Rosetta Strawman

Version 0.1
Perry Alexander and Cindy Kong David Barton
Information & Telecommunication Technology Center EDAptive Computing, Inc.
The University of Kansas dbarton@edaptive.com

{alex,ckong}@ittc.ku.edu

Peter Ashenden Catherine Menon
Ashenden Systems Adelaide University
peter@ashenden.com.au menon@cs.adelaide.edu.au

September 16, 2002

Contents

1 Introduction

2 Facet and Package Basics

2.1

2.2
2.3
2.4
2.5
2.6
2.7

Facet Definition L e
2.1.1 Examples e e e e
Facet Aggregation e
Facet Composition e
Packages e
Label Visibility and Resolution o
Compilation Units and Libraries o
The Alarm Clock Example
2.7.1 The timeTypes Package L L
2.7.2 Structural Definition
2.7.3 Structural Definitiono
2.7.4 The Specification

3 Items, Variables, Values and Types

3.1
3.2
3.3

3.4

3.5
3.6

Items and Values e

Elements e e e e e e

3.3.1 Complex Numbers e
3.3.2 Lexical Structure of Number Constants
3.3.3 Boolean e
Characters« . o o e
341 ASCIIType . . o o o v e e e
Enumerations oL oL e
Composite Types o e
3.6.1 Sets . ..
3.6.2 Sequences e

17
19
20
21
25
25
26
26
28
28

3.7 Functions e e e 44
3.7.1 Direct Definition 45
3.7.2 Anonymous Functions and Function Types 45
3.7.3 Function Evaluation 47
3.7.4 Currying, Partial Evaluation, Function Composition and Selective Union 48
3.75 The If Expression e 52
3.76 The Case Expression e 53
3.7.7 The Let Expression e 53

3.8 Set Construction and Quantification L oo oo 57
3.8.1 Domain, Range and Return Typeo L o7
3.8.2 Quantifiers L 59
3.8.3 Selection e 59
3.8.4 Shorthand Notation 60
3.8.5 Function Containment 60
3.8.6 Limits, Derivatives and Integrals L o 61

3.9 Universal Type e 62

3.10 User Defined Types o o o o i i e e e 63
3.10.1 Setsand Types L e 63
3.10.2 Parameterized Type Formers 65

3.11 Constructed Types o e e 65
3.11.1 Defining Constructed Types e 65
3.11.2 Records oL e e 68
3.11.3 Pattern Matching L L 69

3.12 Facet Items L e 70
3.12.1 Facet Operations o i e e e e 71
3.12.2 Facet Types and Subtypes 72

Expressions, Terms, Labeling and Facet Inclusion 73

4.1 ExXpressionso ..o e e e e e 73

4.2 Termso e e 74

4.3 Labeling e e 76
4.3.1 Facet Labels e 76
4.3.2 Term Labels 77
4.3.3 Variable and Constant Labels o0 78
4.3.4 Explicit Exporting 79

4.4 Label Distribution Laws L 79
4.4.1 Distribution Over Logical Operators 79

4.4.2 Distributing Declarations and Terms

4.5 Relabeling and Inclusion L oL
4.5.1 Facet Instances and Inclusion
4.5.2 Structural Definition e

The Facet Algebra

5.1 Facet Conjunction e
5.2 Facet Disjunction L
5.3 Facet Implication L
5.4 Facet Equivalence
5.5 Parameter List Union L e

5.5.1 Type Composition e

5.5.2 Parameter Ordering L

Domains and Interactions

6.1 Domainso e e e e
6.1.1 Null . . . oo e
6.1.2 Logic e
6.1.3 State Based
6.1.4 Discrete e
6.1.5 Finite State L
6.1.6 Infinite State e
6.1.7 Discrete Time e e e
6.1.8 Continuous Time

6.2 Interactions

Semantic Issues
7.1 Preliminary Definitions e
T2 Ttems e e
7.3 Variable and Constant Items L
7.4 Value Item L e e
7.5 Typeltems e
7.5.1 Uninterpreted Types e
7.5.2 Interpreted Types e
7.5.3 Type Compatibility
7.6 Facet Ttems e
7.6.1 Algebrasin Rosetta
7.6.2 Facet Abstract Syntax L

87
87
88
90
90
90
91
92

93
93
94
94
96
99
100
101
102
105
106

7.7
7.8
7.9
7.10
7.11
7.12

7.13
7.14

7.6.3 Facet Semantics 131

7.6.4 Parameterization and Instantiation 0oL 132
Facet Contexts e 133
Composition Operations 134
Label Distribution e e 134
Type Composition e e 134
Facet Composition L 135
Domain Interaction 135
7121 Categories o .. e e 135
7.12.2 Transferring Information oL o Lo 136
7.12.3 Facet Composition 137
Types and Values e 137
Open Issues e 138

Chapter 1

Introduction

This document serves as a usage guide for the Rosetta specification language. It defines most of the base
Rosetta semantics in an ad hoc fashion and provides general usage guidelines through examples.

The basic unit of Rosetta specification is a facet. Each facet is a parameterized collection of declarations
and definitions specified using a domain theory. Facets are used to define: (i) system models; (ii) system
components; (iii) architectures; (iv) libraries; and (v) semantic domains.

Although definitions within facets use many different semantic representations, the semantics of facet com-
position, inclusion and data types are shared among all facets. Collections of facets are composed using
a collection of common operations that operate regardless of semantic domain. The basic facet definition
provides an encapsulation, parameterization and naming convention for Rosetta systems.

This document describes the semantics of facets in an ad hoc fashion. Its intent is to provide an introduction
to facets and their various uses without discussing any specific domain theory. In addition to facets them-
selves, this document also defines a type system shared among facet definitions. Basic types and operations
available to Rosetta specifiers are identified and primitive definitions provided. Finally, the system construct
used to describe hegerogeneous systems using facets is presented. The system construct supports definition
of facets, assumptions, declarations, and verifications in support of a systems level design activity.

Chapter 2

Facet and Package Basics

The basic unit of specification in Rosetta is termed a facet. Each facet defines a single aspect of a component
or system from a particular perspective. To define facets completely, it is necessary to understand the basics
of Rosetta declarations, functions and expressions. This chapter intends only to introduce the concept and
simple examples of facet definition to motivate the descriptions in following chapters. If concepts are not
fully presented here, assume they will be in chapters dealing with the specifics of facet definition.

A facet is a parameterized construct used to encapsulate Rosetta definitions. Facets form the basic semantic
unit of any Rosetta specification and are used to define everything from basic unit specifications through
components and systems. Facets consist of three major parts: (i) a parameter list; (ii) a collection of
declarations; (iii) a domain; and (iv) a collection of labeled terms. This section introduces the facet syntax,
an ad hoc facet semantics, and provides structure for the remainder of the document. For a formal definition
of facet semantics, please see the Rosetta Language Semantics Guide.

2.1 Facet Definition

Facets are defined using two mechanisms: (i) direct definition; and (ii) composition from other facets and
functions. In this section we will deal only with direct definition and defer facet composition to Section 2.3.
Direct definition is achieved using a traditional syntax similar to a procedure in a traditional programming
language or a theory in an algebraic specification language. The general formal for a facet definition is as
follows:

facet <facet-label> (<parameters>)::<domain> is
<declarations>

begin
<terms>

end facet <facet-label>;

The facet definition is delineated by the facet keyword immediately followed by a < facet — label >
providing the facet with a unique name. The facet label is immediately followed by a comma separated
parameter list denoted above by < parameters >, a domain that denotes the facet type by jdomaings and
the keyword is that opens the declarations section. The declarations section, denoted by < declarations >,
is used to declare labeled items and define visibility of locally defined labels using an optional export clause.
The keyword begin starts the definition section. Declarations follow in the form of labeled terms, denoted
< terms > that provide a definition for facet. The definition concludes with the keywords end facet and
the facet label.

As an example, a specification for a find component follows:

facet register(i::input bitvector; o::output bitvector;
sO::input bit; sl::input bit)::state_based is
state: :bitvector;
begin
11: if s0=0 then
if s1=0 then state’=state
else state’=lshr(state) endif
else
if s1=0 then state’= lshl(state)
else state’=i endif
end if;
12: o’=state’;
end facet register;

This definition describes a facet register with data parameters i, and o of types bitvector and two control
parameters of type bit. The variable state is defined to hold the internal state of the register and is of
type bitvector. As can be deduced from examination of the specification, this register performs hold,
logical shift right and left, and load operations given inputs of 00, 01, 10 and 11 on parameters sO and s1
respectively.

All Rosetta variables and parameters are declared using the notation v: :T where v is a variable name and T
is a type. The “::” notation is used to indicate a declaration. The notation x: :T creates an item labeled x
whose values are associated with type T. The declaration can be viewed as declaring an item x whose possible
values are selected from the set T. In the register specification, state: :bitvector defines a variable labeled
state whose values can be selected from the type bitvector.

Parameters are universally quantified variables visible over the scope of the facet. Parameter definitions
are like traditional declarations with the addition of a kind indicator. Specifically, i::input bitvector
defines a parameter i of type bitvector and declares the predicate input (i) to be true. The semantics
of input (i) are defined by the semantic domain currently being used. Generally the input kind is used
to denote a parameter used to provide input to the facet. The kinds output and design are also quite
common in specifications with output indicating a parameter providing an output and design identifying a
monotonic generic parameter. Parameters without a kind specifier are unqualified in a facet definition.

In the register example, the state_based domain defines the specification vocabulary used by the facet.
The domain provides definitions and a basic model of computation for specification. The state_based
domain provides a basic vocabulary for axiomatic specification and defines the “tick” notation (state’) to
represent a label in the next state. It also defines input to explicitly make the value of input parameters
invariant over state change. Domains are semantically facets and will be discusse in detail in Chapter 6.

The declaration section following the facet interface includes declarations local to the facet. Items defined in
this manner are visible throughout the facet. Such declarations may be made visible outside the facet using
an export statement. In this case, the exclusion of an export clause implies that no labels defined in the
facet are visible outside the specification. The notation export all causes all defined labels to be visible
outside the facet. Including a list of locally defined labels explicitly identifies what labels are and are not
visible.

When referenced in the facet body, a term, variable or parameter is referenced by its label without decoration.
When used outside the facet, labels are referenced using the facet name as a qualifier. In the modified register
example below, register.11 refers to the first term in register while register.state refers to the variable
state.

facet register(i::input bitvector; o::output bitvector;
sO::input bit; sl::input bit):;state_based is
state: :bitvector;
export all;

begin
11: if s0=0 then
if s1=0 then state’=state
else state’=lshr(state) endif
else
if s1=0 then state’= lshl(state)
else state’=1i endif
end if;
12: o’=state’;
end facet register;

The begin-end pair delimits the domain specific terms within the facet while the facet type defines the
domain. The begin statement opens the set of terms. In the register the semantic domain is state_based
providing the basic semantics for state and change in the traditional axiomatic style. Specifying a semantic
domain indicates what domain theory the facet uses for its definition. Every facet must have an associated
domain even if that domain is the logic domain common to all facets.

Terms in the term list define the behavior modeled by the facet. Each term is a labeled, well formed formula
of type boolean or facet. Boolean terms define basic facet properties. Facet terms define facet properties by
composing other facets. Both boolean and facet terms may be included in the same facet.

The general form associated with any term is:
1: term;

where 1 is the label associated with the term and term is the definition itself. The label is used to reference
the term in other definitions as well as when the term is exported. As boolean terms are rarely referenced
directly, their labels may be ommitted. All terms defined in scope of the begin-end pair are considered top
level terms.

%% Add the use of a let clause for local definitionms.

The register uses two terms to define behavior. The first, labeled 11, defines the register’s next state in
terms of its current state, input and control inputs. The if statement implements the various cases for hold,
shift right, shift left, and load. It should be noted that the shift operations are implemented using the built
in bitvector shift functions 1shr and 1shl that provide logical shifts over bitvector types. The second term,
labeled 12 defines the next output. This simple expression states that the next output is the same as the
next state as defined by term 11.

It should be noted that both terms defined in register hold simultaneously. Thus, both the next state
and output definitions must hold for the component to behave correctly. The structure of the specification
is much like the structure of a VHDL specification. Each state variable and output parameter is handled
individually. The distinction here is the variability of definition semantics. In this case, the Rosetta function
semantics is used to calculate next values for each variable.

The domain extends the base definition semantics by adding new definitions specific to a specific domain.
In the case of state_based, the basic addition is the concept of current and next state. Specifically in the
register definition, state refers to the register contents in the current state while state’ refers to the register
contents in the following state. The state_based domain defines the semantics of “x’”.

Parameter instantiation is achieved by traditional universal quantifier elimination. An object of the specified
type is selected and the parameter replaced by that object. When formal parameters are instantiated with
objects, those objects replace instances of parameters throughout the facet specification. When A is an actual
parameter and F is a formal parameter, the notation A=>F allows direct assignment of actual parameters to
formal parameters. This notation allows partial instantiation and is sometimes necessary when parameter
ordering in constructed facets is ambiguous.

%% Parameter instantiation in a facet must be discussed further.
%% This is associated with bug 164

Consider the following modified register specification:

facet register(i::input bitvector; o::output bitvector;
sO::input bit; sl::input bit)::state_based is
export state;
state: :bitvector;
begin
11: if s0=0 then
if s1=0 then state’=state
else state’=lshr(state) endif
else if s1=0 then state’= lshl(state)
else state’=i endif
end if;
12: o’=state’;
end facet register;

This specification is identical to the previous definition except that only the state variable is visible outside
the facet scope. The terms 11 and 12 are no longer visible as they are not listed in the export clause. The
variable state is accessed using the name register.state because register is the label assigned to the
facet.

2.1.1 Examples

Examples are included here to provide motivation for the facet syntax and to provide context for the following
sections. It is intended that these examples provide an overview, not a detailed language description. It
is suggested that these be referred to while reading subsequent chapters as a means for understanding the
utility of Rosetta definition capabilities.

%/ Examples are fried with the most recent syntax and language

%% semantics changes.

hh

%% sort - Too naive. Complete the definition or delete.

%% array_utils - Update to reflect the fact that arrays are gone.
%% array_utils package - Probably update this and remove the facet
%% version.

%% sort - All the later sort stuff should be thought through. We
%% don’t have units or a constraint package at the moment.

s

%% Include examples from the TDMA thingy.

Example 1 (Sort Definition) A declarative specification for requirements and constraints associated with
a sort function has the following form:

use array_utils(integer);
facet sort_req(i::input sequence(integer);
o::output sequence(integer))::state_based is
begin
12: permutation(o’,i);
11: ordered(o’);
end facet sort_req;

The facet sort_req defines a view of a component that accepts an array of integers as input and outputs
the array sorted. This simple specification demonstrates several aspects of Rosetta specification using the
state_based, ariomatic style.

Parameters for sort_req are simply an input and output arrays of type integer. The facet uses the
state_based domain allowing the use of o’ to represent the output in the state following execution. The
package array-utils (defined later) is included to provide definitions necessary for defining sort. Specifi-
cally, permutation and ordered. These functions could be defined in the declaration section of the pack-
age, however this definition is cleaner and allows reuse of the array utilities in other specifications. Note
that the array_utils package is parameterized over a type. This parameterization is used to specialize the
array_utils for any appropriate type.

It is possible to write a sort_req definition that is parameterized over the contents of the input and output
array. This implementation sorts arrays of integers. Although this may be interesting from a pedagogical
perspective, it is not particularly useful or reusable. The following definition parameterizes the facet definition
over an arbitrary type, T:

use array_utils(T);
facet sort_req(T::design type; i::input array(T);
o::output array(T))::state_based is
begin
12: permutation(o’,i);
11: ordered(o’);
end facet sort_req;

In this new sort_req facet, the type T associated with the contents of the input and output arrays is a
parameter. This allows specialization of the sort_req facet for various array contents. The only restriction
being that an ordering relationship must be defined on the array elements.

The following instantiation of the parameterized sort_req is equivalent to the original sort_req facet:

sort_req(integer,_,_);

This usage replaces all instances of T in the facet with the type integer. The resulting facet is semantically
identical to the original sort_req definition.

Example 2 (array_utils Package) Packages are a parameterized mechanism for grouping together defini-
tions. They are defined using the semantics of facets and will be discussed fully in a later section. Here, the
definition of the array_utils package used by the sort_req facet is defined:

package array_utils(T::univ)::logic is
begin

// numin - return the number of occurrences of x in i
numin(x::T; i::sequence(T)):: natural is
if i=[] then O
else if x=i(0) then 1+numin(tail(i))
else numin(tail(i))
end if
end if;

10

// permutation - determine if al is a permutation of a2
permutation(al::sequence(T); a2::sequence(T)):: boolean is
forall(x::T | numin(x, al) = numin(x, a2));

// ordered - determine if al is ordered. =< must be defined on T
ordered(al: :sequence(T)):: boolean is
forall(i :: sel(x::naturall x =< #al-1) | a(i) =< a(i+1));

// tail - return the tail of an array. based on sequence tail.
tail(al::sequence(T)):: sequence(T) is tl(al);

end package array_utils;

The array_utils package defines four general purpose functions for arrays: (i) numin; (ii) permutation;
(iii) ordered; and (iv) tail. It is difficult to explain these definitions fully without deeper understanding of
Rosetta function definition. However, some exploration will aid in understanding and writing more complex
specifications.

As an example, examine the definition of permutation:

permutation(al::sequence(T); a2::sequence(T)):: boolean is
forall(x::T | numin(x, al) = numin(x, a2));

This definition can be divided into two parts. First, the signature of permutation is given as
permutation(al::sequence(T); a2::sequence(T)):: boolean

The function name is permutation, (al::sequence(T); a2::sequence(T)) are the domain parameters,
and boolean is the return type.

The second part of the definition, following the keyword is, denotes the value of the return expression. The
expression specifies the permutation. It is true when every element of T occurs in al and a2 the same number
of times. It is false otherwise. The syntax of function declaration and the semantics of forall and other
constructs are defined later.

Other functions are similarly defined. numin determines the number of occurrences of a value in an array
using a simple recursive definition. ordered defines a predicate that is true when every element of its argu-
ment array is greater than or equal to the preceding element. Finally, tatl for arrays is defined by extracting
the elements into a sequence, finding the tail, and recreating an array. Remember, to fully understand these
definitions requires further knowledge of Rosetta type and function semantics that will be presented later.

Example 3 (Sort Constraints) An alternative view of a component models performance constraints. The
following definition models the power consumption constraints of a sorting component.

facet sort_constr::constraints
power::real;

begin
pl: power =< 5mW;

end facet sort_constr;

The variable power is a real number representing power consumed by the component. The facet body defines a
single term that limits power consumption to be less than or equal to 5mW. Both the semantics of constraints
and the unit constructors required to define 5mW are defined in the constraints facet.

11

Example 4 (Timed Sort) The facet sort_timed is an alternative definition of sort that places timing
constraints on the definition. Here, instead of modeling what is true in an abstract next state, the sort is
specified with respect to its behavior over time.

use array_utils(T);
facet sort_timed(T::design type; i::input sequence(T);
o::output sequence(T))::continuous is
begin
12: permutation(o@(t+bms),i);
11: ordered(o@(t+5ms));
end facet sort_timed;

This definition uses the continuous domain rather than the state_based domain. The notation z@t refers
to the value of = at time t. The term 12 states that the output, o, d5ms in the future must be a permutation
of the current input, ©. The term 11 states that the output must be ordered 5ms in the future.

No notion of next state as used previously is defined. However, this specification provides more detail in
the form of hard timing constraints. Using the continuous domain, the user is allowed to define values of
variables at specific times with respect to the current time t.

Example 5 (Operational Sort) The facet sort_op provides an operation definition for a sorting algo-
rithm by “implementing” a quicksort algorithm that will sort the input. Specifically:

facet sort_op(i::in T; o::out T)::continuous is

gsort(i::sequence(T))::sequence(T) is
let (pivot::T be t(0); t::sequence(T) be tail(i)) in
if i=nil
then i
else gsort(lside(pivot,t)) & [pivot] & gsort(rside(pivot,t))
end if;

lside(pivot::T; i::sequence(T))::sequence(T) is
if i=nil
then nil
else if i(0) =< pivot
then cons(i(0),lside(pivot, tail(i)))
else lside(pivot, tail(i))
end if
end if;

rside(pivot::T; i::sequence(T))::sequence(T) is
if i=nil
then nil
else if i(0) > pivot
then cons(i(0),lside(pivot, tail(i)))
else lside(pivot, tail(i))
end if
end if;

begin

11: o@(t+5ms) = gsort(i);
end facet sort_op;

12

This specification is interesting due to its similarity to a VHDL specification and its equivalence to sort_req.
The sort_op specification specifies that the output parameter 5ms in the future is equal to the result of
applying quicksort to the input parameter . The details of the application are unimportant. Suffice to say
that excluding the concept of a wait statement, this is quite similar to how a VHDL specification might be
defined.

The function gsort and the auxiliary functions lside and rside define a quicksort algorithm over sequences.
The definition follows the classic recursive style. As with other function definitions in these examples, these
functions require some further study to understand completely. At this point it is important only to understand
that parameters to the function are specified as param-var: :param-type, separated by the “;” token and
enclosed within parantheses. The final expression defines the return value. In the case of lside, all values
less than or equal to the pivot value are found recursively and returned.

A potentially cleaner specification might have the form:

package work(T::univ)::logic is
export sort_op;
begin

gsort(i::sequence(T))::sequence(T) is
let (pivot::T be t(0); t::sequence(T) be tail(i)) in
if i=nil
then i
else gsort(lside(pivot,t)) & [pivot] & gsort(rside(pivot,t))
end if;

lside(pivot::T; sequence(T))::sequence(T) is
if i=nil
then nil
else if i(0) =< pivot
then cons(i(0),lside(pivot, tail(i)))
else lside(pivot, tail(i))
end if
end if;

rside(pivot::T; i::sequence(T)):: sequence(T) is
if i=nil
then nil
else if i(0) > pivot
then cons(i(0),lside(pivot, tail(i)))
else lside(pivot, tail(i))
end if
end if;

facet sort_op(i::input T; o::output T) is
begin continuous

11: o@(t+bms) = gsort(i);
end facet sort_op;

end package work;

Here the function specifications are removed from the facet specification. The facet and functions are included
in the package work. The similarity to VHDL here is intentional. Unlike VHDL, the package is parameterized
allowing specialization for arbitrary types. Note the inclusion of the export sort_op clause. This causes

13

the sort_op facet to be visible outside the package. Other declarations such as gsort, lside and rside are
hidden in the package.

