the instantiated facet of the given facet instantiation, and each argument is either the simplification of the corre-
sponding argument of the given facet instantiation, if that argument is an expression, or the underline token otherwise.

Name Expansion:

 resolved_facet_instantiation :: ...

 resolved_facet_instantiation_argument_list :: ...

 expand_names_in_facet_instatiation ...

NOTE — The function expand_names_in_facet_instantiation yields a facet instantiation in which the instantiated
facet corresponds to the instantiated facet of the given facet instantiation in which any names are resolved references, and each ar-
gument is either the corresponding argument of the given facet instantiation in which any names are resolved, if that argument is an
expression, or the underline token otherwise.

Denotational semantics:

To do: Define semantics of facet instantiation...

12.5 Facet expressions

An expression that involves facets or components shall be called a facet expression. Specifically, a facet expression
shall be one of

⎯a name that refers to the label of a facet or component declaration
⎯a name that refers to the label of a variable that is declared with a variable definition that is a facet expres-
sion
⎯a function application of rosetta.lang.prelude.facet_sum or rosetta.lang.prel-
ude.facet_product to arguments that are facet expressions
⎯a binary operation that is equivalent to a function application of rosetta.lang.prel-
ude.facet_sum or rosetta.lang.prelude.facet_product to arguments that are facet expres-
sions
⎯a facet instantiation in which the instantiated expression is a facet expression

The value denoted by a facet expression shall be called a facet value.

12.6 Facet inclusion

To do: Define syntax and semantics of facet inclusion.

...
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 79

Draft Standard Draft Standard for the
80 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
13. Packages

This clause defines packages. The abstract syntax definitions in this clause are declared in the package roset-
ta.lang.reflect.abstract_syntax.

13.1 Package declarations

Concrete syntax:

package_declaration ::=
complete_package_declaration
| package_interface_declaration
| package_body_declaration

complete_package_declaration ::=
package package_label:label signature:facet_signature is

exports:optional_export_clause
declarations:optional_declaration_list

end package [package_label:label] ;

package_interface_declaration ::=
package interface package_label:label signature:facet_signature

body_required:optional_with_body_clause is
exports:optional_export_clause
declarations:optional_declaration_list

end package interface [package_label:label] ;

optional_with_body_clause ::=
[with body]

package_body_declaration ::=
package body package_label:label is

declarations:optional_declaration_list
end package body [package_label:label] ;

Abstract syntax:

 package_declaration :: ...

 complete_package_declaration :: ...

 package_interface_declaration :: ...

 package_body_declaration :: ...

Static semantics:

If a complete package declaration includes a package label after the keywords end package, that package label shall
be the same label as the label occurring at the beginning of the complete package declaration. If a package interface
declaration includes a package label after the keywords end package interface, that package label shall be the
same label as the label occurring at the beginning of the package interface declaration. If a package body declaration
includes a package label after the keywords end package body, that package label shall be the same label as the
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 81

Draft Standard Draft Standard for the
label occurring at the beginning of the package body declaration.

A package may be declared by exactly one complete package declaration, or by exactly one package interface decla-
ration, or by a combination of exactly one package interface declaration and exactly one package body declaration. A
package declared by a package interface declaration that includes the words with body shall have a corresponding
package body declaration. A package declared by a package interface declaration and a package body declaration shall
be equivalent to a package declared by a complete package declaration with the same label and signature as the pack-
age interface declaration and the concatenation of the declaration lists of the package interface declaration and a pack-
age body declaration.

If the package interface declaration omits the export clause, the equivalent complete facet declaration shall also omit
the export clause. If the facet interface declaration includes an export clause that includes a list of labels, the equivalent
complete facet declaration shall include an export list with the same list of labels, and each label in the label list shall
be one of

⎯the label of a parameter in the parameter list of the signature of the facet interface declaration
⎯the label of an explicitly declared item of the optional declaration list of the facet interface declaration
⎯the label of an implitly declared item of the optional declaration list of the facet interface declaration

If the package interface declaration omits the export clause or includes an export clause that includes the keyword all,
then the equivalent complete package declaration shall include an export list that includes a label list that includes the
labels of all parameters in the parameter list of the signature of the package interface declaration, all explicitly declared
items of the optional declaration list of the package interface declaration and all implitly declared items of the optional
declaration list of the package interface declaration.

NOTE — The rules governing the export list of a package interface declaration ensures that only those labels defined in the package
interface declaration are exported (in addition to those exported by the domain of the package). Labels defined in the corresponding
package body declaration cannot be exported.

If a package is declared by a package interface declaration and a package body declaration, those declarations shall
occur in the same declarative region. A package body declaration shall not occur in an enclosing interface declaration
part unless the corresponding package interface declaration also occurs in the enclosing interface declarative part. If
a package interface declaration occurs in an enclosing interface declarative part, the corresponding package body dec-
laration may occur either in the same enclosing interface declarative part or in the body declarative part corresponding
to the enclosing interface declarative part.

Each facet parameter definition in the signature of a complete package declaration or a package interface declaration
shall have the label design as the parameter kind or shall omit the parameter kind. If the parameter definition omits the
parameter kind, the effect shall be as though the label design were included as the parameter kind.

Simplification:

 simplify_package_declaration_list ...

NOTE — The function simplify_package_declaration_list yields a list of declaration simplifications that includes,
for each complete package declaration in the given package declaration list, the result of applying
simplify_complete_package_declaration to the complete package declaration, and for each matching pair of package
interface and body declarations, the result of applying simplify_package_interface_and_body to the pair.

 simplify_complete_package_declaration ...

NOTE — The function simplify_complete_package_declaration yields the simplification of a complete facet dec-
laration where the label is that of the given package declaration, the signature is that of the given package declaration with all pa-
rameters having the kind “design”, the export clause is that of the given package declaration if present or export all otherwise,
the declarations are those of the given package declaration, and the term list is empty.
82 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
 simplify_package_interface_and_body_declaration ...

NOTE — The function simplify_package_interface_and_body_declaration yields the simplification of a com-
plete package declaration where the label is that shared by the given package interface and body declarations, the signature is that
of the given package interface declaration, the export clause is that of the given package interface declaration, and the declaration
list is the concatenation of the declaration lists of the given facet interface and body declarations.

Examples:

The Rosetta package declaration

package P (x1 :: T1; x2, x3 :: T2) :: D is
 ... declarations ...
end package P;

simplifies to the facet declaration

facet P (x1 :: design T1; x2, x3 :: design T2) :: D is
 export all;
 ... declarations ...
begin
end facet P;

The package interface and package body declarations

package interface P(x1 :: T1; x2, x3 :: T2) :: D is
 export v1, v2;
 ... interface declarations ...
end package interface P;

package body P is
 ... body declarations ...
end package body P;

simplify to the facet declaration

facet P(x1 :: design T1; x2, x3 :: design T2) :: D is
 export v1, v2;
 ... interface declarations ...
 ... body declarations ...
begin
end facet P;

13.2 Package expressions

An expression that involves packages shall be called a package expression. Specifically, a package expression shall
be one of

⎯a name that refers to the label of a package declaration
⎯a name that refers to the label of a variable that is declared with a variable definition that is a package ex-
pression
⎯a facet instantiation in which the instantiated expression is a package expression

The value denoted by a domain expression shall be called a package value.
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 83

Draft Standard Draft Standard for the
84 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
14. Components

This clause defines component declarations. The abstract syntax definitions in this clause are declared in the package
rosetta.lang.reflect.abstract_syntax.

14.1 Component declarations

Concrete syntax:

component_declaration ::=
complete_component_declaration
| component_interface_declaration
| component_body_declaration

complete_component_declaration ::=
component component_label:label signature:facet_signature is

exports:optional_export_clause
declarations:optional_declaration_list

begin
component_assumptions:assumptions_clause
component_definitions:definitions_clause
component_implications:implications_clause

end component [component_label:label] ;

component_interface_declaration ::=
component interface component_label:label signature:facet_signature is

exports:optional_export_clause
declarations:optional_declaration_list

end component interface [component_label:label] ;

component_body_declaration ::=
component body component_label:label is

declarations:optional_declaration_list
begin

component_assumptions:assumptions_clause
component_definitions:definitions_clause
component_implications:implications_clause

end component body [component_label:label] ;

assumptions_clause ::=
assumptions

terms:optional_term_list
end assumptions ;

definitions_clause ::=
definitions

terms:optional_term_list
end definitions ;

implications_clause ::=
implications

terms:optional_term_list
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 85

Draft Standard Draft Standard for the
end implications ;

Abstract syntax:

 component_declaration :: ...

 complete_component_declaration :: ...

 component_interface_declaration :: ...

 component_body_declaration :: ...

 assumptions_clause :: ...

 definitions_clause :: ...

 implications_clause :: ...

Static semantics:

If a complete component declaration includes a component label after the keywords end component, that compo-
nent label shall be the same label as the label occurring at the beginning of the complete component declaration. If a
component interface declaration includes a component label after the keywords end component interface, that
component label shall be the same label as the label occurring at the beginning of the component interface declaration.
If a component body declaration includes a component label after the keywords end component body, that com-
ponent label shall be the same label as the label occurring at the beginning of the component body declaration.

A component may be declared by exactly one complete component declaration or by a combination of exactly one
component interface declaration and exactly one component body declaration. A component declared by a component
interface declaration and a component body declaration shall be equivalent to a component declared by a complete
component declaration with the same label and signature as the component interface declaration; the concatenation of
the declaration lists of the component interface declaration and a component body declaration; and the assumptions,
definitions and implications clauses of the component body declaration.

If the component interface declaration omits the export clause, the equivalent complete component declaration shall
also omit the export clause. If the component interface declaration includes an export clause that includes a list of
labels, the equivalent complete component declaration shall include an export list with the same list of labels, and each
label in the label list shall be one of

⎯the label of a parameter in the parameter list of the signature of the component interface declaration
⎯the label of an explicitly declared item of the optional declaration list of the component interface declara-
tion
⎯the label of an implitly declared item of the optional declaration list of the component interface declaration

If the component interface declaration includes an export clause that includes the keyword all, then the equivalent
complete component declaration shall include an export list that includes a label list that includes the labels of all pa-
rameters in the parameter list of the signature of the component interface declaration, all explicitly declared items of
the optional declaration list of the component interface declaration and all implitly declared items of the optional dec-
laration list of the component interface declaration.

NOTE — The rules governing the export list of a component interface declaration ensures that only those labels defined in the
component interface declaration are exported (in addition to those exported by the domain of the component). Labels defined in
the corresponding component body declaration cannot be exported.
86 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
If a component is declared by a component interface declaration and a component body declaration, those declarations
shall occur in the same declarative region. A component body declaration shall not occur in an enclosing interface
declaration part unless the corresponding component interface declaration also occurs in the enclosing interface de-
clarative part. If a component interface declaration occurs in an enclosing interface declarative part, the corresponding
component body declaration may occur either in the same enclosing interface declarative part or in the body declara-
tive part corresponding to the enclosing interface declarative part.

To do: Check whether facet_product is right in the above, or whether is should be facet_sum.

Simplification:

To do: Revise the definition of elaborate_complete_component_declaration depending on whether facet_product or
facet_sum should be used.

 simplify_component_declaration_list ...

NOTE — The function simplify_component_declaration_list yields a list of declaration simplifications that in-
cludes, for each complete component declaration in the given component declaration list, the result of applying
simplify_complete_component_declaration to the complete component declaration, and for each matching pair of
component interface and body declarations, the result of applying simplify_component_interface_and_body to the
pair.

 simplify_complete_component_declaration ...

NOTE — The function simplify_complete_component_declaration yields the simplification of a complete facet
declaration where the label, signature, export clause and declaration list are those of the component declaration, and the term list
contains two unlabeled terms whose term expressions are:

⎯An anonymous facet that has no parameters, the same domain as the component declaration, no export clause, no dec-
larations list, and a term list the same as the definitions term list of the component declaration; and
⎯A function application where

•The applied function is rosetta.lang.prelude.facet_implies,
²The first argument is a nested function application where the applied function is rosetta.lang.prel-
ude.facet_product, the first argument of the nested function application is an anonymous facet that has no
parameters, the same domain as the component declaration, no export clause, no declarations list, and a term list the
same as the assumptions term list of the component declaration, and the second argument of the nested function ap-
plication is the same anonymous facet as that of the first term of the simplification result;
•The second argument is an anonymous facet that has no parameters, the same domain as the component declaration,
no export clause, no declarations list, and a term list the same as the implications term list of the given component
declaration.

 simplify_component_interface_and_body_declaration ...

NOTE — The function simplify_component_interfec_and_body_declaration yields the simplification of a com-
plete component declaraion where the label is that shared by the component interface and body declarations, the signature is that of
the given component interface declaration, the export clause is that of the given component interface declaration, the declarations
are the concatenation of the declaration lists of the given component interface and body declarations, and the assumptions, defini-
tions, and implications clauses are those of the given component body declaration.

Examples:

The Rosetta component declaration

component C (x1 :: T1; x2, x3 :: T2) :: D is
 ... declarations ...
begin
 assumptions
 ... assumption terms ...
 end assumptions;
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 87

Draft Standard Draft Standard for the
 definitions
 ... definition terms ...
 end definitions;
 implications
 ... implication terms ...
 end implications;
end component C;

simplifies to the facet declaration

facet C (x1 :: T1; x2, x3 :: T2) :: D is
 ... declarations ...
begin
 facet :: D is begin
 ... definition terms ...
 end facet;
 rosetta.lang.prelude.facet_implies(
 rosetta.lang.prelude.facet_product(
 facet :: D is begin
 ... assumption terms ...
 end facet,
 facet :: D is begin
 ... definition terms ...
 end facet),
 facet :: D is begin
 ... implication terms
 end facet);
end facet C;
88 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
15. Domains

This clause defines ...

15.1 Domain declarations

Concrete syntax:

domain_declaration ::=
domain domain_label:label signature:domain_signature with extending_facet_AST:label is
exports exports:optional_export_list with additional_exports_expression:expression;
declarations:optional_declaration_list with additional_declarations_expression:expression

begin
terms:optional_term_list with additional_terms_expression:expression

end domain [domain_label:label] ;

domain_signature ::=
parameters:optional_facet_parameter_list parent_domain:optional_parent_domain

optional_parent_domain ::=
[:: parent_domain:optional_expression]

optional_export_list ::=
[exports:export_list]

Abstract syntax:

 domain_declaration :: ...

 domain_signature :: ...

 optional_export_list :: ...

Static semantics:

If a domain declaration includes a domain label after the keywords end domain, that domain label shall be the same
label as the label occurring immediately before the signature.

Each facet parameter definition in the signature of a domain declaration shall have the label design as the parameter
kind or shall omit the parameter kind. If the parameter definition omits the parameter kind, the effect shall be as though
the label design were included as the parameter kind.

If the signature of a domain declaration includes a parent domain, the parent domain shall be a domain expression.

The additional exports expression of a domain declaration shall be an expression of type rosetta.lang.re-
flect.optional_export_list. The additional declarations expression of a domain declaration shall be an ex-
pression of type rosetta.lang.reflect.optional_declaration_list. The additional terms
expression of a domain declaration shall be an expression of type rosetta.lang.re-
flect.optional_term_list.

Simplification:
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 89

Draft Standard Draft Standard for the
 simplified_domain_declaration :: ...

 simplified_domain_signature :: ...

 simplify_domain_declaration ...

NOTE — The function simplify_domain_declaration yields a simplification in which

⎯Tthe domain label is that of the domain declaration,
⎯The signature contains the simplified parameter definitions resulting from simplification of the domain declaration sig-
nature, and the simplification of the domain expression of the domain declaration signature, if present or no domain ex-
pression otherwise,
⎯The exports clause that is absent if the domain declaration has no export clause, or that contains all of the parameter,
declaration and term labels of the domain declaration if the domain declaration export clause is export all, or the domain
declaration export clause if that clause contains a list of labels,
⎯The declarations are the simplified declarations resulting from simplification of the declarations of the domain decla-
ration,
⎯The terms are the simplified terms resulting from simplification of the parameters, declarations and terms of the domain
declaration,
⎯The additional exports, declarations and terms expressions are the simplifications of the additional exports, declarations
and terms expressions, respectively, of the domain declaration.

Name Expansion:

 resolved_domain_declaration :: ...

 resolved_domain_signature :: ...

 expand_names_in_domain_declaration ...

NOTE — The function expand_names_in_domain_declaration yields a resolved domain declaration in which

⎯Tthe domain label is that of the domain declaration,
⎯The signature contains the parameter definitions corresponding to the parameter definitions of the signature of the given
domain in which any names are resolved references, and, if present, the domain expression corresponds to the domain
expression of the signature of the given domain declaration in which any names are resolved references, or no domain
expression otherwise,
⎯The exports clause is that of the given domain declaration,
⎯The declarations correspond to the declarations of the given domain declaration in which any names are resolved refer-
neces,
⎯The terms correspond to the terms of the given domain declaration in which any names are resolved references,
⎯The additional exports, declarations and terms expressions correspond to the additional exports, declarations and terms
expressions, respectively, of the given domain declaration in which any names are resolved references.

