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Introduction 

This presentation overviews the basics of Rosetta 
specification
You will learn

Basic Rosetta type definition
Rosetta functions and function definition
Facets, Packages and Domains
Available domain types
Specification composition

You should be familiar with at least one HDL or high 
level programming language before attempting this 
tutorial
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Agenda

Rosetta Introduction
Declarations, Types, and Functions
Facets and Packages
Domains and Domain Interactions
Examples
Advanced Topics
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What is Systems Engineering?
• Managing and integrating information from multiple domains 

when making design decisions
• Managing constraints and performance requirements
• Managing numerous large, complex systems models
• Working at high levels of abstraction with incomplete 

information
• …Over thousands of miles and many years

“…the complexity of systems… have increased so much that production of modern systems demands 
the application of a wide range of engineering and manufacturing disciplines.  The many engineering 
and manufacturing specialties that must cooperate on a project no longer understand the other 
specialties.  They often use different names, notations and views of information even when 
describing the same concept.  Yet, the products of the many disciplines must work together to meet 
the needs of users and buyers of systems.  They must perform as desired when all components are 
integrated and operated.”

D. Oliver, T. Kelliher, J. Keegan, Engineering Complex Systems, McGraw-Hill, 1997.
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The Systems Level Design Problem
The cost of systems level information is too high…

Design goals and system components interact in complex and 
currently unpredictable ways
Interrelated system information may exist in different engineering 
domains (intellectually distant)
Information may be spread across the system specification, in 
separate parts of the description
Representation and analysis of high level systems models is difficult 
and not well supported
Representation and analysis of interactions between system 
elements is not supported at all 
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Multiple System Views

X <= F(y) after 5us

Timing

Po
we

r

Function

P=10uW+5uW+...Architecture x of CPU is
begin
x <= fir(y);
wait for x’event

end x;

Safety Packaging
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Multiple Semantic Models

???
procedure FIR(x,z:T)
begin

z:= ...
end FIR; 
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Rosetta Objective

Provide a means for defining and integrating systems 
models throughout the design lifecycle…

Define facets of components and systems
Provide domains for facet description
Provide mechanisms for composing components and 
facets
Specify interactions between domains reflected in facet 
composition
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Rosetta Design Goals
Provide a means for defining and integrating systems 

models throughout the design lifecycle…

Support for multi-facet modeling
Multiple views of the same component
Representation of functional and constraint information

Support for multiple semantic domains
Integrate components from multiple domains
Integrate component views from multiple domains

Support for complexity management
Verification condition representation
Support for verification
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Multi-Faceted Modeling

Support for systems level analysis and decision making
Rosetta domains provide modeling abstractions for 
developing facets and components
Examples include:

Performance constraint modeling
Discrete time modeling
Continuous time modeling
Finite state modeling
Infinite state modeling
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Multi-Faceted Modeling

Support for modeling in heterogeneous domains
Rosetta facets model different views of a system or 
component

ComponentComponent

FunctionFunction

PackagingPackagingPowerPower

SafetySafety
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A Simple Example…
Construction of system involves multiple specialists

Each specialist works from their set of plans
Each specialist uses their own domain-specific information and 
language

The systems engineer must manage overall system construction 
using information from all specialist domains

SensorSensor
SystemSystem

ElectricalElectrical

EMIEMISoftwareSoftware

PowerPower
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Multi-Faceted Modeling

Support for modeling facet interaction
Rosetta interactions model when information from one 
domain impacts another

FunctionFunction

PerformancePerformanceP

I(x)

Interaction

Definition

~I(x)
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A Simple Example…

EMI specified at 20db
Generates S/N ratio less than 5db
Requirements for S/N greater than 10db

TelecomTelecom

ElectricalElectrical

S/N<5db

Interaction

Definition

S/N>10db

EMI=20db
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Multi-Faceted Modeling

Support for heterogeneous component assembly 
Rosetta components model system structure

ComponentComponent

ComponentComponent ComponentComponent

ComponentComponent

System
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A Simple Example
Simple Satellite Download
Each component is a Rosetta facet or component
Each component may use its own domain for 
requirements specification

CarrierCarrier
RecoveryRecovery

UniqueUnique
Word DetectWord DetectDecodingDecoding

Downlink System

MessageMessage
RecoveryRecovery

Digitized Waveform

Message Message
Parameters
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What Rosetta Provides

A Language for model representation
Simple syntax for parameterized model representation
Language support for information hiding and component 
definition
Representation of verification conditions and justifications

A Semantics for system modeling
Representation of system models
Representation of application domains
Representation of interactions between domains
Highly extensible and customizable
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Rosetta Tool Architecture
Front-end parser generating a semantic object model
Back-end tools supporting various design capabilities
MoML compatible XML interchange format

Rosetta Parser

Semantic 
Object Model

Abstract 
Syntax Object 

Model

MATLAB

Test Vectors

Native Simulator

XML Interchange Format

Retrieval Engine

Rosetta
Source

Static Analysis
Tools
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Rosetta Modeling Flow

Choose domains for component modeling
Define component facets using domains
Assemble facets into individual components
Assemble components into systems using structural 
assembly techniques
Analyze components and systems using

Domain specific tools
Domain interaction tools
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Vocabulary

Item – The basic unit of Rosetta semantics
Type or Bunch – A collection of items
Operation or Function – A mapping from an element of 
a domain bunch to a range bunch
Variable – An item whose value is not explicitly specified
Constant – An item whose value is explicitly specified
Label – A name for an item
Facet – An item specifying a system model
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Items