Why the obsession with sort? Thus far, an axiomatic, continuous time and operational continuous time
specification have been developed. Together, we can use all three specifications to define various charac-
teristics of a single sorting component in a manner unique to Rosetta. Specifically, in the next section we
will define how a designer can specify a sorting component by combining specifications from multiple do-
mains. The result is a requirements specification, a temporally constrained requirements specification, an
operational specification, and a power specification simultaneously describing a system. With the addition
of facet composition operators, this provides a powerful mechanism for mixing and composing specifications.

Example 6 (Alarm Clock System) Consider the following definition of an alarm clock taken from the
Synopsys synthesis tutorial. This alarm clock provides a basic capability for setting time, setting alarm,
sounding an alarm and keeping time. The specification states the following requirements:

1. When the setTime bit is set, the timelIn is stored as the clockTime and output as the display time.

When the setAlarm bit is set, the timelIn is stored as the alarmTime and output as the display time.

When the alarmToggle bit is set, the alarmOn bit is toggled.

o

When clockTime and alarmTime are equivalent and alarmOn is high, the alarm should be sounded.
Otherwise it should not.

5. The clock increments its time value when time is not being set.
The systems level description of the alarm clock is defined in the following facet:

use timeTypes;

facet alarmClockBeh(timeIn::input time; displayTime::output time;
alarm::output bit; setAlarm::input bit;
setTime: :input bit; alarmToggle::input bit)::state_based is

alarmTime :: time;
clockTime :: time;
alarmOn :: bit;
begin
setclock: setTime=1 =>
clockTime’ = timeIn and displayTime’ = timeln;
setalarm: if setAlarm=1
then alarmTime’ = timeIn and displayTime’ = timeln
else alarmTime’ = alarmTime
end if;

displayClock: setTime = O and setAlarm = 0 =>
displayTime’ = clockTime’;
tick: setTime => clockTime’ = increment_time(clockTime);

armalarm: if alarmToggle = 1
then alarmOn’ = -alarmOn
else alarmOn’ = alarmOn
end if;

sound: alarm’ = alarmOn and %(alarmTime=clockTime);
end facet alarmClockBeh;

14

Inputs correspond to data and control values for the clock. timeIn contains the current time input and can
be used to set either the alarm time or the clock time. displayTime is the time currently being displayed.
alarm drives the audible alarm. setAlarm and setTime control whether the alarm time or clock time are
currently being set. alarmToggle causes the alarm set state to toggle.

Local variables correspond to the state of the clock. alarmTime is the current time associated with sounding
an alarm. clockTime is the current time. alarmOn is “1” when the alarm is set and “0” otherwise.

Exploring the specification indicates that each requirement is defined as a labeled term. FEach term can be
traced back to a requirement from the English specification. Term setclock handles the case where the clock
time s being set. Term setalarm handles when the alarm time is being set. Term armalarm handles the
toggling of the alarm set bit. tick causes the clockTime to be incremented. The clock time is incremented
in the next state only when the clock time is not being set. Finally, the sound term defines the alarm output
in terms of the alarmOn bit and whether the alarmTime and clockTime values are equal. The “%” notation
transforms the boolean result of equals into a bit value. All terms must be simultaneously true. Thus, the
specification has the same effect as using multiple processes in VHDL.

The alarm clock facet uses the following collection of time manipulation functions and types:

package timeTypes::logic is

begin
hours :: subtype(natural) is sel(x::natural | x =< 12);
minutes :: subtype(natural) is sel(x::natural | x =< 59);
time :: type is data record(h::hours; m::minutes)::time?;
increment_time(t:: time) :: time is

record(increment_hours(t); increment_minutes(t));

increment_minutes(t:: time) :: minutes is
if t(m) < 59
then t(m) + 1
else O
end if;

increment_hours(t::time) :: hours is
if t(m) = 59
then if t(h) < 12
then t(h) + 1
else 1
end if
else t(h)
end if;
end package timeTypes;

hours and minutes are restricted subranges of natural number representing hours and minutes respectively.
The notation type(natural) indicates that hours and minutes are bunches, not singleton values. The sel
operation provides a comprehension operator and is used to filter natural numbers. time is a constructed
type defined as a record containing an hours value and a minutes value.

Three increment functions define incrementing time. increment_time forms a record from the results of
incrementing the current hours and minutes values. increment_hours and increment_minutes handle in-
crementing hour and minute values respectively. Note that the field names are used to reference hours and
minutes values respectively.

%% Remove this definition or fix it.

15

Example 7 (Stack definition) For formal specification fans, a semi-constructive stack definition is in-
cluded to describe an alternate means for function specification. Here, the traditional stack operations are
declared, but are not defined directly. The distinction with other function definitions being that no constant
definition appears in conjunction with the declaration. Assume here that there exist in the containing package
declarations for EType and SType. Then the specification takes the form:

facet stack::logic is
push(E: :Etype;S: :Stype) : : Stype;
pop(S::Stype) : :Stype;
top(S::Stype) : :Etype;
is_empty(S::Stype): :boolean;
empty: :Stype;

begin
axl:forall(e::Etypelforall(s::Stype|pop(push(e,s))=s));
ax2:forall(e: :Etypelforall(s::Stypeltop(push(e,s))=e));
ax3:forall(e::Etypel|forall(s: :Stypelnot(is_empty(push(e,s)))));
ax4:is_empty (empty) ;

end facet stack;

This is a canonical constructive specification for a stack. In the declarations section, push, pop, and top are
defined to operate over stacks and elements. The axioms defined as azl through az4 constrain the values of
functions in the traditional declarative fashion.

This specification style may prove uncomfortable for traditional VHDL users. An alternate definition uses
sequences to represent the stack:

package stackAsSeq(E::type)::logic is
begin
S::subtype(sequence(universal)) is sequence(E);
push(s::S; e::E) :: S is cons(e,s);
pop(s::S) :: S is tl(s);
top(s::8) :: E is hd(s);
empty::S is nil;
is_empty(s::S) :: boolean is s=empty;
end package stackAsSeq;

This stack definition uses the package construct to present a series of direct definitions. No terms are needed
to describe the behavior of the provided type. The stack type, S, is not an uninterpreted type but is defined as
a sequence of type E. The basic stack operations are now defined on the stack type using concrete operations.

An interesting exercise is to consider the meaning of:

stack(E,sequence(E)) and stackAsSeq(E)

As we shall see later, facet composition states that properties of both stack and stackAsSeq must apply in
the facet formed by and. Effectively, this new definition is consistent only if stackAsSeq obeys the axiomatic
definition provided by stack. In essence, stack represents requirements while stackAsSeq represents an
implementation of stack.

16

Summary: A facet is the basic unit of Rosetta specification. It consists of a label, optional parameter
list, optional declarations, a domain and terms that extend its domain. Variable declaration is achieved
using the notation v::T interpreted as the value of v is contained in T. Constants are similarly defined
using the notation v::T is c interpreted as the value of v is contained in T and is equal to c. Domains
provide a vocabulary for defining specifications. Terms extend domains to provide definitions for the specific
components. Terms are declarative constructs that are accompanied by a label. Any label defined in a
Rosetta specification may be exported and referenced using the canonical facet-name.label notation. By
default, all labels are exported. However, an explicit export statement may be used in the declaration section
to selectively control label export.

2.2 Facet Aggregation

An important system level specification activity is aggregation of facets into general purpose architectures.
Rosetta supports this directly using facet inclusion and facet labeling. Facet inclusion occurs when a facet
name is referenced in a facet term. Facet labeling occurs when a facet is given a new label.

Consider the trivial example of defining a three input and gate from two input and gates:

facet andgate(x, y::input bit; z::output bit)::state_based is
begin state_based

11: z’ = x and y;
end facet andgate;

facet andgate3(a,b,c::input bit; d::output bit) is
i:: bit;

begin
11: andgate(a,b,i);
12: andgate(i,c,d);

end facet andgate3;

The resulting definition is quite similar to structural VHDL without explicit component instantiation. The
first facet clearly defines the behavior of a simple and gate while the second seems to use facets as terms.
The terms 11 and 12 both reference andgate and are interpreted as stating that the definitions provided
by each are true. Thus, the first term instantiates andgate with items a, b and i where i is an internally
defined variable of type bit. Thus, the facet asserts that i is equal to a and b. The second term does the
same except it asserts that d is equal to 1 and c.

Communication between facets is achieved by sharing items. Here, the items are variable items defined
either in the parameter list or in the body of the including facet. This models instantaneous exchange of
information between facets via variables. Later, channels will be introduced to provide means for defining
connections with properties such as storage and delay.

Although similar to VHDL structural definition, this Rosetta definition style is semantically quite different.
To understand this requires some understanding of labels and item labeling. The notation 1: term defines
term and associates label 1 with it. Thus, the definition:

11: andgate(a,b,i);

asserts andgate(a,b,1) as a term and associates label 11 with it. Effectively, the definition renames andgate
locally to 11. Thus, the terms 11 and 12 define facets equivalent to andgate, but with new names. The
reasoning for this is demonstrated in any definition where components that locally define variables and
constants have multiple instances. For example, consider the following incorrect specification:

17

facet register(i::in bitvector; o::out bitvector;
load::in bit)::state_based is
memory: :bitvector;
begin
loadl: if %load then memory’=i else memory’=memory end if;
output: o’=memory;
end facet register;

facet registerx2(il,i2::input bitvector;
0l,02::output bitvector;
load: :input bit) is
begin state_based
register(il,ol,load);
register(i2,02,load) ;
end facet registerx2;

Consider the memory variable associated with each register. In the above definition, register.memory
reference to the memory variable in facet register. Unfortunately, there’s no way to learn which register.
Further, because the register variables share the same name in the facet, they must be equal.

The proper definition is:

facet register(i::input bitvector; o::output bitvector;
load::input bit)::state_based is
memory: :bitvector;
begin
loadl: if %load then memory’=i else memory’=memory endif;
output: o’=memory;
end facet register;

facet registerx2(il,i2::input bitvector;
0l,02::output bitvector;
load: :input bit)::state_based is
begin
rl:register(il,ol,load);
r2:register(i2,02,lo0ad);
end facet registerx2;

In this definition, the facet register is “copied” and relabeled twice. In the first case, the new facet is named
r1 and in the second, r2. The memory variable associated with r1 is referenced via r1.memory and similarly
for r2.memory. Now there is no conflict and the elements of each component have unique references. This
aspect of labeling is simple, but extraordinarily powerful.

Summary: Including facet definitions as terms supports structural definition through facet aggregation.
Including and instantiating facets in definitions is achieved using relabeling. Instantiating facets replaces
formal parameters with actual items. Unique naming forces these items to be shared among facets providing
for communications. When a facet is renamed, all of its internal items are renamed making each instance of
that included facet unique.

%% The following section is way out of date given the updates to the
%% facet algebra. We need to rethink facet declaration to include
%/ parameters (using a notation like functions) to make this happen
%% correctly. I think we can use the same semantics.

18

2.3 Facet Composition

The essence of systems engineering is the assembling of heterogenous information in making design decisions.
Rosetta supports this type of specification directly with operations collectively known as the facet algebra.
The facet algebra provides mechanisms for defining new specifications by composing existing specifications
using the standard operators and, or, and not.

In the context of facets, these are not logical operators. The operation F1 and F2 does not have a boolean
value. Instead, it defines a new facet with properties from both F1 and F2. Looking ahead, this operation
provides us a mechanism for combining properties from several facets into a single facet.

Facets under composition must maintain the logical truths as specified by standard interpretations of logical
connectives. For example, if F3 = (F1 and F2), then F3 is consistent if and only if F1 and F2 is consistent
(Note: F1 and F3 are enclosed in parentheses because = has higher precedence than and). Facet composition
is useful for specifying many systems level properties by combining properties from various facets. A new
facet can be defined via composition by an expression of the following form:

<name>(<paramlist>) is <facet_exzpression>;

where < name > is the new name, < paramlist > is an optional parameter list, and < facet_expression >
is an expression comprised of facet algebra operations.

The following examples describe several prototypical uses of facet composition. Please note that domains
used in these examples are defined in an accompanying document.

F1 and F2 Facet conjunction states that properties specified by terms T1 and T2 must by exhibited by the
composition and must be mutually consistent. Further, the interface is I; U I implying that all symbols
visible in F1 and F2 are visible in the composition.

The most obvious use of facet conjunction is to form descriptions through composition. Of particular in-
terest is specifying components using heterogeneous models where terms do not share common semantics.
A complete description might be formed by defining requirements, implementation, and constraint facets
independently. The composition forms the complete component description where all models apply simulta-
neously.

Example 8 (Requirements and Constraints) Reconsider the previously defined facets sort_req and
sort_const. Recall that sort_req defined requirements for a sorting component while sort_const defined a
power constraint over the same component. A sorting component can now be defined to satisfy both facets:

sort :: facet is sort_req and sort_const;

Informally, sort: (i) outputs a sorted copy of its input; and (ii) consumes only SmW of power. Formally,
the new facet sort is the product of properties from sort_req and sort_const. In this example, the inter-
action between constraints domain and other requirements domains are unspecified. Therefore, analysis of
interactions will reveal little additional information. However, it is certainly possible to define a relationship
between the constraints and state_based domains if desirable.

Example 9 (Postcondition Specifications) Consider again the specifications for sort_req and sort_op.
The first facet specifies the requirements for a sorting component using a black-box, axiomatic style. The sec-
ond facet defines sorting using a specific, operational algorithm. Like the constraint model and requirements
models previously, sort_req and sort_op can be combined into a single sorting definition:

sort :: facet is sort_req and sort_op;

19

Here, the composition behaves much differently. The state-based and models do interact in interesting ways.
The composition of sort_req and sort_op provides a pre- and post-condition for the operational sorting
definition. The net effect is like an assertion in VHDL. However, the requirements are specified distinctly
and are not intermingled in the operational definition. Thus, for this composition to be consistent, the
operational specification must hold along with it’s real time constraints and the axiomatic specification must
hold defining pre- and post-condition requirements on the composition.

Similarly, a sort specification can be developed that combines requirements, operational and constraint models:

sort :: facet is sort_req and sort_op and sort_const;

F1 or F2 Facet disjunction states that properties specified by either terms T1 or T2 must be exhibited by
the composition. Note that this is logical or, not exclusive or. The most obvious use of facet disjunction is
combining different component models into a component family. The following example illustrates such a
situation.

Example 10 (Component Version) Consider the following definitions using sort facets defined previ-
ously:

multisort::facet is sort_req and (bubble_sort or quicksort);

The new facet multisort describes a component that must sort, but may do so using either a bubble sort or
quicksort algorithm. While and is a product operator, or is a sum operator over facets.

Other facet operations are defined and include negation, implication and equivalence. These will be presented
in detail in a later chapter. The objective here is simply to demonstrate various facet composition operations
and where they might apply in a specification.

Summary: The facet algebra supports combining facet definitions into new facet definitions. The and and
or operations corresponding to product and sum operations over facets combine facets under conjunction
and disjunction respectively. The and operation defines new facets with all properties from both constituent
facets. The or operation defines new facets with properties from either facet.

2.4 Packages

Packages provide a convenient way of aggregating similar Rosetta structures including facets, types, functions
and other definitional elements. Semantically, a package is simply a facet with: (i) no terms section; and
(ii) explict export of defined symbols. This, the package construct allows only the declaration of new items.
The Rosetta package is intended function much like a VHDL package.

Packages are define using the package keyword and name, a parameter list, domain and definitions between
a begin-end pair. The name labels the package and provides an access mechanism. The parameter list
provides a means for defining models around a common parameter set. Only parameters of kind design are
allowed. Leaving out the kind specifier causes a parameter definition to default to design. The domain
defines a base domain for all contained definitions. Definitions may include any Rosetta definitional structure
including constants, types, functions and relations, facets and other packages.

The form of a package is shown in the following example:

20

package mathops(w:natural)::logic is
begin
word: :word (w) ;

bv2nat (w: :word) : :natural;
nat2bv(n: :natural): :word;

component adder(il,i2::bitvector[w], o::bitvector[w+1]) is
begin
definition state-based
bv2nat (o’) = bv2nat(il)+bv2nat(i2);
end definition;
end adder;

component multiplier(il,i2::bitvector[w], o::bitvector[2*w]) is
begin
definition logic
bv2nat(o’) = bv2nat(il)*bv2nat(i2);
end definition;
end multiplier;

end mathops;

By default, all symbols from the package are visible by compilation units using the package. If an export
clause is present, only listed labels are visible. Users are strongly encouraged to explicitly export symbols
from packages. As with facets, exported package labels are referenced using the “package.label” notation.

Packages are included in other compilation units using the use keyword and a fully instantiated package
name. To use the previous package definition contents within a second package, the following notation is
used:

use mathops(8);

The result is inclusion of the facet in the immediately following compilation unit. Note that all mathops
parameters must be instantiated when it is included. The adder component in mathops is referenced using
the notation mathops.adder unless the reference is unambiguous. In this case, simply using adder is
appropriate. If a local definition of adder is declared in the including compilation unit or more than one
definition of adder is present, then the dot notation must be used. If a facet includes multiple instances of
mathops, parameters disambiguate definitions as in mathops(8) .adder.

%% Note that there are still examples remaining in the systems
%% chapter that we might want to move

%% Do we want to keep the concept of interface and body compilation
%% units. Entered as bug 163.

2.5 Label Visibility and Resolution

Rosetta is at its essence a statically scoped language where the declaration associated with a symbol being
referenced in an expression can be found at compile time. When resolving a label instance, there are five
basic sources for declarations that comprise the context: (i) the local declarative scope; (ii) the enclosing

21

compilation unit; (iii) the facet domain; (iv) packages identifed in a use clause; and (v) the context of the
enclosing compilation unit.

The local scope associated with an expression is defined as the parameter list associated with a function
definition, let expression, quantifier or any expression construct that defines local parameters. If a label is
used whose definition occurs in the local scope, that declaration always takes precidence over any enclosing
scope. In the example:

facet example::state-based is
X::integer is 5;
inc(x::integer)::integer is x+1;

begin

end facet example;

within the definition of inc, x used in the expression refers to the local parameter x, not the variable x
defined in the outer scope. This is consistent with traditional programming languages.

Alternatively, in the example:

facet example::state-based is
x::integer is 5;
inc(x::integer)::integer is example.x+1;
begin
end facet example;

The dot notation is used to reference the x declared in the facet example’s declarative region. Such uses of
the dot notation should be avoided, but it is semantically legal in this context.

The next scoping level is the containing compilation unit. Recall that a compilation unit is any structure
that is a facet derivative. Specifically, facets, domains, packages and interactions are all facet derivatives
and are thus compilation units. In the example:

facet example::state-based is
X::integer;
inc(x::integer)::integer is x+1;

begin
tl: x’ = inc(x);

end facet example;

the x appearing in term t1 is the label declared in the facet’s declarative region.

All facets extend a domain definition that provides a basis for defining the specification. Elements defined
in the declarative region of a facet’s domain are treated as if they are defined in the declarative region of
the facet. This is consistent with the definition of facet extension used to define domain inclusion. In the
example:

facet example::state-based is
inc(x::integer)::integer is x+1;

begin
S = integer;
s’ = inc(s);

end facet example;

22

The state type S and the state variable s are defined in the domain state-based. Thus they are referenced
using their undecorated names without using the dot notation. Note state-based.s is not defined as the
facet extends the domain rather than encapsulating the domain. In the example:

facet example::state-based is
S::type is integer;
inc(x::integer)::integer is x+1;

begin
s’ = inc(s);

end facet example;

the declaration of type S represents a redeclaration error because the declaration of S in state-based is
treated as a local definition. Thus, the term S = integer is used in the previous facet definition to make
the value of the state type concrete.

Packages used by a compilation unit represent the next source of scope and context information to consider
when resolving a symbol. Three cases exist: (i) a label is declared locally and in a package; (ii) a label is
declared in a single package; and (iii) a label is declared in multiple packages.

In the example:

package test::logic is
begin

X::integer;
end package test;

use test;
facet example::state-based is
inc(x::integer)::integer is x+1;
begin
tl: x? = inc(x);
end facet example;

the x instance in used in the term t1 refers to the declaration in package test. It is used without the dot
notation because there is only one possible source for the declaration. In the following example, multiple
used packages define x:

package testO::logic is
begin

X::real;
end package test;

package testl::logic is
begin

X::integer;
end package test;

use testO;
use testl;
facet example::state-based is
inc(x::integer)::integer is x+1;
begin
tl: testl.x’ = inc(testl.x);
end facet example;

23

Here the dot notation must be used to eliminate ambiguity in the determination of what declaration x refers
to. If a local x is defined:

package testO::logic is
begin

X::real;
end package test;

package testl::logic is
begin

x::integer;
end package test;

use testO;

use testil;

facet example::state-based is
X::type is integer;
inc(x::integer)::integer is x+1;

begin
tl: x’ = inc(testl.x);

end facet example;

then the unqualified instance refers to the local definition. Note that definitions from packages can be
referenced by explicitly using the package name.

Finally, it may be that a label is defined in the compilation unit containing facet example:

package scoping_example::logic is
X::integer;

package testO::logic is
begin

X::real;
end package test;

package testl::logic is
begin

X::integer;
end package test;

use testO;
use testl;
facet example::state-based is
inc(x::integer)::integer is x+1;
begin
tl: scoping_example.x’ = inc(testl.x);
end facet example;
end package scoping_example;

when no local definition is present, the undecorated reference cannot be resolved to a single declaration of x as
it is defined in the containing compilation unit and two packages. Thus, the package name must be explicitly
included in the label reference. If no declaration is present except the declaration in scoping_example, then
it may be used without the dot notation. If a local declaration is present, the local definition may always be
referenced without the dot notation.

24

A rule of thumb for Rosetta scoping is that the local definition (in the facet or its domain) is always referenced
without using the dot notation. If the local declaration is not present and only one declaration exists in
the scope of the reference, then it may be used with our without the dot notation. If multiple declarations
are present, then any declaration other than a local declaration must be referenced explicitly using the dot
notation. Any active declaration may be referenced by using it’s compilation unit name and the dot notation.

2.6 Compilation Units and Libraries

Rosetta treats each facet or facet derivative as a separate comilation unit. Thus, facets, packages, domains,
components and interactions are defined as compilation units and may be processed as separate units. Even
if multiple compilation units appear in a single file, they are process as individual units. Thus, a use or
library clause applies only to the compilation unit immediately following.

The scope of a compilation unit is defined as the region between its declaration keyword (facet, package,
domain, interaction, or component) and the end associated with the declaration keyword. In addition, the
region immediatly preceding the declaration keyword back to the previous declaration is also included. Thus
use and library clauses immediately preceding a compilation unit are treated as being in the scope of the
compilation unit. It bears repeating that use and library clauses apply only to the immediatly following
compilation unit, not the entire file containing the compilation unit.