Denotational semantics:

To do: put something sensible in here. Domains are not really involved in the interpretation of a specification per se.
They are used in the elaboration of facets; they describe how to transform a facet that extends the domain into a facet
that extends the parent of the domain. This occurs recursively to produce a facet in a root domain, such as the null
domain. So transformation of a facet involves using the domain it refines and all the ancestors of that domain to trans-
form a facet into one that explicitly describes all the semantics that were implicitly obtained by extending a particular
domain. This gives us a forest of facets that are all “domainless” and which we will proceed to elaborate by “flattening”
to “the coalgebra”, and the domain declarations have disappeared in the wash so to speak since describing the inter-
pretation of the forest will not involve domains anymore. However I can still refer to the things declared in domains,
so the interpretation of the forest will need to appeal to the “facet-equivalent value” of the domain (i.e. the domain with
all the bits that can’t be in a facet stripped out in some way).
90 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
15.2 Domain expressions

An expression that involves domains shall be called a domain expression. Specifically, a domain expression shall be
one of

⎯a name that refers to the label of a domain declaration
⎯a name that refers to the label of a variable that is declared with a variable definition that is a domain ex-
pression
⎯a facet instantiation in which the instantiated expression is a domain expression

The value denoted by a domain expression shall be called a domain value.
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 91

Draft Standard Draft Standard for the
92 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
16. Interactions

This clause defines interactions, which specify the way in which properties described by a facet in one domain are man-
ifest in another domain.

16.1 Interaction declarations

Concrete syntax:

interaction_declaration ::=
interaction interaction_label:label signature:interaction_signature is
with source_AST_label:label
target_AST:target_AST_definition

end interaction [interaction_label:label] ;

interaction_signature ::=
(parameter:parameter_definition) :: return_type:expression

target_AST_definition ::=
let_target_AST_definition
| template_target_AST_definition

let_target_AST_definition ::=
let

binding_list:let_binding_list
in

template:template_target_AST_definition
end let ;

template_target_AST_definition ::=
facet (parameters_expression:expression) :: domain_expression:expression is
export exports_expression:expression ;
declarations_expression:expression ;

begin
terms_expression:expression ;

end facet ;

Abstract syntax:

 interaction_declaration :: ...

 interaction_signature :: ...

 target_AST_definition :: ...

 let_target_AST_definition :: ...

 template_target_AST_definition :: ...

The values denoted by the parameter type and the return type of the interaction signature shall be of the type roset-
ta.lang.null. The value denoted by the parameters expression shall be of the type rosetta.lang.re-
flect.abstract_syntax.optional_facet_parameter_list. The value denoted by the domain
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 93

Draft Standard Draft Standard for the
expression shall be of the type rosetta.lang.reflect.abstract_syntax.expression. The value de-
noted by the exports expression shall be of the type rosetta.lang.re-
flect.abstract_syntax.optional_export_clause. The value denoted by the declarations expression
shall be of the type rosetta.lang.reflect.abstract_syntax.optional_declaration_list.
The value denoted by the terms expression shall be of the type rosetta.lang.re-
flect.abstract_syntax.optional_term_list.

An interaction declaration shall be equivalent to a function declaration. An interaction declaration of the form

interaction interaction_label (parameter_label :: parameter_type) :: return_type is
with source_AST_label
facet (parameters_expression) :: domain_expression is
export exports_expression ;
declarations_expression ;

begin
terms_expression ;

end facet ;
end interaction [interaction_label:label] ;

shall be equivalent to a function declaration of the form

interaction_label (parameter_label :: parameter_type) :: return_type where
rosetta.lang.prelude.forall (

source_AST_label :: rosetta.lang.prelude.sel (
_source_AST_label :: rosetta.lang.reflect.abstract_syntax.anonymous_facet |

rosetta.lang.reflect.semantics.interpretation (_source_AST_label)
in parameter_type) |

rosetta.lang.prelude.__=__ (
interaction_label (
rosetta.lang.reflect.semantics.interpretation (source_AST_label)),

rosetta.lang.reflect.semantics.interpretation (
rosetta.lang.reflect.abstract_syntax.make_anonymous_facet (

parameters_expression,
domain_expression,
exports_expression,
declarations_expression,
terms_expression))));

Example:

Provided all names from rosetta.lang.prelude, rosetta.lang.reflect.abstract_syntax and
rosetta.lang.reflect.semantics are directly visible and not hidden, the interaction declaration

interaction F (x :: D1) :: D2 is
with x_AST
facet (make_parameters (x_AST)) :: make_domain (x_AST) is
export make_exports (x _AST);
make_declarations (x_AST);

begin
make_terms (x_AST);

end facet;
end interaction F;

is equivalent to the function declaration
94 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
F (x :: D1) :: D2 where
forall (x_AST :: sel (_x_AST :: anonymous_facet |

interpretation (_x_AST) in D1) |
F (interpretation (x_AST)
= interpretation (

make_anonymous_facet (
make_parameters (x_AST),
make_domain (x_AST),
make_exports (x _AST),
make_declarations (x_AST),
make_terms (x_AST)))));

An interaction declaration of the form

interaction interaction_label (parameter_label :: parameter_type) :: return_type is
with source_AST_label
let

binding_list
in
facet (parameters_expression) :: domain_expression is
export exports_expression ;
declarations_expression ;

begin
terms_expression ;

end facet ;
end let ;

end interaction [interaction_label:label] ;

shall be equivalent to a function declaration of the form

interaction_label (parameter_label :: parameter_type) :: return_type where
rosetta.lang.prelude.forall (

source_AST_label :: rosetta.lang.prelude.sel (
_source_AST_label :: rosetta.lang.reflect.abstract_syntax.anonymous_facet |

rosetta.lang.reflect.semantics.interpretation (_source_AST_label)
in parameter_type) |

rosetta.lang.prelude.__=__ (
interaction_label (
rosetta.lang.reflect.semantics.interpretation (source_AST_label)),

rosetta.lang.reflect.semantics.interpretation (
let

binding_list
in
rosetta.lang.reflect.abstract_syntax.make_anonymous_facet (

parameters_expression,
domain_expression,
exports_expression,
declarations_expression,
terms_expression)

end let)));

Example:

Provided all names from rosetta.lang.prelude, rosetta.lang.reflect.abstract_syntax and
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 95

Draft Standard Draft Standard for the
rosetta.lang.reflect.semantics are directly visible and not hidden, the interaction declaration

interaction F (x :: D1) :: D2 is
with x_AST
let
y :: T be E

in
facet (make_parameters (x_AST, y)) :: make_domain (x_AST, y) is
export make_exports (x _AST, y);
make_declarations (x_AST, y);

begin
make_terms (x_AST, y);

end facet;
end let;

end interaction F;

is equivalent to the function declaration

F (x :: D1) :: D2 where
forall (x_AST :: sel (_x_AST :: anonymous_facet |

interpretation (_x_AST) in D1) |
F (interpretation (x_AST)
= interpretation (

let
y :: T be E

in
make_anonymous_facet (

make_parameters (x_AST, y),
make_domain (x_AST, y),
make_exports (x _AST, y),
make_declarations (x_AST, y),
make_terms (x_AST, y))

end let)));
96 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
17. Libraries

This clause defines libraries that contain Rosetta specifications. It also defines the rules governing order of analysis of
design units that comprise Rosetta specifications.

17.1 Design units

A design unit shall be a portion of a Rosetta specification that may be independently analyzed and inserted into a design
library. A design file shall be a sequence of one or more design units. The representation of a design file shall be im-
plementation dependent.

NOTE — An implementation will typically represent a design file as a text file containing the text of one or more design units in
sequence.

Concrete syntax:

design_file ::=
design_unit { design_unit }

design_unit ::=
complete_or_interface_design_unit
| body_design_unit

complete_or_interface_design_unit ::=
context:context_clause_list unit:complete_or_interface_declaration

complete_or_interface_declaration ::=
complete_declaration
| interface_declaration

complete_declaration ::=
complete_facet_declaration
| complete_package_declaration
| complete_component_declaration
| domain_declaration
| interaction_declaration
| variable_declaration

interface_declaration ::=
facet_interface_declaration
| package_interface_declaration
| component_interface_declaration

context_clause_list ::=
{ context_clause }

context_clause ::=
library_clause
| use_clause

body_design_unit ::=
context:library_clause_list unit:body_declaration
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 97

Draft Standard Draft Standard for the
body_declaration ::=
facet_body_declaration
| package_body_declaration
| component_body_declaration

library_clause_list ::=
{ library_clause }

Abstract syntax:

 design_file :: ...

 design_unit :: ...

 complete_or_interface_design_unit :: ...

 complete_or_interface_declaration :: ...

 complete_declaration :: ...

 interface_declaration :: ...

 optional_context_clause_list :: ...

 context_clause :: ...

 body_design_unit :: ...

 body_declaration :: ...

Static semantics:

A design unit that is a variable declaration shall have a declared type that is a facet, package, component or domain
type; a definition that is a constant facet expression, a constant package expression or a constant domain expression;
and no property clause.

Simplification:

 design_unit_simplification :: ...

 optional_design_unit_simplification_list :: ...

 labels_from_design_unit_simplification_list ...

NOTE — The function labels_from_design_unit_simplification_list yields a list of labels of design units in
the given design unit simplification list.

 simplify_design_unit_list
 (l :: sequence (design_unit))
 :: optional_design_unit_simplification_list is ...

NOTE — The function simplify_design_unit_list yields a list of design unit simplifications obtained by simplifying
each of the design units in the list l. Each of the variables bound in the let expression represents those design units from the list l
of a given type. The function filters the design units from the list l by applying the observer function unit to obtain the declaration
without the context clause, composed with the recognizer predicate for the given declaration type. The function applies simplifica-
98 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
tion functions to each of the variables and concatenates the results.

 merge_use_names (cc :: context_clause) :: optional_name_list is ...

NOTE — The function merge_use_names yields the list of names referred to in the use clauses of a context clause. The function
filters the context clause to obtain the use clauses, then applies the used_names observer to each use clause. The function then
concatenates the the lists of used names to obtain its result.

 simplify_variable_units (n :: sequence (design_unit))
 :: optional_design_unit_simplification_list is ...

NOTE — The function simplify_variable_units yields a list of design unit simplifications obtained by simplifying each
of the variable declarations in the list of design units, l. The function simplifies each variable declaration, yielding a list of simpli-
fied declarations. For each of those simplified declarations, the function makes a design unit simplification from the list of used
names in the context clause of the design unit, together with the simplified declaration. The function then concatenates the lists of
design unit simplifications to obtain its result.

 simplify_facet_units
 (n :: sequence (design_unit))
 :: optional_design_unit_simplification_list is ...

NOTE — The function simplify_facet_units yields a list of design unit simplifications obtained by simplifying each of
the facet declarations in the list of design units, n. The function filters out the complete, interface and body design units into separate
lists. For each complete design unit, the function makes a design unit simplification from the list of used names in the context clause
of the design unit, together with the simplified facet declaration. For each interface design unit, the function finds the matching body
design unit, then makes a design unit simplification from the list of used names in the context clause of the interface design unit,
together with the simplified facet interface and body declarations. The function concatenates the two lists of design unit simplifica-
tions to obtain its result.

 simplify_package_units
 (n :: sequence (design_unit))
 :: optional_design_unit_simplification_list is ...

NOTE — The function simplify_package_units is similar to the function simplify_facet_units; it yields a list of
design unit simplifications obtained by simplifying each of the package declarations in the list of design units, n. The function filters
out the complete, interface and body design units into separate lists. For each complete design unit, the function makes a design unit
simplification from the list of used names in the context clause of the design unit, together with the simplified package declaration.
For each interface design unit, the function finds the matching body design unit, then makes a design unit simplification from the
list of used names in the context clause of the interface design unit, together with the simplified package interface and body decla-
rations. The function concatenates the two lists of design unit simplifications to obtain its result.

 simplify_component_units
 (n :: sequence (design_unit))
 :: optional_design_unit_simplification_list is ...

NOTE — The function simplify_component_units is similar to the function simplify_facet_units; it yields a list
of design unit simplifications obtained by simplifying each of the component declarations in the list of design units, n. The function
filters out the complete, interface and body design units into separate lists. For each complete design unit, the function makes a de-
sign unit simplification from the list of used names in the context clause of the design unit, together with the simplified component
declaration. For each interface design unit, the function finds the matching body design unit, then makes a design unit simplification
from the list of used names in the context clause of the interface design unit, together with the simplified component interface and
body declarations. The function concatenates the two lists of design unit simplifications to obtain its result.

 simplify_domain_units
 (n :: sequence (design_unit))
 :: optional_design_unit_simplification_list is ...

NOTE — The function simplify_domain_units yields a list of design unit simplifications obtained by simplifying each of
the domain declarations in the list of design units, n. For each design unit, the function makes a design unit simplification from the
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 99

Draft Standard Draft Standard for the
list of used names in the context clause of the design unit, together with the simplified domain declaration. The result of the function
is the list of design unit simplifications.

 simplify_interaction_units
 (n :: sequence (design_unit))
 :: optional_design_unit_simplification_list is ...

NOTE — The function simplify_interaction_units yields a list of design unit simplifications obtained by simplifying
each of the interaction declarations in the list of design units, n. For each design unit, the function makes a design unit simplification
from the list of used names in the context clause of the design unit, together with the simplified interaction declaration. The result
of the function is the list of design unit simplifications.

Name Expansion:

 expand_names_in_design_unit
 :: resolved_variable_declaration_and_property_simplification is ...

NOTE — The function expand_names_in_design_unit yields a resolved variable declaration and property simplification
if the declaration of the given simplified design unit is a variable declaration and property simplification, or a resolved domain dec-
laration if the declaration of the given simplified design unit is a domain declaration, in either case corresponding to the declaration
of the given simplified domain declaration where any names are resolved references.

17.2 Design libraries

A design library shall be a hierarchical repository for storing analyzed design units. The representation of a design
library shall be implementation dependent.

A design library shall contain all of the analyzed design units that are stored in it. A design library may also contain
one or more subordinate design libraries. A design library that contains a subordinate design library shall be called the
parent library of the subordinate library.

A design library that is not a subordinate design library of any other design library shall be called a root design library.
A root design library that is recursively the parent of a subordinate design library shall be called the ultimate parent of
the subordinate design library. A root design library shall be its own ultimate parent.

Abstract syntax:

 design_library :: ...

Static semantics:

A design library shall be considered equivalent to a complete package declaration in which:

⎯The label is defined in an implementation-dependent manner
⎯The parameter list is empty
⎯The domain is rosetta.lang.null
⎯The export clause is absent
⎯The declarations comprise the declarations of the analyzed design units store in the library, together with
the declarations of the equivalent package declarations of each subordinate design library of the design library

The label of the equivalent package declaration shall be called the label of the design library.

NOTE — Since a subordinate design library is considered as a package declared within the package corresponding to the parent
library, the subordinate library may be referred to by a qualified name in which the prefix denotes the parent library and the suffix
is the label of the subordinate library. Furthermore, since an analyzed design unit is considered to be declared within the equivalent
100 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
package of the containing design library, the design unit may be referred to by a qualified name in which the prefix denotes the
containing library and the suffix is the label of the design unit.

Simplification:

 design_library_simplification :: ...

 optional_design_library_simplification_list :: ...

 simplify_design_library
 (l :: design_library) :: design_library_simplification is ...

NOTE — The function simplify_design_library yields a design library simplification whose label is that of the argument
design library, whose design units are the simplified design units of the argument design library, and whose sublibraries are the sim-
plified sublibraries of the argument design library.

Name Expansion:

 expand_names_in_design_library
 :: resolved_variable_declaration_and_property_simplification is ...

NOTE — The function expand_names_in_design_unit yields a resolved variable declaration and property simplification
which is equivalent to the result of simplifying and expanding the names in a package declaration where the declared label is the
same as the library label, the domain expression is a reference to the predefined domain rosetta.lang.null, and the elements of the
declaration list correspond to the results of expanding names in the design units and sublibraries of the given design library.

17.2.1 Predefined design libraries

There shall be a predefined root design library with the label rosetta. The predefined library rosetta shall con-
tain a subordinate library with the label lang.

The predefined library rosetta.lang shall contain the following predefined design units:

⎯The package prelude, as defined in Clause 21
⎯The package unicode, as defined in Clause 22
⎯The predefined domains defined in Clause 24

The predefined library rosetta.lang shall contain a subordinate library with label reflect. The predefined li-
brary rosetta.lang.reflect shall contain the predefined design units defined in Clause 23.

17.2.2 Library clauses

Concrete syntax:

library_clause ::=
library library_name_list ;

library_name_list ::=
library_name { , library_name }

library_name ::=
library_label:label library_identifier:optional_library_identifier

optional_library_identifier ::=
[is string_literal]
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 101

Draft Standard Draft Standard for the
Abstract syntax:

 library_clause :: ...

 optional_library_clause_list :: ...

 library_name :: ...

 library_name_list :: ...

 optional_library_identifier :: ...

Static semantics:

A library label shall be the label of a root design library. If a library name omits the optional library identifier, the root
design library shall be determined in an implementation-dependent manner. If a library name includes the optional li-
brary identifier, the string literal shall be in the form of a Universal Resource Identifier (URI) that shall identify the
root design library.