Every Rosetta definition unit is defined as an item
Each item consists of three critical elements:

A label naming the item
A value associated with the item
A type enumerating possible values

For any item, I, M__value(I) :: M__type(I)
If an item’s value is fixed at parse time, it is a constant
item
If an item’s value is unknown at parse time, it is a 
variable item
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Bunches and Types

The Rosetta type system is defined semantically using bunches
A bunch is simply a collection of objects
Any item A is a bunch as is any collection A,B,C

The notation A::B is interpreted as “bunch A is contained in bunch 
B”

Contained in is both “element of” and “subset”
Type correctness is defined using the “contained in” concept

The notation A++B is the bunch union of A and B
Examples:

1::1++2
1++2::integers
integers::numbers
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Declarations

Declarations create and associate types with items
All Rosetta items must be declared before usage
Declarations occur:

In parameter lists
In the facet declaration section
In packages
In let constructs
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Declarations

Items are created using declarations having the form:

label ::type [is value];

Label is the item’s name
Type is a bunch defining the item’s type
Value is an expression whose value is constraint to be 
an element of type
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Constant vs Variable Declaration

Using the is construct, an item’s value is fixed
The following example defines an item and sets its value

Pi::real is 3.14159;

Omitting the is construct, an item’s value is variable
The following example defines an item and leaves its value 
unspecified

counter::natural;
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Example Declarations

i::integer; // variable i of type integer
bit_vector::sequence(bit); // variable bit_vector
T::type(univ) // uninterpreted scalar type

natural::type(integer) is // natural number definition
sel(x::integer | x =< 0);

inc(x::integer)::integer is // Constant function inc
x+1;

pos?(x::integer)::boolean; // Function signature



27

Types and Bunches

Rosetta types are defined semantically as bunches
The notation x::T used to declare items is the same as 
bunch inclusion
Any bunch may serve as a type

Bunch operations are used to form new types from old
Functions returning bunches define parameterized types
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Predefined Scalar Types

Rosetta provides a rich set of scalar types to choose 
from:

number, real, rational, integer, natural, 
boolean, bit
character
null

The type element is a supertype of all scalars
The types boolean and bit are subtypes of integer

TRUE is the greatest and FALSE is the least integer
0 and 1 are shared among bit and integer
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Number Types

Numerical types are all subtypes of number
Standard operators on numbers are available:

+,-,*,/ - Mathematical operations
min, max – Minimum and maximum
<,=<,>=,> - Relational operators
abs, sqrt – Absolute value and square root
sin,cos,tan – Trig functions
exp,log – Exponentiation and log functions

Subtype relationships between numbers are defined as 
anticipated
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The Boolean Type

Booleans are the subtype of integers that includes TRUE and 
FALSE

TRUE is a synonym for the maximum integer
FALSE is a synonym for the minimum integer

Booleans are not bits
Operations include:

max, min
and, or, not, xor
implies

Note that min and max are and and or respectively
X min Y = X and Y
X max Y = X or Y
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The Boolean Type

The semantics of boolean operations follow easily from 
min and max

TRUE and FALSE = TRUE min FALSE = FALSE
TRUE or FALSE = TRUE max FALSE = TRUE

TRUE and FALSE are not infinite, but use infinite 
mathematics:

TRUE+1 = TRUE
TRUE = -FALSE
FALSE = -TRUE
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The Bit Type
Bits are the subtype of natural numbers that include 0 
and 1
Operations include similar operations as boolean:

max, min
and, or, not, xor
Implies

The operation % transforms between bits and booleans
%TRUE = 1
%1 = TRUE
For  any bit or boolean, b, %(%b))=b

The semantics of bit operations is defined by 
transforming arguments to booleans

1 and 0 = %1 and %0 = TRUE and FALSE = FALSE
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Compound Types
Compound types are formed from other types and 
include bunches, sets, sequences, and arrays
Ordered compound types define ordering among 
elements

Sequences and arrays are ordered
Bunches and sets are not ordered

Packaged types have distinct inclusion and union 
operators

Sets and arrays can contain other sets and arrays
Bunches and sequences cannot contain sequences
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Predefined Compound Types

bunch(T) - The bunch of bunches formed from T
set(T) – The bunch of sets formed from T
sequence(T) – The bunch of sequences formed from T

bitvector - Special sequence of bits
string – Special sequence of characters

array(T) The bunch of arrays formed from T
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The bunch Type

Defined using bunch(T) where T is a type
Operations on bunch types include:

A++B – Bunch union
A**B – Bunch intersection
A--B – Bunch difference
A::B – Bunch containment or inclusion
$S – Size 
null – The empty bunch

Examples:
1++(2++3) = 1++2++3
1**(1++2++3) = 1
1++2::1++2++3 = TRUE
1++2::1++3 = FALSE
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The set Type

Defined using set(T) where T is a type
Operations on set types include:

{A} – The set containing elements of bunch A
~A – The bunch containing elements of set A
A+B, A*B, A-B – Set union, intersection, difference
A in B – Set membership
A<B,A=<, A>=B, A>B – Proper Subset and Subset relations
#A – Size
empty – The empty set

Sets are formed from bunches
The semantics of set operations is defined based on their associated 
bunches
S++T = {~S ++ ~T}
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The set Type

Example set operations
{1++2} + {3} = {1++2++3}
~{1++2++3} = 1++2++3
{1++2} =< {1++2++3}
(A < A) = FALSE
(A =< A) = TRUE
{null} = empty
{1++2} = {2++1}
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The sequence Type