A library is a compilation unit with an associated logical location. Thus, a library is something that contains
packages and other compilation units. Semantically, a library and a package are identical. It is only the
association with a location that distinguishes a library. The implementation of libraries and dereferencing
library names is implementation specific. However, the notation:

library ieee.ittc.ku.edu

refers to the library ieee located at ittc.ku.edu. The specifics of library resolution are left to the imple-
mentor. When defined in the scope of a compilation unit, any library definitions are used to find packages
referenced in use clasues. Thus, the notation:

library ieee.ittc.ku.edu;
use floating_point;

specifies that library ieee.ittc.ku.edu should be added to the search path for the package floating point.

%% The library notion is decidedly vague. An alternative proposal
%% would be to prepend the library identifier to the package

%% identifier. The only problem is determining where the library id
%% stops and the library id starts. Linked to bug 165.

The outermost compilation unit of any specification must be a package. All facet, component, domain
and interaction definitions must therefore be enclosed in a package. Packages may also be defined within
packages, but may also form the root of a declaration hierarchy. It follows then that libraries must contain
packages.

2.7 The Alarm Clock Example

In Section 2.1, the alarm clock example was introduced as an example systems level specification. In this
section, the alarm clock example is examined more carefully and a structural definition introduced. The
example is completely specified to provide an overall view of a Rosetta functional specification.

25

2.7.1 The timeTypes Package

timeTypes is a general purpose package introduced and explained in Section 2.1. It contains basic data
types and functions used in the definition of the alarm clock system and structural definition. The only
construct used in this definition that may require some explanation is the comprehension quantifier, sel.
This function implements set comprehension for bunches. It does so by taking as its argument a function
that maps a bunch onto the booleans and returning all domain elements for which the function is true. Thus,
the statement:

sel(x::natural | x =< 12)
examines all elements of the natural numbers and returns those that are less than 12. Because its return
type is bunch, its use in defining a type is perfectly legal. Further note that both hours and minutes are

subtypes of type(natural). This indicates that both have bunches as values, not singleton elements.

package timeTypes::logic is

begin
hours :: subtype(natural) is sel(x::natural | x =< 12);
minutes :: subtype(natural) is sel(x::natural | x =< 59);
time :: type is data record(h::hours; m::minutes)::time?;
increment_time(t:: time) :: time is

record(increment_hours(t); increment_minutes(t));

increment_minutes(t:: time) :: minutes is
if t(m) < 59
then t(m) + 1
else O
end if;

increment_hours(t::time) :: hours is
if t(m) = 59
then if t(h) < 12
then t(h) + 1
else 1
end if
else t(h)
end if;
end package timeTypes;

2.7.2 Structural Definition

The structural definition begins by defining facets representing each of the alarm clock components. Specif-
ically, this includes: (i) a multiplexor for defining what values are displayed; (ii) a store for internal state
values; (iii) a counter for incrementing the current time; and (iv) a comparator for determining when the
alarm should be sounded.

Multiplexor
The mux definition describes a component that determines which of its data inputs, timeIn or clockTime,

should be displayed by the clock. This determination is made by examining the control signals setAlarm
and setTime. Three terms are defined that select an output based on the control inputs.

26

// mux routes the proper value to the display output based on the
// settings of the setAlarm and setTime inputs.
use timeTypes;
facet mux(timeln::input time; displayTime::output time;
clockTime: :input time; setAlarm::input bit;
setTime: :input bit)::state_based is
begin
11: %setAlarm => displayTime’ = timeln;
12: YsetTime => displayTime’ = timeln;
13: % (-(setTime xor setAlarm)) => displayTime’ = clockTime;
end facet mux;

Recall that the Rosetta operator % converts bit values into boolean values allowing bits to be used in
implications directly.

Store

The store component is the store for the alarm clock’s internal state. It operates by examining the control
bit associated with each stored value. If the control bit is set, a new value is loaded from an appropriate
input, or in the case of alarmOn, toggling the existing value. If the associated control bit is not set, then the
stored value is retained.

// store either updates the clock state or makes it invariant based

// on the setAlarm and setTime inputs. Outputs are invariant if

// their associated set bits are not high.

use timeTypes;

facet store(timeln::input time; setAlarm::input bit; setTime::input bit;
toggleAlarm: :input bit;
clockTime: :output time; alarmTime::output time
alarmOn: :output bit)::state_based is

begin

11:: if %setAlarm
then alarmTime’ = timeln
else alarmTime’ = alarmTime

end if;

12:: if %setTime
then clockTime’ = timeln
else clockTime’ = clockTime

end if;

13:: if %toggleAlarm
then alarmOn’
else alarmOn’

end if;
end facet store;

-alarmOn
alarmOn

Counter

The counter component is the simplest component involved in the definition. It states that each time the
clock is invoked, its internal time is incremented.

// counter increments the current time

27

use timeTypes;

facet counter(clockTime :: inout time)::state_based is
begin
14:: clockTime’ = increment_time(clockTime);

end facet counter

Comparator

The comparator implements the guts of the alarm clock’s alarm function. It determines the appropriate
value for the alarm output given the state of the alarm set bit and the values of the alarm time and the clock
time. If the alarm is set and the alarm time and clock time are equal, then the alarm output is enabled.
Again, the % operator is used to convert a boolean value into the bit value associated with the alarm output.

// comparator decides if the alarm should be sounded based on the
// setAlarm control input and if the alarmTime and clockTime are
// equal.
use timeTypes;
facet comparator(setAlarm:: in bit; alarmTime:: in time;
clockTime:: in time; alarm:: out bit)::state_based is

begin

11: alarm = %(setAlarm and (alarmTime=clockTime)) endif
end facet comparator;

2.7.3 Structural Definition

The actual structural definition instantiates each component and provides appropriate interconnections.

// The alarm clock structure is defined by assembling the components

// defined previously.

use timeTypes;

facet alarmClockStruct(timeIn::input time; displayTime::output time;
alarm: :output bit; setAlarm::input bit;
setTime: :input bit; alarmToggle::input bit)::state_based is

clockTime :: time;

alarmTime :: time;

alarmOn :: bit;
begin

store_1 : store(timeln,setAlarm,setTime,toggleAlarm,clockTime,
alarmTime,alarmOn) ;
counter_1 : Counter(clockTime);
comparator_1 : comparator(setAlarm,alarmTime,clockTime,alarm) ;
mux_1 : mux(timeIn,displayTime,clockTime,setAlarm,setTime);
end facet alarmClockStruct;

2.7.4 The Specification

The final specification enclosed in a Rosetta package is shown in Figure 2.1.

28

package AlarmClock::logic is

use timeTypes;
facet mux(timeIn::input time; displayTime::output time; clockTime::input
setAlarm: :input bit; setTime::input bit)::state_based is
begin
11: %setAlarm => displayTime’ = timeln;
12: YsetTime => displayTime’ = timeln;
13: %(-(setTime xor setAlarm)) => displayTime’ = clockTime;
end facet mux;

use timeTypes;

facet store(timeIn::input time; setAlarm::input bit; setTime::input bit;
toggleAlarm: :input bit; clockTime::output time;
alarmTime: :output time alarmOn::output bit)::state_based is

begin
11: alarmTime’ = if %setAlarm then timelIn else alarmTime endif;
12: clockTime’ = if %setTime then timelIn else clockTime endif;
13: alarmOn’ = if %toggleAlarm then -alarmOn else alarmOn endif;
end facet store;
use timeTypes;
facet counter(clockTime :: inout time)::state_based is
begin
14:: clockTime’ = increment-time clockTime;

end facet counter

use timeTypes;
facet comparator(setAlarm:: in bit; alarmTime:: in time;
clockTime:: in time; alarm:: out bit)::state_based is
begin
11: alarm = %(setAlarm and (alarmTime=clockTime)) endif
end facet comparator;

use timeTypes;

facet alarmClockStruct(timeIn::input time; displayTime::output time;
alarm: :output bit; setAlarm::input bit;
setTime: :input bit; alarmToggle::input bit)::logic is

clockTime :: time;

alarmTime :: time;

alarmOn :: bit;
begin

store_1 : store(timeIn,setAlarm,setTime,toggleAlarm,clockTime,
alarmTime,alarmOn) ;
counter_1 : Counter(clockTime);
comparator_1 : comparator(setAlarm,alarmTime,clockTime,alarm);
mux_1 : mux(timeIn,displayTime,clockTime,setAlarm,setTime);
end facet alarmClockStruct;

end package AlarmClock;

Figure 2.1: The complete alarm clock specification

29

time;

Chapter 3

Items, Variables, Values and Types

%% First Evaluation Complete...

3.1 Items and Values

Rosetta’s basic semantic unit is called an item. Item structures result when Rosetta descriptions are parsed
prior to manipulation. Although most users will never deal directly with items, they present an effective
way to describe the relationships between variables, values and types.

Informally, an item consists of a label naming the item, a value the item represents, and a type from which
specific item values must be chosen. When any structure is defined in a Rosetta specification, an item is
created with the specified label. Variables, constants, terms, even facets themselves are items in a Rosetta
specification. When a label is referred to in a specification, it refers to the value of the item it is associated
with. An item’s set of potential values is delineated by it’s associated type. In a legal Rosetta specification,
every item’s value is an element of it’s associated type. A more complete description of items can be found
in Chapter 7.

Value items, or simply values, represent items that can be used as values for other items. There are three
general classes of values: (i) elements; (ii) composite items; and (iii) functions. Elemental values represent
primitive, atomic values that are directly manipulated by Rosetta. Elemental values include such things as
integers, naturals, characters, bits and boolean values. Traditional programming languages refer to elemental
values as scalar. Composite values are constructed from other values. Composite values include such things
as sequences, sets, and facets. Function values represent operations that by definition exhibit properties of
mathematical functions. The name universal is used to refer to all values. Universal is itself a type, but
refers to the Rosetta term language.

All Rosetta types are sets where a set is simply a packaged collection of values. Functions and properties
for sets are defined completely in Section 3.6.1. Throughout this document, the terms set and subtype are
used interchangeably to refer to a subset of a set. The term type refers to any possible set. The notation
a::Tis used to declare a new Rosetta item and constrain its type. Appearing in a declarative region, “a: :T”
declares a new item labeled a of type T. Specifically, a is a new item constrained by the type constraint a
in T where T is a set. If the notation a::T appears in a non-declarative section, it serves as a mechanism
for explicitly specifying the type of an expression when type inference produces ambiguous results.

By convention, we say that v::T in a declarative region of a facet declares a wvariable item of type T whose
value is an element of set T. No expression is included to constrain the value of v, thus its value is not known.
Similarly, the notation v::T is c defines a constant item of type T whose value is given by the expression
c. The constraint ¢ in T must hold for the constant declaration to be consistent. Function definition is an
exception to this rule where the expression ¢ becomes the expression associated with the function, not an

30

expression evaluated to obtain a value. This notation will be explained and used extensively in the following
sections.

3.2 Elements

By definition, elements are values that are atomic and cannot be decomposed. Element types are sets of
such values. Numbers such as 1, 5.32, and -32, characters such as ’a’, 'B’, and '1’, and boolean values such
as true and false represents such atomic values. In contrast, composite values such as sequences and sets
are not elemental in that each is defined by describing its contents. Element values are frequently called
scalars in traditional programming languages.

The type element is comprised of the types number, character, and any new values created by enumeration
declarations. The element type is largely a semantic construction with no common operations over all
members of the type other than simple equality (=) and inequality (/=) operations.

3.3 Numbers

Numeric types include standard sets of values associated with traditional number systems. Predefined
numeric types include real, integer, natural, bit, imaginary, complex and boolean and are listed in the
following table:

Type Format Subtype Of
complex 142%j, 3*e(4x]j) number
real -123.456, 123.456, 1.234e56 complex
posreal 123.456, 1.234eb56 real
rational 123/456 real
integer 123,0,-123 rational
natural 0,123, integer
posnat 123 natural
bit 1,0 natural
imaginary j, 5%j complex
boolean true, false number
number Any element of the above types element

Predefined operators defined over number and its subtypes include: (Assuming A and B are numbers)
%% Ordering relations moved to boolean, real, and imaginary.

Operation Format Valid For
Negation - A number

3.3.1 Complex Numbers

Complex numbers form the most basic Rosetta number. All traditional number values are subtypes of
complex. Traditional operations such as addition and subtraction are defined over complex numbers as
anticipated. Projection functions extract real and imaginary values from complex values. re returns the
magnitude of a number’s real part while im returns the magnitude of the imaginary part. For any complex
value n expressed in the cartesian form:

n = re(n)+im(n)*j

31

The polar form may also be used. For any complex value n expressed in the polar form:
n = mag(n)*e” (arg(n)*j)

The conj operator evaluates to the complex conjugate of its complex argument. The operator mag evaluates
to the magnitude of the vector associated with a complex number in the complex plane.

Additional predefined operators defined over complex and its subtypes include: (Assuming A and B are
numbers)

Operation Format Valid For
Addition and Subtraction A+B,A-B complex
Multiplication and Division AxB,A/B complex
Power ,A® B complex
Square Root sqrt (4) complex
Imaginary and Real im(A), re(Ad) complex
Magnitude, Conjugate and Argument abs(A), conj(A), arg(A) complex
Trig functions sin(A), cos(A), tan(A) complex

arcsin(A), arccos(A), arctan(A)
sinh(A), cosh(A), tanh(A)
arcsinh(A), arccosh(A), arctanh(A)
Log and exponential exp(4), log(h), loglO(A), log2(A) complex

Real Numbers
The type real can be defined as the subtype of complex such that im(x)=0. Formally:
real: :subtype(complex) is sel(x::complex | im(x)=0);

The additional operations min, max, floor, ceiling, round, and sgn are defined over real as well as
traditional ordering relationships:

Operation Format Valid For
Minimum and Maximum A min B, A max B real
Floor, Ceiling and Truncate floor(x), ceiling(x), trunc(x) real
Round round (x) real
Signum sgn (x) real
Ordering Relations A<B,A=<B,A>B,A>=B real

min and max evaluate to the minimum and maximum value of their arguments respectively.

floor evaluates to the greatest integer number less than or equal to its argument. Conversely, ceiling
evaluates to the least integer number greater than or equal to its argument. trunc always truncates it’s
value towards zero.

round evaluates to ceiling if the fractional part of its argument is greater than or equal to 0.5. Otherwise,
it evaluates to floor.

sgn is defined formally as (for x # 0):
sgn(x::real)::integer is if -(x=0) then x / abs(x) else 1 end if;

Classical ordering relationships are provided and defined the traditional manner.
The constant values e and pi are provided as real numbers:

Constant Format Valid For
Expotential e number
Pi pi real

32

Positive Real Numbers
The subtype posreal is defined as the subtype of real such that all values are greater than 0.0. Formally:
posreal: :subtype(real) is sel(x::real | x > 0);

No additional operators are defined over posreal beyond those defined for real.

Imaginary Numbers

The type imaginary is the subtype of complex such that its real part is 0. Formally:
imaginary: :subtype(complex) is sel(x::complex | re(x)=0);

Imaginary numbers are formed by multiplying a real number by the predefined imaginary constant j. One
can think of this as a conversion operation from real number types to imaginary numbers. Multiplying an
imaginary number by the imaginary constant results in a non-imaginary value. Thus, 5xj*j is equivalent to
-5 as expected.

The following operators are defined over imaginary beyond those defined for complex:

Operation Format Valid For
Minimum and Maximum A min B, A max B imaginary
Ordering Relations A<B,A=<B,A>B,A>=B imaginary

min and max evaluate to the minimum and maximum value of their arguments respectively.

Classical ordering relationships are provided and defined the traditional manner.

Rational Numbers

The type rational is the subtype of real such that each value is calculated as one integer value divided by
another. Formally:

rational::subtype(real) is sel(x::real | exists(y,z::integer | x=y/z and z/=0));

No additional operators are defined over rational beyond those defined for real.

Integer Numbers

The subtype integer is a subtype of rational such that all values are discrete. Formally:
integer: :subtype(rational) is sel(x::rational | floor(x)=ceiling(x));

The additional mod, div and rem functions are defined over integer in addition to operators defined over
rational. All operators are defined in the traditional fashion.

Operation Format Valid For
Modulo Arithmetic x mod y integer
Integer Division x div y integer

Integer Remainder x rem y integer

integer is closed under +, -, *, but not under /, or trigonometric operations.

33

Natural Numbers

The subtype natural can be defined as the subtype of integer such that all values are greater than or
equal to 0. Formally:

natural::subtype(integer) is sel(x::integer | x >= 0);

No additional operators are defined over natural beyond those defined for integer.

Positive Natural Numbers

The subtype posnat is defined as the subtype of natural such that all values are greater than 0. Formally:
posnat: :subtype(natural) is sel(x::natural | x > 0);

No additional operators are defined over posnat beyond those defined for natural.

Bits

The subtype bit can be defined as a subtype of natural consisting of the values 0 and 1. Formally:
bit::subtype(natural) is {1,0};

Additional operators defined over bit include: (Assume the declarations x,y::bit and the definitions a=%
x, and b=% y):

Operation Format Definition

% % 1, % true Converts bits and boolean.
Inverse not x % -a

Conjunction and Disjunction x and y, x or y %(a and b), %(a or b)
Negated Conjunction and Disjuction x nand y, x nor y mnot(x and y)), not(x or y)
Exclusive or and nor x xor y, x xnor y %(a xor b), %(a xnor b)

The % operation translates between bit and boolean in such a way that 1 is isomorphic with true and 0 is
isomorphic with false.

It should be noted that as a subtype of natural, bit is not closed under arithmetic operations such as plus
and minus.

3.3.2 Lexical Structure of Number Constants

Numeric constants are represented by a strings of digits and optional sign, decimal point, exponential and
radix indicators. Specifically:

e A number may be preceded by an optional “~” operator that inverts the sign of its argument. The
number -123 is equivalent to negative 123.

e A single decimal point may be included in a number. The number 1.23 is interpreted in the traditional
manner.

e A single exponent indicator may be included in a number. The number 1.234e7 is equivalent to 1.234
times 10 to the 7" power.

34

e An optional radix may be included using the notation R\N\eE where R is the radix value (up to 16),
N is a number, and E is an exponent. The radix value and the exponent value are always expressed in
base 10 while the number value is specified in the indicated radix. The number 2\10001.1001\ is the
base 2 representation of the binary real value 10001.1001. Note that “\” is not a function, but a part
of the number token itself.

e Imaginary numbers are formed by multiplying a real value by the complex root, j. The number 5. 3%j
is interpreted in the traditional fashion.

e Complex numbers are formed by adding a real number to an imaginary number or using the polar
form. The number 5+2%j is interpreted as the complex number whose real part has magnitude 5 and
imaginary part has magnitude 2. The number 6%e (pi*j) is interpreted as the complex number whose
magnitude is 6 and whose argument is pi.

3.3.3 Boolean

The Rosetta boolean type is defined by the two element set {true,false} and is a subtype of number.
Although boolean is a number type, it is not a subtype of complex or natural.

The following operators are defined over boolean beyond those defined for complex:

Operation Format Valid For
Minimum and Maximum A min B, A max B boolean
Ordering Relations A<B,A=<B,A>B,A>=B boolean
Bit/Boolean Conversion %A boolean
Logical Operations A and B, A or B, A xor B boolean
A nand B, A nor B, A xnor B
not A

min and max evaluate to the minimum and maximum value of their arguments respectively. The maximum
boolean value is true and the minimum false. Classical ordering relationships are provided and defined the
traditional manner given the definitions of true and false as maximum and minimum values respectively.

The % operator converts between boolean and bit in the classical manner.

Classical logical operations including and, or, xor, nand, nor , xnor, and not are provided. and and or are
synonyms for min and max while not is a synonym for the unary operation “-”.

When treated as numeric values, true and false follow the following equivalence and ordering rules:

Property Meaning
false = -true false is equivalent to not true
-false = true true is equivalent to not false

X /= true => x < true) true is the greatest number
x /= false => x > false) false is the least number

forall(x: :number
forall(x: :number

Boolean values obey ordering laws, but addition, subtraction, multiplication, division and other traditional
operations are not defined. As numbers, true acts like positive infinity and false acts like negative infinity.
Consequences of this convention are numerous and useful. They include: (i) max is semantically the same as
or; (ii) min is semantically the same as and; and (iii) =< is semantically the same as implication (=>) and >=
is semantically the same as implied by (<=). The same laws apply to these operations in all cases, and the
different signs are taken to be synonyms of each other, maintained here for the sake of historical recognition.
Thus, we have the following table defining min and max over true and false:

A B A min B A max B
false false false false
false true false true
true false false true
true true true true

35

This is identical to the truth table defining and and or. The negation operator, -, also follows directly from
the numeric interpretation of boolean. The greatest positive number negated is the least negative number.
Thus, -true = false. As negation is its own inverse, we know that -(-x)) = x for any boolean value x.
Thus, -false = true. The resulting truth table has the form:

A -A
false true
true false

Definitions for other logical operations follow directly. Of particular interest is the definition of implication
as:

A=>B==-AorB

By definition, this is equivalent to ~A max B. Again, consider the truth table generated by the definition of
true and false as numeric values:

A B -A -A max B
false false | true true
false true true true
true false | false false
true true false true

This is semantically the same as the definition of implication. Reverse implication works similarly and the
definition of equivalence (A=B) is consistent with the above definition. Further, when values are restricted to
boolean, the following equivalences hold:

A=>B==A=<B
A<<=B==A>8B
A<K<=Band B<=A==A=8B

It should be noted that Rosetta does not define logical equivalence, iff, separately from numerical equiva-
lence. Given the mathematical definition of booleans, the normal equivalence operations are sufficient.

Example 11 (Number Constants) Ezamples of defining number constants, including complez, its sub-
types, and boolean include:

Number Interpretation

12 The standard decimal constant 12
-12 The standard decimal constant —12
1.2 The standard decimal constant 1.2
1.23e4 The decimal constant 1.23 x 10*
1.23e-4 The decimal constant 1.23 + 10~4

16\E.1F\e5 The hexadecimal constant E.1Fy¢ * 16°
2\1101\e-7 The binary constant 11015 % 2~7
false The boolean constant false

true The boolean constant true

3.4 Characters

The type character is a subtype of element and is defined as the collection of unicode values.

Given a::character, b::character, and n::natural in the range of Unicode code values, operators on
character include:

36

Operation Format Definition

Ord and character ord(a), char(n) Unicode value
Ordering Relations a<b, a=<b ... ord(a)<ord(b), ord(a)=<ord(b) ...
Raise and lower case uc(a), dc(a) Raise/lower case

3.4.1 ASCII Type

The type ascii is a subtype of character and is defined as the subset of characters that represent ASCII
values. Formally:

ascii::subtype(character) is map(char,{0,..255});
No new functions are defined on ASCII other than those defined over character values.

%% Should add other character sets besides ascii.