Examples:

library design_lib, standard_components;

library company_lib is "file:///usr/local/lib/rosetta/company_lib";

library widgets is "http://www.widget.com/libraries/widgets";
102 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
18. Type Rules

This clause defines the static type rules governing the language. The definitions in this clause are declared in the pack-
age rosetta.lang.reflect.type_rules.

18.1 Type contexts

A type context shall be a sequence of type bindings. A type binding shall be a pair whose first element is a name and
whose second element is an abstract syntax value of an expression that denotes a type.

 type_binding ::

A type expression is an expression defined as:

 type_expression :: ...

 type_constructor :: ...

 type_constructor_application :: ...

A well formed type context shall be a type context for which the function well_formed is true.

 well_formed...

 well_formed_type_context :: ...

 name_in_type_context...

 type_binding_in_type_context...

18.2 Type statements

A type statement shall be an expression of the form

type_context |- expression ∈ type_expression

where type_context shall be a Rosetta expression of type type_context, expression shall be a Rosetta expression
of type expression, and type_expression shall be a Rosetta expression of type type_expression. A type state-
ment shall be equivalent to an expression of the form

in_type (type_context, expression, type_expression)

where the function in_type shall be defined as

 in_type (G :: well_formed_type_context;
 e :: expression; T :: type_expression)
 :: boolean;
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 103

Draft Standard Draft Standard for the
18.3 Type rules for expressions

18.3.1 Type rules for literals

 T_Literal_Bottom :...

 T_Literal_Real :...

 T_Character_Literal :...

 T_String_Literal :...

 T_Bitvector_Literal :...

18.3.2 Type rule for names

 T_Name :...

18.3.3 Type rule for let expressions

 T_Let_Expression :...

18.3.4 Type rule for if expressions

 T_If_Expression :...

18.4 Type rules for functions

18.4.1 Type rule for function type formations

 T_Function_Type_Formation :...

18.4.2 Type rule for anonymous functions

 T_Anonymous_Function :...

18.4.3 Type rule for function application

 T_Function_Application :...

18.5 Type rules for declarations

18.5.1 Type rule for variable declarations

 T_Variable_Declaration :...

18.5.2 Type rule for constructed type declarations

 T_Constructed_Type_Declaration :...
104 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
19. Scope and visibility

This clause defines the scope and visibility rules that govern the definition and use of labels within Rosetta specifica-
tions.

19.1 Declarative regions

A declarative region shall be a portion of the text of a Rosetta specification, and shall be one of

⎯A complete facet declaration (excluding the facet label)
⎯A facet interface declaration (excluding the facet label) together with the corresponding facet body decla-
ration
⎯A complete package declaration (excluding the package label)
⎯A package interface declaration (excluding the package label) together with the corresponding package
body declaration (if any)
⎯A complete component declaration (excluding the component label)
⎯A component interface declaration (excluding the component label) together with the corresponding com-
ponent body declaration
⎯A domain declaration (excluding the domain label)
⎯A let expression
⎯A quantified expression
⎯A function type formation
⎯An anonymous function
⎯A function declaration (excluding the function label)
⎯A constructed type declaration (excluding the type label)
⎯A let term
⎯A root declarative region for the purpose of analyzing a design unit

A declaration, parameter definition or term is said to declare one or more labels. A label is said to be declared imme-
diately within a declarative region if the declarative region is the innermost declarative region in which the declaration,
parameter definition or term occurs. If a label is declared immediately within a declarative region, the declarative re-
gion is said to immediately declare the label.

Certain declarative regions consist of disjoint portions of text. Each such declarative regions shall nontheless be con-
sidered as a single declarative region comprising the disjoint portions of text but excluding any intervening portions
of text.

19.2 Scope of a label

Associated with each declared label there shall be a portion of the text of the Rosetta specification called the scope of
the label. The scope shall comprise the immediate scope and may also be extended beyond the immediate scope.

The immediate scope of a label declared immediately within a complete facet declaration, a complete package decla-
ration, a complete component declaration or a domain declaration shall extend from the keyword is in the enclosing
declaration to the end of the enclosing declaration.

The immediate scope of a label declared immediately within a facet interface declaration, a package interface decla-
ration or a component interface declaration shall extend from the keyword is in the enclosing interface declaration to
the end of the enclosing interface declaration. The immediate scope shall further extend from the keyword is in the
corresponding body declaration to the end of the corresponding body declaration (if any).

The immediate scope of a label declared immediately within a facet body declaration, a package body declaration or
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 105

Draft Standard Draft Standard for the
a component body declaration shall extend from the keyword is in the enclosing body declaration to the end of the
enclosing body declaration.

The immediate scope of a label declared in a parameter definition in a facet, package, component or domain parameter
list shall extend from the beginning of the parameter definition to the end of the enclosing declaration. Where the en-
closing declaration is an interface declaration, the immediate scope of the label shall further extend from the keyword
is in the corresponding body declaration to the end of the corresponding body declaration (if any).

The immediate scope of a label declared in a parameter definition in a let expression shall extend from the beginning
of the let expression to the end of the let expression.

The immediate scope of a label declared in a parameter definition in a quantified expression shall extend from the be-
ginning of the parameter definition to the end of the quantified expression.

The immediate scope of a label declared in a parameter definition in a function type formation shall extend from the
beginning of the parameter definition to the end of the function type formation.

The immediate scope of a label declared in a parameter definition in an anonymous function shall extend from the be-
ginning of the parameter definition to the end of the anonymous function.

The immediate scope of a label declared in a parameter definition in a function declaration shall extend from the be-
ginning of the parameter definition to the end of the function declaration.

The immediate scope of a label declared in a parameter definition in a constructed type declaration shall extend from
the beginning of the parameter definition to the end of the constructed type declaration.

The immediate scope of a label declared in a parameter definition in a let term shall extend from the beginning of the
let term to the end of the let term.

NOTE — The rules specifying the scope of a label declared in a declaration refer to both explicit and implicit declarations.

The scope of a label that is exported by an export clause shall be further extended beyond the immediate scope of the
label.

19.3 Visibility

Within the scope of a label, there shall be places where the label is said to be visible. An occurrence of the label in a
place where it is visible shall be a reference to the declaration, parameter definition or term that declares the label.

A label shall be visible only in places where it is directly visible or where it is visible by selection.

A label shall be directly visible in parts of its immediate scope except in those places where it is hidden. A label shall
be hidden in a declarative region that is nested within the scope of the label if the nested declarative region immediately
declares the same label.

A label declared in a declaration or a term shall be directly visible in all of its immediate scope, except where the label
is hidden.

A label declared in a parameter definition shall be directly visible in all of its immediate scope except in the parameter
definition that declares the label and except where the label is hidden.

A label shall also be directly visible in places where it is made directly visible by a use clause.
106 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
A label shall be visible by selection at places defined as follows:

a)For a label that is immediately declared within an anonymous facet that is the value of a variable: at the place of
the suffix in a qualified name that occurs within the immediate scope of the label and whose prefix denotes
the variable.

b)For a label that is immediately declared within a facet declaration, a package declaration, a component declara-
tion or a domain declaration: at the place of the suffix in a qualified name that occurs within the immediate
scope of the label and whose prefix refers to the label of the declaration that immediately declares the label.

c)For an exported label of an anonymous facet that is the value of a variable: at the place of the suffix in a qualified
name whose prefix denotes the variable.

d)For an exported label of a facet declaration, a package declaration or a component declaration: at the place of
the suffix in a qualified name whose prefix refers to the label of the facet declaration, package declaration or
component declaration.

e)For an exported label of an anonymous facet that is instantiated in a term: at the place of the suffix in a qualified
name whose prefix refers to the label of the term.

f)For an exported label of a facet declaration, a package declaration or a component declaration that is instantiated
in a term: at the place of the suffix in a qualified name whose prefix refers to the label of the term.

19.4 Use clauses

Concrete syntax:

use_clause ::=
use used_names:name_list ;

name_list ::=
name { , name }

Abstract syntax:

 use_clause :: ...

 name_list :: ...

Static semantics:

A use clause shall make directly visible exported labels that are visible by selection.

A use clause is said to occur immediately within a declarative region if the declarative region is the innermost declar-
ative region in which the use clause explicitly or implicitly occurs.

Each name in the name list of a use clause shall be a static expression that denotes a package value. Two names that
occur in the same use clause or in different use clauses that both occur immediately within the same declarative region
shall denote different package values. A name in a use clause that appears immediately within a declarative region
shall not be or have as a prefix a label that is made directly visible by the same use clause or another use clause that
appears immediately within the same declarative region.

Rationale: The restriction on labels in use clauses eliminates cases where a used package name is a name imported
from another package. It would otherwise be possible to introduce ambiguity and potentially circular imports. Check-
ing for these problems could be complex and burdensome.

Associated with a use clause there shall be a portion of the text of the Rosetta specification called the scope of the use
clause.
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 107

Draft Standard Draft Standard for the
The scope of a use clause that occurs immediately within a complete facet declaration, a complete package declaration,
a complete component declaration or a domain declaration shall extend from the keyword is in the enclosing decla-
ration to the end of the enclosing declaration.

The scope of a use clause that occurs immediately within a facet interface declaration, a package interface declaration
or a component interface declaration shall extend from the keyword is in the enclosing interface declaration to the
end of the enclosing interface declaration. The scope shall further extend from the keyword is in the corresponding
body declaration to the end of the corresponding body declaration (if any).

The scope of a use clause that occurs immediately within a facet body declaration, a package body declaration or a
component body declaration shall extend from the keyword is in the enclosing body declaration to the end of the en-
closing body declaration.

The scope of a use clause that occurs in the context clause of a complete or interface design unit shall extend from the
beginning of the design unit to the end of the design unit. If the design unit is a facet interface declaration, a package
interface declaration or a component interface declaration, the scope of the use clause shall further extend from the
keyword is of the corresponding body declaration to the end of the corresponding body declaration (if any).

For each name in the name list of a use clause, the exported labels of the denoted package shall be made potentially
visible in the scope of the use clause. A label shall be made directly visible by a use clause in those places where it is
potentially visible and

a)It is not hidden, and
b)it is not the same label as an exported label from a different package also made potentially visible by the same

use clause or by a use clause that occurs immediately within the same declarative region, and
c)it is not the same label as a label declared immediately within the declarative region in which the use clause im-

mediately occurs.
108 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
20. Analysis, elaboration and interpretation

This clause defines three steps of processing a Rosetta specification by a tool: analysis, elaboration and interpretation.

20.1 Analysis of design units

A design unit shall be analyzed by ensuring that the text of the design unit is lexically and syntactically well-formed,
and that it conforms to the static semantic rules of the language. An implementation may also perform type checks at
the time of analyzing a design unit, provided that the type checks performed can be decided at time of analysis of the
design unit.

If any error is detected during analysis, the design unit shall not be stored in a design library. If analysis reveals no
errors, the analyzed design unit may be stored in a design library. The selection of the design library and the form in
which the analyzed design unit is stored shall be implementation dependent.

A design file shall be analyzed by analyzing each of the design units in the design file in the order of their occurrence
in the design file. The effect of analyzing a design file shall be the same as the effect of independently analyzing the
design units in the file one at a time in the order of their occurrence in the design file.

During analysis of a design unit, the label of the design unit shall be considered to be declared in the equivalent package
declaration of the design library into which the analyzed design unit is to be stored. The scope of labels of analyzed
design units previously stored in the design library and the scope of labels of subordinate design libraries of the deisgn
library shall extend over the design unit being analyzed.

During analysis of a design unit, there shall be a root declarative region immediately within which the equivalent pack-
ages of the following root design libraries shall be considered to be declared:

a)The predefined root library rosetta
b)The ultimate parent library of the design library into which the analyzed design unit is stored
c)Each root library whose label occurs in a library name in the context clause of the design unit
d)For a design unit that is a body declaration: each root library whose label occurs in a library name in the context

clause of the corresponding interface declaration

The root declarative region shall contain an implicit use clause of the form:

use rosetta.lang;

Corresponding to an analyzed design unit there shall be a value of type rosetta.lang.re-
flect.abstract_syntax.design_unit that represents the abstract syntax tree of the design unit.

For a label that is declared by a single design unit, an implementation shall yield the abstract syntax tree of the analyzed
design unit as the result of interpretation of a function application of the function rosetta.lang.re-
flect.abstract_syntax.get_design_unit to a fully qualified name that refers to the declared label.

For a label that is declared by a pair of design units containing an interface declaration and a body declaration, an im-
plementation shall yield the pair of abstract syntax trees of the analyzed design units as the result of interpretation of
a function application of the function rosetta.lang.reflect.abstract_syntax.get_design_unit
to a fully qualified name that refers to the declared label.

An implementation may store abstract syntax trees explicitly or may generate an abstract syntax tree when required.

NOTES:
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 109

Draft Standard Draft Standard for the
1 — As a consequence of the above rules and of the scope and visibility rules, a design unit when analyzed has direct visibility of
labels of all root libraries declared in the root declarative region, of all parent libraries of the design library into which it is stored,
and of all other design units previously stored in the design library into which it is stored.

2 — The static semantic rules governing correspondence of interface and body declarations require that an interface declaration and
a corresponding body declaration be stored in the same design library.

20.1.1 Order of analysis

A design unit that references the label of a second design unit is said to depend on the second design unit. Furthermore,
a design unit that is a body declaration is said to depend on the corresponding interface declaration. A design unit must
be analyzed without error before any design unit that depends on it is analyzed.

If a previously analyzed design unit in a design library is reanalyzed and stored the design library, replacing the pre-
viously stored version, all analyzed design units that depend on the first design unit shall become obsolete. If they con-
tinue to form part of the Rosetta specification, they shall be reanalyzed and replace their previously stored versions.

20.2 Elaboration of a specification

Elaboration of a specification shall involve construction of a language specification from a collection of analyzed Ro-
setta design units. An implementation may perform type checks at the time of elaborating a specification, provided that
the type checks performed can be decided at time of elaborating the specification.

An implementation shall select a root design name from which to start elaboration. The manner in which the root de-
sign name is selected shall be implementation defined.

The result of elaborating a root design name shall be equivalent to the specification resulting from application of the
function rosetta.lang.reflect.elaboration.elaborate_root_design_name to the root design
name. The form in which the result of elaboration is represented is implementation defined.

The function elaborate_root_design_name shall yield a Rosetta specification by determining the closure of
all design units referenced by the design unit denoted by the root design name, simplifying those design units, expand-
ing the names in the simplified design units, and applying transformations defined by the domains of the design units.
Simplification is described in 20.2.1, name expansion is described in 20.2.2, and transformation is described in 20.2.3.

To do: There will probably be a fourth that performs "flattening" of facets to produce the final monolithic anonymous
facet value that is "the coalgebra".

Elaboration:

 elaborate_root_design_name (n :: label_list) ...

NOTE — The function elaborate_root_design_name determines the root library referenced by the name formed by the
list of labels, n, and yields the result of elaborating transitively from that root library. It gets the closure of all referenced libraries
from the design units in the library denoted by n. It then determines the simplified form of those libraries and expands the names in
the simplified forms. The function yields ..

 get_root_design_library (l :: library_name) :: design_library is
 constant;

NOTE — The function get_root_design_library shall yield an AST for the root design library denoted by the name l.
The manner in which the AST is determined shall be implementation defined.

 referenced_libraries_from_target_library_name (n :: library_name)
 :: set (library_name) is ...
110 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
NOTE — The function referenced_libraries_from_target_library_name yields the set of names of libraries that
are directly or indirectly referenced from design units in the library denoted by n.

 closure_of_referenced_libraries (n :: library_name;
 s :: optional_library_name_list)
 :: optional_library_name_list is ...

NOTE — The function closure_of_referenced_libraries yields a list of names of libraries that are directly or indirectly referenced
from design units in the library denoted by n, appended to the list s, with no duplicates. If the name n is already in the list s, the
function yields s unchanged. Otherwise, the function determines a list of names of libraries directly referenced by design units in
the library denoted by n. For each name in that list, the function recursively applies itself, thus determining the names of libraries
indirectly referenced.

 libraries_referenced_from_design_library (d :: design_library)
 :: optional_library_name_list is ...

NOTE — The function libraries_referenced_from_design_library yields a list of library names referenced in li-
brary clauses of design units in the design library d and the sublibraries of d.

 libraries_referenced_from_design_unit (n :: design_unit)
 :: optional_library_name_list is ...

NOTE — The function libraries_referenced_from_design_unit yields a list of library names referenced in library
clauses of the design unit n.

 unique_libraries (l :: optional_library_name_list)
 :: optional_library_name_list ...

NOTE — The function unique_libraries yields a list of library names that contains exactly the same set of names that are
in l and that contains no duplicates. Two name are duplicatse if they both denotes the same design library.

 library_name_in_list (n :: library_name; l :: optional_library_name_list)
 :: boolean is ...

NOTE — The function library_name_in_list tests whetherthe library denoted by n is denoted by a library name in the list
l.

 identical_libraries (l1, l2 : library_name) :: boolean is
 constant;

NOTE — The function identical_libraries tests whether the library names l1 and l2 denote the same design library.