Defined using sequence(T) where T is a type
Operations on sequence types include:

1;;2 – Catenation
head, tail – Accessors
S(5) – Random access
A<B, A=<B, A>=B, A>B – Containment
$S – Size

Sequences cannot contain sequences as elements
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The sequence Type

Examples:
head(1;;2;;3) = 1, tail(1;;2;;3) = 2;;3
1;;2;;3 < 1;;2;;3;;4 = TRUE
1;;3 < 1;;2;;3 = FALSE
If s=4;;5;;3;;2;;1 then s(2)=5

Strings and bit vectors are special sequences
bitvector :: type(universal) is sequence(bit);
string :: type(universal) is sequence(character);
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The array Type

Declared using array(T) where T is a type
Operations on array types include:

[1;;2;;3] – Forming an array from a sequence
~A – Extracting a sequence from an array
A(1) – Random access
#A – Size of array A

Arrays are to sequences as sets are to bunches
Arrays are formed from sequences
The semantics of array operations are defined based on 
sequences
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The array Type

Examples (assume A=[1;;2;;3]):
A(1) = 2
#A = 3
~A = 1;;2;;3
A;;A = [~A;;~A] = [1;;2;;3;;1;;2;;3] 
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Aggregate Types

Aggregate types are formed by grouping elements of 
potentially different types in the same structure
Aggregate types include

Tuples – Structures indexed using an arbitrary type
Records – Structures indexed using naturals
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Predefined Aggregate Types

Tuple [T1 | T2 | T3 | …] - The bunch of tuples 
formed from unlabled instances of specified types

Tuple elements are accessed using position as in t(0)
Specific tuples are formed using the notation [v1 | v2 | v3 | …]

Example: Complex Numbers
c1::tuple[real | real]
c1 = tuple[ 1.0 | 2.0 ]
c1(0) = 1.0

Tuple declarations and formers have the same form
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Predefined Aggregate Types

Record [F1::T1 | F2::T2 | F3::T3 | …] - The bunch 
of records formed from labeled instances of types

Record elements are accessed using field name as in R(F2)
Specific tuples are formed using the notation [v1 | v2 | v3 | …]

Example: Complex Numbers
c1::record[r::real | c::real]
c1 = record[ r is 1.0 | c is 2.0 ]
c1(r) = 1.0

Record declarations and formers have the same form
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Functions and Function Types

Functions provide a means of defining and 
encapsulating expressions
Functions are pure in that no side effects are defined

No global variables
No “call by reference” parameters

A Rosetta function is an item whose
Type is a function type
Value is an expression
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Unnamed Functions and Types

A unnamed functions support defining local functions 
and function types
The notation:

<* (d::D) :: R *>
defines a function type that includes all mappings from 
D to R.
The notation:

<* (d::D) ::R is exp(d) *>
defines a single function mapping d to exp(d)
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Formally Defining Functions

A function of a particular type is defined like any other 
structure:

f::<*(d::D)::R *> is <* (d::D)::R is exp(d) *>

For example:
inc::<*(j::integer)::integer*> is <*(j::integer)::integer is 

j+1*>

This is somewhat strange and painful, so…
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Function Definition Syntax

A convenient concrete syntax is defined as:

f::<*(d::D)::R *> is <* (d::D)::R is exp(d) *>
==

f(d::D)::R is expression;

Increment can now be defined much more compactly 
as:

inc(j::integer)::integer is j+1;
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Basic Function Types

Functions are declared using the notation:
F(d::D) :: R;

D is a type defining the function domain and R is an expression 
defining the function’s return type and ran(F) is the range of F

dom(F) = D
ret(F) = R
ran(F) = {All possible return values}

Example: Increment
inc(i::integer)::integer;
ret(inc) = dom(inc) = integer
ran(inc) = sel(i::integer | 0 < i)
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Functions of Multiple Arguments

Functions with multiple arguments are define by 
recursive application of the function definition:

F(d1::D1; d2::D2; d3::D3 …)::R
For engineering purposes, this defines a function that 
maps multiple values onto a single value
Example: Add

add(n1 :: natural; n2 :: natural) :: natural ;
dom(add) = natural;
ret(add) = natural;
ran(add) = <* (n2::natural) :: natural *>;
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Function Type Semantics

Function types provide a means of defining signatures
The semantics of a function type definition state:

The function is defined only over elements of its domain
The function must return an element of its range

The increment example is a function that takes an 
integer as input and returns the integer bunch
The add example is a function that

Takes an integer as input and returns a new function
Applies the new function to the second integer argument
99.9% of the time, you can simply think of this as a two 
argument function
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Examples

sqrt(i::integer)::integer;
ord(c::character)::natural;
element(e1::E; s::set(E)) :: boolean;
top(e1::E; s1::Stack)::E;
cat(s1::sequence(E); s2::sequence(E))::sequence(E);
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Defining Functions

Specific functions are defined using roughly the same 
mechanism as other items:

F(d::D) :: R is value;
where the type is a function type and value is a function 
type that interprets as an expression

Example: increment
inc(n::natural)::natural is n+1;
n names the input parameter
n+1 defines the return value
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Interpreting function definitions

The function definition names parameters and defines a 
return value

add(j::natural; k::natural)::natural is j+k;

Function
Name

Function
Type

Parameter
Names and Types

Return
Expression



55

Example Functions

// Simple 2-1 multiplexor
mux(s::bit; i0::bitvector; i1::bitvector)::bitvector is 

if s=0 then i0 else i1 endif;