Lexical Structure of Character Constants

Unicode literals are expressed using the standard notation >X’ where X is a Unicode character, "U4+XXXX’
where XXXX is a 4-digit, hexadecimal number. The enclosing ticks are significant and must be included.
character values that have no printable form must be specified using their Unicode hex value.

Example 12 (Character Constants) Ezamples of defining character constants:

Character Interpretation

’U+DD01°’ Unicode character associated with hex DD0O1
’17 ASCII character 1

’a’ ASCII character a

%% Need some decent examples of unicode constants

3.5 Enumerations

Enumerations provide a mechanism for declaring new elemental values and types by extension. When an
enumeration is declared, two semantic operations are performed on the list of value items associated with
the enumeration. First, the list of values associated with the enumeration are added to element as elemental
types if they are not already present. Second, the list of value items is assembled into a set associated with
the construction. For example, the following notation:

enumeration(apple,orange,pear)

is semantically equivalent to adding the new value items apple, orange, and pear to element and assembling
them into a new set. Intellectually (and semantically) the enumeration construct can be evaluated as:

enumeration(apple,orange,pear) == {apple, orange, pear}

37

The distinction between the enumeration former and the set former is that the value items comprising the
enumeration need not exist before the enumeration is formed. In the example above, if apple is not a value
item prior to generating the enumeration, then it is declared as one by the enumeration. The enumeration
former is only allowed in a declarative region and cannot be used to generate sets in terms.

Enumerations can be used to define new types using the canonical Rosetta notation:
fruit :: subtype(element) is enumeration(apple,orange,pear);

This declaration creates a new item whose supertype is element and whose value is the set containing the
value items apple, orange, and pear. A variable defined as:

x :: fruit;

must take its value from the set {apple,orange,pear}.

Only elemental values may be included in enumeration declarations. Thus, the pair of declarations:

X :: integer;
c :: enumeration(x,1,z);

is illegal because x is already defined as an integer item, and so can’t be used as a label item. Assuming that
if z has been defined, it is defined as a value item, the declaration:

c :: enumeration(1,z);

is semantically legal. A new value item z is created in the current scope and the enumeration evaluates
to the set {1,z}. Note that having been defined as a value item by the enumeration, z cannot be used as
anything else in the current scope. Upon leaving the enumeration’s scope, z is again available for use as any
item name.

%% Move the definition of label to the meta package.

Summary: The following predefined elemental types are predefined for all Rosetta specifications:
e element — All atomic values including number, character, and value items generated by enumeration
formers.
e number — Subtype of element consisting of complex and boolean values.

e complex — Subtype of number and root of the numeric type tree. Formed as the the sum of any
imaginary and any real. Thus, 7.0e2 + 2.1le4x*j is complex.

e imaginary — Subtype of complex where the real part is 0. Formed by any multiple of j and a real.
Thus, j is imaginary as is 5e3*j.

e real — Subtype of complex where the imaginary part is 0. Thus, 4, 4.3e2, and -4.3e2 are all real.
e posreal — Subtype of real where all values are greater than 0. Thus, 4 and 4.3e2 are both posreal.

e rational — Subtype of real where values are fractions of integers. Formed by dividing one integer
value by another. Thus, 5/4 is a rational constant.

38

integer — Subtype of rational where values are integral numeric values. Formed when no decimal
point or negative exponent are included in the number definition. Thus, 1, 12, 12e3 and -12e3are all
integer constants.

natural — Subtype of integer where all values are positive or zero. Thus, 0, 5 and 12e3 are all
natural constants.

posnat — Subtype of natural where all values are greater than zero. Thus, 5 and 12e3 are all posnat
constants.

bit — Subtype of natural consisting of the values 0 and 1. Operations on bit elements correspond
to operations on the booleans in the canonical fashion.

boolean — Subtype of number consisting of the named values true and false. True is the greatest
number value while false is the smallest. The boolean operators and, or and not correspond to min,
max and “-” respectively.

character — Subtype of element consisting of all unicode values. Formed using notation ’x’ where
x is either a printable character, or a four digit, hexadecimal value. Thus, *a’, >1’, *U+0024’ and
’U+EF37’ are character constants.

ascii — Subtype of character consisting of all ascii values. Formed using the same notation as
character values. Thus, *a’ and ’1’ are ascii values.

enumeration values — Value items formed by use of the enumeration former. An enumeration
declaration may add new value items to the element type. The notation enumeration(x,y,z) is used
to define three new element values and assembles them into a set that can be used as a type.

3.6 Composite Types

Composite types make complex values by combining simpler values. There are two mechanisms for struc-
turing: (i) containment and (ii) indexing. Containment groups items together into collections of items. Sets
and sequences are both used as containers for multiple items of the same type. Sets provide a container for
a specified type that is not indexed and does not contain duplicate items. Indexing establishes a function
from the natural numbers (from zero to the size of the structure minus one) to the elements of the structure.
Sequences effectively index sets allowing individual elements within the sequence to be accessed.

3.6.1 Sets

Rosetta sets are collections of items that exhibit properties traditionally defined in classical set theory. In
the following, assume that S and T are sets. The first table lists functions that form sets from items or other

sets:
Operation Format Definition
Formation {1}, {1,2,3} Forms a set from a collection of items
Comprehension sel(x::T | p(x)) {z|z €T and p(x)}
Union S+T {z|zeTVvzesS}
Intersection S*T {z|zeTNhzeS}
Difference S-T {r|zeSAnax¢T}
Power Set set(T) (8 in set(T)) == S=<T
Integer Sequence {i,..j} sel(x::integer | x >= i and x =< j)
Image image(f,S) f applied to each element of S

The basic set former takes an arbitrary collection of items and forms a set by extension. Each argument to
the set former is treated and evaluated as an expression. The sel operation provides a set comprehension

39

capability where one set is filtered to form another. In the table, elements of T are filtered by the boolean
predicate p to form a new set. Operations for intersection, union, and difference are defined in the classical
manner. The set function is equivalent to the set of all subsets of its argument and is typically used to define
new set items. The sequence operation generates sets from sequences of integers. The notation {1,..4}
generates the set {1,2,3,4}. Finally, the image operation takes a function and applies it to all elements of
a set. (image is synonymous with ran defined later.)

Classical relations between sets are defined and are listed in the following table:

Operation Format Definition

Equality S=T S=<Tand T =<8
Inequality S /=T not(S =< T) or not(T =< 8)
Subset S=<T, T>S Ve:S-2z¢e€T

Proper Subset S < T, T > 8 S=<Tand S /=T

Element a in S a€esS

Size #S | S|

Empty Set {} YV : universal - not(z € {}))

Equivalence is equivalence of contents. Subset and proper subset are defined in the classical manner from
element. The in operation defines the set theoretic concept of “element of.” Size returns the cardinality of
the set while {} names the empty set.

Defining items of a particular set type is achieved using the set type former or the power set former. The
following notation defines x to be an element of the set of all possible subsets (the power set) of another set
S:

x::s8et(8);

The declaration may intuitively be read as “x is an element of the power set S” or alternatively as “x is a
subset of S.” This is in contrast to the notation:

X::S;

that defines x to be a single element of the set S.

Like any Rosetta definition, it is possible to make a set valued item constant using an is clause to associate
the item with a value. The following notation defines a set of integers that is equal to the set containing -1,
0 and 1:

trivalue::set(integer) is {-1,0,1};
Similarly, set comprehension can be used to define a set value:
natural::set(integer) is sel(x::integer | x >= 0);

In both cases, the type correctness restriction requires that the specified expression be an element of the
type. In each of the above cases, the expressed value is a set of integers and is thus a legal value. The
following expression:

trivalue::set(integer) is {-0.1,0.0,0.1}

Is not type correct because the specified set value is not a set of integers.

40

3.6.2 Sequences

Sequences are indexed collections of elements that combine the features of arrays and lists into a single,
indexed container data structure. Sequences differ from sets in two important ways. First, they are indexed
from 0 and allow random access of elements via their index. If s=[1,2,1] is a sequence, then s(0)=1,
s(1)=2 and so forth. Second, they allow multiple instances of the same value in the container. In the
example s=[1,2,1] the value 1 appears in both the first and last position. The simplest sequence is [], the
empty sequence. If S and T, are sequences, n a natural number, e an element, and I a sequence of natural
numbers, the following operations are defined to form sequences from items or other sequences:

Operation Format Definition
Formation [1,2,1,4] Forms a sequence containing 1,2,1,4

in the specified order
Subscription S sub I Subsequence from S

corresponding to integer sequence I
Catenation S&T Concatenation
Integer Sequence [i,..3] Sequence of integers from i to j
Replacement n->elS Copy S with element n replaced by value e
Empty Sequence] The empty sequence
Head, tail and cons head(S),tail(S),cons(h,t) cons(head(S),tail(S))==S
Mapping map (£,S) map(f, [s0,s1,...1==[f(s0),f(s1),...]
Reduction reduce(f,S,1i) f(E(E(1,s(0)),s(1)),s(2))...
Filtering filter(p,S) Include only elements satisfying p.

The sequence former, [1, forms sequences by extension with ordering of elements in the sequence the same
as the lexical ordering in the former.

Subscription is an extraction mechanism where elements from a sequence are extracted to form a new
sequence. Give S and an integer sequence I, S sub I extracts the elements from S referenced by elements
of I and forms a new sequence. For example:

[A,B,C,D] sub [0,2,1] == [A,C,B]

The catenation operator, &, concatenates two sequences.

The notation [1i,..j] forms an integer sequence from i running to j. As an example, the functions head,
tail, and cons can be defined using subscription and integer sequence as follows:

head(S) sS(0)
tail(S) = S sub [1,..(#S-1)]
cons(x,S) = [x]&S

S(0) returns the first element in the sequence. The integer sequence former [1, .. (#S-1)] forms the integer
sequence from 1 to the length of S minus 1. Extracting elements of S associated with 1 through #S-1 includes
all elements except the first and thus defines tail in the canonical fashion.

The replace operation allows replacement of an element within a list. The notation n->e | S generates a
new sequence with the element in position n replaced by e. For example:

2 ->5 l [1;2:3,4’5] == [1’2:574:5]

The map and filter operators provide mechanisms for applying a function to each element of a sequence
and filtering a sequence respectively. They correspond to ran and sel for functions and sets. The operation
map (f,S) applies £ to each element of S in order, generating a new sequence. Given the definition of an
increment function:

41

inc(x::natural): :natural is x+1;
then:
map (inc, [0,1,2,3]) == [1,2,3,4]

filter(p,S) applies p to each element of S generating a new sequence of only those elements satisfying p.
Given the definition of a greater than zero operation:

gtz(x::integer) : :boolean is x>0;
then:

filter(gtz,[0,1,2,3]) == [1,2,3]
reduce(f,S,1i) applies the binary function f recursively through the sequence S. The initialization value
i is paired with S(0) to start the process. For example, the addition operator can be used to implement
summation:

reduce(_+_,[1,2,3],0) ==

The following operations define relationships between sequences and properties of sequences:

Operation Format Definition

Equality and inequality S =T, S /=T Lexical equivalence

Access S(n) nth element of S from 0
Ordering Relations S<T, S=<T, S>=T, S>T Lexicographical ordering

Size # S Size

Min and max Smax T, S min T Order defined on elements
Contents S Set of elements from the sequence

Equal and not equal take their canonical meanings.

The ordering operations, min and max are lexicographic ordering relations. If cons(x,S)<cons(y,T), then
either x<y or x=y and S<T. Note that for any sequence, S /= [] implies that S > []. S=<T is defined as S<T
or S=T. The S min T and S max T operators return the minimum sequence of S and T and the maximum
sequence respectively.

The contents of a sequence can be extracted as a set using the notation ~ A. Duplicates are removed as well
as indexing and the ordering imposed by the indexing. For example:

“[2,1,1,1] == {1,2}
To define an item of type sequence containing only elements from type B, the following notation is used:
x::sequence (B) ;
To define an item of type sequence, the following notation is used:
x::sequence(universal);
where x is the new item and sequence (universal) refers to the set of all possible Rosetta sequences. Thus,
sequence(universal) is any sequence while sequence (B) restricts possible sequences to the elements of

B. Semantically, sequence(B) generates the set of all finite sequences created from B and thus the type
containing all finite sequences of B.

42

Bitvectors

A special case of a sequence is the bitvector type. Formally, bitvector is defined as:
bitvector::type is sequence(bit);

Operations over bit are generalized to bitvector’s of the same length by performing each operation on
similarly indexed bits from the two bit vectors. Assuming that op (o) is any bit operation, the bitvector,
C, result of applying the operation over arbitrary bitvector items A and B is defined by:

forall(n::{0,..(#A-1)} | C(n) = A(n) o B(n))

If either A or B is longer, then the shorter bitvector is padded to the left with Os. to achieve the end result.

In addition, the following operations are defined over items of type bitvector: (Assume A::bitvector and
n::natural)

Operation Format Definition
Bitwise Logic A or B,A and B, A xor B Logical operators
A nand B, A nor B, not A
Conversion bv2n(A) ,n2bv(n) Conwvert between bitvectors and naturals
2’s complement twos (A) Generate two’s complement
Shift Operations ashr(A), ashl(A), 1shl1(A), 1shr(A) Logical and arithmetic shift
Rotate rotr(A), rotl(A) Rotate right and left
Pad Operations padr(A,1,n), padl(A,0,n) Pad with value to n bits.

%% Add examples for the bitwise operations

%% Add examples for direct specification of bitvectors using strings
%% (or whatever we decide to use).

The operations bv2n and n2bv provide standard mechanisms for converting between binary and natural
numbers. It is always true that bv2n(n2bv(x))=x.

The operation twos takes the two’s complement of a binary value. The 1shr and 1lshl operations provide
logical shifts right and left while ashr and ashl provide arithmetic shifts right and left. The distinction
being that logical shift operations shift in Os while arithmetic shift operations shift in 1. The rotr and rotl
operations provide rotation or circular shift. Note that none of the complement, shift, or rotate operations
change the length of the bit vector.

The padr and padl operations pad or catenate a bit vector. Each takes three arguments: (i) the bitvector
being manipulated; (ii) the pad value (1 or 0); and (iii) the resulting length. If the length value is less than
the length of the argument vector, padr removes bits to the right and padl removes bits to the left resulting
in a vector of length n. In this case, the pad value is ignored.

A special subtype of bitvector is defined to allow definition of bitvectors with specific lengths. The
wordtype type former takes a single natural number argument and generates the type containing bitvectors
of that length:

wordtype(n::integer) ::set(bitvector) is sel(b::bitvector | #b = n);

The type definitions:

43

word: :subtype(bitvector) is wordtype(16);
byte: :subtype(bitvector) is wordtype(8);
nybble: :subtype(bitvector) is wordtype(4);

defines new types called word, nybble and byte that consist of all bitvectors of lengths 16, 4 and 8 respec-
tively. It should be noted that wordtype is simply a function that returns a set of bitvectors. Usage of
functions in this way is defined in a subsequent chapter.

Strings
A special case of a sequence is the string type. Formally, string is defined as:
string: :subtype(sequence(character)) is sequence(character);

A shorthand for forming strings is the classical notation embedding a sequence of characters in quotations.
Specifically:

"ABCdEF" == [’A’,’B’,’C’,’d’ ,’E’,’F’]

Functions defined over strings include those defined for general sequences. In particular, the notation "abc"
& "def" is appropriate for concatenation of strings. It is important to note that the ordering operations for
sequences provide lexicographical ordering for strings. No additional function definitions are required.

Summary: The following predefined composite types are available in a Rosetta specification:

e set — A set is a packaged collection of items that obeys basic principles of set theory. Sets are formed
by extension using the set former or by comprehension using sel. The notation set (S) refers to the
power set of S. subtype is a synonym for set used in declarations. Ten notation type is a synonym
for set (universal), the power set of all possible Rosetta items.

e sequence — A sequence is an indexed collection of items. The notation sequence(S) refers to any
sequence of Rosetta items formed from the elements of set S. Sequences are formed by extension
using the sequence former or by filtering, mapping or folding sequences using reduce and map. The
declaration sequence (universal) refers to any indexed collection of Rosetta items.

e string — The type string is a special sequence defined as string=sequence(character).

e bitvector — The type bitvector is a special sequence defined as bitvector=sequence(bit). Op-
erations from bit are defined as bitwise operations over bitvector.

e wordtype(n::integer) — The function wordtype(n: :natural) is a special function that generates
the set of bitvectors of length n.

3.7 Functions

Defining functions in Rosetta is a simple matter of defining mappings between types. Functions are extensive
mappings between two different types, called the domain and range of the function. Functions are defined
by defining their domain and stating an expression that transforms elements of the domain into elements
of the range. This is achieved by introducing variables of the domain type whose scope is confined to the
function definition and defining a result expression using that variable. The domain is given by an expression
that describes the domain type. The range is given by an expression using the variable introduced by the
function, called the result or result function.

44

3.7.1 Direct Definition

The direct definition mechanism for defining functions is to define the function’s signature and an expression
that relates domain values to a range value. Functions are typically defined by providing a signature and an
optional expression. The syntax:

add(x,y::natural) ::natural is x+y;

In this definition, add is the function name, x,y: :integer defines the domain parameters, and integer is
the return type. Together, these elements define the signature of inc as a function add that accepts two
arguments of type natural and evaluates to a value of type natural.

Following the signature, the keyword is denotes the value of the return expression, in this case x+y. The
return expression is a standard Rosetta expression defined over visible symbols whose type is the return type.
Literally, what the function definition states is that anywhere in the defining scope add(x,y) can be replace
by x+y for any arbitrary natural values. Whenever a function appears in an expression in a fully instantiated
form, it can be replaced by the result of substituting formal parameters by actual parameters and evaluating
the resulting expression. Specifically, if the function instantiation add(3,4) appears in an expression, it
can be replaced by the expression 3+4 and simplified to 7. Any legal expression can be encapsulated into a
function in this manner.

Like any Rosetta definition, add is an item with an associated type and value. In this case, the type of
add is a function type defining a mapping from two naturals into the natural. The value of add is known
and is a function encapsulating the expression x+y. The specific value resulting from function evaluation is
determined by its associated expression.

A function signature can be defined separately by specifying its arguments and return type without an
expression. The notation:

add(x,y::natural) : :natural;

defines the signature of a function add that maps pairs of natural into natural. Because this add definition
has no associated expression, it is referred to as a function signature. Allowing the definition of a signature
without an associated expression supports flexibility in the definition style. In this case the expression
associated with add can be defined directly using equality or indirectly by defining properties. Function
signatures help dramatically in reducing over-specification in definitions.

3.7.2 Anonymous Functions and Function Types

Anonymous functions, frequently called lambda functions, are defined by excluding the name and encapsu-
lating the function definition in the function former <* *>. The definition:

<* (x,y::natural)::natural is x+y*>

defines an anonymous function identical to the function add above, except the anonymous function has no
label. Such function definitions can be used as values and are evaluated in exactly the same manner as
named functions. Specifically:

1. <* (x,y::natural)::natural is x+y *>(1,4)
2. == <*x ()::natural is 1+4 *> == 5

Anonymous function signatures can also be defined in a similar manner. The definition:

45

<* (x,y::natural)::natural *>

is equivalent to the function signature defined above without associating the signature with a name. We call
this a function type because it defines a collection of functions mapping pairs of natural numbers to natural
numbers. Technically, it defines a set of functions that map two natural numbers to a third natural number.
This is true because the function’s expression is left unspecified. Because the definition represents a set of
functions, it can be used as a type in formal definitions. The definition:

add::<* (x,y::natural)::natural *>

is semantically equivalent to the earlier add signature definition. The definition says that add is of type
<*(x,y::natural)::natural#*> or that add is a function that maps two natural numbers to a third natural
number. The earlier signature definition is a shorthand for this notation provided to make definitions easier
to read and write.

The definition:
add::<* (x,y::natural)::natural *> is <* (x,y::natural)::natural is x+y *>

is equivalent to the first definition of add above and semantically defines the function definition shorthand.
The add function is defined as a variable of type function. The declaration asserts that the add function is
equivalent to the anonymous function value mapping two integers to their sum. Any function label can be
replaced by its value, if defined.

The notation <* *> is referred to as a function former because it encapsulates an expression with a collection
of local symbols to form a function. The brackets form a scope for locally defined parameters. When no
parameters are present, the function former brackets can be dropped as there is no need to define parameter
scope.

Rosetta provides the special type function that contains all functions definable in a specification. Stating
that f::function says that f is a function, but does not specify its domain or range values.

A function is an element of a function type if it is an element of the set of functions associated with the
type. Given a function, £

f(x::T)::R is expr;
and a function type F:
F(x::M)::N;
then £ in F if the following relationship holds:
f in F == T =< M and forall(x::T | £(x) in N)

The domain of £ must be a subset of the domain of F and applying f to each element of its domain must
result in an element of F’s specified domain.

For example, given the standard definition of inc:
inc(x::integer)::integer is x+1;

inc is an element of the function type:

46

<* (x::integer)::integer *>

because it is one specific example of a function mapping integer to integer. Specifically, the domains of
the function and function type are the same and applying inc to any integer results in an integer.

A function type is a subtype of another function type if a subset relationship holds between them. Specifically,
given two function signatures defining function types:

F1(x::D1)::R1;
F2(x::D2)::R2;

Then F1 =< F2 and F1: :subtype (F2) if the following holds:
F1 =< F2 == D1 =< D2 and R1 =< R2;

The distinction between subtype and type inclusion is the return type of the function type is used rather
than its range. This is because the largest possible range associated with an element of a type must be the
return type associated with its function type.

For example, given the function types:

F1 == <x(x::real)::integer*>
F2 == <x(x::integer)::integer*>

we know that F1 =< F2 because integer =< real and integer =< integer hold for the domains and
return types respectively.

Functions defined over function types and anonymous functions include: (Assume that £ and g are functions
and F and G are a function types)

Operation Format Definition
Type Equivalence F=G, F/=G F > Gand G >= G
-(F >= G) or -(G >=F)
Type Containment F=<G, F<G, F>G, F>=G Subset and proper subset relationships.
Containment f in F Type membership

Type containment is define as above. Proper containment, F>G occurs when F>=G and -(F=G). Type equiv-
alence, F=G occurs when the types have the same elements. A function is a member of a type, £ in F if its
domain is a subset of the type’s domain and its range is a subset of the type’s return type.