20.2.1 Simplification

A simplified Rosetta specification is a Rosetta specification in which all abstract syntax constructs are members of
rosetta.lang.reflect.simplification.simplified_nonterminal. Simplification of a Rosetta
specification shall yield an equivalent simplified Rosetta specification in which those abstract syntax constructs that
are not of a simplified form are replaced by the equivalent simplified form. The result of simplifying a design library
shall be equivalent to the simplified design library resulting from application of the function rosetta.lang.re-
flect.simplification.simplify_design_library to the design library.

 simplified_nonterminal :: subtype (nonterminal) is ...

NOTE — The type simplified_nonterminal is the union of each of the simplified AST types.
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 111

Draft Standard Draft Standard for the
20.2.2 Name expansion

A resolved Rosetta specification is a simplified Rosetta specification in which all abstract syntax constructs are mem-
bers of rosetta.lang.reflect.name_expansion.resolved_nonterminal. Name expansion of a
simplified Rosetta specification shall yield an equivalent resolved Rosetta specification in which those abstract syntax
constructs that are not of a resolved form are replaced by the equivalent resolved form. The result of name expansion
of a simplified design library shall be equivalent to the resolved design library resulting from application of the func-
tion rosetta.lang.reflect.name_expansion.resolve_names_in_design_library to the sim-
plified design library.

 resolved_nonterminal :: subtype (simplified_nonterminal) is ...

NOTE — The type resolved_nonterminal is the union of each of the AST types in which name references have been ex-
panded to resolved names.

20.2.2.1 Name expansion contexts

A context for name expansion is described by a value of the type rosetta.lang.name_expansion.context.

 context :: ...

NOTE — A context for name expansion is a list of context regions. Each element describes a declarative region nested within the
declarative region described by the subsequent element, except for the final element which describes the root declarative region for
elaboration.

 context_region :: ...

NOTE — A context region is an pair, the first element being a declarative region AST value, and the second element being a set
of context pair.

 declarative_region :: ...

NOTE — The type declarative_region is the union of those resolved AST types that may declare items or terms or define
parameters.

 context_pair :: ...

NOTE — A context pair describes a label that is directly or potentially visible within a declarative region. For a label that is directly
visible, the context name will be a singleton list containing the label. For a label that is potentially visible, the context name will be
a label list consisting of the label prepended with the name of the package that appeared in a use clause to make the label potentially
visible.

 make_local_binding_context_pair ...

NOTE — Yields a context pair corresponding to a directly visible label for the given label value.

 make_local_context_region ...

NOTE — Yields a context region in which the declarer is the given AST value and the context pairs are formed from the result
applying make_local_binding_context_pair to each label of the given label list.

 label_in_region ...

NOTE — Yields true if the any region of the given context contains a context pair that describes a binding for the given label.

 label_in_context ...
112 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
NOTE — Yields true if the given context region contains a context pair that describes a binding for the given label.

 get_name_from_region ...

NOTE — Yields the binding contained in a context pair of the given region that describes a binding for the given label.

 add_labels_to_head_region ...

NOTE — Yields a context which is equivalent to the given context except for the context pairs of the head region being the union
of the context pairs of the head region of the given context with the results of applying
make_local_binding_context_pair to each label of the given label list.

 add_used_names_to_head_region ...

NOTE — Yields a context which is equivalent to the given context except for the context pairs of the head region being the union
of the context pairs of the head region of the given context with the context pairs that describe the labels that are directly visible by
virtue of the association of a use clause in which the given names appear to the declarative region corresponding to the head of the
context.

20.2.2.2 Resolution of references

The value of the type rosetta.lang.reflect.name_expansion.resolved_reference equivalent to
a given label list name n occuring within a given declarative region described by context c is the result of application
of the function rosetta.lang.reflect.name_expansion.get_resolved_reference_internal
with parameters c, 0, and n.

 get_resolved_reference_internal :: ...

NOTE — If the head region of the given context does not contain a binding for the head of the given name, then the result is the
recursive application of get_resolved_reference_internal where the parameters are the tail of the given context, the
sum of the given parameter u with 1, and the given name. If the head of the given context contains a binding for the head of the
given name and the binding is not a singleton list then the result is the recursive application of
get_resolved_reference_internal where the parameters are the tail of the given context, the sum of the given parameter
u with 1, and the name formed by prepending the binding for the head of the given name to the tail of the given name. If the head
of the given context contains a binding for the head of the given name and the binding is a singleton label list then a resolved refer-
ence is produced such that

⎯The up levels component is the value given for parameter u;
⎯The top level declarer component is the declarer of the head of the given context;
⎯The labels component is the label list formed by prepending the binding for head of the given name to tail of the given
name;
⎯The item component is the result of application of get_item_from_declarative_region where the parame-
ters are the labels compenent described above and the declarer of the head of the given context;
⎯The declared type component is the result of application of get_declared_type to the item component described
above;
⎯The declared value component is the result of application of get_declared_value to the item component de-
scribed above.

 get_item_from_declarative_region :: ...

NOTE — Yields a referable item according to the subtype of the given declarative region

 get_item_from_let_expression :: ...

NOTE — If the given name is a singleton label list, then the result is the let binding of the given let expression that declares the
same label as the given label. Otherwise, the result is the application of get_item_from_declarative_region where the
first parameter is the tail of the given name and the second parameter is the application of get_declared_value to the let bind-
ing of the given let expression that declares the same label as the head of the given name.
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 113

Draft Standard Draft Standard for the
 get_item_from_function_type_formation :: ...

NOTE — Yields the parameter definition of the signature of the given function type formation that declares the same parameter
label as the head of the given label list.

 get_item_from_anonymous_function :: ...

NOTE — Yields the parameter definition of the signature of the given anonymous that declares the same parameter label as the
head of the given label list.

 get_item_from_constructed_type_declaration :: ...

NOTE — Yields the parameter definition of the construct type definition that declares the same parameter label as the head of the
given label list.

 get_item_from_anonymous_facet :: ...

NOTE — If the given name is a singleton label list, then the result is the parameter, declaration, or term of the given anonymous
facet that declares the same label as the given label. Otherwise, the result is the application of
get_item_from_declarative_region where the first parameter is the tail of the given name and the second parameter is
the application of get_declared_value to the parameter, declaration, or term of the given anonymous facet that declares the
same label as the head of the given name.

 get_item_from_domain_declaration :: ...

NOTE — If the given name is a singleton label list, then the result is the parameter, declaration, or term of the given domain dec-
laration that declares the same label as the given label. Otherwise, the result is the application of
get_item_from_declarative_region where the first parameter is the tail of the given name and the second parameter is
the application of get_declared_value to the parameter, declaration, or term of the given domain declaration that declares the
same label as the head of the given name.

 referable_item_from_declaration :: ...

NOTE — The type referable_item_from_declaration is the union of those resolved AST types that may declare items.

 referable_items_in_declaration :: ...

NOTE — Yields a sequence of values of type referable_item_from_declaration corresponding to the items declared
by the given resolved declaration. For resolved declarations that are resolved variable simplification and property clause values, the
declarations of variable simplification and property clause is yielded. For a resolved declaration that is a resolved constructed type
declaration, a singleton list containing the resolved constructed type declaration is yielded. For a resolved declaration that is a re-
solved domain declaration, a singleton list containing the resolved domain declaration is yielded.

 is_matching_item :: ...

NOTE — Yields true if the given referable item is a declaration, term, or parameter that declares the given label.

 get_declared_type :: ...

NOTE —

 get_declared_value :: ...

NOTE —

 get_value_from_equality_term :: ...

NOTE — If the given term is equivalent to a term produced by simplification of the simple term rosetta.lang.prel-
114 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
ude.universal_equals (l , v) for some expression v, then v is yeilded. Otherwise the result is _|_.

To do: Tie up loose ends in code and comments for get_declared_type and get_declared_value.

20.2.3 Transformation

A transformed Rosetta specification is a resolved Rosetta specification in which all abstract syntax constructs are mem-
bers of rosetta.lang.reflect.transformation.transformed_nonterminal. Transformation of a
resolved Rosetta specification shall yield an equivalent transformed Rosetta specification in which those abstract syn-
tax constructs that are not of a transformed form are replaced by the equivalent transformed form. The result of trans-
formation of a resolved design library shall be equivalent to the transformed design library resulting from application
of the function rosetta.lang.reflect.transformation.transform_design_library to the re-
solved design library.

20.3 Interpretation of a specification

Interpretation of a specification shall involve a computation upon the value denoted by the result of elaboration of the
specification. The computation to be performed is implemenation dependent. However, this clause defines a compu-
tation, consistency verification, that an implementation may perform.

20.3.1 Consistency checking

A specification is consistent if and only iff

⎯it conforms to the type rules of the language
⎯

To do: Define interpretation of terms.
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 115

Draft Standard Draft Standard for the
116 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
21. The package rosetta.lang.prelude

The library rosetta.lang shall contain a predefined package named prelude. The domain of the package shall
be rosetta.lang.null. The package shall contain declarations of items as specified in this clause. The package
shall not contain declarations of any other items.

Except as otherwise specified, all functions declared in rosetta.lang.prelude shall be strict; that is, if any ar-
gument is _|_, the function shall yield _|_.

21.1 Universal types

The package rosetta.lang.prelude shall contain the following declarations of universal types:

 // universal type is not formally defined

 universal :: type is constant;

 element :: type is boolean + number + character;

The type universal shall denote the set of all denotable values (see 5.1).

The type element shall denote the set of all Rosetta values that are not decomposable into component values. The
value of element shall be the union of

⎯All Boolean values
⎯All numbers
⎯All characters

21.1.1 Universal functions

The package rosetta.lang.prelude shall contain the following declarations of functions on universal types:

 universal_equals (L, R :: universal) :: boolean is constant;

 universal_not_equals (L, R :: universal) :: boolean is
 if L = R then
 false
 else
 true
 end if;

 universal_equivalent :: <* (L, R :: universal) :: boolean *> is
 universal_equals;

The function universal_equals shall test whether its two arguments are the same value. If so, the function shall
yield the value true; otherwise the function shall yield the value false. The function universal_not_equals
shall test whether the two arguments are the same value. If so, the function shall yield the value false; otherwise
the function shall yield the value true. The function universal_equivalent shall be the same function as
universal_equals.
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 117

Draft Standard Draft Standard for the
21.2 Type functions

The package rosetta.lang.prelude shall contain the following declarations of functions on types:

 type_assertion (L :: universal; R :: type) :: R is
 if L in R then
 L
 else
 |
 end if;

 // type_member function is not formally defined

 type_member (L :: universal; R :: type) :: boolean is constant;

 type_proper_subtype (L, R :: type) :: boolean is
 forall (V :: L | V in R) and L /= R;

 type_subtype (L, R :: type) :: boolean is
 L < R or L = R;

 type_proper_supertype (L, R :: type) :: boolean is
 R < L;

 type_supertype (L, R :: type) :: boolean is
 R < L or R = L;

 type_union [T :: type] (L, R :: subtype (T)) :: subtype (T) is
 sel (X :: T | X in L or X in R);

 type_intersection [T :: type] (L, R :: subtype (T)) :: subtype (T) is
 sel (X :: T | X in L and X in R);

 type_difference [T :: type] (L, R :: subtype (T)) :: subtype (T) is
 sel (X :: T | X in L and not (X in R));

The function type_assertion shall test whether its left argument is a member of the type denoted by its right ar-
gument. If so, the function shall yield the first argument value; otherwise it shall yield _|_. The function
type_member shall test whether its first argument is a member of the type denoted by its second argument. If so,
the function shall yield the value true; otherwise it shall yield the value false.

The function type_proper_subtype shall test whether its first argument is a proper subtype of the type denoted
by its second argument. If so, the function shall yield the value true; otherwise it shall yield the value false. The
function type_subtype shall test whether its first argument is a subtype of the type denoted by its second argument.
If so, the function shall yield the value true; otherwise it shall yield the value false. The function
type_proper_supertype shall test whether its first argument is a proper supertype of the type denoted by its
second argument. If so, the function shall yield the value true; otherwise it shall yield the value false. The func-
tion type_supertype shall test whether its first argument is a supertype of the type denoted by its second argu-
ment. If so, the function shall yield the value true; otherwise it shall yield the value false.

The function type_union shall yield the union of its two arguments, that is, the set of values that are members of
the first argument or of the second argument. The function type_intersection shall yield the intersection of its
two arguments, that is, the set of values that are members of both the first argument and the second argument. The
function type_difference shall yield the relative complement of its two arguments, that is, the set of values that
118 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
are members of the first argument and not of the second argument.

21.3 The Boolean type

The package rosetta.lang.prelude shall contain the following declaration of the Boolean types:

 boolean :: type is enumeration (false, true);

21.3.1 Boolean functions

The package rosetta.lang.prelude shall contain the following declarations of functions on the Boolean type:

 boolean_to_bit (R :: boolean) :: bit is
 case R is
 {false} -> 0
 | {true} -> 1
 end case;

 boolean_not (R :: boolean) :: boolean is
 if R then false else true end if;

 boolean_and (L, R :: boolean) :: boolean is
 if L then R else false end if;

 boolean_or (L, R :: boolean) :: boolean is
 if L then true else R end if;

 boolean nand (L, R :: boolean) :: boolean is
 not (L and R);

 boolean_nor (L, R :: boolean) :: boolean is
 not (L or R);

 boolean_xor (L, R :: boolean) :: boolean is
 (L or R) and not (L and R);

 boolean_xnor (L, R :: boolean) :: boolean is
 not (L xor R);

 boolean_implies (L, R :: boolean) :: boolean is
 not L or R;

 boolean_implied_by (L, R :: boolean) :: boolean is
 R => L;

The function boolean_to_bit shall yield the bit value 0 when applied to the Boolean value false, and shall yield
the bit value 1 when applied to the Boolean value true.

The function boolean_not shall yield the Boolean negation of its argument. The function boolean_and shall
yield the Boolean conjunction of its arguments. The function boolean_or shall yield the Boolean disjunction of its
arguments. The function boolean_nand shall yield the Boolean negated conjunction of its arguments. The func-
tion boolean_nor shall yield the Boolean negated disjunction of its arguments. The function boolean_xor shall
yield the Boolean exclusive disjunction of its arguments. The function boolean_xnor shall yield the Boolean ne-
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 119

Draft Standard Draft Standard for the
gated exclusive disjunction of its arguments. The function boolean_implies shall yield the Boolean implication
of the second argument by the first argument. The function boolean_implied_by shall yield the Boolean impli-
cation of the first argument by the second argument.

The functions boolean_and, boolean_or, boolean_nand, boolean_nor, boolean_implies and
boolean_implied_by shall be non-strict; that is, if the value of one argument is sufficient to determine a proper
result, the function shall yield the proper result regardless of whether the other argument is _|_.

21.4 Numeric types

The package rosetta.lang.prelude shall contain the following declarations of numeric types:

 number :: type is complex_with_infinity;

 // complex type is not formally defined

 complex :: subtype (number) is constant;

 complex_with_infinity :: type is
 complex + { - , + };

 real :: subtype (complex) is
 sel (z :: complex | im(z) = 0);

 real_with_infinity :: subtype (complex_with_infinity) is
 real + { - , + };

 posreal :: subtype (real) is
 sel (x :: real | x > 0);

 posreal_with_infinity :: subtype (real_with_infinity) is
 posreal + { + };

 negreal :: subtype (real) is
 sel (x :: real | x < 0);

 negreal_with_infinity :: subtype (real_with_infinity) is
 negreal + { - };

 imaginary :: subtype (complex) is
 sel (z :: complex | re(z) = 0);

 imaginary_with_infinity :: subtype (complex_with_infinity) is
 imaginary + { - , + };

 rational :: subtype (real) is
 sel (x :: real | exists (y, z :: integer | x = y / z and z /= 0));

 rational_with_infinity :: subtype (real_with_infinity) is
 rational + { - , + };

 // integer type is not formally defined

∞ ∞

∞ ∞

∞

∞

∞ ∞

∞ ∞
120 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
 integer :: subtype (rational) is;

 integer_with_infinity :: subtype (rational_with_infinity) is
 integer + { - , + };

 natural :: subtype (integer) is
 sel (x :: integer | x >= 0);

 natural_with_infinity :: subtype (integer_with_infinity) is
 natural + { + };

 posint :: subtype (natural) is
 sel (x :: integer | x > 0);

 posint_with_infinity :: subtype (natural_with_infinity) is
 posint + { + };

 negint :: subtype (integer) is
 sel (x :: integer | x < 0);

 negint_with_infinity :: subtype (integer_with_infinity) is
 negint + { - };

 bit :: subtype (natural) is {0, 1};

The type number shall denote the set of Rosetta number values, and shall be the same as the type
complex_with_infinity.

The type complex shall denote the set of mathematical complex numbers.

NOTE — Literal values of type complex may be written using real literals, either in Cartesian form (for example, 3 + 2*j) or
in polar form (for example, 2*exp(pi/2*j)).

The type real shall denote the set of mathematical real numbers, namely, those complex numbers whose imaginary
part is 0. The type posreal shall denote the subset of real numbers that are strictly greater than 0. The type neg-
real shall denote the subset of real numbers that are strictly less than 0.

The type imaginary shall denote the set of mathematical imaginary numbers, namely, those complex numbers
whose real part is 0.

NOTE — Literal values of type imaginary may be written by multiplying a real literal by the constant j (for example, 2*j).