// Hours increment function
incrementHours(h::hours; m::minutes)::hours is 

if m = 59 then
if h = 23 then 0 else h+1 endif
else h endif;
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Example Functions

//Parameterized linear search function
search(E::type(univ); s::sequence(E); p::<*(e::E)::boolean*> is

if s/=null then
if p(s(0)) then s(0) else search(E,tail(s),p) endif

endif;

search(integer,_,_) == 
<*(s::sequence(integer),p::<*(e::integer)::boolean*> is

if s/=null then
if p(s(0)) then s(0) else search(integer,tail(s),p) endif;

endif; *>

Note the use of function and type parameters in the search 
definition allowing multiple criteria and search results



57

Applying Functions

Applying a function is a two step process
Replace formal parameters with actual parameters in the value 
expression
Evaluate the value expression

Example: inc(5)
inc(5) = <*5+1*> = 6
add(5,2) = <*(m::natural) ::natural is 5+m*>(2) = 
<*5+2*> = 7

Simply replace and simplify
All parameters need not be instantiated!!
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Partial Evaluation

Partial evaluation is achieved by instantiating only some 
of the variables

Use “_” as a placeholder for uninstantiated parameters
Consider the function definition:
searchInt(s::sequence(integer); 

p::<*(e::integer)::boolean*>)::boolean;

searchInt = search(integer,_,_);
defines a new function that is a specialization of the 
general purpose search function
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Functions on Functions

Many classical specification functions are defined as 
“functions on functions”

min, max - Minimum or maximum in a bunch
forall and exits – Universal and existential quantification
dom, ran - Domain and range over a function
sel - Select or comprehension over a bunch
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The Domain and Range Functions

Domain is a simple extraction of the function domain
dom(<* (d::D)::R *>) = D

Range is the bunch formed by application of the 
function to each defined domain value

ran(<* (d::D)::R *>)= The bunch of the function applied to 
all domain values
Frequently used to implement the image of a function over a 
bunch or set 

Examples:
dom(inc) = natural
ran(inc) = natural –- 0;
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The Minimum and Maximum Functions

The min and max functions take the minimum and 
maximum values of a function’s range, respectively
Examples:

min(inc)=1
max(inc)=TRUE
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The Quantifier Functions

The forall and exists functions are shorthands for min
and max respectively

Both take arguments of boolean valued functions
Both apply the function to each domain element
The forall function takes the minimum value while exists
takes the maximum value

Examples
forall(<*(x::integer)::boolean is x>0 *>) = FALSE
exists(<*(x::integer)::boolean is x>0 *>) = TRUE
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The Quantifier Functions

Because forall and exists are so common, we define a 
special syntax for their application:

forall(x::integer | x>0) ==
forall(<*(x::integer)::boolean is x>0 *>) = FALSE

exists(x::integer | x>0 ==
exists(<*(x::integer)::boolean is x>0 *>) = TRUE

where the the “|” separates a variable declaration from a boolean 
expression defined over that variable.
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The Selection Function

The sel function performs comprehension over the 
domain of a function

Use the select function whenever comprehension or filtering is 
desired

Examples:
sel(<* (x::integer)::boolean is x>=0 *>)=natural
sel(<* (x::1++2++3++4) :: boolean is 2*x=4 *>) = 2
natural::bunch(integer) is sel(<* (x::integer)::boolean is 
x >= 0*>)
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The Selection Function

The sel function also uses a special syntax to aid 
comprehension

sel(x::integer | x>=0) ==
sel(<* (x::integer)::boolean is x>=0 *>)

natural::bunch(integer) is sel(<* (x::integer)::boolean is x 
>= 0*>) ==

natural::bunch(integer) is sel(x::integer | x >= 0);
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Functions as Type Definitions

Functions can be used to define parameterized types

boundedBitvector(n::natural)::type(bitvector) is
sel(b::bitvector | $b = n);

The function can now be used to define new types because its 
return value is a bunch:

bitvector8::type(bitvector) is boundedBitvector(8);

bitvector8 is the type containing all bitvectors of length 8
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Facets, Packages and Components
Facets define basic system and component models

Parameters provide communications and design specialization
Declaration areas provide for local item definitions
A domain identifies the vocabulary 
Terms provide for the semantics of the facet model

Packages group definitions
Packages are special facets without terms
Packages group definitions into parameterized modules

Components provide a standard definition style for 
system components

Components record design assumptions
Components record correctness assertions
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Understanding Facet Definitions

facet trigger(x::in real; y::out bit) is
s::bit;

begin continuous
t1: if s=1 then if x>=0.4 then s’=1 else s’=0 endif;

else if x=<0.7 then s’=0 else s’=1 endif;
t2: y@t+10ns=s;

end trigger; 

Facet Name Parameter List

Variables

Domain

Terms

Facets and packages provide mechanisms for defining 
models and grouping definitions
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Facet Name and Parameters

The facet name is a label used to reference the facet 
definition
Facet parameters are formal parameters that represent 
an interface to the component

Parameters provide a means for model specialization
Parameters provide a means for model communication

Parameters are instantiated by providing actual values 
when a facet is used

trigger(input,output);
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Trigger Label and Parameters

The label trigger names the facet
The parameters x and y define inputs and outputs for 
the facet

facet trigger(x::in real; y::out bit) is

The direction indicators in and out define the behavior 
of parameters by asserting in(x) and out(x) as terms
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Facet Declarations

Facet declarations are items defined within the scope of 
the facet

When exported, declarations are referenced using the 
canonical “.” notation as in ad2.s
When not exported, declarations cannot be referenced outside 
the facet
Declarations are visible in all facet terms