3.7.3 Function Evaluation

Evaluation of Rosetta functions follows the semantics of A-calculus and allows for both currying and partial
evaluation. All Rosetta functions are evaluated in a lazy fashion. Arguments can be instantiated and
functions evaluated in any order. Consider the following use of inc and add:

inc(add(4,5))

Rather than evaluating in the traditional style, expand the function definitions Using the canonical definitions
of inc and add results in the following anonymous function:

<* (z::natural)::natural is z+1 *>(<* (x,y::natural)::natural is x+y *>(4,5))

47

Instantiating the argument to what was the increment function results in the following definition:
<* ()::natural is <* (x,y::natural)::natural is x+y *>(4,5) + 1 *>

As the resulting function has no arguments, the outer function former can be dropped resulting in the new
anonymous function:

<* (x,y::natural)::natural is x+y *>(4,5) + 1

Instantiating the x parameter of the new function by replacing the formal parameter with its associated
actual parameter results in:

<* (y::natural)::natural is 4+y *>(5) + 1
Finally, instantiating the y parameter in the same manner results in:
<* ()::natural 4+5 *> + 1

When no arguments are defined in the scope of an anonymous function, the function former can be dropped
resulting in the expected result:

4+5+1 == 10

In general, the notation <* ()::T is e *> is equivalent to simply stating e.

The same result occurs regardless of the order of instantiation. The following shows a different order resulting
in the same result:

1. <x (z::integer)::integer is z+1 *>(add(4,5))

2. == <*x ()::integer is add(4,5)+1 *>

3. == <x ()::integer is <*(x,y::integer)::integer is x+y *>(4,5)+1 *>
4. == <x ()::integer is <*(x::integer)::integer is x+5 *>(4) + 1 *>
5. == <x (x::integer)::integer is x+5 *>(4) + 1

6. == <x ()::integer is 4+5 *> + 1

7. == 4+5+1

8. == 10

3.7.4 Currying, Partial Evaluation, Function Composition and Selective Union

Thus far, all Rosetta functions have been defined by using an expression in the function definition. Rosetta
provides three additional mechanisms for function construction: (i) curried functions and partial evaluation;
(ii) function composition; and (iii) selective union. Partial evaluation generates new functions by substituting
values for some parameters and simplifying. Function composition is simply an application of function
definition techniques that allow a new function to be constructed from existing functions. Selective union
allows functions to be specified by extension.

48

Currying Multi-Parameter Functions
Technically, evaluation of multi-parameter function is achieved by a process based on the concept of a curried
function. This process provides the basis of the evaluation process used previously. All Rosetta functions
can be expressed as functions of a single argument, or curried functions. Specifically, the function:

<k (x::R;y::8)::T is exp *>
can be expressed equivalently as:

<k(x::R)::i<k(y::8)::T*> is <*(y::8)::T exp*>*>
The new function is expressed is unary function over items of type R that returns another unary function

that maps items of type S to type T. Given a function f(x::R; y::S)::Tand r::R and s: :S, the following
equivalence holds:

f(r,s) == £(r)(s)

Given the definition above, this equivalence generalizes to functions of arbitrarily many variables.

Consider again the definition of add defined over two integer numbers:
add(x,y::integer) ::real is x+y;
Using the previous notation, add can be expressed in a curried fashion as:

add(x::integer)::<*(y::integer)::integer*> is
<k(y::integer)::integer is x+y*>;
The use of x in the expression is perfectly legal as the second function definition is done in the scope of x.

The add function is now defined over a single parameter of type integer. Its return type is no longer an
integer value, but a function that maps one integer onto another. Using this notation, adding two values
a and b is achieved using add(a) (b) - exactly the notation discussed previously.

Now consider application of the add function using the curried function approach:

1. add(1,2)

2 == add(1) (2)

3. == <x(x::real)::<*(y::real)::real is x+y*>*>(1)(2)
4. == <x(y::real)::real is 1+y*>(2)

5 == <x()::real is 1+2%>

6 == 3

The function is evaluated by substituting an actual parameter for a formal parameter in first the original
add function and then in the unary function returned by add, exactly as it was done in the previous section.

It is particularly interesting to note the following equivalence:

1. add(1)
2. == <*(x::real)::<x(y::real)::real is x+y*>*>(1)
3. == <x(y::real)::real is 1l+y*>

This process, called currying, defines the semantics of multi-parameter functions and is the basis for all
function evaluation.

49

Partial Evaluation

Partial evaluation is the process of taking a function and instantiating only a subset of it’s parameters. The
semantics of partial evaluation are defined using currying as described previously. Here, only the usage and
application of partial evaluation are discussed.

Consider the following definition of £ over real numbers:
f(x::real;y::real;z::real)::real is (x+y)/z;

Application of f follows the traditional rules of substituting actual parameters for formal parameters in
the expression and substituting the expression for the function. Partial evaluation will perform the same
function, but will not require instantiating all parameters. Consider a situation where f is applied knowing
that in all cases the value of z will be fixed at 2 to perform an average. The following syntax partially
evaluates £ and assigns the resulting function to the new function name avg:

avg(x::real;y::real)::real;

avg=f(_,_,2);

In this definition, the “_” symbol is used as a placeholder for a parameter that will not be instantiated. To
calculate the value of £(_,_,2), we simply follow the instantiate and substitute rule:

£f(_,_,2) == <x(x::real;y::real)::real is (x+y)/2%>;

The result is a 2-ary function that returns a real value. As noted, this function calculates the average of its
two arguments. An alternate, more compact notation for the definition is:

avg: :<*(x::real;y::real)::real*> is f(_,_,2);
This general approach is applicable to functions of arbitrarily many values.

Function Composition

Function composition is an application of function definition capabilities. Assume that two functions, £ and
g exist and that ran(g) : :dom(£f). We can define a new function h as the composition of £ and g using the
following definition style:

h(x::R)::T is f(g(x));

The approach extends to other definition styles in addition to the direct definition style.

Consider the definition of inc and a function sqr defined as:
sqr(y::integer)::integer is y~2;
The definition of a function whose value is (x + 1)? can be defined as:

<x(z::integer) ::integer is sqr(inc(z))*>

50

Expanding the definitions of sqr and inc gives the following function:
<x(z::integer) ::integer is
<x(y::integer) ::integer is
y~2%>(<*(x::integer) : :integer is x+1%>(z))*>
The only available simplification is to substitute y’s actual parameter in to the expression for sqr giving:

<x(z::integer)::integer is <* (<x (x::integer)::integer is x+1*>(2))72 *> *>

Continuing to substitute, replacing formal parameters with actuals and eliminating function formers when
parameters are replaced gives:

1. <x(z::integer)::integer is <* (<* z+1 *>)72 *> *>
2. == <x(z::integer)::integer is <* (z+1)72 *> *>

3. == <*(z::integer)::integer is (z+1)72 *>

The result is a new function defined over z that gives the result of composing inc and sqr.

Selective Union

Selective union of two functions £ and g is defined formally as:

(flg) (x) = if x in dom(f)

then f(x)
else if x in dom(g)
then g(x)
end if;
end if;

Using the if construct insures that the function associated with the first including domain will be called. In
the above example, if dom(f)=integer and dom(g)=real, then an integer value will cause f to be selected
while only a real value that is not an integer will cause g to be selected. If the domains are reverse, i.e.
dom(f)=real and dom(g)=integer, g will never be selected because any element of integer is also in real.
If the type of x is in none of the domains specified, then the result of evaluating the function is undefined.

The domain and range of (f|g) is defined as:

dom(flg) == dom(f)+dom(g);
ran(flg) == ran(f)+ran(g);

Selective union is highly useful for implementing a form of polymorphism. An example of a function defined
by selective union is the simple non_zero function:

non_zero(n: :number) : :boolean is
(<¥(n::0) is truex> |
<x(n::sel(x::integer | x>0))::boolean is false*> |
<x(n::sel(x::integer | x<0))::boolean is falsex>)

This is a rather pedestrian use of selective union and there are better definitions of the non_zero function.
However, it does demonstrate how domain values can be used to select from among different function
definitions.

o1

3.7.5 The If Expression

The Rosetta if expression is a polymorphic function that supports choice between options. The syntax of
the if expression is:

if expl then exp2 else exp3 end if;

where expl must be of type boolean while exp2 and exp3 may be of arbitrary types.

The rules for evaluating an if expression but differ from the if statement in an imperative language. When
expl is true, the expression evaluates to exp2. When expl is false, the expression evaluates to exp3.
Specifically:

if true then a else b end if == a
if false then a else b end if ==

The else clause may be omitted:
if expl then exp2 else end if;
In this case, the if expression evaluates to exp2 if exp1l is true and is undefined otherwise. Specifically:

if true then a end if == a
if false then a end if == undefined

The domain of an if expression is simply boolean while the ranges is the union of the types of ezp2 and
exps.

For convenience, an elsif construct is provided to nest if statements. The notation:

if expl then ezp2
elsif exp3 then exp4
elsif exp5 then exp6
else ezxpn

end if

is semantically equivalent to:

if expl then ezxzp2
else if exp3 then ezp4
else if exp5 then expb

else exzpn end if

end if
end if

52

3.7.6 The Case Expression

%% The case statement section is dependent on resolution of bugs 156
%% and 157

The case expression supports selection from multiple options in a manner similar to using the if construct
with the elsif extension.

The general form of a case statement is:

case ezxp0 is

sl -> expl |
s2 -> exp2 |
s3 -> exp3 |

sn -> exprn
end case;

where s1-sn are sets and exp0-expn are expressions. The case statement evaluates to expk when exp0O in
sk holds. If this relationship is satisfied by multiple sets, the case expression evaluates to the expression
associated with the first such set. A default case can be achieved using universal as the set expression.

The equivalence check performed in most traditional languages is performed by using singleton sets. For
example:

case x is
sel(x::integer | x > 0) -> false |
{0} -> true |
sel(x::integer | x < 0) -> false
end case;

implements a zero test on the x.

Please note that the case statement is semantically equivalent to application of a unary function defined
using selective union. Specifically:

(<*(x::sel(i::integer | x > 0))::boolean is false *> |
<*(x::0)::boolean is true *> |
<x(x::sel(i::integer | x < 0))::boolean is false *>)

is identical to the previous case statement.

3.7.7 The Let Expression

Function application provides Rosetta with a mechanism for defining expressions over locally defined vari-
ables. An additional language construct, the let expression generalizes this providing a general purpose
let construct. The Rosetta let is much like a Lisp let in that it allows definition of local variables with
assigned expressions. The general form of a let expression is:

let (x::T be exl) in ex2 end let;

53

This expression defines a local variable x of type T and associates expression ex! with it. The expression
er?2 is an arbitrary expression that references the variable x. Each reference to x is replaced by ezl in the
expression when evaluated. The be keyword is semantically similar to is. The distinction is that is clauses
are evaluated when their associated variable declarations are evaluated. be clauses are evaluated when the
let form is evaluated. Unlike traditional variable declarations, let parameter definitions may not omit the
be clause. All 1let parameters must have values when the let form is interpreted.

The syntax of the let expression is defined by transforming the expression into a function application.
Specifically, the semantic equivalent of the previous let expression is:

<k(x::T)::universal is ex2*>(ex1)

When the function is applied, all occurrences of x in ex2 are replaced by exi. This process is identical to
the application of any arbitrary function to an expression. Assume the declaration i: :integer and consider
the following let expression:

let (x::integer be i+1) in i’=x end let;
The semantics of this let expression is:
<x(x::integer) ::universal is i’=x*>(i+1)
Evaluation of the function application gives:
ir=i+1

The usefulness of let becomes apparent when an expression is used repeatedly in a specification. Consider
a facet with many terms that reference the same expression. The let construct dramatically simplifies such
a specification.

Let expressions may be nested in the traditional fashion. In the following specification, the variable x of
type T has the associated expression ezl while y of type R has the expression exz2. Both may be referenced
in the expression ex3.

let (x::T be exzl) in
let (y::R be ez2) in exz3 end let
end let;

This expression may also be written as:
let (x::T be exl, y::R be ex2) in ex3 end let;

The semantics of this definition are obtained by applying the previously defined semantics of let:
<k (x::T)::universal is <#(y::R)::universal is ez3 *>*>(exl) (ex2)

Consider the following specification assuming that i is of type integer and fcn is a two argument function
that returns an integer:

let (x::integer be i+1, y::integer be i+2) in i’=fnc(x,y) end let;

54

When evaluated, the following function results:
<*k(x::integer)::universal is <*(y::integer)::universal is i’=fnc(x,y)*>*>(i+1) (i+2)
The result of evaluating this function is:
<*(x::integer) ::universal is <*y::integer is i’=fnc(x,y)*>*>(i+1)(i+2) ==
<x(y::integer) ::universal is i’=fnc(i+l,y)*>(i+2) ==
i’=fnc(i+1,i+2)
In order for normal argument substitution to work, the expressions in the Rosetta let expression must not

be mutually recursive. If recursion is necessary, the expressions must be represented as normal Rosetta rules
or predicates.

Summary: A Rosetta function is defined by specifying a domain, range and an expression defining a
relationship between domain and range elements. The notation:

f(d::domain)::range is exp;

Defines a function mapping domain to range where exp is an expression defined over domain parameters
and gives a value for the associated range element. The notation:

f(d::domain)::range;

defines £ as an element of the set of all functions relating domain to range without specifying the precise
mapping function.

As an example, the increment function is defined over naturals using the notation:
inc(x::natural): :natural is x+1;

Applying a function is simply substitution of an actual parameter for a formal parameter. Evaluating inc (2)
involves replacing x with 2 and applying the definition of a function. Specifically:

inc(2)
inc(2)

2+1 =
3

Function types are specified as anonymous functions using the notation:
<x(d::domain) ::range*>

This function type specifies the set of all functions mapping domain to range. The definition:
f::<x(d::domain)::range*>

says that f is a function that maps domain to range. The function former (<* *>) defines the scope of the
named parameter x and forms a function constant in the same manner as {} forms a set and []1 forms a
sequence.

An anonymous function is a function having no assigned label. It is treated like a lambda function in Lisp
programming languages in that it can be evaluated like any other function, but has no name by which to
reference it.

55

<x(d::domain)::range is exp*>

This anonymous function specifies the function mapping domain to range using the expression exp. It is
semantically the same as f(d: :domain) : :range. The definition:

f::<x(d::domain)::range is exp*>

says that f is a function that maps domain to range using the expression exp. It is semantically the same
as £(d::domain) : :range is exp.

The let expression provides a mechanism for defining local variables and assigning expressions to them. This
provides shorthand notations that can dramatically simplify complex specifications by reusing specification
fragments. The syntax of the general let expression is:

let (v1::T1 be el, v2::T2 be €2, ..., vn::Tn be en) in exp end let;

where v1 through vn define variables, T1 through Tn define the types associated with each variable, and el
through en define expressions for each variable.

Evaluating the let expression results in the expression exp with each variable replaced by its associated
expression. The semantics of the let expression are defined using function semantics. It is sufficient to
realize that the let provides local definitions for expressions.

The if expression provides a simple mechanism for expressing choice. The general form:
if ezxzpression then condl else cond2 end if;

evaluates to condl if expression evaluates to true and cond?2 if expression evaluates to false.

The case expression provides a general purpose selection method used to choose from more that two,
potentially non-exclusive options. The form of the case statement is:

The general form of a case statement is:

case expg is
51 => expr |
sy => exps |
s3 —=> exps |

Sp => erpn |

otherwise -> exp
end case;

where exp; are expressions and s; are sets or expressions that result in sets. The case expression evaluates
to the first expy such that expy in si. The term otherwise is a synonym for universal and provides a
default case. If the match condition holds for none of the case terms and an otherwise term is not included,
the case statement is undefined.

%% Stop First Evaluation Complete...

%% Start Evaluation Here...

56

3.8 Set Construction and Quantification

In Rosetta, all quantifiers are functions defined over other functions. A number of second order functions
such as min and max are defined and will be presented here. Given that F(x: :universal) : :universal and
P(x::universal)::boolean, the following quantifier and set constructor functions are defined:

Operation Format Definition

Function Former <* (rank)::return is exp *> Forms a function value or type.
Domain dom (F) Function’s actual domain

Return Type ret(F) Signature’s return type

Range ran(F) Function’s Range or Image

Maximum and Minimum max(F) ,min(F) Mazimum and minimum value in range
Selection sel(P) Set Comprehension

Exists exists(P) Existential quantifier

Forall forall(P) Universal quantifier

Summation and Product +B, *B Summation and Product

%% The unary versions of + and * are being considered for removal in
%% bug 166.

The signature for the min function is:
min(f::<*x(x::universal)::universal*>)::universal

The min function accepts an arbitrary function and returns the minimum value associated with the range
of the argument function. Recall that the range of the argument function is the result expression applied to
each element of the domain. Consider the following function application:

min(<*(x::{1,2,3,4})::natural is x*2 *>)

The domain of the argument is the set {1,2,3,4}. Although it is unusual to define a set by extension in
these circumstances, it is perfectly legal. The range of the argument function is the expression applied to
each element of the domain. Specifically, {2,4,6,8}. The min function then returns the minimum value in
{2,4,6,8} or 2.

If the unaltered minimum value associated with the input set is desired, the min function can be applied
using an identity function as in:

min(<*(x::{1,2,3,5}) : :natural is x *>)

The max function is defined similarly and operates in the same manner.

3.8.1 Domain, Range and Return Type

The ret function takes a function and returns its defined return type. This is the type specified in the function
definition following parameters and limits the values that can be returned by the function definition. The
ran function is similar to a set mapping function and returns the image of a function with respect to its
domain. It returns the set resulting from applying the parameter function’s expression to each element of
the domain. By definition, ran(F) in ret(F), but it is not necessary for the range of a function to be equal
to its return type. Consider the following example where ran is used to add one to each element of set B:

ran(<*(x::B) ::natural is x+1%>)

LY

Given that B={1,2,3}, the expression above evaluates to {2,3,4}. This is precisely the application of x+1
to each element of the range set. Applying ret to the same function would return natural as the return

type.

The dom function is defined similarly to the range function but instead returns the domain associated with
its function argument. For example:

dom(<*(x::T)::natural is x+1%>)

evaluates to the set T.

The domain and range functions present a greater challenge when dealing with functions of arity other than
1. The domain of a nullary function is defined as the null type while the range of a nullary function is the
result of its evaluation:

dom(<* ()::natural is 3+2 *>) == null
ran(<* ()::natural is 3+2 *>) ==

|
|
(4]

Using this identity, one can define evaluation of a fully instantiated function as taking the range of that
function. Specifically, if all arguments to a function are known, then the range of that instantiated function
is the same as evaluating the function.

Currying is applied when looking at the domain and range of functions with arity greater than one. Recall
that any n-ary function can be treated as application of a series of unary functions. Thus, the domain of
functions with arity greater than one is defined as the type of the first parameter. Thus, for the add function
defined by:

add(x,y::natural)::natural is x+y;
The value of dom(add) is defined as:

dom(add) == natural;

or the set of values the curried form of add can be applied to.

The range of such a function is the set of functions that result from currying over all possible domain values.
Literally, it is the set of values, albeit function values, that result from applying the curried function form
to the domain values. Thus for the add function:

ran(add) == image(add,natural);

the range is defined as the set of functions that result from applying add to every domain element. The
elements of the resulting set are functions of the form:

f(x::natural): :natural is x+n

where n is any natural.

The return type is defined in the same manner as for unary functions. It is the type used to define the
function signature in its declaration. Thus, for add:

ret(add) == natural
It is important to note that the range and return type of a function are two different concepts. ran(f) is a

function of £ and its application across its domain. ret(f) is associated with the signature of £ and need
not be equal to its domain.

58

3.8.2 Quantifiers

As previously defined, the functions min and max provide minimum and maximum functions over function
ranges. Over boolean valued functions, min and max provide quantification functions forall and exists. As
noted earlier, and and or correspond to the binary relations min and max respectively. As forall and exists
are commonly viewed as general purpose and and or operations, forall and exists should correspond to
min and max.

Consider the following application of forall to determine if a set, S, contains only integers greater than
Zero:

forall(<* (x::S)::boolean is x>0 *>)

Here, the domain of the argument function is the set S and the result expression x>0. To determine the
range of the argument function, x>0 is applied to each element of S. Assume that S={1,2,3}. Substituting
into the above expression results in:

forall(<*(x::{1,2,3})::boolean is x>0 *>)
Applying the result expression to each element of the domain, the range of the function becomes:
{true,true,true} == {true}

As true is greater or equal to all boolean values, the minimum resulting value is true as expected. Assuming
S={-1,0,1} demonstrates the opposite effect. Here, the range of the internal function becomes:

{false,false,true} == {false,true}

As false is less than true, the minimum resulting value is false. Again, this is as expected.

3.8.3 Selection

The function sel provides a comprehension operator over boolean functions. The signature for sel is defined
as follows:

sel(<*(x::universal)::boolean*> is set(universal)*>)

Like min and max, sel observes the range of the input function. However, instead of returning a single
value, sel returns a set of values from the domain that satisfy the result expression. Consider the following
example where sel is used to filter out all elements of S that are not greater than 0:

sel(<*(x::8)::boolean is x>0%>)

Assuming S={1,2,3}, x>0 is true for each element. Thus, the above application of comprehension returns
{1,2,3}. If S={-1,0,1} then x>0 holds only for 1 and the instance of sel evaluates to {1}.

%% A select one operation, selone, is being discussed in bug 169

59

3.8.4 Shorthand Notation

A shorthand notation is provided to make specifying forall, exists, sel, min and max expressions simpler.
Notationally, the following statement:

forall(x::S | x>0);
is equivalent to:
forall(<*(x::8)::boolean is x>0%>);

and returns true if every x selected from S is greater than 0. The notation allows specification of the domain
on the left side of the bar and the expression on the right. The domain of the expression is assumed to be
boolean for forall, exits, and sel. For min and max, the domain is taken from the expression. This
notation is substantially clearer and easier to read than the pure functional notation. Note that the original
notation is still valid for specifying quantified functions.

The notation extends to n-ary functions by allowing parameter lists to appear before the “|” to represent
parameter lists. The format of these lists is identical to the format of function parameter lists. Specific
examples include:

forall(x,y::integer | x+y>0)
exists(x,y::integer | x+y>0)
sel(x,y::integer | x+y>0)

It is important to remember that like forall and exists, sel observes the function range and selects
appropriately. Interpreting the notation in the standard way results in the definitions:

forall(<* (x,y:integer)::boolean is x+y>0 *>)
exists(<* (x,y:integer)::boolean is x+y>0 *>)
sel(<* (x,y:integer)::boolean is x+y>0 *>)

%% Need to update summary section

Summary: Quantifier functions operate on other functions. Each generates the range of their function
argument and returns a specific value associated with that range. min and max return the minimum and
maximum range values respectively and are synonymous with forall and exists. sel and ran provide
comprehension and image functions respectively. sel applies a specific boolean expression to a function’s
range and returns a set of domain elements satisfying the expression. dom returns the domain of a function
defined as the application of the result expression to every domain element.

3.8.5 Function Containment
Function containment, £1 =< £2, holds when a function is fully contained in another function. Assuming

f1(x::d1)::r1 and £2(x::d2)::r2 where d1, d2, r1 and r2 are types representing domain and range
respectively:

f1 =< £2 == d1 =< d2 and forall(x::dl | f1(x) = £2(x))

60

f1 is contained in £2 if and only if the domain of f1 is contained in the domain of £2 and for every element
of £1’s domain, £1(x) is equal to £2(x).