The type rational shall denote the set of mathematical rational numbers, namely, those real numbers that can be
expressed as the quotient of two integers with the divisor being non-zero.

The type integer shall denote the set of mathematical integers. The type natural shall denote the subset of inte-
gers that are greater than or equal to 0. The type posint shall denote the subset of integers that are strictly greater
than 0. The type negint shall denote the subset of integers that are strictly less than 0.

The type bit shall denote the subset of natural numbers 0 and 1.

Corresponding to the types complex, real, imaginary, rational and integer, the types
complex_with_infinity, real_with_infinity, imaginary_with_infinity,
rational_with_infinity and integer_with_infinity, respectively, shall include all of the values of

∞ ∞

∞

∞

∞

Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 121

Draft Standard Draft Standard for the
the type to which they correspond and the infinite values - and + . Corresponding to the types posreal, nat-
ural, and posint, the types posreal_with_infinity, natural_with_infinity, and
posint_with_infinity, respectively, shall include all of the values of the type to which they correspond and
the infinite value + . Corresponding to the types negreal and negint, the types negreal_with_infinity
and negint_with_infinity, respectively, shall include all of the values of the type to which they correspond
and the infinite value - .

21.4.1 Numeric constants

The package rosetta.lang.prelude shall contain the following declarations of numeric constants:

 j :: imaginary is constant
 where j * j = -1;

 e :: real is exp (1);

 // pi is not formally defined

 :: real is constant;
 pi :: real is ;

 infinity :: number is ;

The constant j shall denote the imaginary unit value.

The constant e shall denote the real value of the mathematical constant .

The constants pi and shall denote the real value of the mathematical constant .

The constant infinity shall denote the positive infinite number value.

NOTE — The negative infinite value can be denoted using the expression -infinity.

21.4.2 Numeric functions

The package rosetta.lang.prelude shall contain the following declarations of functions on the numeric types:

// Include numeric function declarations here...

The function number_identity shall yield its argument. The unary function number_negation shall yield the
numerical negation of its argument.

The function complex_addition shall yield the first argument added to the second argument. The function
complex_subtraction shall yield the second argument subtracted from the first argument. The function
complex_multiplication shall yield the first argument multiplied by the second argument. The function
complex_division shall yield the first argument divided by the second argument, provided the mathematical re-
sult of the division is defined; otherwise the function shall yield _|_. The function complex_exponentiation
shall yield the first argument raised to the power of the second argument, provided the mathematical result of the power
is defined; otherwise the function shall yield _|_.

The function real_min shall yield the lesser of its two arguments. The function real_max shall yield the greater
of its two arguments.

The function real_less_than shall yield true if the first argument is strictly less than the second argument; oth-

∞ ∞

∞

∞

π
π

∞

e

π π
122 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
erwise it shall yield false. The function real_less_than_or_equals shall yield true if the first argument
is less than or equal to the second argument; otherwise it shall yield false. The function real_greater_than
shall yield true if the first argument is strictly greater than the second argument; otherwise it shall yield false. The
function real_greater_than_or_equals shall yield true if the first argument is greater or equal to the sec-
ond argument; otherwise it shall yield false.

The function imaginary_min shall yield the lesser of its two arguments. The function imaginary_max shall
yield the greater of its two arguments.

The function imaginary_less_than shall yield true if the first argument is strictly less than the second argu-
ment; otherwise it shall yield false. The function imaginary_less_than_or_equals shall yield true if
the first argument is less than or equal to the second argument; otherwise it shall yield false. The function
imaginary_greater_than shall yield true if the first argument is strictly greater than the second argument;
otherwise it shall yield false. The function imaginary_greater_than_or_equals shall yield true if the
first argument is greater or equal to the second argument; otherwise it shall yield false.

The function re shall yield the real part of its argument. The function im shall yield the imaginary part of its argument.
The function abs shall yield the absolute value (that is, the modulus) of its argument. The function arg shall yield
the argument (that is, the angle between the positive real axis and the vector represented by the complex number) of
its argument. The function conj shall yield the complex conjugate of its argument.

The function sin shall yield the circular sine of its argument. The function cos shall yield the circular cosine of its
argument. The function tan shall yield the circular tangent of its argument, provided the mathematical result of the
division is defined; otherwise the function shall yield _|_. The function arcsin shall yield the inverse circular sine
of its argument, provided the mathematical result of the division is defined; otherwise the function shall yield _|_.
The function arccos shall yield the inverse circular cosine of its argument, provided the mathematical result of the
division is defined; otherwise the function shall yield _|_. The function arctan shall yield the inverse circular tan-
gent of its argument.

The function sinh shall yield the hyperbolic sine of its argument. The function cosh shall yield the hyperbolic co-
sine of its argument. The function tanh shall yield the hyperbolic tangent of its argument. The function arcsinh
shall yield the inverse hyperbolic sine of its argument, provided the mathematical result of the division is defined; oth-
erwise the function shall yield _|_. The function arccosh shall yield the inverse hyperbolic cosine of its argument,
provided the mathematical result of the division is defined; otherwise the function shall yield _|_. The function
arctanh shall yield the inverse hyperbolic tangent of its argument, provided the mathematical result of the division
is defined; otherwise the function shall yield _|_.

The function exp shall yield the exponential function of its argument. The function log shall yield the natural loga-
rithm of its argument, provided the mathematical result of the division is defined; otherwise the function shall yield
|. The function log10 shall yield the logarithm to base 10 of its argument, provided the mathematical result of the
division is defined; otherwise the function shall yield _|_. The function log2 shall yield the logarithm to base 2 of
its argument, provided the mathematical result of the division is defined; otherwise the function shall yield _|_.

The function sqrt shall yield the square root of its argument.

The function floor shall yield the largest integer that is less than or equal to the argument of the function. The func-
tion cieling shall yield the smallest integer that is greater than or equal to the argument of the function. The func-
tion trunc shall yield the integer of greatest absolute value that is of the same sign as the argument of the function
and whose absolute value is less than or equal to the absolute value of the argument of the function. The function
round shall yield the nearest integer to the argument of the function. In the case of an argument that is an odd multiple
of 0.5, the result shall be the integer further from zero. The function sign shall yield –1 when applied to a negative
argument value, 0 when applied to 0, and +1 when applied to a positive argument value.

The function num shall yield the numerator of its argument, and the function den shall yield the denominator of its
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 123

Draft Standard Draft Standard for the
argument. For a given rational number, the result of num shall be be of the same sign as the number, the result of den
shall be positive, and the greatest common divisor of the two results shall be 1. The result of den(0) shall be 1.

The function integer_division shall yield the integer quotient of the first argument divided by the second argu-
ment, truncated towards zero, provided the mathematical result of the division is defined; otherwise the function shall
yield _|_. The function integer_modulus shall yield the integer modulus of the first argument divided by the
second argument, provided the mathematical result of the division is defined; otherwise the function shall yield _|_.
The result shall have the same sign as the value of the second argument and shall have absolute value less than the
absolute value of the second argument. The function rem shall yield the integer remainder of the first argument di-
vided by the second argument, provided the mathematical result of the division is defined; otherwise the function shall
yield _|_. The result shall have the same sign as the value of the first argument and shall have absolute value less
than the absolute value of the second argument.

21.4.3 Bit functions

The package rosetta.lang.prelude shall contain the following declarations of functions on the bit type:

 bit_to_boolean (R :: bit) :: boolean is
 case R is
 {0} -> false
 | {1} -> true
 end case;

 bit_not (R :: bit) :: bit is
 if R = 1 then 0 else 1 end if;

 bit_and (L, R :: bit) :: bit is
 if L = 1 then R else 0 end if;

 bit_or (L, R :: bit) :: bit is
 if L = 1 then 1 else R end if;

 bit nand (L, R :: bit) :: bit is
 not (L and R);

 bit_nor (L, R :: bit) :: bit is
 not (L or R);

 bit_xor (L, R :: bit) :: bit is
 (L or R) and not (L and R);

 bit_xnor (L, R :: bit) :: bit is
 not (L xor R);

 bit_implies (L, R :: bit) :: bit is
 not L or R;

 bit_implied_by (L, R :: bit) :: bit is
 R => L;

The function bit_to_boolean shall yield the Boolean value false when applied to the bit value 0, and shall yield
the Boolean value true when applied to the Boolean value 1.

The function bit_not shall yield the logical negation of its argument. The function bit_and shall yield the logical
124 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
conjunction of its arguments. The function bit_or shall yield the logical disjunction of its arguments. The function
bit_nand shall yield the logical negated conjunction of its arguments. The function bit_nor shall yield the logical
negated disjunction of its arguments. The function bit_xor shall yield the logical exclusive disjunction of its argu-
ments. The function bit_xnor shall yield the logical negated exclusive disjunction of its arguments. The function
bit_implies shall yield the logical implication of the second argument by the first argument. The function
bit_implied_by shall yield the logical implication of the first argument by the second argument.

21.5 Character types

The package rosetta.lang.prelude shall contain the following declarations of the character type:

 character :: type is { 'U-00000000' ,.. 'U-FFFFFFFF' };

The type character shall denote the set of all UTF-32 characters, as defined in The Unicode Standard, Version 3.2.

21.5.1 Character functions

The package rosetta.lang.prelude shall contain the following declarations of functions on the character type:

 character_less_than (L, R :: character) :: boolean is
 unicode.ord (L) < unicode.ord (R);

 character_less_than_or_equals (L, R :: character) :: boolean is
 unicode.ord (L) =< unicode.ord (R);

 character_greater_than (L, R :: character) :: boolean is
 unicode.ord (L) > unicode.ord (R);

 character_greater_than_or_equals (L, R :: character) :: boolean is
 unicode.ord (L) >= unicode.ord (R);

The function character_less_than shall yield true if the Unicode code value of the first argument is strictly
less than the Unicode code value of the second argument; otherwise it shall yield false. The function
character_less_than_or_equals shall yield true if the Unicode code value of the first argument is less
than or equal to the Unicode code value of the second argument; otherwise it shall yield false. The function
character_greater_than shall yield true if the Unicode code value of the first argument is strictly greater
than the Unicode code value of the second argument; otherwise it shall yield false. The function
character_greater_than_or_equals shall yield true if the Unicode code value of the first argument is
greater or equal to the Unicode code value of the second argument; otherwise it shall yield false.

NOTE — Further functions upon characters are defined in the package rosetta.lang.unicode.

21.6 Function types

The package rosetta.lang.prelude shall contain the following declarations of function types:

 function (D, R :: type) :: type is <* (P :: D) :: R *>;

 predicate (D :: type) :: type is <* (P :: D) :: boolean *>;

The type constructor function shall denote the set of all Rosetta function values. The type constructor shall yield
the set of functions whose domain is the first argument of the type constructor and whose range is the second argument
of the type constructor.
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 125

Draft Standard Draft Standard for the
The type constructor predicate shall denote the set of all Rosetta function values that return a result of type
boolean. The type constructor shall yield the set of Boolean-valued functions whose domain is the argument of the
type constructor.

21.6.1 Higher-order functions

The package rosetta.lang.prelude shall contain the following declarations of higher-order functions, that is,
functions that operate on values of function types:

 function_proper_contained_in (L, R :: function) :: boolean is
 dom (L) =< dom (R)
 and forall (X :: dom (L) | L (X) = R (X))
 and L /= R;

 function_contained_in (L, R :: function) :: boolean is
 L < R or L = R;

 function_proper_contains (L, R :: function) :: boolean is
 R < L;

 function_contains (L, R :: function) :: boolean is
 R < L or R = L;

 function_member (L :: universal; R :: function) :: boolean is
 exists (X :: dom (R) | L in R (X));

 function_composition
 [T1, T2, T3 :: type]
 (L :: function (T2, T3); R :: function (T1, T2))
 :: function (T1, T3) is
 <* (X :: T1)) :: T3 is L (R (X)) *>;

 // dom function is not formally defined

 dom (F :: function) :: type is constant;

 // ran function is not formally defined

 ran (F :: function) :: type is constant;

 // fix function is not formally defined

 fix (F :: function) :: universal is constant;

 minf [D :: type; R :: dom (__=<__)]
 (F :: function (D, R)) :: R is
 choose (sel (X :: ran (F) | forall (Y :: ran (F) | X =< Y)));

 maxf [D :: type; R :: dom (__=<__)]
 (F :: function (D, R)) :: R is
 choose (sel (X :: ran (F) | forall (Y :: ran (F) | X >= Y)));

 // sel function is not formally defined
126 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
 sel [D :: type]
 (P :: predicate (D)) :: set (D) is constant;

 // Forall and exists need to be modified to deal with
 // functions of more than one parameter. See bug #119 and bug #53.

 forall (P :: predicate) :: boolean is
 ran (P) = { true };

 exists (P :: predicate) :: boolean is
 true in ran (P);

The function function_proper_contained_in shall yield true if the first argument is strictly contained in
the second argument; otherwise it shall yield false. The function function_contained_in shall yield true
if the first argument is contained in or equal to the second argument; otherwise it shall yield false. The function
function_proper_contains shall yield true if the first argument strictly contains the second argument; oth-
erwise it shall yield false. The function function_contains shall yield true if the first argument contains or
is equal to the second argument; otherwise it shall yield false.

NOTE — The function-containment functions applied to functions that denote polymorphic or dependent types are equivalent to
the corresponding subtype and supertype functions. However, the function containment functions are also applicable to functions
that do not denote types.

The function function_composition shall yield the function that is the composition of the first argument with
the second argument. The domain of the composition shall be the domain of the second argument. For each value in
the domain of the second argument, the result of applying the composition to the value shall be the result of applying
the first argument to the result of applying the second argument to the value.

The function dom shall yield the set of values that are in the domain of the argument function, that is, values to which
the argument function can be applied to yield a proper result. The function ran shall yield the set of values that are
in the range of the argument function, that is, values yielded as results of the argument function. The function fix
shall yield the function that is the least fixed point of the argument function.

The function minf shall yield the minimum value in the range of the argument function. The function maxf shall
yield the maximum value in the range of the argument function.

The function sel shall yield the set of values in the domain of the argument for which the argument function yields
the result true. The function forall shall yield true if the range of the argument function is the singleton set
containing the value true; otherwise it shall yield false. The function exists shall yield true if the range of the
argument function is contains the value true; otherwise it shall yield false.

21.7 Set types

A set shall be an unordered collection of values without duplicates. A set value shall be a member of the powerdomain
of denotable values (see 5.1) The number of elements in a set shall be called the cardinality of the set. A set may be
empty, in which case its cardinality is 0. A set may have an unbounded number of elements, in which case its cardi-
nality is not defined.

The package rosetta.lang.prelude shall contain the following declarations of the set type:

 // set function is not formally defined

 set (T :: type) :: type is constant;
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 127

Draft Standard Draft Standard for the
The type constructor set shall denote the set of all Rosetta set values. The type constructor shall yield the set of sets
whose elements are members of the argument of the type constructor.

21.7.1 Set constants

The package rosetta.lang.prelude shall contain the following declarations of a set constant:

 // empty_set constant is not formally defined

 empty_set :: set is constant;

The constant empty_set shall denote the empty set.

21.7.2 Set functions

The package rosetta.lang.prelude shall contain the following declarations of functions on set types:

 set_cardinality (R :: set) :: natural is
 if R = { } then
 0
 else
 1 + #(R - { set_choose (R) })
 end if;

 set_contents [T :: type] (S :: set (T)) :: set (T) is
 S;

 // singleton_set function is not formally defined

 singleton_set [T :: type] (V :: T) :: set (T) is constant;

 range_set
 [T :: subtype (integer) + subtype (character)]
 (L, R :: T) :: set (T) is
 if L > R then
 { }
 elsif L = R then
 { L }
 else
 { L }
 + range_set (
 if T =< integer then
 L + 1
 else
 unicode.char (unicode.ord (L) + 1)
 end if,
 R)
 end if;

 // set_choose function is not formally defined

 set_choose [T :: type] (S :: set (T)) :: T is constant;

 set_image
128 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
 [D, R :: type]
 (F :: function (D, R); S :: set (D)) :: set (R) is
 ran (<* (X :: S) :: R is F (X) *>);

 set_filter
 [D :: type]
 (P :: predicate (D); S :: set (D)) :: set (D) is
 if S = { } then then
 { }
 else
 let (V :: D be set_choose (S)) in
 if P (V) then { V } else { } end if
 + set_filter (P, S - { V })
 end let
 end if;

The function set_cardinality shall yield the cardinality of its argument, if defined; otherwise the function shall
yield _|_.

The function set_contents shall yield the set of values that are elements of its argument. Thus, the function shall
be an identify function.

The function singleton_set shall yield the singleton set containing the value of the argument. The function
range_set shall yield the set of values that are greater than or equal to the first argument and less than or equal to the second
argument.

The function choose applied to a non-empty argument shall yield an arbirarily chosen member of the argument. The
function choose applied to an empty argument shall yield _|_.

The function set_image shall yield the set of results of applying the first argument to members of the second argument. The
function set_filter shall yield the set of elements of the second argument for which the second argument yields a result value
of true.

NOTE — The subtype and supertype functions applicable to types are applicable to sets, since sets are a form of type. When ap-
plied to sets, the subtype and supertype functions are equivalent to subset and superset functions.