Items are declared in the manner defined previously
Item values may be declared constant
Item types include all available Rosetta types including facets,
functions and types
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Trigger Facet Declarations

The local variable s declares a bit visible throughout the 
facet
No export clause is present, so all labels are visible

facet trigger(x::in real; y::out bit) is
s::bit;

begin continuous

In this specification, s defines the instantaneous state 
of the component
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Facet Domain

The facet domain provides a base vocabulary and 
semantics for the specification
Current domains include

Logic and mathematics
Axiomatic state based
Finite state
Infinite state
Discrete and continuous time
Constraints
Mechanical
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Trigger Domain

The trigger facet uses the continuous domain for a 
specification basis
The continuous domain provides a definition of time as 
a continuous, real value

facet trigger(x::in real; y::out bit) is
s::bit;

begin continuous
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Facet Terms

A term is a labeled expression that defines a property 
for the facet

Simple definition of factual truths
Inclusion and renaming if existing facets

Terms may be, but are not always executable structures
Terms simply state truths

Term visibility is managed like variable visibility
If exported, the term is referenced using the “.” notation
If not exported, the term is not visible outside the facet
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Trigger Terms

Terms define the state value and the output value

t1: if s=1 then if x>=0.4 then s’=1 else s’=0 endif;
else if x=<0.7 then s’=0 else s’=1 endif;

t2: y@t+10ns=s;

Term t1 defines the state in terms of the current state 
and the current inputs
Term t2 defines that the output should be equal to the 
state value 10ns in the future
The continuous domain provides the semantics for time 
and the semantics of the reference function @



77

Trigger Terms

Neither trigger term is executable, but state equalities
T1 places constraints on the value of state with respect to the 
current inputs
T2 places constraints on the value of output 5 nanoseconds in 
the future

Other domains provide other mechanisms for 
specification semantics



78

Packages

A package is a special purpose facet used to collect, 
parameterize and reuse definitions

package wordTypes(w::natural) is
begin logic

word::type(bitvector) is bitvector(w);
word2nat(w::word)::natural is

…
facet wordAdder(x,y::word)::word is

…
end wordTypes;

Package Name Package Parameters

Package Domain
Package
Definitions
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Package Semantics

Packages are effectively facets without terms
All elements of the package are treated as declarations
All package definitions are implicitly exported

The package domain works identically to a facet domain
Instantiating the package replaces formal parameters 
with actual parameters
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The wordType Package

The wordType package defines
A type word
A function for converting words to naturals
A facet defining a word adder

All definitions are parameterized over the word width 
specified by w

Using wordType(8) defines a package supporting 8 bit words
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Domains and Interactions

Domains provide domain specific definition capabilities
Design abstractions
Design vocabulary

Interactions define how specifications in one domain 
affect specifications in another
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The Logic Domain

The logic domain provides a basic set of mathematical 
expressions, types and operations

Basic types and operations with little extension
Best thought of as the domain used to provide basic 
mathematical structures
Currently, all domains inherit from the logic domain
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The State-Based Domain

The state-based domain supports defining behavior 
using axiomatic semantics
Basic additions in the state-based domain include:

S – The state type
next(s1::S)::S; – Relates the current state to the next state
x@s - Value of x in state s
x’ – Standard shorthand for x@next(s)
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Defining State Based Specifications

Define important elements that define state
Define properties in the current state that specify 
assumptions for correct operation

Frequently called a precondition

Define properties in the next state that specify how the 
model changes it’s environment

Frequently called a postcondition

Define properties that must hold for every state
Frequently called invariants



85

Pulse Processing Example

State is the last pulse received and its arrival time or none
The initial pulse arrival time must be greater than zero

L1: pulseTime >= 0;
If the initial pulse is of type A1 and the arriving pulse is of type A2, 
reset and wait for another pulse

L2: pulse=A1 and inPulse=A2 implies pulse’=none
If the initial pulse is of type A1 and the arriving pulse if of type A1, 
then output command

L3: pulse=A1 and inPulse=A1 implies pulse’=none and 
o’=interpret(pulseTime,inPulseTime);

No state should ever have a negative time value
L4: forall(s1::S | pulseTime@s >=0)
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The Pulse Processor Specification
facet pp-function(inPulse:: in PulseType;

inPulseTime:: in time;
o:: out command) is

use timeTypes; use pulseTypes;
pulseTime :: time;
pulse :: PulseType;

begin state-based 
L1: pulseTime >= 0;
L2: pulse=A1 and inPulse=A2 => pulse’=none;
L3:pulse=A1 and inPulse=A1 => pulse’=none and

o’=interpret(pulseTime,inPulseTime);
L4: forall(s1::S | pulseTime@s >=0);

end pp-function;
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When to Use the State-based Domain

Use state-based specification when:
When a generic input/output relation is known without detailed 
specifics
When specifying software components

Do not use state-based specification when:
Timing constraints and relationships are important
Composing specifications is anticipated
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The Finite State Domain

The finite-state domain supports defining systems 
whose state space is known to be finite
The finite-state domain is a simple extension of the 
state-based domain where:

S is defined to be or is provably finite
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Trigger Example

There are two states representing the current output 
value

S::type(integer) = 0++1;
The next state is determined by the input and the 
current state

L1: next(0) = if i>=0.7 then 1 else 0 endif;
L2: next(1) = if i=<0.3 then 0 else 1 endif;

The output is the state
L3: o’=s;
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The Trigger Specification
facet trigger(i:: in real; o:: out bit) is