Consider the case of determining if increment is contained in identity over natural numbers. In this case,
the law should not hold:

1. inc =< id

2. == <*(x::natural)::natural is x+1*> =< <*(x::natural)::natural is x*>
3. == dom(inc) >= dom(id) and forall(x::natural | inc(x) = id(x))

4 == natural in natural and forall(x::matural | x+1 = x)

5 == true and false

false is obtained from the second expression by the counter example provided by x=0 as 0+1 /= 0.

Assume that £ (x::df)::rf and g(x::dg) : :rg are functions. The following operations are defined over two
functions:

Operation Format Definition
Equivalence f=g, f/=g f=<g and g=<f, -(f=<g) or -(g=<f)
Containment f=<g, g>=f dom(f)=<dom(g) and forall(x::dom(f) | f(x)=g(x)

Proper Containment f<g, g>f f>gand f /=g

Functional equivalence checks to determine if every application of £ and g to elements from the union of
their domains results in the same value. Specifically, £ (x) = g(x) for every x in either domain. Function
inequality is defined as the negation of function equality.

Function containment, f=<g, occurs when dom(f)<dom(g) and forall(x::dom(f) | f(x) = g(x). Proper
containment occur when simple containment holds and the functions are not equal.

%% Working here...

%% Consider moving this section. Technically, these are second
%% order funtions, but they are specific to real and complex valued
%% fuctions. Don’t know where to move them though...

3.8.6 Limits, Derivatives and Integrals

A special class of functions for defining limits, derivatives and integrals are provided for use with real valued
functions. These functions exist primarily to allow specification of differential equations (both ordinary and
partial) over real valued functions. Given a real valued function f (x: :real) : :real, the following definitions
are provided:

Operation Format Definition
Limit lim(f,x,n) limg ., f(x)
Derivative deriv(f,x) if

dx
Indefinite Integral —antideriv(f,x,c) [f(z)dz+c
Definite Integral ~ integ(f,x,u,1) [f(@)da

The derivative of a function is defined with using limit in the canonical fashion. The following axiom is
defined for all real valued functions and real valued nonzero delta:

deriv(f,x) = 1lim((f(x+delta)-f(x))/(x+delta)-x,delta,0)

In the derivative function, f is the object function and x is the label of the parameter subject to the derivative.
In the above function, the following holds:

61

deriv(f,x) = L

The derivative function is generalizable to expressing partial derivatives. Assuming that g is defined over
multiple parameters, such as g(x::real;y::real;z::real)::real, then:

deriv(g,x) = %

Antiderivative, or indefinite integral, is the inverse of derivative. The antiderivative of £ with respect to x is
expressed as:

antideriv(f,x,c) = [f(z)dz + ¢

f being the function in question, x being the variable integrated over, and ¢ being the constant of integration.

As antiderivative is the dual of derivative, the following axiom is defined for all real valued functions:
antideriv(deriv(f,x),x,0) == deriv(antideriv(f,x,0),x) == f

The definite integral of £ with respect to x over the range u to 1 is expressed as:

integ(f,x,1,u) == flu f(x)dz
The definite integral is defined as the difference of the indefinite integral applied at the upper and lower
bounds:

integ(f,x,1,u) == antideriv(f,x,0) (u) - antideriv(f,x,0) (1)

It is possible to express a definite integral over an infinite range using the notation:
integ(f,x,false,true) = ffooo f(z)dx

It should be noted that limit, derivative, antiderivative and integral functions are defined over real valued
functions only. Further, the functions provide a mechanism for expressing these operations and some semantic
basis for them. Solution mechanisms are not provided.

3.9 Universal Type

The type universal is now introduced as the supertype of all Rosetta types. This includes element, set,
sequence, constructed types, function and facet types. Declaring:

X :: universal;

results in an item x that can literally contain any Rosetta value. Declaring:
f(x::universal)::universal;

results in a function £ that can accept any Rosetta value and may result in any Rosetta value. Declaring:
t :: subtype(universal);

results in a type variable, t, whose value may be any set of Rosetta values.

62

3.10 User Defined Types

3.10.1 Sets and Types

As noted earlier, all Rosetta types are sets and any Rosetta set can be used as a type. To support clarity in
specifications, several notational shorthands are provided to support defining types and subtypes. The item
declaration notation:

i::integer;

defines an item named i whose value is restricted to single elements from the set integer. When integer
is viewed as a set, this restriction can be represented as:

i in integer;
Similarly, the notation:
natural::set(integer);

implies that natural is a set of elements from integer. This constraint can be expressed using in by
equating set (integer) power set of integers:

natural in set(integer);

the set natural is contained in the power set of integers and is a subset of integer. The value of natural
can be restricted to a single element of the power set that appropriately defines naturals using the notation:

natural::set(integer) is sel(x::integer | x >= 0);

Now the set natural is constrained to be equal to the set of elements from integer that are greater than
or equal to 0. Because the expression defines a set value by comprehension over integer, we know that the
expression is contained in set(integer).

In Rosetta, sets are first class items and any set can be used as a type. Thus, natural from the previous
declaration can be used as a type in subsequent declarations. Thus, the declaration:

n::natural;
declares a new item named n that is an element of the set natural used as a type.

Subtype and Type

In Rosetta, one type is a subtype of another if all its elements are contained in the second type. Specifically,
S is a subtype of T if S=<T holds. When defining a new set using the notation:

natural::set(integer);

it is known that natural is a subset of integer and thus that natural is a subtype of integer. Thus,
Rosetta provides an operation, subtype that is semantically equivalent to set:

63

natural::subtype(integer) ;

The subtype notation is equivalent to the set notation. Both define a new set that includes possible subsets
of integer. The subtype notation is simply syntactic sugar that provides a mechanism that a set will be
used as a type.

It is also possible to define a new type that is not explicitly defined as a subtype of any existing type. Using
the set notation, such a type is defined as:

T::set(universal);
or alternatively using subtype:
T: :subtype (universal);

Both notations define a new set, T, whose elements are simply Rosetta items. No other type restriction is
made. Such sets are frequently used when defining abstract types whose construction is not specified or
known. Thus, Rosetta provides a keyword type that is equivalent to the definition subtype(universal).
Specifically:

T::type;

is equivalent to the previous notations and defines a new type that has no subtype relationships with other
types.
Both subtype and type definitions can be used to define constants in a manner identical to that for any

other Rosetta item. The is clause is included to provide a constant value for the symbol. The type natural
is defined using this technique:

natural :: subtype(integer) is sel(n::integer | n >= 0);
The following example defines a type that includes sets of exactly four integers:
setd :: subtype(set(integer)) is sel(x::set(integer | #x=4));

where set4 is the set of subsets of integer that contain exactly four elements. In this case, set4 is a set
of integer sets, not simply a set of integers. Thus, the set operation is used to generate the power set and
the new type set4 is chosen from the power set of the power set. In other words, it is itself a set of integer
sets. The sel operation uses the cardinality operator to choose integer subsets that contain 4 element sets
only. The notation z: :set4 declares z to be an element of set4, or simply a subset of integer containing
four elements.

The type notation can be used similarly to define the natural numbers:
natural::type is sel(x::integer | x >= 0)

Using this definition, natural is still a subset of integer and is thus a subtype of integer. However, this
information must be inferred rather than directly found in the definition. The type declaration should be
used carefully and only when defining or types not defined by filtering existing sets. If a subtype relationship
exists, then it should be specified explicitly in the definition. Even if the type’s value is not known, expressing
a subtype relationship in the type definition aids automated analysis and readability.

In addition to constructing new types comprised of elements, the subtype construct can be used to define
types comprised of composite values. The following definition:

bv: :subtype(sequence(bit));
defines a new type named bv that is comprised of bitvectors. Similarly, it is possible to define types containing

sets and constructed types.

64

3.10.2 Parameterized Type Formers

Any function returning a set can be used to define a Rosetta parameterized type. Consider the following
function definition:

word(n: :natural) : : subtype(bitvector) is
sel(b::bitvector | $b = n);

Remembering that subtype is a synonym for set, the function signature defines a mapping from natural
numbers to a set of bitvectors. That set of bitvectors is defined by the sel operations to be those whose
lengths are equal to the parameter n. Thus, word will return the set of bitvectors of length equal to its
parameter. We can now use wordtype as as a type definition construct.

The notation:
reg: :word(8);

defines reg to be a bitvector of length 8.

The notation:
bv8: :subtype(bitvector) is word(8);
defines bv8 to be the set of all bitvectors of length 8.

%% Summary section needs to be updated.

Summary: User defined types are declared exactly as are other Rosetta variables and constants. While
the notation x::T forces x to be a singleton element of T, the notation x::subtype(T) allows x to be a
subset for T. Types can be formed from any element or composite type.

Uninterpreted types are defined as subtypes of the universal type.

Parameterized types are defined by using functions to return set as types.

%% Stop Evaluation Here... (Skip Forward)

3.11 Constructed Types

%% Working to determine if the type parameters from the function
%% should also be expressed as parameters to the data declaration.

3.11.1 Defining Constructed Types

Rosetta provides a general shorthand for defining types in a constructive fashion. Constructor, observer and
recognizer functions are defined for the type and encapsulated in a single notation. These types are called
constructed types and are created with the special data keyword and notation. As an example, consider a
definition for a binary tree of integers:

65

Tree(a::type) :: type is data(a::type)
null::nullp |
node(L::Tree(a),v::a,R::Tree(a)) : :nodep;

This definition provides two constructors for Tree: (i) the nullary function null; and (ii) the ternary function
node. The null function creates an empty tree while the node function creates a node from a value and a
left and right subtree. A tree of integers can be defined as:

IntTree :: Tree(integer);

A tree with one node whose value is 0 can be generated with the following function instantiation:
node (null(),0,null());

A balanced tree with 0 as the root and 1 and 2 as the left and right nodes respectively can be generated:
node (node(null(),1,null()),0,node(null(),2,null()));

The recognizers nullp and nodep indicate the constructor used to generate a tree. Specifically, nullp is
true if its argument is null() and nodep is true if its argument is an instantiation of the node function.
Semantically, these functions are defined as follows:

nullp(x::tree(integer))::boolean is x=null();

nodep(x::tree(integer))::boolean is
exists(lt::tree(integer), v::integer, rt::tree(integer) | node(lt,v,rt)=x);

Finally, parameter names are used to generate observer functions that return actual parameters from con-
structor functions. Specifically, the following functions are generated from the integer tree definition:

1t(t::sel(x::tree(integer) | nodep(x)))::tree(integer)
rt(t::sel(x::tree(integer) | nodep(x)))::tree(integer)
v(t::sel(x::tree(integer) | nodep(x)))::integer

These functions return the actual parameter instantiation of their associated formal parameter. For example:

1t (node(null(),1,node(null(),2,null()))) == null()
v(node (null(),1,node(null(),2,null()))) ==
v(rt(node(null(),1,node(null(),2,null())))) = 2

The syntax for creating unparameterized constructed type definitions is:

T :: type is data

fl(blltiTll,blgiiTlg bu::Tu)::T’l |
fQ(le::TQl,bQQ::TQQ bgj::TQj)IZTQ |
Fnn1::Th1,0n2::Tho oo bpym: i Tam) 1 :7n;

66

This data type definition defines n functions that create and recognize all elements of type T. Instantiating
any of the fi functions creates an element of type T. This set of functions are refered to as constructors of
the type T.

Associated with each constructor, f, is a boolean recognizer function r; that is true when its argument was
created with the associated constructor function. Specifically, ry will return true when its argument was
created using f:

rk)(ty, ta, t3,..., t;)==true;

Associated with each constructor function parameter is an observer function of the same name that observes
the parameter. Given an instantiated constructor function, the observer associated with a parameter will
return the actual parameter instantiating it:

b(k)(tl) t2> t3’~«': ti)==tk5;

Like any other function, constructor functions can be partially evaluated. If this is the case, then the results
of applying observer functions associated with uninstantiated parameters are not defined.

The general expression above is equivalent to the following definitions and laws (where the definitions are in
the definition section and the laws in the predicate section):

T :: type;
fl(b1122T11, b12:ZT12 bli::TM):iT;
fg(bgllngl, b2221T22 ijZ:ng)ZZT;

fn(bnl::Tnl: bpa::Tha oov bygiiTn) T

r1(t::T)::boolean is exists(byi::T11, bio::Tia ... by::1y; |
Ji(bir, bz ... b1d)=t)
ro(t::T)::boolean is exists(bor::Tn1, bog::Toy ... bgj! Zng |

Ja(ba1, bz ... bj)=t)

rn(t::T)::boolean is exists(bnl::Tnl, bn2::Tn2 ... bni::Tnk |

fn(bnl, bn2 ... bni)=t)
r,(t::T)::boolean is exists(bp1::Th1s buo::Tne o bpm::Thm |

fn(bnl, bng bnm)=t)

bii (e fi(x,_,_ ...))::Th is x;
bio(t::fo(_,x,_ ... _))::To is x;
begin
tl: forall(x::T | exists(xy::bi1,...,x::01; | fi(xy,x0, . x;) = X) or
eXiStS(CIJl:szl,...,l’z::bgj | fg(l’l,l'g, ... x;) = X) or
exists(zpn::bp1s. - s Tniibpym | fn(x1,22, ... x;) = X) or

The syntax for creating parameterized constructed type definitions adds a collection of type parameters to
the definition:

F(pi::type,...,pn::type):: type is data (pi::type,...,pn::type)
fl(bll::Tlly b12:CT12 bli:ZTM):ZTl |

67

fg(bgllngl, bQQ:ZTQQ ijZ:TQj)Z:’r‘Q |

fn(bnl::Tnl: bn2::Tn2 bnk::Tnk>::rn 5

In this case, the result is a type definition function that can be used to create new subtypes of the new
type F. Specifically, when instantiated F(p;,...pn) creates a new constructed type with constructed type
variables instantiated.

The tree example is one such parameterized constructed type definition. The new type, Tree(a), is param-
eterized over a single value that is used as a type in subsequent definitions:

Tree(a::type) :: type is data(a::type)
null::nullp |
node(L::Tree(a),v::a,R::Tree(a)) : :nodep;

Thus, the definition:
IntTree :: type is Tree(integer);

This definition creates a new type called IntTree that is formed by instantiating the Tree constructed type
with integers. Alternatively:

AnIntTree :: Tree(integer);

creates a single new integer tree named AnIntTree that is of the type created by the parameterized con-
structed type instantiation.

3.11.2 Records

In Rosetta, no special syntax for defining records is defined as record structures follow directly from con-
structed types. A record type is a constructed type with a single constructor function that associates values
with parameters used as field names. A typical record type will be defined with the following constructive
technique:

record: :type is data
recordFormer (f0::TO | f1::T1 | ... fn::Tn)::recordp;

where recordFormer is the single constructor, fithrough fn are the names of the various fields and T1
through Tn are the types associated with those fields. The recognizer recordp is also defined, but is largely
unused. To define a specific record type that represents Cartesian coordinates, the following notation is used:

cartesian::type is data
cartFormer (x::real, y::real, z: :real)::cartp;

To define an item of this type, the standard Rosetta declaration syntax is used:
Cc :: cartesian;

Values an be associated with record items using the canonical is form:

68

origin :: cartesian is cartFormer(0,0,0);

Accessing individual fields of the record is achieved by applying one of the observer functions associated with
a field name. To access field y in the record c, the following notation is used:

y(c)
Forming a record is achieved by calling the constructor function:
recordFormer (vl,v2,...,vn)

where v1 through vn name the specific values for fields £1 through fn. Defining a coordinate in Cartesian
space using the definition above is achieved by:

cartFormer(1,0,0);
Accessing the result is achieved using the observer functions:

x(cartFormer(1,0,0))==1;
y(cartFormer(1,0,0))==0;
z(cartFormer(1,0,0))==0;

Using the “_” notation, it is possible to create records whose specific field values are not known. The following
creates a cartesian coordinate whose x and y values are known, but whose z value is not specified:

cartFormer(1,0,_);
Should the function z be instantiated with this record, the return value is undefined.

%% Working here. ..

3.11.3 Pattern Matching

Pattern matching in parameter lists dramatically simplifies defining observer functions over type constructors.
Parameter matching takes advantage of the mechanism used to create its input parameters. Consider the
integer tree definition presented above. Two constructor functions, null and node are defined to construct
two different types of trees. Viewed differently, they also partition trees into the subclasses constructed by
those individual functions. Specifically, the empty and nonempty trees. Viewed in this manner, it follows
the the constructor functions can be used to generate types like any other types. For example:

nonemptyIntTree :: type is ran(node)
emptyTree :: type is ran(null)

Due to the nature of constructed types, the constructor for a particular instance of the type is always known.
This fact can be utilized to perform pattern matching when instantiating function parameters. Consider the
following definition of is_empty using selective union:

is_empty(t::tree(integer))::boolean is
(<*(t::null) :boolean is true *> |
<*(t::node(lt,v,rt))::boolean is falsex*>);

69

The first function accepts a single parameter of type null. This shorthand is equivalent to saying that t is
contained in the set of all trees generated by null. Of course, this contains the single null tree. In the second
definition, the type node(1t,v,rt) refers to all trees that can be constructed with node. Furthermore, 1t,
v and rt become parameters in the function that are bound to the actual parameters of any invocation of
node. Specifically, in the following function call:

<x(t::node(lt,v,rt))::boolean is falsex*>(node(null(),5,node(null(),6,null())))

1t = null(Q), v=5, and rt=node(null(),6,null()) within the scope of the function. These values are de-
termined by matching the constructor function node with the parameter specification for t. The parameters
are implicitly defined and their associated types determined from the constructor specification. Specifically,
1t and rt are of type tree(integer) while v is of type integer.

A more interesting case is defining accessor functions for the left and right subtrees of a nonempty tree. This
is accomplished using the following definitions:
1Tree(t::node(lt,v,rt))::tree(integer) is 1t;

rTree(t::node(lt,v,rt)): :tree(integer) is rt;

The utility of pattern matching is more obvious here. The two functions return actual parameters associated
with the constructor function node. Furthermore, both functions are defined only over trees constructed
with node and are not defined over trees constructed with null. This is the desired result for high level
specification.

In the definitions of 1Tree, rTree and is_empty, some or all of the constructor parameters are not used
in the internal function. Thus, they need not be named in the definition. We use “” to designate such a
parameter as in the following:

is_empty(t::tree(integer))::boolean is
(<*(t::null) :boolean is true *> |
<*(t::node(_,_,_))::boolean is falsex*>);
1Tree(t::node(lt,_,_))::tree(integer) is lt;
rTree(t::node(_,_,rt))::tree(integer) is rt;

In both cases, parameters that are not used are not named or available in the function definition.

%% Must edit to reflect changes in facet operations and the root of
%% the facet type hierarchy. Defer details to the domains chapter.

%% Restart Evaluation Here...

3.12 Facet Items

Because Rosetta is a reflective language, specification structures such as facets are items defined in the
language. Like any other item, a facet item consists of a label, type and value. A facet’s type is a set of
facets that define the possible values of the facet item. A facet’s value is simply an element of that set. The
semantics of facet operations and types are defined in Chapter 7, but are included here as they are treated
in the same manner as any Rosetta item.

In Chapter 2 a format for defining facets directly is provided. Specifically, the following defines a simple
facet that increments an input value and outputs it:

70

facet inc(i::in integer; o::out integer)::state_based is
begin

11: o’=i+1;
end inc;

Treated as a Rosetta item, the label of this facet is inc, the type state_based, and the value the algebra
associated with the definition.

3.12.1 Facet Operations

The facet algebra defines a collection of operations over facet types. These operations allow composition of
individual facets into new facets and the definition of relationships between facets.

Facet composition operators can be used to define new facets as compositions of other facets. To achieve this,
a facet is declared and assigned to the composition of other facets. An example from Chapter 2 describes
the composition of requirements and constraints for a sorting component. Specifically:

sort :: logic is sort_req + sort_const;

This declaration follows the definitional style used for all Rosetta declarations. The label sort names the
facet while the built-in type logic defines the facet type. In this case +, pronounced sum, forms a new facet
from sort_req and sort_const. Specifically, sum forms the co-product of sort_req and sort_const.

Like types, parameterized facets may be defined using the function notation. The facet type is a type like
any other and can be returned by functions. Thus, the signature of a parameterized sort facet definition is:

sort(gs::boolean)::facet is
sort_const + (if gs then quick_sort_req else sort_req);

In this definition, the parameter gs selects whether requirements for a quicksort or more general sorting
requirements are included in the sum.

The following operators are defined over facets:

Operation Format Definition

Sum F+G co-product of F and G

Product F xG product of F and G

Implies F=>G homomorphism from G to F
Equivalence F = G F=>Gand G=>F

Functor F(f::domain)::domain Mapping from one facet type to another

The properties of sum and product are defined by the category theoretic notations of co-product and product.
When the co-product of two items is formed, the new item must have the properties of both the original
items. Specifically, the facet F+G must have all properties of both F and G. When the product of two items
is formed, the new item must have the properties of one or the other of the original items. Specifically, the
facet F*G must have either properties of F or G.

Facet implication is a relation between facets that occurs when a homomorphism exists between them. When
F=>G, pronounced “F implies G” holds, all properties of F are also properties of G and a homomorphism
exists from G to F. Note that the homomorphism works in the opposite direction as implication.

Facet equivalence is defined as the existence of an isomorphism between two facets. If F=>G and G=>F, then
an isomorphism exists between F and G and F=G.

A functor is a special function that maps elements of one facet type onto elements of another facet type.
Functors play an important role in Rosetta as mechanisms for moving information between domains. Appli-
cation of functors and their semantics are defined fully in Chapter 6 and Chapter 7 respectively.

71

3.12.2 Facet Types and Subtypes

A facet’s type is defined by the use of a domain in its definition. For example, a facet £ defined as follows:

facet f(x::in integer, z::out integer)::finite_state is
begin

tl: ... ;

t2: ...
end f;

is considered to be of type finite_state. Thus, the declaration:
f::finite_state;

could be used to declare the facet signature. Note that the details defined in terms and declarations from
the previous facet are not included in this declaration.

The facet type defined by a facet domain is the collection of all consistent facets that are defined based on
the domain. In effect, every facet that references a specific domain is an element of that domain.

Facet subtypes provide a domain polymorphism capability. In the same way that integer is a subtype
of real because integers are defined by restricting reals, the finite_state domain is a sub-domain of the
state_based domain. This is true because the finite_state domain is formed from the state_based
domain by extension, adding new definitions to constrain the state_based domain. Thus, a homomorphism
exists between the state based and finite _state domains.