21.8 Multiset types

A multiset shall be an unordered collection of values with duplicates allowed. The number of elements in a multiset
shall be called the cardinality of the multiset. A multiset may be empty, in which case its cardinality is 0. A multiset
may have an unbounded number of elements, in which case its cardinality is not defined.

The package rosetta.lang.prelude shall contain the following declarations of the multiset type:

 // multiset function is not formally defined

 multiset (T :: type) :: type is constant;

The type constructor multiset shall denote the set of all Rosetta multiset values. The type constructor shall yield
the set of multisets whose elements are members of the argument of the type constructor.
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 129

Draft Standard Draft Standard for the
21.8.1 Multiset constants

The package rosetta.lang.prelude shall contain the following declarations of a multiset constant:

 // empty_multiset constant is not formally defined

 empty_multiset :: multiset is constant;

The constant empty_multiset shall denote the empty multiset.

21.8.2 Multiset functions

The package rosetta.lang.prelude shall contain the following declarations of functions on multiset types:

 // multiset_union function is not formally defined

 multiset_union (L, R :: multiset) :: multiset is constant

 // multiset_intersection function is not formally defined

 multiset_intersection (L, R :: multiset) :: multiset is constant

 // multiset_difference function is not formally defined

 multiset_difference (L, R :: multiset) :: multiset is constant

 multiset_proper_submultiset (L, R :: multiset) :: boolean is
 forall (X :: ~L | X # L =< X # R) and L /= R;

 multiset_submultiset (L, R :: multiset) :: boolean is
 L < R or L = R;

 multiset_proper_supermultiset (L, R :: multiset) :: boolean is
 R < L;

 multiset_supermultiset (L, R :: multiset) :: boolean is
 R < L or R = L;

 // multiset_member function is not formally defined

 multiset_member (L :: universal; R :: multiset) :: boolean is constant;

 multiset_cardinality (R :: multiset) :: natural is
 if R = {* *} then
 0
 else
 1 + multiset_cardinality (R - {* choose(R) *})
 end if;

 multiset_count_occurrences (V :: universal; M :: multiset) :: natural is
 if not (V in M) then
 0
 else
 1 + multiset_count_occurrences (V, M - {* V *})
130 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
 end if;

 multset_contents [T :: type] (M :: multiset (T)) :: set(T) is
 if M = {* *} then
 { }
 else
 let (V :: T be choose (M)) in
 { V } + multiset_contents (M - {* V *})
 end let
 end if;

 // single_value_multiset function is not formally defined

 single_value_multiset
 [T :: type]
 (C :: natural; V :: T) :: multiset (T) is constant;

 range_multiset
 [T :: subtype (integer) + subtype (character)]
 (L, R :: T) :: multiset (T) is
 if L > R then
 {* *}
 elsif L = R then
 {* L *}
 else
 {* L *}
 + range_multiset (
 if T =< integer then
 L + 1
 else
 unicode.char (unicode.ord (L) + 1)
 end if,
 R)
 end if;

 // multiset_choose function is not formally defined

 multiset_choose [T :: type] (M :: multiset (T)) :: T is constant;

 multiset_image
 [D, R :: type]
 (F :: function (D, R); M :: multiset (D)) :: multiset (R) is
 if M = {* *} then
 {* *}
 else
 let (V :: D be multiset_choose (M)) in
 {* F (V) *} + multiset_image (F, M - {* V *})
 end let
 end if;

 multiset_filter
 [D :: type]
 (P :: predicate (D); M :: multiset (D)) :: multiset (D) is
 if M = {* *} then
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 131

Draft Standard Draft Standard for the
 {* *}
 else
 let (V :: D be multiset_choose (M)) in
 if P (V) then {* V *} else {* *} end if
 + multiset_filter (P, M - {* V *})
 end let
 end if;

 set2multiset
 [T :: type]
 (S :: set (T)) :: multiset (T) is
 if S = { } then
 {* *}
 else
 let (V :: T be multiset_choose(S)) in
 {* V *} + set2multiset (S - { V })
 end let
 end if;

The function multiset_union shall yield the union of its two arguments, that is, the multiset of values that are
members of the first argument or of the second argument. The number of occurrences of a value in the union is the
sum of the number of occurrences of the value in each of the arguments. The function multiset_intersection
shall yield the intersection of its two arguments, that is, the multiset of values that are members of both the first argu-
ment and the second argument. The number of occurrences of a value in the intersection is the lesser of the number
of occurrences of the value in each of the arguments. The function multiset_difference shall yield the relative
complement of its two arguments, that is, the multiset of values that are members of the first argument with a greater
number of occurrences than in the second argument. The number of occurrences of a value in the relative complement
is the greater of zero and the number of occurrences of the value in the first argument less the number of occurrences
of the value in the second argument.

The function multiset_proper_submultiset shall yield true if the first argument is strictly contained in the
second argument; otherwise it shall yield false. The first argument is strictly contained in the second argument if
and only if the two multisets are not equal and all values in the first argument have at least as many occurrences in the
second argument as they have in the first argument. The function multiset_submultiset shall yield true if
the first argument is strictly contained in or equal to the second argument; otherwise it shall yield false. The function
multiset_proper_supermultiset shall yield true if the first argument strictly contains the second argu-
ment; otherwise it shall yield false. The function multiset_supermultiset shall yield true if the first ar-
gument strictly contains or is equal to the second argument; otherwise it shall yield false.

The function multiset_member shall yield true if the first argument occurs at least once in the second argument;
otherwise it shall yield false.

The function multiset_cardinality shall yield the cardinality of the argument, if defined; otherwise the func-
tion shall yield _|_. The function multiset_count_occurrences shall yield the number of occurrences of
the first argument in the second argument.

The function multiset_contents shall yield the set of values that are elements of the argument.

The function single_value_multiset shall yield the multiset containing the second argument value with oc-
currences given by the first argument. The function range_set shall yield the multiset containing a single occur-
rence of each value that is greater than or equal to the first argument and less than or equal to the second argument.

The function multiset_choose applied to a non-empty argument shall yield an arbirarily chosen member of the
argument. The function multiset_choose applied to an empty argument shall yield _|_.
132 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
The function multiset_image shall yield the multiset of results of applying the first argument to members of the second
argument. The function multiset_filter shall yield the multiset of elements of the second argument for which the second
argument yields a result value of true.

The function set2multiset shall yield the multiset containing exactly those members of the argument, each occurring
once.

21.9 Sequence types

A Rosetta sequence shall be an ordered collection of values with duplicates being allowed. The number of elements
in a sequence shall be called the length of the sequence. A sequence may be empty, in which case its length is 0. A
sequence shall have a bounded number of elements. The elements of a non-empty sequence shall each have an index
in the sequence. The index of the first element shall be 0. The index of each subsequent element, if any, shall be one
more than the index of its preceding element.

A sequence shall be equivalent to a function whose domain is the set of integers from 0 to one less than the length of
the sequence.

The package rosetta.lang.prelude shall contain the following declarations of sequence types:

 // array function is not formally defined

 array (N :: natural; T :: type) :: type is constant;

 sequence [N :: natural] (T :: type) :: type is
 array (N, T);

 bitvector :: subtype(sequence) is sequence(bit);

 wordtype (N :: natural) :: subtype(bitvector) is
 array (N, bit);

 string :: subtype(sequence) is sequence(character);

The type constructor array shall denote the set of all Rosetta sequence values. The type constructor shall yield the
set of sequences whose length is the first argument of the type constructor and whose elements are members of the
second argument of the type constructor.

The type constructor sequence shall denote the set of all Rosetta sequence values. The type constructor shall yield
the set of sequences whose elements are members of the argument of the type constructor.

The type bitvector shall denote the set of all sequences whose elements are of type bit.

The type constructor wordtype shall denote the set of all sequences whose elements are of type bit. The type con-
structor shall yield the set of sequences whose length is the argument of the type constructor.

The type string shall denote the set of all sequences whose elements are of type character.

21.9.1 Sequence constants

The package rosetta.lang.prelude shall contain the following declarations of a sequence constant:

 empty_sequence :: sequence is constant;
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 133

Draft Standard Draft Standard for the
The constant empty_sequence shall denote the empty sequence.

21.9.2 Sequence functions

The package rosetta.lang.prelude shall contain the following declarations of functions on sequence types:

 sequence_concatenation
 [T :: type]
 (L, R :: sequence (T)) :: sequence (T) is
 if L = [] then
 R
 else
 cons (head(L), tail(L) & R);
 end if;

 sequence_proper_subsequence (L, R :: sequence) :: boolean is
 exists (a, b :: natural |
 (L = R sub [a ,.. b]) and (L /= R));

 sequence_subsequence (L, R :: sequence) :: boolean is
 L < R or L = R

 sequence_proper_supersequence (L, R :: sequence) :: boolean is
 R < L;

 sequence_supersequence (L, R :: sequence) :: boolean is
 R < L or R = L;

 sequence_length (R :: sequence) :: natural is
 if R = [] then
 0
 else
 1 + #(tail(R))
 end if;

 sequence_contents
 [T :: type]
 (R :: sequence (T)) :: multiset (T) is
 if #R = 0 then
 {* *}
 else
 {* head(R) *} + ~(tail(r))
 end if;

 sequence_subscript
 [T :: type]
 (L :: sequence (T);
 R :: sequence ({ 0 ,.. #L - 1 })) :: sequence (T) is
 image (L, R);

 cons
 [T :: type]
 (E :: T; S :: sequence (T)) :: sequence (T) is constant where
 head (cons (E, S)) = E and tail (cons (E, S)) = S;
134 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
 range_sequence
 [T :: subtype (integer) + subtype (character)]
 (L, R :: T) :: sequence (T) is
 if L > R then
 []
 elsif L = R then
 [L]
 else
 cons (
 L,
 range_sequence (
 if T =< integer then
 L + 1
 else
 unicode.char (unicode.ord (L) + 1)
 end if,
 R))
 end if;

 sequence_value
 [T :: type]
 (N :: natural; V :: T) :: sequence (T) is
 if N = 0 then
 []
 else
 cons (
 V,
 sequence_value (N - 1, V))
 end if;

 head [T :: type] (S :: sequence (T)) :: T is
 S(0);

 tail [T :: type] (S :: sequence (T)) :: sequence (T) is
 S sub [1 ,.. #S - 1];

 last [T :: type] (S :: sequence (T)) :: T is
 S(#S - 1);

 reverse [T :: type] (S :: sequence (T)) :: sequence (T) is
 if #S = 0 then
 S
 else
 reverse (tail(S)) & [head(S)]
 end if;

 replace
 [T :: type]
 (S :: sequence (T); N :: { 0 ,.. #S - 1 }; E :: T) :: sequence (T) is
 (S sub [0 ,.. N - 1]) & [E] & (S sub [N + 1 ,.. #S - 1]);

 image
 [D, R :: type]
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 135

Draft Standard Draft Standard for the
 (F :: function (D, R); S :: sequence (D)) :: sequence (R) is
 if #S = 0 then
 []
 else
 cons (F (head (S)), image (F, tail (S)))
 end if;

 filter
 [D :: type]
 (P :: predicate (D); S :: sequence (D)) :: sequence (D) is
 if #S = 0 then
 []
 elsif P (head (S)) then
 cons (head (S), filter (P, tail (S)))
 else
 filter (P, tail (S))
 end if;

 zip [N :: natural; T1, T2, T3 :: type]
 (F :: <* (X :: T1; Y :: T2) :: T3 *>;
 S1 :: array (N, T1);
 S2 :: array (N, T2)) :: array (N, T3) is
 if N = 0 then
 []
 else
 cons (
 F (head (S1), head (S2)),
 zip (F, tail (S1), tail (S2)))
 end if;

 reduce
 [T :: type]
 (F :: function (T, function (T, T));
 I :: T;
 S :: sequence (T)) :: T is
 if #S = 0 then
 I
 else
 reduce (F, F (I, head (S)), tail (S))
 end if;

 reduce_tail
 [T :: type]
 (F :: function (T, function (T, T));
 I :: T;
 S :: sequence (T)) :: T is
 if #S = 0 then
 I
 else
 F (head (S), reduce (F, I, tail (S)))
 end if;

The function sequence_concatenation shall yield the concatenation of its two arguments, that is, the sequence
136 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
comprising the elements of the first argument in order followed by the elements of the second argument in order.

The function sequence_proper_subsequence shall yield true if the first argument is a proper subsequence
of the second argument; otherwise it shall yield false. The function sequence_subsequence shall yield true
if the first argument is a subsequence of or the same as the second argument; otherwise it shall yield false. The
function sequence_proper_supersequence shall yield true if the first argument is a proper supersequence
of the second argument; otherwise it shall yield false. The function sequence_supersequence shall true
true if the first argument is a supersequence of or the same as the second argument; otherwise it shall yield false.

The function sequence_length shall yield the length of its argument.

The function sequence_contents shall yield the multiset of values that are elements of its argument.

The function sequence_subscript shall yield a sequence of the same length as the second argument. Each ele-
ment of the result shall be the element of the first argument whose index is the element of the second argument with
the same index as the result element.

The function cons shall yield the sequence whose first element is the first argument and whose subsequent elements
are the elements of the second argument in order.

The function range_sequence shall yield the sequence containing a single occurrence of each value that is greater
than or equal to the first argument and less than or equal to the second argument. The elements shall occur in the se-
quence in ascending order.

The function sequence_value shall yield the sequence whose length is the first argument and whose element val-
ues are each the second argument.

The function head shall yield the first element of the argument, provided the argument is not empty; otherwise the
function shall yield _|_.

The function tail shall yield the sequence of elements of the argument in order excluding the first element, provided
the argument is not empty; otherwise the function shall yield _|_.

The function last shall yield last element of the argument, provided the argument is not empty; otherwise the func-
tion shall yield _|_.

The function reverse shall yield the sequence of elements of the argument in reverse order.

The function replace shall yield the sequence of elements of the first argument in order, except that the element of
the result whose index is the second argument shall be the third argument.

The function image shall yield a sequence of the same length as the second argument. Each element of the result
shall be the result of applying the first argument to the element of the second argument with the same index as the result
element.

The function filter shall yield a sequence of those elements of the second argument, in order, for which the result
of applying the first argument to the element yields true.

The function zip shall yield a sequence of the same length as the second and third arguments. Each element of the
result shall be the result of applying the first argument to the elements of the second and third arguments with the same
index as the result element. The elements of the second and third argument sequences shall form the first and second
arguments, respectively, of the function application.

The function reduce applied to an empty third argument shall yield the second argument. The reduce function ap-
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 137

Draft Standard Draft Standard for the
plied to a non-empty third argument shall yield the result of recursively applying the reduce function to the same first
argument, the result of applying the first argument to the second argument and the head of the third argument, and the
tail of the third argument.

The function reduce_tail applied to an emtpy third argument shall yield the second argument. The
reduce_tail function applied to a non-empty third argument shall yield the result of applying the first argument
to the head of the third argument and the result of recursive application of the reduce_tail function with the same
first and second arguments as the original function application and the tail of the third argument of the original function
application as the third argument of the recursive application.