S::type = 0,1;
begin state-based 

L1: next(0) = if i>=0.7 then 1 else 0 endif;
L2: next(1) = if i=<0.3 then 0 else 1 endif;
L3: o’=s;

end trigger;
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When to Use the Finite State Domain

Use the finite-state domain when:
Specifying simple sequential machines
When it is helpful to enumerate the state space

Do not use the finite-state domain when
The state space cannot be proved finite
The specification over specifies the properties of states and the 
next state function
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The Infinite State Domain

The infinite-state domain supports defining systems 
whose state spaces are infinite
The infinite-state domain is an extension to the 
state-based domain and adds the following axiom:

next(s) > s
The infinite-state domain asserts a total ordering on 
the state space

A state can never be revisited
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The Pulse Processor Revisited

Is the arrival time and the type of the last received pulse
The initial pulse arrival time must be greater than zero

L1: pulseTime >= 0;
Adding the infinite state restriction assures that time advances
If the initial pulse is of type A1 and the arriving pulse is of type A2, 
reset and wait for another pulse

L2: pulse=A1 and inPulse=A2 implies pulse’=none
If the initial pulse is of type A1 and the arriving pulse if of type A1, 
then output command

L3: pulse=A1 and inPulse=A1 implies pulse’=none and 
o’=interpret(pulseTime,inPulseTime);

No state should ever have a negative time value
L4: forall(s1::S | pulseTime@s >=0)
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The Discrete Time Domain

The discrete-time domain supports defining systems 
in discrete time
The discrete-time domain is a special case of the 
infinite-state domain with the following definition

next(t)=t+delta;
The constant delta>=0 defines a single time step
The state type T is the set of all multiples of delta
All other definitions remain the same

next(t) satisfies next(t)>t
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Time Constrained Pulse Processor

State is the last pulse received and its arrival time or none
The initial pulse arrival time must be greater than zero

Guaranteed by definition of time
If the initial pulse is of type A1 and the arriving pulse is of type A2, 
reset and wait for another pulse

L2: pulse=A1 and inPulse=A2 implies pulse@t+delta=none
If the initial pulse is of type A1 and the arriving pulse if of type A1, 
then output command in under 2 time quanta

L3: pulse=A1 and inPulse=A1 implies pulse@t+delta=none 
and o@t+2*delta=interpret(pulseTime,t);

No state should ever have a negative time value
Guaranteed by the definition of time
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Discrete Time Pulse Processor
facet pp-function(inPulse::in PulseType;

o::out command) is
use pulseTypes;
pulseTime :: T;
pulse :: PulseType;

begin discrete-time 
L2: pulse=A1 and inPulse=A2 => pulse@t+delta=none;
L3:pulse=A1 and inPulse=A1 => pulse@t+delta=none and

o@t+2*delta=interpret(pulseTime,t);
end pp-function;
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Understanding the Discrete Time Pulse 
Processor

Each state is associated with a discrete time value
Event times are constrained
Time properties account for preconditions and invariants

The next function is defined as previously
Can reference arbitrary time spaces
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When to Use the Discrete Time Domain

Use the discrete-time domain when:
Specifying discrete time digital systems
Specifying concrete instances of systems level specifications

Do not use the discrete-time domain when:
Timing is not an issue
More general state-based specifications work equally well
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The Continuous Time Domain

The continuous-time domain supports defining 
systems in continuous time
The continuous-time domain has no notion of next 
state

The time value is continuous – no next function
The “@” operation is still defined

Alternatively define functions over t in the canonical fashion
Derivative, indefinite and definite integrals are available
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Continuous Time Pulse Processor

Not particular interesting or different from the discrete 
time version

Can reference arbitrary time values
Cannot use the next function
No reference to discrete time – must know what delta is
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Continuous Time Pulse Processor
facet pp-function(inPulse::in PulseType;

o::out command) is
use pulseTypes;
pulseTime :: T;
pulse :: PulseType;

begin continuous-time 
L2: pulse=A1 and inPulse=A2 => pulse@t+5ms=none;
L3: pulse=A1 and inPulse=A1 => pulse@t+5ms=none and

o@t+10ms=interpret(pulseTime,t);
end pp-function;
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Understanding the Continuous Time 
Pulse Processor

Discrete time references are replaced by absolute time 
references with respect to the current time

Using 5ms and 10ms intervals rather than the fixed time 
quanta
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Using the Continuous Time Domain

Use the continuous-time domain when
Arbitrary time values must be specified
Describing analog, continuous time subsystems

Do not use the continuous-time domain when:
Describing discrete time systems
State based specifications would be more appropriate
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Specialized Domain Extensions

The domain mechanical is a special extension of the 
logic and continuous time domains for specifying 
mechanical systems
The domain constraints is a special extension of the 
logic domain for specifying performance constraints
Other extensions of domains are anticipated to 
represent:

New specification styles
New specification domains such as optical and MEMS 
subsystems
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Specification Composition

Compose facets to define multiple models of the same 
component

Using the facet algebra
Components

Compose facets to define systems structurally
Including facets as terms
Instantiating facets
Channels and models of computation
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Facet Semantics

The semantics of a facet is defined by its domain and 
terms

The domain defines the formal system associated 
with the facet
The terms extend the formal system to define the 
facet

An interaction defines when information from one 
domain effects another
A Rosetta specification defines and composes a 
collection of interacting models
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Formal Systems