The signature of the finite_state domain is:
domain finite_state::state_based;

indicating that the domain finite_state is an extension of the domain state_based. It then follows that
the facet type associated with finite_state is a subtype of the facet type associated with state_based. The
semantics and uses of facet types and subtypes are defined in Chapters 6 and 7. Facet types and subtypes
are among the most important language contributions of the Rosetta system.

%% End Evaluation Here...

72

Chapter 4

Expressions, Terms, Labeling and
Facet Inclusion

4.1 Expressions

A Rosetta expression is constructed using operators and variables as defined in the current scope. Predefined
operators and types are defined in Chapter 3 and form the basis of the Rosetta expression syntax. All rosetta
expressions are recursively defined in terms of unary and binary operations. Parenthesized operations have
the highest priority followed by unary operations and binary operations in traditional fashion.

Expressions are formed using unary operations, binary operations, grouping operations, and with function
calls. The following general rules are used to define Rosetta expressions:

Any constant a is an expression.

Given any unary operation, o, and expression e, then oe is also an expression.

Given any binary operation, o, and expressions e; and es, then e; o ey is also an expression.

Given any function, f, and expressions ej...e,, then f(eq, ..., e,—1) is an expression where n is the arity
of f.

Given any expression, e, then (e1), {e;} and [e1] are also expressions.

Precedence for Rosetta unary and binary operations follow the canonical style. The following table lists
Rosetta operators in tabular form:

Operator Type

O,{}, 0 Grouping

-, not, %, $§, #, ~ Unary

~ ., in, :: Power and membership
x, [/, *% Product

T, R, T, 5 Sum

<, =<, >=, >, <L, > Relational

=, /= Equality

min, and, nand Boolean product
max, nmax, nmin, or, nor, xor, xnor, <=, => Boolean Sum
== Equivalence

Table 4.1: Precedence table for pre-defined Rosetta operations.

73

The type of an expression is the bunch of items resulting from all possible instantiations of the expres-
sion. For example, given the declaration x: :natural and the expression x+1, the type of x+1 is the bunch
ran(x::natural | x+1) equl to the whole or counting numbers. Any function or facet parameter or variable
may be legally instantiated with any expression of the same type.

4.2 Terms

A Rosetta term is a labeled, expression that appears within the scope of a begin-end pair within a facet. All
terms are asserted as true within the scope of the facet. Note that simply because a term is boolean valued
does not imply the term cannot represent an operational specification. It simply says that the statements
made within the term are declared to be true.

The general format for a Rosetta term is a label, followed by an expression, terminated by a semicolon.
Specifically:

label : term;
For example, the following term states that inc 3 is equal to 4:
11: inc(3) = 4;

Term label is 11, the term is inc(3) = 4 and the semicolon terminates the term definition. Effectively,
the semicolon terminates the scope of the label’s assigned term. All terms defined in this fashion must be
labeled.

The function of the semicolon is to terminate a labeled expression. Thus, the specification fragment:

11: inc(3) = 4;
12: forall(x::1++2 | x<4);

defines two terms with labels 11 and 12 and term expressions inc(3) = 4 and forall(<*x::1,2 -> x<4
*>) respectively. In contrast:

11: inc(3) = 4
12: forall(x::1++2 | x<4);

is illegal as 12: is not an operation in the specification grammar.

%% Operators do in fact distribute over semicolons. This is,
%% unfortunately wrong and needs to be corrected.

Semantically, the semicolon behaves as a conjunction. Terms delineated by semicolons in the body of a
specification are simultaneously true and form a set of terms associated with the facet. This set of terms
must be consistent with respect to the facet domain. A facet is consistent if and only if its domain, bunch
of terms, and declarations are mutually consistent.

No term’s semantic meaning can be inferred without reference to the including facet’s domain. For example,
the following definitions seem quite similar, but with proper interpretation mean quite different things. The
following examples demonstrate this fact by showing how similarly defined terms have different semantics
based on the definition domain. In each case, reference to the VHDL signal assignment semantics is mentioned
to aide in understanding what is being specified. The various domains are explained in Chapter 6.

The following term asserts that x is equal to £ of x:

74

begin
11: x = £(x);

The domain for this term is logic, referring to Rosetta’s basic mathematical system. There is no concept of
state, time or change in this domain. Thus, x = f(x) is an assertion about x that must always hold. This
domain is frequently termed the monotonic domain because change is not defined. If f£(x) is not equal to
%, then this term is inconsistent and the specification is in error.

The following term asserts that x in the next state is equal to £ of x in the current state:

begin
11: x’ = £(x);

The state-based domain provides the basics of axiomatic specification. Specifically, the notion of current
and next state. x’ refers to the value of x in the state resulting from evaluating the facet’s function. x
refers to the value in the current state. This specification fragment has roughly the same semantics as
an assignment statement as it specifies that x in the next state is equal to £ x. Thus, if x /= £(x), no
inconsistency results. It is interesting to note that this statement is quite similar in nature to a basic signal
assignment in VHDL. Specifically in VHDL:

x <= f(x);
The following term asserts that x at current time plus 5ms is equal to £ of x in the current state:

begin
11: x@(t+5ms) = f£(x);

This specification is quite similar to the previous specification in that the value of x in some future state is
equal to £ (x). It differs in that the specific state is defined temporally. Specifically, in the state associated
with 5ms in the future, x will have the value associated with f (x) where the argument to £ is the value of x
in the current state. Again, this definition bears some resemblance to VHDL signal assignments. This time,
a wait statement is specified in conjunction with the signal assignment:

x <= f(x) after 5ms;

Other domains and semantics are available for discrete time, constraints and mechanical specifications. The
intent here is to demonstrate only the relationship between a term and its associated domain.

Another example uses classical axiomatic specification to define a function. The function inc has been used
repeatedly as an example of constant function definition. Here, the function is defined as an abstract function
and constrained using a term in the specification body:

inc(x::integer)::integer;
begin
incdef: forall(x::integer | inc(x) = x + 1);

The definition states that for every integer, x, calling the function inc on x is equal to adding 1 to x. This
is semantically equivalent to previous the previous definition, however it is more difficult for an interpreter
to evaluate.

An alternate definition assigns a specific function to the function variable defined:

75

inc(x::integer)::integer;
begin
incdef: inc = <* (x::integer)::integer is x + 1 *>;

Semantically, this is identical to the standard definition. Like the previous definition, it is not as easy for
the compiler to determine the value of inc.

The let form is also used to form terms. Consider the following definition:
11: let (x::integer is a+1) in f(x,5);

When the let form is evaluated, the following term results:
11: £((a+1),5);

Note that let currently supports defining variables over a single expression. Let forms cannot define variables
over multiple terms.

Summary: A term is a labeled, boolean expression defined within the body of a facet. Each term is
separated by a semicolon and is simultaneously true within the facet scope. Terms must be evaluated with
respect to the domain associated with their enclosing facet to be fully interpreted.

4.3 Labeling

Labeling is the process of assigning a name to a Rosetta item. Facet definitions, item declarations, and
terms all define items and provide labels. Recall that all Rosetta items consist of a label, value and type.
Where the value and type define current and possible values associated with the item, the label provides
a name used to reference the item. Specifically, labels serve as names for terms, variables, constants, and
facets. Any item may be referenced using it’s label. This provides the basis of reflection in Rosetta allowing
Rosetta specifications to reference elements of themselves.

%% Scoping discussion moved to facets chapter.

4.3.1 Facet Labels

Facet labels name facets and provide a mechanism for controlling visibility within a facet. Facets are labeled
when they are defined directly. Further, they are defined when labeled terms define new facets from existing
definitions using the facet algebra described in Chapter 3 and later in Chapter 5. When that label appears
within a definition, it references the defined facet.

In a traditional facet definition, the facet name following the facet keyword becomes the defined facet’s
label. Consider the following definition of find:

%% Question: Why is a local var called ’power’ declared in facet ’find’
%% below? It is not used so it seems superfluous.

facet find(k::in keytype; i::in array[T]; o::out T)::state_based is
power::real;

begin
postcondl: key(o’) = k;
postcond2: elem(o’,i);

end find;

76

This definition produces a facet item labeled find whose type is facet and whose value results from parsing
all declarations and terms within the facet.

Items declared in and exported from a facet visible outside the facet. Such items are referenced using the
standard notation name.label where name is the facet label and label is the item label. For example, key (0?)
= k is accessed using the name find.postcondl. Consider the following facet definitions:

facet find_power::constraint_requirements is facet find_emi::constraint_requirements is

power: :real; power::real;
begin begin

heatConst: heatDiss power <= 10mW; emiConst: emi power;
end find_power; end find_emi;

These facets describe electromagnetic interference (EMI) constraints and heat dissipation constraints in
facets labeled find emi and find power. Both facets are defined over a physical variable representing power
consumption. Consider the composition of these facets into a single electrical constraints facet. The new facet
is defined by conjuncting the find_power and find_emi facets and providing a new label, find_electrical:

find_electrical :: facet is find power and find_ emi;

Note that this declaration is identical to all other Rosetta declarations. An item of type facet is declared
and named find electrical. Then, the value of find electrical is constrained to be the product (con-
junction) of find_emi and find power. The declaration does not assert the facet in the current scope, but
asserts that find_electrical references the new facet. This definition is the equivalent of saying:

find_electrical :: facet;
begin
11: find electrical = find_emi and find power;

Alternatively, a facet can be defined and referenced in a definition using the following form:
find_electrical:: find power and find_emi;

%% Work on this. It’s a bit old and I think there’s a much better
%% way to assert facets as terms.

As stated earlier, all terms are boolean valued expressions. However, in the earlier definition and is used to
define a new facet. The distinction is this form defines a new facet and asserts it to be true in the current
context. Again it is named find_electrical and all labels and variables defined in it are accessed using
find electrical, not their original names. Facet labels do not nest, but instead the new label always
replaces the old. Because no export clause is specified, power, heatConst and emiConst are all visible
using the find electrical.label notation. Further discussion of facet inclusion and assertion is presented
in Section 4.5. It suffices here to understand that a new facet is being defined and it’s resulting label is the
assigned term label.

4.3.2 Term Labels

Each term defined in a facet must have a label. The Rosetta syntax allows labels to be omitted, however
the resulting term’s label is simply undefined and may be constrained to particular value by language tools.
The label identifies the term and is effectively equal to the term throughout the facet definition. All term
definitions have the form:

l: term;

7

where [is the term label and term is the term body. Any reference to the label [in the scope of this definition
refers to the term specified. Consider again the term from the earlier specification for EMI:

emiConst: emi power;

This simple definition defines a term emiConst that asserts emi power. Thus, the item referred to by emi
instantiated with the item power is asserted as a true statement.

Consider the following term involving a let expression:
11: let (x::natural = 1) in inc x;

The label 11 refers to the term defined by the let expression. Simplifying this definition based on the
definition of let results in the term 11: inc 1. Given the classic definition of inc, this term is not legal
as it asserts the value associated with inc 1. The only condition where this could be legal is if inc returns
a boolean value or a facet.

4.3.3 Variable and Constant Labels

Labels for variable and constant items are labels for the objects they represent. Like term and facets,
variables and constants are also made visible using their label. Like all other items, variables are referenced
using the name.label notation where name is the facet label and label is the physical variable name. Consider
the definition of power from the earlier constraint facet:

power::real;

This declaration defines a variable item referenced by the label power. Outside the facet definition, this
variable is accessed using the notation find.power.

Constants work similarly. Consider the following constant definition:
pi :: real = 3.14159;

Within the scope of this definition, the label pi refers to the defined item whose value is the constant
3.14159.

It is important to remember that functions, types and facets are all items that can be declared within a facet.
Thus, they may all be referenced using their associated labels. Recall the definition of increment minutes
from the alarm clock specification:

increment_minutes(t::time) : :minutes is
if m(t) =< 59 then m(t) + 1 else O;

This definition is interpreted exactly like the previous constant definition. The label increment minutes
refers to the item of type time->minutes whose value is specified by the constant function definition. Thus,
timeTypes.increment minutes is used in the body of including specifications to reference the functions.
This practice of collecting declarations within facets will form the basis of the Rosetta package construct
defined later.

78

4.3.4 Explicit Exporting

Visibility of labels is controlled using the export clause that appears in the declaration part of a facet. The
convention for label exporting is that any label listed in the export clause is visible outside the enclosing
facet using the standard facet.label notation. Labels not listed in the export clause are not visible and cannot
be referenced. All labels within a facet can be exported using the special shorthand export all notation.
If the export clause is omitted, then no labels from the facet are visible.

Summary: All Rosetta items are labeled and can be referenced in a specification by their associated label.
Three major labeling operations are the definition of facets, the declaration of variables and constants, and
the definition of terms within a facet. Any label may be referenced outside its enclosing facet using the
canonical notation facet.label where facet is the containing facet’s name and label is the label being access.
Controlling access is achieved using the export clause. If an export clause is present, all listed labels are
visible and all unlisted labels are not. If all appears in the export clause, then all labels are exported. If
no export clause is present, then no labels are visible outside the facet.

4.4 Label Distribution Laws

Given two labeled Rosetta items, distributive properties of labels over logical operations can be defined as
follows:

Equivalence Name

11:7 and %2 = 11:5 and 11:¢ and Distribution

11:(j or %) = 11:j or 11:i or Distribution
11:(not %) = not 11:1% not Distribution

11: <; 11: 5 =11: 4 and j; term Distribution
11::8; 11::T = 11::8 and T; Declaration Distribution

Label distribution works consistently for any Rosetta definition. An identical label can be distributed into
or factored out of any logical or collection operation regardless of the types of it’s arguments. For example,
labels distribute over and in exactly the same manner whether the arguments are expressions, facets, or
terms. Let’s examine distribution law in two general classes: (i) boolean operations; and (ii) term and
declaration distribution.

4.4.1 Distribution Over Logical Operators

Label distribution over logical operations follows the same process regardless of the specific operation.
Namely:

11: A o B ==11: A o 11: B

for any logical operator and, or or not. The definition easily extends to cover cases for =>, = and other
logical connectives. For example, the definition:

11: P(x) or Q(y)
is equivalent to the definition:
11: P(x) or 11: Q(y)
The semantics of each term depends on the specifics of the term value. In this case, if P and Q are both

boolean valued operations, then the terms assert that the disjunction of the two properties holds. If the
term types are facets, then the resulting definition defines and labels a new facet.

79

4.4.2 Distributing Declarations and Terms

Label distribution over semicolons occurs when two declarations or terms share the same label. Specifically,
an example in the case of declarations:

X::integer;
x::character;

and in the case of terms:

bl: and gate(x,y,z);
bl: constraint(p);

In both cases, the terms or declarations share the same label. In such circumstances, the semantics of
distribution is the conjunction of the definitions. In the case of declarations:

v::S is c; v::T is d;
is equivalent to:

v::S and T;
begin
t: v=c and v=d;

The semantics of the declaration are such that v is the coproduct of S and T.! Specifically, any value associated
with v has both the properties of S and the properties of T. This is not type intersection, but product in the
category theoretic sense. The definition does not say that v is in the intersection of the original types, but
says that it has a projection into both types.

The semantics of distribution over term declarations is similar. The definition:

bl: and gate(x,y,z);
bl: constraint(p);

is equivalent to:
bl: and gate(x,y,z) and constraint(p);

If the two conjuncts are boolean expressions, the definition of conjunction applies. If the two conjuncts are
facets, then the new facet b1l has the properties of both an and_gate and constraint simultaneously.

Summary: Label distribution is defined across all boolean operators as well as semicolons as used in
declarations and term definitions. In all cases for boolean operations, identical labels distribute across
operations. In all cases for semicolons, declarations and terms sharing labels can be combined into a single
declaration or term resulting from the product (conjunction) of their definitions.

1See Chapter 5 for details of conjunction usage.

80

4.5 Relabeling and Inclusion

The ability to rename object in conjunction with label distribution laws allows definition of: (i) facet inclusion
and instances; (ii) system structures; and (iii) type combination. Facet inclusion supports use of facets as
units of specification modularity. If renamed when included, the new facet represents a renamed instance
of the original. With inclusion, describing structural definitions becomes possible. Finally, using variable
labels allows definition of type combination and interface union.

4.5.1 Facet Instances and Inclusion

Facet inclusion allows compositional definition in a manner similar to packages or modules in programming
languages and theory inclusion in formal specification language. Whenever a facet label is referenced in a
term, that facet is included in the facet being defined. Consider the following extended find specification:

facet find primitives(T,K::subtype(univ)) is
key(t::T)::K;
elem(t::T,a::array(T))::boolean;
export all;

begin logic

end find primitives;

%% Why does ’power’ appear in facet find below? It is not used there.

facet find(k::in keytype; i::in array(T); o::out T) is
power::real;
begin state_based
findpkg: find primitives(T,keytype);
postcondl: findpkg.key(o’) = k;
postcond2: findpkg.elem(o’,i);
facet find;

In previous find specifications, definitions for key and elem remain unspecified. In this example, the facet
find primitives defines those operations. The find facet includes a copy of find primitives in the term
labled findpkg. Semantically, this term includes a copy of find primitives and relables the facet with
findpkg.

In the resulting definition, elements of the newly renamed facet are accessed using findpkg as their associated
facet name. Specifically, the elem and key functions defined in find primitives are referened using the
findpkg.elem and findpkg.key notations respectively. findpkg is said to be an instance of the original
facet because each newly named copy is distinct from the original. This includes physical variables as well
as terms. Thus, two renamed copies of the same facet will not inadvertently interact. This is exceptionally
important when defining structural definitions where many instances of the same component may be required.

Alternatively, a facet or package may be referenced in a use clause to make their definitions visible in the
current scope. Consider the following definition:

facet find primitives(T,K::subtype(univ)) is
begin requirements
key(t::T)::K;
elem(t::T,a::array(T))::boolean;
begin logic

end find primitives;

81

%% Why does ’power’ appear in facet find below? It is not used there.

use find primitives(T,keytype);

facet find(k::in keytype; i::in array(T); o::out T) is
power::real;

begin state_based
postcondl: key(o’) = k;
postcond2: elem(o’,i);

facet find;

Here the use clause makes all labels defined in find_primitives visible in the current scope. When using
this approach, the “.” notation is no longer necessary as the functions key and elem are now visible. In most
situations, this is the desired mechanism for packaging and using definitions. The special package definition
provides a facet construct specifically for this purpose. Please see Chapter 2 and Chapter 5 for more details

on the semantics and use of packages.

4.5.2 Structural Definition

System structure is defined using facet inclusion and labeling in the sam manner as defined previously. Facets
representing components are included and interconnected by instantiating parameters with common objects.
Labeling provides name spaced control and supports defining multiple instances of the same component.
Consider the following specification of a two bit adder using two one bit adders:

facet one_bit_adder(x,y,cin::in bit; z,cout::out bit) is
delay: :real;
export delay;
begin state_based
11: z’= x xor y xor cin;
12: cout’ = x and y;
end one_bit_adder;

facet two_bit_adder(x0,x1,y0,y2::in bit; z0,zl,c::out bit) is
delay: :real;
cx::bit;
export delay;
begin logic
b0: one_bit_adder(x0,y0,0,z0,cx);
bl: one bit_adder(xl,yl,cx,zl,c);
11: delay = b0O.delay+bl.delay;
end two_bit_adder;

Facet interconnection is achieved by sharing symbols between component instances. When a facet is included
in the structural facet, formal parameters are instantiated with objects. When objects are shared in the
parameter list of components in a structural facet, those components share the object. Thus, information
associated with the object are shared between components. The two_bit_adder specification includes two
copies of one_bit_adder. Parameters of the two adders are instantiated with parameters from two_bit_adder
to associated signals with those at the interface. The internal variable cx is used to share the carry out value
from the least significant bit adder with the carry in value from the most significant bit adder.

When the two one_bit_adder instances are included in the two_bit_adder definition, they are labeled with
b0 and bl. The result is that the first one_bit_adder is renamed b0 and the second bl. The implication of

82

the renaming is that the delay physical variable associated with the adder definition is duplicated. Ie. the
values b0.delay and bl.delay are available for reference and represent distinct objects. Without renaming
using labels, both one_bit_adder instances would refer to the same physical variable, one_bit_adder.delay.
This is not appropriate as the adders should be distinct. The same result can be achieved using parameter for
delay. In large specifications including parameters for physical variables representing constraint specifications
becomes cumbersome. Further, delay is not a parameter but a characteristic of the component.

After including the two adder instances, the value of delay in the two_bit_adder specification is constrained
to be equivalent to the sum of the one_bit_adder delays. In this way, it is possible to specify composition
of non-behavioral characteristics across architectures.

Logical operators are defined to distribute across structure components. Assume the following facets defining
power constraints on a one bit adder and an architecture defining constraints on a two bit adder composed
of two one bit adders:

facet one_bit_adder_const is facet two_bit_adder_const is
power: :posreal; power: :posreal;
begin constraints begin constraints
p0: power <= 5mW; b0: one_bit_adder_const;
end one_bit_adder_const; bl: one_bit_adder_const;

p0: power = b0O.power + bl.power;
end two_bit_adder_const;

The facet conjunction two_bit_adder = two_bit_adder and two_bit_adder_const is equivalent to:

facet two_bit_adder(x0,x1,y0,yl::in bit; z0,zl,c::out bit) is
delay: :real;
power: :posreal;
cx::bit;
export delay,power;
begin logic
b0: one_bit_adder(x0,y0,0,z0,cx);
bO: one_bit_adder_const;
bl: one_bit_adder(xl,yl,cx,zl,c);
bl: one_bit_adder_const;
dO: delay = bO.delay+bl.delay;
pO: power = bO.power+bl.power;
end two_bit_adder;

This definition results from the definition of facet conjunction. The term set is simply the set of all defined
terms in the two facets.

This definition results from the distributivity of labeling. The same result holds for disjunction, implication
and logical equivalence. Application of label distribution results in:

facet two_bit_adder(x0,x1,y0,yl::in bit; z0,zl,c::out bit) is
delay: :real;
power: :posreal;
cx::bit;
export delay,power;

begin logic
bO: one_bit_adder(x0,y0,0,z0,cx) and one_bit_adder_const;
bl: one_bit_adder(xl,yl,cx,zl,c) and one_bit_adder_const;
dO: delay = bO.delay+bl.delay;
pO: power = bO.power+bl.power;

end two_bit_adder;

83

Here, conjunction distributes across the structural definition. Proper label selection allowed power constraints
to be associated with each component. The result can be viewed as either the conjunction of a power and
functional model or the composition of two component models both having constraint and functional models.