21.9.3 Bitvector functions

The package rosetta.lang.prelude shall contain the following declarations of functions on bitvector types:

 bitvector_not (R :: bitvector) :: bitvector is
 image (bit_not (R));

 bitvector_and
 [N :: natural]
 (L, R :: wordtype (N)) :: wordtype (N) is
 zip (bit_and, L, R);

 bitvector_or
 [N :: natural]
 (L, R :: wordtype (N)) :: wordtype (N) is
 zip (bit_or, L, R);

 bitvector nand
 [N :: natural]
 (L, R :: wordtype (N)) :: wordtype (N) is
 zip (bit_nand, L, R);

 bitvector_nor
 [N :: natural]
 (L, R :: wordtype (N)) :: wordtype (N) is
 zip (bit_nor, L, R);

 bitvector_xor
 [N :: natural]
 (L, R :: wordtype (N)) :: wordtype (N) is
 zip (bit_xor, L, R);

 bitvector_xnor
 [N :: natural]
 (L, R :: wordtype (N)) :: wordtype (N) is
 zip (bit_xnor, L, R);

 bitvector_implies
 [N :: natural]
 (L, R :: wordtype (N)) :: wordtype (N) is
 zip (bit_implies, L, R);

 bitvector_implied_by
 [N :: natural]
138 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
 (L, R :: wordtype (N)) :: wordtype (N) is
 zip (bit_implied_by, L, R);

 bv2nat (B :: bitvector) :: natural is
 let (weights :: sequence(natural) be map(__^__(2), [0 ,.. #B - 1]))
 in
 reduce(__+__, 0, zip(__*__, B, weights));

 nat2bv (N :: natural) :: bitvector is
 if N in {0, 1} then
 [N]
 else
 nat2bv (N div 2) & [N mod 2]
 end if;

 bv2int (B :: bitvector) :: integer is
 let (weights :: sequence(natural) be map(__^__(2), [0 ,.. #B - 1]))
 reduce(__+__, 0, zip(__*__, B,
 replace(weights, #weights - 1, -(last(weights)))));

 int2bv (I :: integer) :: bitvector is
 if I in {-1, 0} then
 [-I]
 else
 int2bv ((I - I mod 2) div 2) & [I mod 2]
 end if;

 twos (B :: bitvector) :: bitvector is
 let (add_bit (B :: bitvector; C :: bit) :: bitvector be
 if #B = 0 then
 []
 else
 cons (head(B) xor C, add_bit (tail(B), head(B) and C))
 end if)
 in
 add_bit (not B, 1)
 end let;

 ashl (B :: bitvector; P :: integer) :: bitvector is
 if P = 0 or #B = 0 then
 B
 elsif P < 0 then
 ashr (B, -P)
 else
 ashl (cons(head(B), B sub [0 ,.. #B - 2]), P - 1)
 end if;

 ashr (B :: bitvector; P :: integer) :: bitvector is
 if P = 0 or #B = 0 then
 B
 elsif P < 0 then
 ashl (B, -P)
 else
 ashr (tail(B) & [last(B)], P - 1)
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 139

Draft Standard Draft Standard for the
 end if;

 lshl (B :: bitvector; P :: integer) :: bitvector is
 if P = 0 or #B = 0 then
 B
 elsif P < 0 then
 lshr (B, -P)
 else
 lshl (cons(0, B sub [0 ,.. #B - 2]), P - 1)
 end if;

 lshr (B :: bitvector; P :: integer) :: bitvector is
 if P = 0 or #B = 0 then
 B
 elsif P < 0 then
 lshl (B, -P)
 else
 lshr (tail(B) & [0], P - 1)
 end if;

 rotl (B :: bitvector; P :: integer) :: bitvector is
 if P = 0 or #B = 0 then
 B
 elsif P < 0 then
 rotr (B, -P)
 else
 rotl (cons(last(B), B sub [0 ,.. #B - 2]), P - 1)
 end if;

 rotr (B :: bitvector; P :: integer) :: bitvector is
 if P = 0 or #B = 0 then
 B
 elsif P < 0 then
 rotl (B, -P)
 else
 rotr (tail(B) & [head(B)], P - 1)
 end if;

 padl (B :: bitvector; V :: bit; L :: natural) :: bitvector is
 if L = 0 then
 []
 elsif #B = 0 then
 cons (V, padl(B, V, L - 1))
 else
 cons (head(B), padl(tail(B), V, L - 1))
 endif;

 padr (B :: bitvector; V :: bit; L :: natural) :: bitvector is
 if L = 0 then
 []
 elsif #B = 0 then
 padr(B, V, L - 1) & [V]
 else
 padr(B sub [0 ,.. #B - 2], V, L - 1) & [last(B)]
140 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
 end if;

The function bitvector_not shall yield the elementwise logical negation of its argument. The function
bitvector_and shall yield the elementwise logical conjunction of its arguments. The function bitvector_or
shall yield the elementwise logical disjunction of its arguments. The function bitvector_nand shall yield the el-
ementwise logical negated conjunction of its arguments. The function bitvector_nor shall yield the elementwise
logical negated disjunction of its arguments. The function bitvector_xor shall yield the elementwise logical ex-
clusive disjunction of its arguments. The function bitvector_xnor shall yield the elementwise logical negated
exclusive disjunction of its arguments. The function bitvector_implies shall yield the elementwise logical im-
plication of the second argument by the first argument. The function bitvector_implied_by shall yield the el-
ementwise logical implication of the first argument by the second argument.

The function bv2nat shall interpret the elements of the argument as the bits of an unsigned binary-coded natural
number, with the first element of the argument being the least-significant bit and the last element of the argument being
the most significant bit. The function shall yield the number.

The function nat2bv shall yield a bitvector whose length is the minimum number of bits necessary to represent the
first argument using unsigned binary coding and whose elements constitute the bits of the unsigned binary code of the
first argument, with the first element of the bitvector being the least-significant bit and the last element of the bitvector
being the most significant bit.

The function bv2int shall interpret the elements of the argument as the bits of a twos-complement binary-coded in-
teger, with the first element of the argument being the least-significant bit and the last element of the argument being
the sign bit. The function shall yield the integer.

The function int2bv shall yield a bitvector whose length is the minimum number of bits necessary to represent the
first argument using twos-complement binary coding and whose elements constitute the bits of the twos-complement
binary code of the first argument, with the first element of the bitvector being the least-significant bit and the last ele-
ment of the bitvector being the sign bit.

The function twos shall interpret the elements of the argument as the bits of a twos-complement binary-coded integer,
with the first element of the argument being the least-significant bit and the last element of the argument being the sign
bit. The function shall yield twos-complement of the argument.

The function ashl shall yield the first argument shifted left arithmetically. The function ashr shall yield the first
argument shifted right arithmetically. The function lshl shall yield the first argument shifted left logically. The func-
tion lshr shall yield the first argument shifted right logically. The function rotl shall yield the first argument ro-
tated left. The function rotr shall yield the first argument rotated right.

The shift and rotate functions applied to an empty first argument or with a second argument of 0 shall yield the first
argument. The functions that shift or rotate left, when applied to a negative second argument, shall shift or rotate right
by the number of positions given by the negative of the second argument; otherwise, they shall shift or rotate left. Sim-
ilarly, the functions that shift or rotate right, when applied to a negative second argument, shall shift or rotate left by
the number of positions given by the negative of the second argument; otherwise, they shall shift or rotate right. The
arithmetic shift functions shall fill the vacated bits with a copy of the original bit at the extreme end that is vacated.
The logical shift functions shall fill the vacated bits with 0. In all cases, a shift or rotate to the left shall move bits from
positions with lesser indices to positions with greater indices, and a shift or rotate to the right shall move bits from
positions with greater indices to positions with lesser indices.

The functions padl and padr shall yield a bitvector that is a copy of the first argument with bits added or removed
to produce a bitvector of length given by the third argument. If the third argument is the length of the first argument,
the result shall be the first argument. If the third argument is less than the length of the first argument, the result of
padl shall be the first argument with higher-index elements removed, and the result of padr shall be the first argu-
ment with lower-index elements removed. If the third argument is greater than the length of the first argument, the
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 141

Draft Standard Draft Standard for the
result of padl shall be the first argument with copies of the second argument added at higher-index positions, and the
result of padr shall be the first argument with copies of the second argument added at lower-index positions.

21.10 Facet functions

The package rosetta.lang.prelude shall contain the following declarations of functions on facets and facet
equivalents:

 // facet_sum function is not formally defined

 facet_sum (L, R :: rosetta.lang.null) :: rosetta.lang.null is constant;

 // facet_product function is not formally defined

 facet_product (L, R :: rosetta.lang.null) :: rosetta.lang.null is constant;

 // facet_implies function is not formally defined

 facet_implies (L, R :: rosetta.lang.null) :: boolean is constant;

 facet_implied_by (L, R :: rosetta.lang.null) :: boolean is
 R => L;

The function facet_sum shall yield a facet that is the category-theoretic coproduct of its arguments. The function
facet_product shall yield a facet that is the category-theoretic product of its arguments.

The function and facet_implies shall yield true if the first argument is a refinement of the second argument,
that is, if there is a category-theoretic homomorphism from the second argument to the first argument; otherwise it
shall yield false. The function facet_implied_by shall yield true if the second argument is a refinement of
the first argument, that is, if there is a category-theoretic homomorphism from the first argument to the second argu-
ment; otherwise it shall yield false.

21.11 Operators

The package rosetta.lang.prelude shall contain the following declarations of functions whose labels are op-
erator interpretation labels:

 __::__ :: <* (L :: universal; R :: type) :: R *> is
 universal_type_assertion;

 __in__ :: <* (L :: universal; R :: type) :: boolean *> is
 universal_type_member;

 __=__ :: <* (L, R :: universal) :: boolean *> is
 universal_equals;

 __/=__ :: <* (L, R :: universal) :: boolean *> is
 universal_not_equals ;

 __==__ :: <* (L, R :: universal) :: boolean *> is
 universal_equivalent;

 +__ :: <* (R :: number) :: number *> is
142 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
 number_identity;

 -__ :: <* (R :: number) :: number *> is
 number_negation;

 __+__ [T :: { type, complex, multiset, rosetta.lang.null }]
 (L, R :: T) :: T is
 case T is
 { type } -> type_union (L, R)
 | { complex } -> complex_addition (L, R)
 | { multiset } -> multiset_union (L, R)
 | { rosetta.lang.null } -> facet_sum (L, R)
 end case;

 __-__ [T :: { type, complex, multiset }]
 (L, R :: T) :: T is
 case T is
 { type } -> type_difference (L, R)
 | { complex } -> complex_subtraction (L, R)
 | { multiset } -> multiset_difference (L, R)
 end case;

 __*__ [T :: { type, complex, multiset, rosetta.lang.null }]
 (L, R :: T) :: T is
 case T is
 { type } -> type_intersection (L, R)
 | { complex } -> complex_multiplication (L, R)
 | { multiset } -> multiset_intersection (L, R)
 | { rosetta.lang.null } -> facet_product (L, R)
 end case;

 __/__ :: <* (L, R :: complex) :: complex *> is
 complex_division;

 __^__ :: <* (L, R :: complex) :: complex *> is
 complex_exponentiation;

 __min__ [T :: { real, imaginary }]
 (L, R :: T) :: T is
 case T is
 { real } -> real_min (L, R)
 | { imaginary } -> imaginary_min (L, R)
 end case;

 __max__ [T :: { real, imaginary }]
 (L, R :: T) :: T is
 case T is
 { real } -> real_max (L, R)
 | { imaginary } -> imaginary_max (L, R)
 end case;

 __<__ [T :: { type, real, imaginary, character,
 multiset, sequence, function }]
 (L, R :: T) :: boolean is
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 143

Draft Standard Draft Standard for the
 case T is
 { type } -> type_proper_subtype
 | { real } -> real_less_than (L, R)
 | { imaginary } -> imaginary_less_than (L, R)
 | { character } -> character_less_than (L, R)
 | { multiset } -> multiset_proper_submultiset (L, R)
 | { sequence } -> sequence_proper_subsequence (L, R)
 | { function } -> function_proper_contained_in (L, R)
 end case;

 __=<__ [T :: { type, real, imaginary, character,
 multiset, sequence, function }]
 (L, R :: T) :: boolean is
 case T is
 { type } -> type_proper_subtype
 | { real } -> real_less_than_or_equals (L, R)
 | { imaginary } -> imaginary_less_than_or_equals (L, R)
 | { character } -> character_less_than_or_equals (L, R)
 | { multiset } -> multiset_submultiset (L, R)
 | { sequence } -> sequence_subsequence (L, R)
 | { function } -> function_contained_in (L, R)
 end case;

 __>__ [T :: { type, real, imaginary, character,
 multiset, sequence, function }]
 (L, R :: T) :: boolean is
 case T is
 { type } -> type_proper_supertype
 | { real } -> real_greater_than (L, R)
 | { imaginary } -> imaginary_greater_than (L, R)
 | { character } -> character_greater_than (L, R)
 | { multiset } -> multiset_proper_supermultiset (L, R)
 | { sequence } -> sequence_proper_supersequence (L, R)
 | { function } -> function_proper_contains (L, R)
 end case;

 __>=__ [T :: { type, real, imaginary, character,
 multiset, sequence, function }]
 (L, R :: T) :: boolean is
 case T is
 { type } -> type_proper_supertype
 | { real } -> real_greater_than_or_equals (L, R)
 | { imaginary } -> imaginary_greater_than_or_equals (L, R)
 | { character } -> character_greater_than_or_equals (L, R)
 | { multiset } -> multiset_supermultiset (L, R)
 | { sequence } -> sequence_supersequence (L, R)
 | { function } -> function_containeds (L, R)
 end case;

 __div__ :: <* (L, R :: integer) :: integer *> is
 integer_division;

 __mod__ :: <* (L, R :: integer) :: integer *> is
 integer_modulus;
144 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
 __rem__ :: <* (L, R :: integer) :: integer *> is
 integer_remainder;

 %__ [T :: { boolean, bit }]
 (R :: T) ::
 case T is
 { boolean } -> bit
 | { bit } -> boolean
 end case is
 case T is
 { boolean } -> boolean_to_bit (R)
 | { bit } -> bit_to_boolean (R)
 end case;

 not__ [T :: { boolean, bit, bitvector }]
 (R :: T) :: T is
 case T is
 { boolean } -> boolean_not (R)
 | { bit } -> bit_not (R)
 | { bitvector } -> bitvector_not (R)
 end case;

 __and__ [T :: { boolean, bit, bitvector }]
 (L, R :: T) :: T is
 case T is
 { boolean } -> boolean_and (L, R)
 | { bit } -> bit_and (L, R)
 | { bitvector } -> bitvector_and (L, R)
 end case;

 __or__ [T :: { boolean, bit, bitvector }]
 (L, R :: T) :: T is
 case T is
 { boolean } -> boolean_or (L, R)
 | { bit } -> bit_or (L, R)
 | { bitvector } -> bitvector_or (L, R)
 end case;

 __nand__ [T :: { boolean, bit, bitvector }]
 (L, R :: T) :: T is
 case T is
 { boolean } -> boolean_nand (L, R)
 | { bit } -> bit_nand (L, R)
 | { bitvector } -> bitvector_nand (L, R)
 end case;

 __nor__ [T :: { boolean, bit, bitvector }]
 (L, R :: T) :: T is
 case T is
 { boolean } -> boolean_nor (L, R)
 | { bit } -> bit_nor (L, R)
 | { bitvector } -> bitvector_nor (L, R)
 end case;
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 145

Draft Standard Draft Standard for the
 __xor__ [T :: { boolean, bit, bitvector }]
 (L, R :: T) :: T is
 case T is
 { boolean } -> boolean_xor (L, R)
 | { bit } -> bit_xor (L, R)
 | { bitvector } -> bitvector_xor (L, R)
 end case;

 __xnor__ [T :: { boolean, bit, bitvector }]
 (L, R :: T) :: T is
 case T is
 { boolean } -> boolean_xnor (L, R)
 | { bit } -> bit_xnor (L, R)
 | { bitvector } -> bitvector_xnor (L, R)
 end case;

 __=>__ [T :: { boolean, bit, bitvector, rosetta.lang.null }]
 (R :: T) ::
 case T is
 { boolean, bit, bitvector } -> T
 | { rosetta.lang.null } -> boolean
 end case is
 case T is
 { boolean } -> boolean_implies (L, R)
 | { bit } -> bit_implies (L, R)
 | { bitvector } -> bitvector_implies (L, R)
 | { rosetta.lang.null } -> facet_implies (L, R)
 end case;

 __implies__ [T :: { boolean, bit, bitvector, rosetta.lang.null }]
 (R :: T) ::
 case T is
 { boolean, bit, bitvector } -> T
 | { rosetta.lang.null } -> boolean
 end case is
 case T is
 { boolean } -> boolean_implies (L, R)
 | { bit } -> bit_implies (L, R)
 | { bitvector } -> bitvector_implies (L, R)
 | { rosetta.lang.null } -> facet_implies (L, R)
 end case;

 __implied_by__ [T :: { boolean, bit, bitvector, rosetta.lang.null }]
 (R :: T) ::
 case T is
 { boolean, bit, bitvector } -> T
 | { rosetta.lang.null } -> boolean
 end case is
 case T is
 { boolean } -> boolean_implied_by (L, R)
 | { bit } -> bit_implied_by (L, R)
 | { bitvector } -> bitvector_implied_by (L, R)
 | { rosetta.lang.null } -> facet_implied_by (L, R)
146 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
 end case;

 #__ [T :: { set, multiset, sequence }]
 (R :: T) :: natural is
 case T is
 { set } -> set_cardinality (R)
 | { multiset } -> multiset_cardinality (R)
 | { sequence } -> sequence_length (R);

 __#__ (V :: universal; M :: multiset) :: natural is
 multiset_count_occurrences

 __&__ :: <* (T :: type) :: type is
 <* (L, R :: sequence (T)) :: sequence (T) *> *> is
 sequence_concatenation;

 ~__ [E :: type; T :: { set (E), multiset (E), sequence (E) }]
 (R :: T) ::
 case T is
 { set (E), multiset (E) } -> set (E)
 | { sequence (E) } -> multiset (E)
 end case is
 case T is
 { set (E) } -> set_contents (R)
 | { multiset (E) } -> multiset_contents (R)
 | { sequence (E) } -> sequence_contents (R)
 end case;

 __sub__ ::
 <* (T :: type) :: type is
 <* (L :: sequence (T); R :: sequence (natural))
 :: sequence (T) *> *> is
 sequence_subscript;

 __&&__ ::
 <* (T1, T2, T3 :: type) :: type is
 <* (L :: function (T2, T3); R :: function (T1, T2))
 :: function (T1, T3) *> *> is
 function_composition;
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 147

Draft Standard Draft Standard for the
148 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
22. The package rosetta.lang.unicode

The library rosetta.lang shall contain a predefined package named unicode. The domain of the package shall
the rosetta.lang.static. The package shall contain declarations of items as specified in this clause. The pack-
age shall not contain declarations of any other items.

Except as otherwise specified, all functions declared in rosetta.lang.prelude shall be strict; that is, if any ar-
gument is _|_, the function shall yield _|_.