A formal system consists of the following definitions:
A formal language

A set of grammar rules
A set of atomic symbols

An inference mechanism
A set of axioms
A set of inference rules

A semantic basis
In Rosetta, these elements are defined in the domain 
specification

Language and inference mechanism are relatively fixed
Semantics varies widely from domain to domain
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Semantic Notations

The semantics of a facet F is defined as an ordered pair 
(DF,TF) where:

DF defines the domain (formal system) of the specification
TF defines the term set defining the specification

A facet definition is consistent if TF extends DF
conservatively

FALSE cannot be derived from TF using DF
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Facet Conjunction

Facet conjunction defines new facets with properties of 
both original facets

F and G
F G

Facet F and G reflects the properties of both F and G
simultaneously
Formally, conjunction is defined as the co-product of the 
original facets
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Facet Conjunction Example
facet pp-function(inPulse::in PulseType;

o::out command) is
use pulseTypes;
pulseTime :: T;
pulse :: PulseType;

begin discrete-time 
L2: pulse=A1 and inPulse=A2 => pulse’=none;
L3:pulse=A1 and inPulse=A1 => pulse’=none and

o@t+2*delta=interpret(pulseTime,t);
end pp-function;

facet pp-constraint is
power::real;

begin constraints
c1: power=<10mW;
c2: event(inPulse) <–> event(o) =< 10mS;

end pp-constraint;
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Facet Conjunction Example

Define a new pulse processor that exhibits both 
functional and constraint properties:

facet::pp is pp-function and pp-constraints;

The new pp facet must exhibit correct function and 
satisfy constraints

Functional properties and heat dissipation are independent
Functional properties and timing constraints are not
independent
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When to Use Facet Conjunction

When a component or system should exhibit two sets of  
properties
When a component or system should exhibit two 
orthogonal functions
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Understanding Facet Conjunction

Given two facets F and G the conjunction F and G
might be defined formally as:

F and G = {(DF,TF),(DG,TG)}
The conjunction is literally a facet consisting of both 
models
If F and G are orthogonal, this definition works fine

F and G are rarely orthogonal
Orthogonality makes things rather uninteresting

Thus we define an interaction
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Understanding Facet Conjunction

Given two facets F and G the conjunction F and G is 
defined formally as:
F and G = {(DF,TF+M__I(G,F)),(DG,TG+M__I(F,G))}
The interaction function, M__I, maps terms from one 
domain into terms from another
An interaction defines the function M__I for a domain 
pair
A projection extracts the model associated with a 
domain from a facet:

M__proj((F and G),DG)=(DG, TG+M__I(F,G))
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Domain Interaction Semantics

F0 F1

F0 and F1

F0’ F1’

Composition is coproduct

Projections form product

Interaction defines affects 
of information from facet 
from Dj on Dk defining Fk’

Interaction defined 
using Rosetta’s 
reflective capabilities
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Understanding Facet Conjunction

Composing facets from the same domain uses the 
same semantics as Z specification composition

A and B – All terms from both facts are true
A or B – Conjunctions of terms from facets are disjuncted

If the conjunction of two facets does not generate new 
terms, then those facets are orthogonal with respect to 
conjunction

This is important as it can reduce analysis complexity 
stubstantially
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Interaction Definitions

An interaction is a special package that defines M__I for 
two domains:

interaction and(state-based,logic::domain) is
begin interaction

M__I(f::logic,g::state-based)::set(term) is
{ran(t::M__terms(f) | ran(s::g.S | t@s))}

M__I(g::state-based,f::logic)::set(term) is
{sel(t::M__terms(g) | forall(s::g.S | t@s))}

end and;

Interaction Operation Domains

Interaction Domain

Interaction
Function
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Understanding Facet Conjunction

After taking a deep breath…

The interaction explains how domains affect each other
The projection extracts a facet from a particular domain 
from another facet
To understand how domains interact

Form the composition using interactions
Project the result into the domain of interest
The results of the interaction are presented in the domain of 
interest
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Facet Disjunction

Facet disjunction defines a new facet with properties of 
either original facet

F or G
F G

Facet F or G reflects the properties of either F or G
Formally, disjunction is defined as the product of the 
original facets
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Facet Disjunction Example
facet pp-function(inPulse::in PulseType;

o::out command) is
use pulseTypes;
pulseTime :: T;
pulse :: PulseType;

begin discrete-time 
L2: pulse=A1 and inPulse=A2 => pulse’=none;
L3:pulse=A1 and inPulse=A1 => pulse’=none and

o@t+2*delta=interpret(pulseTime,t);
end pp-function;

facet pp-constraint is
power::real;

begin constraints
c1: power=<10mW;
c2: event(inPulse) <–> event(o) =< 10mS;

end pp-constraint;
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Facet Disjunction Example

A component that satisfies functional requirements and 
either constraint set is defined:
pp::facet is pp-function and

(pp-lp-constraint or pp-constraint)

pp is a component that represents either the normal or 
low power device

facet pp-lp-constraint is
power::real;

begin constraints
c1: power=<5mW;
c2: event(inPulse) <–> event(o) =< 15mS;

end pp-constraint;
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When to Use Facet Disjunction

When a component may exhibit multiple sets of 
properties
When representing a family of components
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Facet Declarations

Facets may be defined in the same manner as other 
items:

f::facet [is facet-expression];
The type facet is the bunch of all possible facets
facet-expression is an expression of type facet

Can also define a variable facet without a predefined 
value:

f::facet;
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Component Aggregation

System decomposition and architecture are represented using 
aggregation to represent structure

Include and rename instances of components
Interconnect components to facilitate communication