22.1 Unicode types and subtypes

The package rosetta.lang.unicode shall contain the following declarations of types and subtypes:

 code_value :: subtype(natural) is constant;

 latin_1 :: subtype(character) is { 'U+0000' ,.. 'U+00FF' };

 ascii :: subtype(latin_1) is { 'U+0000' ,.. 'U+007F' };

 letter :: subtype(character) is constant;

 letter_uppercase :: subtype(letter) is constant;
 letter_lowercase :: subtype(letter) is constant;
 letter_titlecase :: subtype(letter) is constant;
 letter_modifier :: subtype(letter) is constant;
 letter_other :: subtype(letter) is constant;

 mark :: subtype(character) is constant;

 mark_nonspacing :: subtype(mark) is constant;
 mark_spacing_combining :: subtype(mark) is constant;
 mark_enclosing :: subtype(mark) is constant;

 number :: subtype(character) is constant;

 number_decimal_digit :: subtype(number) is constant;
 number_letter :: subtype(number) is constant;
 number_other :: subtype(number) is constant;

 separator :: subtype(character) is constant;

 separator_space :: subtype(separator) is constant;
 separator_line :: subtype(separator) is constant;
 separator_paragraph :: subtype(separator) is constant;

 other :: subtype(character) is constant;

 other_control :: subtype(other) is constant;
 other_format :: subtype(other) is constant;
 other_surrogate :: subtype(other) is constant;
 other_private_use :: subtype(other) is constant;
 other_not_assigned :: subtype(other) is constant;
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 149

Draft Standard Draft Standard for the
 punctuation :: subtype(character) is constant;

 punctuation_connector :: subtype(punctuation) is constant;
 punctuation_dash :: subtype(punctuation) is constant;
 punctuation_open :: subtype(punctuation) is constant;
 punctuation_close :: subtype(punctuation) is constant;
 punctuation_initial_quote :: subtype(punctuation) is constant;
 punctuation_final_quote :: subtype(punctuation) is constant;
 punctuation_other :: subtype(punctuation) is constant;

 symbol :: subtype(character) is constant;

 symbol_math :: subtype(symbol) is constant;
 symbol_currency :: subtype(symbol) is constant;
 symbol_modifier :: subtype(symbol) is constant;
 symbol_other :: subtype(symbol) is constant;

The subtype code_value shall denote the set of all code values of Unicode characters.

The subtype latin_1 shall denote the set of Unicode characters that are in the Latin-1 subset, that is, the characters
in the groups C0 Controls and Basic Latin and C1 Controls and Latin-1 Supplement. The subtype ascii shall denote
the set of Unicode characters that are in the ASCII subset, that is, the characters in the group C0 Controls and Basic
Latin.

The subtype letter_uppercase shall denote the set of Unicode characters whose General Category is Lu (Letter,
uppercase). The subtype letter_lowercase shall denote the set of Unicode characters whose General Category
is Ll (Letter, lowercase). The subtype letter_titlecase shall denote the set of Unicode characters whose Gen-
eral Category is Lt (Letter, titlecase). The subtype letter_modifier shall denote the set of Unicode characters
whose General Category is Lm (Letter, modifier). The subtype letter_other shall denote the set of Unicode char-
acters whose General Category is Lo (Letter, other). The subtype letter shall denote the set of Unicode characters
whose General Category is any of Lu, Ll, Lt, Lm or Lo.

The subtype mark_nonspacing shall denote the set of Unicode characters whose General Category is Mn (Mark,
nonspacing). The subtype mark_spacing_combining shall denote the set of Unicode characters whose General
Category is Mc (Mark, spacing combining). The subtype mark_enclosing shall denote the set of Unicode char-
acters whose General Category is Me (Mark, enclosing). The subtype mark shall denote the set of Unicode characters
whose General Category is any of Mn, Mc or Me.

The subtype number_decimal_digit shall denote the set of Unicode characters whose General Category is Nd
(Number, decimal digit). The subtype number_letter shall denote the set of Unicode characters whose General
Category is Nl (Number, letter). The subtype number_other shall denote the set of Unicode characters whose Gen-
eral Category is No (Number, other). The subtype number shall denote the set of Unicode characters whose General
Category is any of Nd, Nl or No.

The subtype separator_space shall denote the set of Unicode characters whose General Category is Zs (Separa-
tor, space). The subtype separator_line shall denote the set of Unicode characters whose General Category is
Zl (Separator, line). The subtype separator_paragraph shall denote the set of Unicode characters whose Gen-
eral Category is Zp (Separator, paragraph). The subtype separator shall denote the set of Unicode characters
whose General Category is any of Zs, Zl or Zp.

The subtype other_control shall denote the set of Unicode characters whose General Category is Cc (Other, con-
trol). The subtype other_format shall denote the set of Unicode characters whose General Category is Cf (Other,
format). The subtype other_surrogate shall denote the set of Unicode characters whose General Category is Cs
150 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
(Other, surrogate). The subtype other_private_use shall denote the set of Unicode characters whose General
Category is Co (Other, private use). The subtype other_not_assigned shall denote the set of Unicode characters
whose General Category is Cn (Other, not assigned). The subtype other shall denote the set of Unicode characters
whose General Category is any of Cc, Cf, Cs, Co or Cn.

The subtype punctuation_connector shall denote the set of Unicode characters whose General Category is Pc
(Punctuation, connector). The subtype punctuation_dash shall denote the set of Unicode characters whose Gen-
eral Category is Pd (Punctuation, dash). The subtype punctuation_open shall denote the set of Unicode charac-
ters whose General Category is Ps (Punctuation, open). The subtype punctuation_close shall denote the set of
Unicode characters whose General Category is Pe (Punctuation, close). The subtype
punctuation_initial_quote shall denote the set of Unicode characters whose General Category is Pi (Punc-
tuation, initial quote). The subtype punctuation_final_quote shall denote the set of Unicode characters
whose General Category is Pf (Punctuation, final quote). The subtype punctuation_other shall denote the set
of Unicode characters whose General Category is Po (Punctuation, other). The subtype punctuation shall denote
the set of Unicode characters whose General Category is any of Pc, Pd, Ps, Pe, Pi, Pf or Po.

The subtype symbol_math shall denote the set of Unicode characters whose General Category is Sm (Symbol,
math). The subtype symbol_currency shall denote the set of Unicode characters whose General Category is Sc
(Symbol, currency). The subtype symbol_modifier shall denote the set of Unicode characters whose General
Category is Sk (Symbol, modifier). The subtype symbol_other shall denote the set of Unicode characters whose
General Category is So (Symbol, other). The subtype symbol shall denote the set of Unicode characters whose Gen-
eral Category is any of Sm, Sc, Sk or So.

22.2 Unicode functions

The package rosetta.lang.unicode shall contain the following declarations of functions:

 ord (C :: character) :: code_value is constant;

 char (V :: code_value) :: character is constant;

 to_uppercase (S :: string) :: string is constant;

 to_lowercase (S :: string) :: string is constant;

 to_titlecase (S :: string) :: string is constant;

 to_case_fold (S :: string) :: string is constant;

 is_lowercase (S :: string) :: boolean is constant;

 is_uppercase (S :: string) :: boolean is constant;

 is_titlecase (S :: string) :: boolean is constant;

 is_case_folded (S :: string) :: boolean is constant;

 is_cased (S :: string) :: boolean is constant;

 numeric_value (C :: number) :: rational is constant;

The function ord shall yield the Unicode code calue of its argument. The function char shall yield the Unicode char-
acter whose code value is the argument.
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 151

Draft Standard Draft Standard for the
The function to_uppercase shall yield a string in which the characters of the argument are mapped to uppercase
according to the rules defined in The Unicode Standard. The function to_lowercase shall yield a string in which
the characters of the argument are mapped to lowercase according to the rules defined in The Unicode Standard. The
function to_titlecase shall yield a string in which the characters of the argument are mapped to title case accord-
ing to the rules defined in The Unicode Standard. The function to_casefold shall yield a string in which the char-
acters of the argument are case folded according to the rules defined in The Unicode Standard.

The function is_uppercase shall yield true if all of the characters in the argument that have case are uppercase
characters; otherwise the function shall yield false. The function is_lowercase shall yield true if all of the
characters in the argument that have case are lowercase characters; otherwise the function shall yield false. The
function is_titlecase shall yield true if all of the characters in the argument that have case are title case char-
acters; otherwise the function shall yield false. The function is_case_folded shall yield true if all of the
characters in the argument that have case are case folded characters; otherwise the function shall yield false. The
function is_cased shall yield true if the argument contains any character that has case; otherwise the function shall
yield false.

The function numeric_value shall yield the numeric value property of the argument.

NOTE — The parameter of the numeric_value function is a character of the subtype rosetta.lang.unicode.number,
not of the type rosetta.lang.prelude.number.

22.3 Unicode constants

The package rosetta.lang.unicode shall contain the following declarations of constants:

 nul :: character is 'U+0000';
 stx :: character is 'U+0001';
 sot :: character is 'U+0002';
 etx :: character is 'U+0003';
 eot :: character is 'U+0004';
 enq :: character is 'U+0005';
 ack :: character is 'U+0006';
 bel :: character is 'U+0007';
 bs :: character is 'U+0008';
 ht :: character is 'U+0009';
 lf :: character is 'U+000A';
 vt :: character is 'U+000B';
 ff :: character is 'U+000C';
 cr :: character is 'U+000D';
 so :: character is 'U+000E';
 si :: character is 'U+000F';
 dle :: character is 'U+0010';
 dc1 :: character is 'U+0011';
 dc2 :: character is 'U+0012';
 dc3 :: character is 'U+0013';
 dc4 :: character is 'U+0014';
 nak :: character is 'U+0015';
 syn :: character is 'U+0016';
 etb :: character is 'U+0017';
 can :: character is 'U+0018';
 em :: character is 'U+0019';
 sub :: character is 'U+001A';
 esc :: character is 'U+001B';
152 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
 fs :: character is 'U+001C';
 gs :: character is 'U+001D';
 rs :: character is 'U+001E';
 us :: character is 'U+001F';
 sp :: character is 'U+0020';
 del :: character is 'U+007F';
 bph :: character is 'U+0082';
 nbh :: character is 'U+0083';
 ind :: character is 'U+0084';
 nel :: character is 'U+0085';
 ssa :: character is 'U+0086';
 esa :: character is 'U+0087';
 hts :: character is 'U+0088';
 htj :: character is 'U+0089';
 vts :: character is 'U+008A';
 pld :: character is 'U+008B';
 plu :: character is 'U+008C';
 ri :: character is 'U+008D';
 ss2 :: character is 'U+008E';
 ss3 :: character is 'U+008F';
 dcs :: character is 'U+0090';
 pu1 :: character is 'U+0091';
 pu2 :: character is 'U+0092';
 sts :: character is 'U+0093';
 cch :: character is 'U+0094';
 mw :: character is 'U+0095';
 spa :: character is 'U+0096';
 epa :: character is 'U+0097';
 sos :: character is 'U+0098';
 sci :: character is 'U+009A';
 csi :: character is 'U+009B';
 st :: character is 'U+009C';
 osc :: character is 'U+009D';
 pm :: character is 'U+009E';
 apc :: character is 'U+009F';
 nbsp :: character is 'U+00A0';
 shy :: character is 'U+00AD';

The constants shall denote the Latin-1 control characters.
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 153

Draft Standard Draft Standard for the
154 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
23. Reflection packages

This clause defines the packages that are used to represent the syntax and semantics of Rosetta specifications.

23.1 The package rosetta.lang.reflect.lexical

The library rosetta.lang.reflect shall contain a predefined package named lexical. The domain of the
package shall the rosetta.lang.static. The package shall contain declarations as specified in this clause. The
package shall not contain any other declarations.

The declarations of the package rosetta.lang.reflect.lexical shall include a use clause of the form:

 use rosetta.lang.unicode;

23.2 The package rosetta.lang.reflect.abstract_syntax

23.3 The package rosetta.lang.reflect.semantics

23.4 The package rosetta.lang.reflect.simplification

23.5 The package rosetta.lang.reflect.name_expansion
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 155

Draft Standard Draft Standard for the
156 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

Rosetta System-Level Description Language Draft Standard
24. Predefined domains

This clause defines the domains that are predefined in Rosetta.

24.1 The domain rosetta.lang.null

The domain rosetta.lang.null shall be the domain that has no parent domain and in which nothing is observed. It shall
denote the category of coalgebras that extend the coalgebra that has no observers.

24.2 The domain rosetta.lang.static

24.3 The domain rosetta.lang.state_based
Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change. 157

Draft Standard Draft Standard for the
158 Copyright © 2005 Ashenden Designs Pty Ltd (subject to assignment). This is an unapproved Draft, subject to change.

	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Structure of this standard

	2. References
	3. Definitions
	4. Acronyms and abbreviations
	5. Values and types
	5.1 The Rosetta value space
	5.2 Types

	6. The Rosetta kernel language
	7. Lexical Elements
	7.1 Character set
	7.1.1 Separators
	7.1.2 Comments

	7.2 Tokens
	7.2.1 Keywords
	7.2.2 Delimiters

	7.3 Labels
	7.3.1 Simple labels
	7.3.2 Operator interpretation labels

	7.4 Literals
	7.4.1 The undefined literal
	7.4.2 The infinity literal
	7.4.3 Real literals
	7.4.4 Character literals
	7.4.5 String literals
	7.4.6 Bitvector literals

	8. Expressions
	8.1 Operators
	8.2 Primaries
	8.2.1 Parenthesized expressions
	8.2.2 Literals
	8.2.3 Names
	8.2.4 Tick operations
	8.2.5 Set formations
	8.2.6 Multiset formations
	8.2.7 Sequence formations
	8.2.8 Type formations
	8.2.9 Let expressions
	8.2.10 If expressions
	8.2.11 Case expressions
	8.2.12 Quantified expressions
	8.2.13 Template expressions

	8.3 Constant expressions
	8.4 Static expressions

	9. Functions
	9.1 Function signatures
	9.2 Function type formations
	9.3 Anonymous functions
	9.4 Function declarations
	9.5 Function application

	10. Declarations
	10.1 Declaration lists
	10.2 Variable declarations
	10.3 Enumeration type declarations
	10.4 Constructed type declarations
	10.4.1 Constructor definitions with no observers
	10.4.2 Constructor definitions with observers

	11. Terms
	12. Facets
	12.1 Facet signatures
	12.2 Anonymous facets
	12.3 Facet declarations
	12.4 Facet instantiation
	12.5 Facet expressions
	12.6 Facet inclusion

	13. Packages
	13.1 Package declarations
	13.2 Package expressions

	14. Components
	14.1 Component declarations

	15. Domains
	15.1 Domain declarations
	15.2 Domain expressions

	16. Interactions
	16.1 Interaction declarations

	17. Libraries
	17.1 Design units
	17.2 Design libraries
	17.2.1 Predefined design libraries
	17.2.2 Library clauses

	18. Type Rules
	18.1 Type contexts
	18.2 Type statements
	18.3 Type rules for expressions
	18.3.1 Type rules for literals
	18.3.2 Type rule for names
	18.3.3 Type rule for let expressions
	18.3.4 Type rule for if expressions

	18.4 Type rules for functions
	18.4.1 Type rule for function type formations
	18.4.2 Type rule for anonymous functions
	18.4.3 Type rule for function application

	18.5 Type rules for declarations
	18.5.1 Type rule for variable declarations
	18.5.2 Type rule for constructed type declarations

	19. Scope and visibility
	19.1 Declarative regions
	19.2 Scope of a label
	19.3 Visibility
	19.4 Use clauses

	20. Analysis, elaboration and interpretation
	20.1 Analysis of design units
	20.1.1 Order of analysis

	20.2 Elaboration of a specification
	20.2.1 Simplification
	20.2.2 Name expansion
	20.2.2.1 Name expansion contexts
	20.2.2.2 Resolution of references

	20.2.3 Transformation

	20.3 Interpretation of a specification
	20.3.1 Consistency checking

	21. The package rosetta.lang.prelude
	21.1 Universal types
	21.1.1 Universal functions

	21.2 Type functions
	21.3 The Boolean type
	21.3.1 Boolean functions

	21.4 Numeric types
	21.4.1 Numeric constants
	21.4.2 Numeric functions
	21.4.3 Bit functions

	21.5 Character types
	21.5.1 Character functions

	21.6 Function types
	21.6.1 Higher-order functions

	21.7 Set types
	21.7.1 Set constants
	21.7.2 Set functions

	21.8 Multiset types
	21.8.1 Multiset constants
	21.8.2 Multiset functions

	21.9 Sequence types
	21.9.1 Sequence constants
	21.9.2 Sequence functions
	21.9.3 Bitvector functions

	21.10 Facet functions
	21.11 Operators

	22. The package rosetta.lang.unicode
	22.1 Unicode types and subtypes
	22.2 Unicode functions
	22.3 Unicode constants

	23. Reflection packages
	23.1 The package rosetta.lang.reflect.lexical
	23.2 The package rosetta.lang.reflect.abstract_syntax
	23.3 The package rosetta.lang.reflect.semantics
	23.4 The package rosetta.lang.reflect.simplification
	23.5 The package rosetta.lang.reflect.name_expansion

	24. Predefined domains
	24.1 The domain rosetta.lang.null
	24.2 The domain rosetta.lang.static
	24.3 The domain rosetta.lang.state_based