Propagate system properties onto components
Label distribution

Aggregation approach
Include facets representing components
Rename to preserve internal naming properties
Communicate through sharing actual parameters
Use label distribution to distribute properties among components
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Facet Inclusion

Include and rename facets to represent components
rx:rx-function(i,p) includes rx-function and renames it rx
Access labels in rx using rx.label not rx-function.label
Achieves instance creation with little semantic effort

Use internal variables to achieve perfect, instant communication

facet iff-function(i::in signal; o::out signal) is
p::pulseType; c::command;

begin logic
rx: rx-function(i,p);
pp: pp-function(p,c);
tx: tx-function(c,o);

end iff;
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Facet Inclusion

The same technique works for facets of any variety
Consider a structural definition of component 
constraints

facet iff-constraint is
power::real;

begin logic
rx: rx-constraint;
pp: pp-constraint;
tx: tx-constraint;
p: power = rx.power+pp.power+tx.power;

end iff;
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Label Distribution

Labels distribute over most logical and facet operators:
L: term1 and L:term2 == L: term1 and term2
L: term1 or L:term2 == L: term1 or term2
L: term1 => L:term2 == L: term1 => term2
L: term1 = L:term2 == L: term1 = term2

Consequences when conjuncting structural definitions 
are interesting
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Conjuncting Structural Definitions

facet iff-constraint is
begin logic

rx: rx-constraint;
pp: pp-constraint;
tx: tx-constraint;
p: power = rx.power+…;

end iff;

facet iff-function(i::in signal; o::out signal) is
p::pulseType; c::command;

begin logic
rx: rx-function(i,p);
pp: pp-function(p,c);
tx: tx-function(c,o);

end iff;

iff::facet is iff-function and iff-constraint
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Combining Terms
facet iff-function(i::in signal; o::out signal) is

p::pulseType; c::command;
begin logic

rx: rx-function(i,p);
pp: pp-function(p,c);
tx: tx-function(c,o);
rx: rx-constraint;
pp: pp-constraint;
tx: tx-constraint;
p: power = rx.power+…;

end iff;
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Applying Label Distribution
facet iff-function(i::in signal; o::out signal) is

p::pulseType; c::command;
begin logic

rx: rx-function(i,p) and rx: rx-constraint;
pp: pp-function(p,c) and pp: pp-constraint;
tx: tx-function(c,o) and tx: tx-constraint;
p: power = rx.power+…;

end iff;
facet iff-function(i::in signal; o::out signal) is

p::pulseType; c::command;
begin logic

rx: rx-function(i,p) and rx-constraint;
pp: pp-function(p,c) and pp-constraint;
tx: tx-function(c,o) and tx-constraint;
p: power = rx.power+…;

end iff;
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Label Distribution Results

In the final specification, component requirements 
coalesce based on common naming

Using common architectures causes components to behave in 
this way
Systems level requirements are “automatically” associate with 
components
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Component Families

facet iff-constraint(lp::in boolean) is
begin logic

rx: rx-constraint;
pp: if lp then pp-lp-constraint 

else pp-constraint
endif;

tx: tx-constraint;
p: power = rx.power+…;

end iff;

Parameters can be used to select from among 
component options when combined with if constructs
Leaving the select parameter open forces both options 
to be considered.
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Avoiding Information Hiding

The use clause allows packages and facets to be 
included in the declaration section
All exported labels in used packages and facets are 
added to the name space of the including facet
The use clause must be used carefully:

All encapsulation is lost
Includes at the item level rather than the facet level
Used primarily to include definitions from standard packages 
and libraries
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An Example Rosetta Specification

To be provided interactively at the tutorial
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Advanced Topics

Reflection and meta-level operations
Interactions
Architecture definition
Communication and Models of Computation

Information to be provided at the tutorial based on 
student interest
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Meta-Level Operations

Rosetta Meta-level operations allow specifications to 
reference specifications
All Rosetta items have the following meta-level 
information:

M__type(I) – Type of item I
M__label(I) – Label of item I
M__value(I) – Value of item I
M__string(I) – Printed form of item I

Specific items are defined using specialized operators
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Defining Interactions and Domains

A principle use for meta-functions is defining 
interactions and domains

Most users never see interaction or domain definitions
A simple interaction defines the relationship between 
terms in logic and terms in state-based descriptions:

Interaction and(f1::logic; f2::state-based) is
begin logic

l1: forall(t::M__terms(f1) |
forall(s::State is t@s :: M__terms(f2)))

end and;
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Architecture Definition

Facets parameterized over facets supply architecture 
definitions:

facet batch-seq(x::in T; z::out T, f1,f2::facet) is
a::M__type(f1.x)**M__type(f2.x);

begin logic
c1::f1(x,a);
c2::f2(a,z);

end batch-seq;
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Instantiating Architectures

Define instances of the architecture by instantiating the 
facet parameters

search(x::in T; z::out T) :: facet is
batch-seq(_,_,sort,binary_search)

Instantiate the component parameters but not the input 
and output parameters
Naming conventions must be maintained
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Summary

Tutorial provides a basic introduction to the nuts and 
bolts of Rosetta specification
Defines types and functions available
Defines facets and packages as specification units
Defines domains available to specifiers
Defines specification composition
Examples and Exercises provided interactively

Please contact authors for hard copies
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Where to Get More Information

The Rosetta web page contains working documents and 
examples:

http://www.sldl.org
Working documents include

Usage Guide
Semantic Guide
Domain and Interaction definition

Tool downloads include
Java-Based Rosetta Parser