%% Working Here %%
Example 13 (Structural Example) Consider the following facets:

facet sort(x::in array(T); y::out array(T)) is
begin state_based

11: permutation(x,y’);

12: ordered(y’);
end sort;

facet binsearch(k::in keytype; x::in array(T); y:out T) is
begin state_based

11: ordered(y);

12: member(k, dom(x)) => member(y’, dom(x)) AND key(y’)=k;
end binsearch;

facet find structure(k::in keytype; x::in array(T); y:out T) is
buff::array(T);

begin logic
bl: sort(x,buff);
b2: binsearch(k,buff,t);

end find_structure;

The sort and binsearch facets define requirements for sorting and binary search components. The find-
structure facet defines a find architecture by connecting the two components. The state variable buff is
shared by the binary search and sorting components and facilitates sharing information. Note that new does
not generate a new copy of buff because new is called on both sort and binsearch before parameters are
instantiated. Thus, the same object buff is references in the terms of both components and constrained by
those terms.

The following collection of examples are designed to demonstrate several configurations of a simple transceiver
system. The following represent simple specifications of a transmitter and receiver used throughout the
examples:

use signal_processing requirements(T); use signal_processing requirements(T);
facet tx (data::in T; output::out T) is facet rx (data::out T; input::in T) is
begin state_based begin state_based

11: output’=encode(data); 11: data’=decode(input);
end tx; end rx;

These specifications assume the following domain facet for signal processing:

facet signal processing requirements(T::subtype(univ)) is
encode(t::T)::T;
decode(t::T)::T;
export encode,decode;
begin logic
encode_decode: forall(t::T | decode(encode(t))=t);
end signal_processing requirements;

84

Recall that in the presense of an export statement, only specified labels are visible outside the facet. Here,
a facet is used rather than a facet to allow specification of the encode_decode axiom that states the inverse
relationship between the encode and decode functions. The use clause makes the functions visible and
available to the transmitter and receiver specifications. The axiom is not visible, but does remain present in
the definition.

Example 14 (Transmit/Receive Pair) The following defines the simplest possible communications chan-
nel transmitting and receiving encoded, baseband signals:

facet tx_rx_pair (data_in::in T; data_out::out T) is
channel::T;

begin logic
txb: tx(data_in,channel);
rxb: rx(data_out,channel);

end tx_rx_pair;

The resulting component represents a perfect transmitter receiver pair where input data is perfectly transmitted
to an output data stream.

Example 15 (Transceiver) The following defines a simple transceiver combining the transmitter and re-
cewer functions into a single component:

facet transceiver (data_in::in T; data_out::out T;
out_chan::out T; in_chan::in T) is
being structural
txb: tx(data_in, out_chan);
rxb: tx(data_out, in_chan);
end transceiver;

Note that in this specification, the transmitter and receiver do not interact. They simply operate in parallel
on indepednent data streams.

Example 16 (Transceiver Pair) Now consider a tranceiver pair constructed from two transceivers:

facet trx_pair (data_inl, data_in2::in T;
data_outl, data_out2::out T) is
begin logic
chanl,chan2::T;
trxl: transceiver(data_inl,data_outl,chanl,chan2);
trx2: transceiver(data_in2,data_out2,chan2,chanl);
end trx_pair;

Example 17 (Transceiver Pair - Common Channel) An adaptation of a tranceiver pair is one where
transmission from both devices occurs on the same channel. Here, only one channel parameter is defined:

facet trx pair (data_inl, data in2::in T;
data_outl, data_out2::out T) is
chan::T;
begin logic
trxl: transceiver(data_inl,data_outl,chan,chan);
trx2: transceiver(data_in2,data_out2,chan,chan);
end trx_pair;

85

Example 18 (Low Power Transmitter) Define a new facet for transmitters and receivers that constrains
power consumption:

facet low_power is
power::real;
begin constraints
pO: power =< 10MW;
end low_power;

%% Cindy, look at this syntax...
One can now define a low power transmitter as:
tx_low_power(data::in T; output::out T)::facet is tx and low_power;

In this definition, a new facet called tz_low_power is defined that is the composition of the transmitter
functional facet and the low power constraints.

%% The definition below should be contained in a facet definition as
%% it’s really a function.

Example 19 (Transmitter Configuration) Define a new facet for high power transmission:

facet high_power is
power: :real;
begin constraints
11: power =< 100Mw;
end high power;

Now define a configurable device that represents either the high or low power version:

tx_power_select(select::boolean)::facet is
tx(data,output) and
if select
then low_power
else high power
endif;

When the select parameter is true, then the tz facet is composed with the low_power constraints facet.
Otherwise, the tz facet is composed with the high power constraint facet.

86

Chapter 5

The Facet Algebra

%% Needs a good introductory paragraph

%% Still need to define syntax for the facet composition operators.
%% Also need some reference to the formal semantics. Put a small
%% section in on the theory calculus from the interactions white
%) paper.

The following sections describe several prototypical uses of facet composition. Please note that domains use
in these examples are defined in Chapter 6. In the following definitions, assume that all F;, are facets where
T,, D, and I, are the term set, domain and interface associated with F;, respectively.

5.1 Facet Conjunction

Facet conjunction, Fj A F5, states that properties specified by terms 77 and T, must by exhibited by the
composition and must be mutually consistent. Further, the interface is I; + +1I implying that all symbols
in the parameter lists of F; and F5 are also visible in the parameter list of the composition.

The most obvious use of facet conjunction is to form descriptions through composition. Of particular in-
terest is specifying components using heterogeneous models where terms do not share common semantics.
A complete description might be formed by defining requirements, implementation, and constraint facets
independently. The composition forms the complete component description where all models apply simulta-
neously.

Example 20 (Requirements and Constraints) Consider the following facets describing a sorting com-
ponent:

facet sort_req(i::input T; facet sort_const::constraints is
o::output T)::state_based is power::real;
begin begin
12: permutation(o’,i); pl: power =< 5mW;
11: ordered(o’); end facet sort_const;

end facet sort_req;
A sorting component can now be defined to satisfy both facets:

sort::facet is sort.req and sort_const;

87

Alternatively, the following definition can be used to define sort:

sort::facet;
begin
11: sort = sort._req and sort_const;

end facet facet;
Another alternative is using relabeling to define a single sort component in a structural Rosetta description:

begin
sort: sort_req and sort_const;

end facet facet;

In each case, the resulting sort definition is the conjunction of the sort_req and sort_const definitions.

Summary:

5.2 Facet Disjunction

Facet disjunction, F; V Fb, states that properties specified by either terms 77 in domain D; or T5 in domain
D4y must be exhibited by the resulting facet. Like conunction, the interface of the resulting facet is I; + +1s,
the union of the facet interfaces.

The most obvious use of facet disjunction is the definition of cases. T'wo situations are of particular interest:
(i) using predicatative semantics to define component behavior; and (ii) defining families of components.

Example 21 (Case Specification) Given a container C defined as a collection of key (K), element (E)
pairs, naive requirements for a simple search algorithm are defined as:

facet search(c::input C; k::input K; o::output E)::state_based is
begin

member ((k,0’),c);
end facet search;

Clearly, this specification will be inconsistent if there is mo element in c corresponding to k. Thus, it is
traditional to break the requirements into two cases: (i) the element is present and is returned; and (ii) the
element is not present. Such a situation is modeled by the following two specifications:

facet searchOK(c::input C; k::input K; facet searchErr(c::input C; k::input K;
o::output E)::state_based is o::output E)::state_based is
begin begin
11: exists(x::E | member((k,x), c)); 11: -exists(x::E | member((k,x), c));
12: member((k,o0’),c); end facet searchErr;

end facet searchOK;

Facet search is now defined:

search::facet is searchOK or searchErr;

88

Example 22 (Component Version) Another excellent example of disjunction use is representing a family
of components. Consider the following definitions using sort facets defined previously:

multisort::facet is sort_req and (bubble_sort or quicksort);

The new facet multisort describes a component that must sort, but may do so using either a bubble sort or
quicksort algorithm. '

A more interesting definition configures a component to represent both low and high power configurations of
a device:

facet low_power::constraints is facet power::constraints is
power::real; power::real;
begin begin
power =< 1mW; power =< 5mW;
end facet low_power; end facet power;
facet tx_req(d::input data; low_power_tx::facet is
s::output signal)::continuous is tx_req and low_power;
begin
<transmitter definition here> high power_tx::facet is
end facet tx._req; tx_req and power;

In this example one specification for a transmitter function is provided along with two definitions of low and
high power versions. Facet conjunction is used to combine power constraints with functional transmitter
properties.

Consider the following specification:

tx(select::boolean)::facet = if select then
low_power_tx
else high power_tx
endif;

Here a generic parameter is introduced into the definition to select one version over another. When select
is instantiated, then tx resolves to the appropriate model. A more interesting case occurs when select is
skolemized to an arbitrary boolean constant a:

tx(a) == if a then low_power_tx else high power_tx endif;

Whenever facet tx is used in this manner, both specifications must be considered. Effectively, tx defines two
transmitter models. When instantiated in a structural facet, both models must be considered in the analysis
activity. It must be noted that the parameter select is a boolean valued parameter and not a facet. It is
tempting to attempt a definition of if-then-else that uses facets as all its parameters. However, such a
definition has been shown to have little utility.

%% These must be dealt with separately because they do not result in
%% facets. Although implication should if it’s defined in terms of
%% disjunction.

Summary:

1 Assume the facet quicksort has been defined in the canonical fashion.

89

5.3 Facet Implication

Facet implication, F; = F5, states that properties specified by term 77 must imply properties specified by
term T,. Note that F} = Fy, = —F; V F>. The most obvious use of refinement is showing that one facet
“implements” the properties of another. Specifically, if F; = F5, then the theory of F; is a subset of the
theory of Fj.

Example 23 (Implementation) Given the requirements defined for sort in sort_req, any legal imple-
mentation of a sorting algorithm must implement these properties. We say that sort_req can be refined into
bubble_sort and state this as:

sort_ref::facet is bubble_sort => sort_req;

Additional constraints may be added by conjuncting facets in the consequent of the implication. The following
is an example of adding a low power constraint to the specification:

constrained_sort_ref::facet is bubble_sort => low_power and sort._req;

This is an interesting result because it insists that bubble_sort be a low power solution to the sorting problem.

As an aside, the definition of conjunction requires that FiandFy => FY.

Summary:

5.4 Facet Equivalence

Facet equivalence, F; < F5, states that properties specified by terms T7 and T5 in domains Dy and Dy must
be equivalent. The formaly definition of equivalence can be expressed in terms of implication. Formally:

Firekh=F=KIKANF=F

Summary:

5.5 Parameter List Union

Throughout the defintion of the facet algebra, reference is made to the union of parameter lists. Specifically,
when facets are combined the parameter list of the new facet is defined as I; + +1>. Viewed as bunches, this
definition is literally true where all parameters from both facets become parameters in the new facet.

Given the facet declarations:
facet F1(x::R, y::S, t::T) is facet F2(w::Q,x::R) is
end facet F1; end facet F2;

The parameter list of F1 and F2is (x::R, y::8, t::T, w::Q). Note that the declaration of parameter x
is shared in both facet declarations. Bunch union implies that a single x appears in the result of parameter
list union.

90

5.5.1 Type Composition

The more interesting case occurs when a parameter is shared betweeen facets, but the declarations specify
different types. Consider the following two facet declarations:

facet F1(x::R, y::8, t::T) is facet F2(w::Q,x::P) is

end facet F1; end facet F21;

In this case, the parameter list of F1 and F2 is (x::R, x::P, y::S, t::T, w::Q). Note that two dec-
larations of x exist in the parameter list definition. Recall that parameter declarations are simply terms
appearing in the parameter list. Specifically, a variable or parameter declaration is shorthand for:

x:e::R

Viewing the parameter definition in this way allows application of label distribution laws. This application
yeids the parameter list (x::R and P, y::S, t::T, w::Q). Note that in this parameter list x is of type R
and P implying that x can be viewed both as type R and type P.

When conjuncting and disjunction facets, care must be taken to assure that parameters having the same
name represent the same physical quantity. The type declaration R and P results in a type that, in principle,
behaves like the result of facet conjunction. Specifically, an item of this type is simultaneously viewed as
being of both types. It is also important to understand that type composition is not type union. Specifically
R and P is not equal to R ++ P. In the latter case, elements of R ++ P can take values from either R or P.

An excellent example of type composition occurs when looking at a circuit component such as a simple gate
from multiple perspectives. Consider a simple and gate viewed in both the analog and digital domains:

facet and discrete(x,y::input bit; facet and cont(x,y::input real;

z::output bit)::state_based is z::output real)::continuous is
begin begin

11: z° = xx*y; <and gate definition here>
end facet and_discrete; end facet and_cont;

The definition of a completely modeled and_gate gate becomes:
and_gate :: facet is and._discrete and and_cont;

The parameter list resulting from this definition is:
(x,y::input bit and real, z::output bit and real)

Thus, each parameter can be viewed as either a real or discrete value.

%% Need discussion of parameter interaction here. Defer semantics
%% to the semantics guide, but some discussion must occur.

91

5.5.2 Parameter Ordering

The pragmatics of using parameter list union insist that some ordering be placed on the results. Typically,
specifiers use the order of parameters in parameter list to associated actual parameters with formal param-
eters. Rosetta provides two mechanisms for handling this situation. The first is for the user to define an
ordering and the second is to use explicit parameter assignment.

To explicitly define parameter ordering in the facet resulting from a conjunction the user specifies parameters
in the facet declaration. For our and_gate gate example previously, the following definition specifies an
ordering for resulting parameters:

and_gate (z,y,x: :null)::facet is and_discrete and and_cont;

In this definition, the parameter ordering in the definition of and_gate defines the parameter ordering. The
null type is used to specify the parameter types as for any type T, T and null == T. Thus, the parameter
definitions add ordering information, but add no additional type information to the definition.

Users may also allow Rosetta to order the types for them.

%% Ordering definition here
Examples:

Summary:

92

Chapter 6

Domains and Interactions

Domains and interactions are special facets that define domain theories and interactions between domain
theories respectively.

6.1 Domains

A domain is a special purpose facet that defines a domain theory for facets. Effectively, all facets extend
domains that are considered to be their types. Each domain represents a model of computation and a
vocabulary for domain specification. When writing a specification, a designer chooses a domain appropriate
for the model being constructed. The domain is extended by adding declarations and terms that use the
base domain’s predefined model of computation. Alternatively, a designer can define her/his own domain by
extending an existing domain or start completely from scratch. The advantage of using an existing domain
is reuse of the domain and its interaction with other domains. The syntax for a domain is defined as:

domain <name> (f::facet)::<domain> is
<declarations>;

begin
<terms>

end domain <name>;

where jnames is the label naming the domain, jdomaing is the domain extended by the new definition,
jdeclarations; are items defined in the domain, and jtermsg define the new domain. All domains are param-
eterized over a single facet variable that represents a place holder for the facet including the domain theory.
Given a domain called state_based_semantics used in the following facet:

facet register(i::input bitvector; o::output bitvector;
sO: :input bit; sl::input bit)
state_based_semantics is
state: :bitvector;

begin
11: if s0=0
then if s1=0 then state’=state
else state’=lshr(state) end if
else if s1=0 then state’= 1lshl(state)
else state’=i end if
end if;

12: o’=state’;
end facet register;

93

the parameter f in state_based_semantics refers to the including facet register. Thus, the domain
definition can generically reference elements of the including facet in its definition. For example, it is possible
to reference meta_labels(f) or meta_items(f) to reference the labels and items defined in f respectively.

As with traditional facet definition, a domain definition extends the theory provided by its referenced domain.
It is therefore possible to define a lattice of domains that inherit and specialize each other. Figure 6.1 shows
one such specification lattice including pre-defined domain definitions. Solid arrows represent extension
between domains. Clear arrows represent morphisms where all information is conserved from domain at tail
of arrow to domain at head. Dotted arrows represent morphisms where some information is lost as a result
of the morphim.

The root of the lattice is the null domain which is directly extended by the logic domain. The logic domain
contains declarations of all Rosetta types, constructs and operators. Effectively, it serves as prelude. The rest
of the domains are classified into 3 groups: unit of semantics, model of computation and engineering model.
A unit of semantics represents a unifying semantic domain, i.e. it provides a basic set of semantic objects
that can be used to represent different computation models. The model of computation group consists of
domains that provide semantics for defining objects, goals, relations, i.e. the ontology, of a design paradigm.
An engineering model is a domain that defines semantics specific to an engineering field, e.g. it may contain
definition of units.

Figure 6.1: Lattice of pre-defined specification domains.

The following sections provide basic definitions and usage examples for each pre-defined domain.

6.1.1 Null

The null domain refers to the empty domain. It is included to provide a basis for defining domains that
inherit nothing from other domains. The logic domain that provides basic mathematics will use null as
a domain to indicate that it is self contained. There is no constructive definition of null because it has no
domain definition.

6.1.2 Logic

The logic domain serves as prelude to Rosetta. All primitive Rosetta constructs are declared in logic. It
also defines mathematical constants such as pi. Any term defined in the logic domain expresses a fact that
is always true, i.e. item values cannot change.

94

domain logic(f::facet)::null is

universal :: type;
univ :: subtype(universal);
item, constructed, function, element,

set, array, facet :: subtype(univ);
domain, package, component, interaction :: subtype(facet);
character, enumeration, number :: subtype(element);
string :: array(character);
label: :type;
boolean :: subtype(number) is enumeration[true | false];
complex :: subtype(number) ;
real :: subtype(complex);
rational :: subtype(real);
integer :: subtype(rational);
natural :: subtype(integer);
bit :: subtype(natural) is enumeration[0 | 1];
bitvector :: subtype(array(bit));
j :: complex;
im(x :: complex) :: real;
rl(x :: complex) :: real;
fl1(x :: real) :: integer;
abs(x :: real) :: real;
sqrt(x :: real) :: complex;
sqr(x :: real) :: real;
log(x :: real) :: real;
__=__ :: <* (lhs, rhs :: univ) :: boolean *>;
__/=__ :: <x (lhs, rhs :: univ) :: boolean *>;
__==__ :: <x (lhs, rhs :: univ) :: boolean *>;
#__ :: <x (rhs :: set(univ)) :: natural *>;
__++__ :: <x (lhs, rhs :: set(univ)) :: set(univ) *>;
__%%__ :: <x (lhs, rhs :: set(univ)) :: set(univ) *>;
__——__ :: <x (1lhs, rhs :: set(univ)) :: set(univ) *>;
__in__ :: <x (lhs :: univ; rhs :: set(univ)) :: boolean *>;
$__ :: <x (rhs :: array(univ)) :: natural *>;
__33__ t: <k (lhs, rhs :: array(univ)) :: array(univ) *>;
// polymorphic
subst(a :: array(univ); i :: natural; v :: univ) :: array(univ);
%__ :: <k (rhs :: bit) :: natural *>;
__<__ :: <x (lhs, rhs :: number) :: boolean *>;
__>__ :: <x (lhs, rhs :: number) :: boolean *>;
__>=__ :: <*x (lhs, rhs :: number) :: boolean *>;
__=<X__ :: <x (lhs, rhs :: number) :: boolean *>;
__>=__ :: <* (lhs, rhs :: number) :: boolean *>;
__max__ :: <x (lhs, rhs :: number) :: number *>;
__min__ :: <* (lhs, rhs :: number) :: number *>;
__+__ :: <* (lhs, rhs :: complex) :: complex *>;
- <* (lhs, rhs :: complex) :: complex *>;
__/__ :: <x (lhs, rhs :: complex) :: complex *>;
kL <% (lhs, rhs :: complex) :: complex *>;
T <* (lhs, rhs :: complex) :: complex *>;
not__ :: <*x (rhs :: boolean) :: boolean *>;
__implies__ :: <* (lhs, rhs :: boolean) :: boolean *>;
__=>__ :: <*x (lhs, rhs :: boolean) :: boolean *>;

95

__nmax__ :: <* (lhs, rhs :: boolean) :: boolean *>;

__nmin__ :: <* (lhs, rhs :: boolean) :: boolean *>;
__and__ :: <*x (lhs, rhs :: boolean) :: boolean *>;
__nand__ :: <*x (lhs, rhs :: boolean) :: boolean *>;
__or__ :: <x (lhs, rhs :: boolean) :: boolean *>;
__nor__ :: <x (lhs, rhs :: boolean) :: boolean *>;
__xor__ :: <x (lhs, rhs :: boolean) :: boolean *>;
__xnor__ :: <*x (lhs, rhs :: boolean) :: boolean *>;
posreal :: subtype(real) is sel(x::real | x >= 0);
tl(seq :: sequence(univ)) :: sequence(univ);

nil :: sequence(univ);

pi :: real is 3.1415927;
// and so on ...
export all;

begin

end domain logic;

Examples

Summary

6.1.3 State Based

The state_based_semantics domain defines the base semantics for systems that change state. This domain
extends the mathematical capabilities provided by the logic domain to include the concept of state and
change. Recall that in the logic domain, the values associated with items could not change. Doing so
created inconsistencies with the original definitions. The state_based_semantics domain provides the basis
for modeling the concepts of state and change by defining: (i) the state of a facet; (ii) the current state; and
(iii) a next state function that derives the next state from the current state.

Consider the following trivial definition of a counter that counts from 0 to 7 and repeats:

facet counter(v::output natural)::state_based_semantics is
n::natural;

begin
next: if n < 7 then n’=n+1 else n’=0 end if;
output: v’ = n;

end facet counter;

This definition uses a natural number, n, to maintain the current counter value and uses two terms to define
the next state and output respectively. The first term, labeled next, defines the next state given the current
state:

next: if n < 7 then n’=n+1 else n’=0 end if;

In this term, n refers to the value of n right now in the current state. The notation n’ refers to the value of
n in the next state after the component or system represented by the facet has completed its computation.
Understanding this convention, the term can now be interpreted as a conditional statement stating ‘if n is
less than seven in the current state, then n in the next state is n+1, else n in the next state is 0.” This is
precisely how a counter calculates its next value.

Similarly, the second term defines the next output:

96

output: v’ = n;

Using the same interpretation mechanism, the next value of v will be the current value of n. This is somewhat
interesting as the output lags the current state by one value. If such behavior is not desired, then this term
can be modified to state v’=n’.

It is exceptionally important to recognize that the following term similar to a C-like programming statement
is not correct:

next: if n < 7 then n=n+1 else n=0 endif;

Remember that terms state things that are true. These are not executed and there is no notion of assignment.
Although legal in C where = is an assignment operator, in Rosetta this statement asserts that if n < 7, then
n =n+1 is also true. Looking at = as equality rather than assignment makes the second statement inconsis-
tent as there is no natural number that is equal to itself plus one. The key to using state_based_semantics
domains is recognizing that no label tick indicates the current state and label tick indicates the next state.

The state_based_semantics tick notation is defined based on the state_based_semantics domain defi-
nitions of current state and the next state function. In reality, the notation x’ is shorthand notation for
x0next (s) where: (i) @ refers to the value of a label in a state; (ii) next defines the state following a given
state, and s is the current state. Specifically:

x == x@s
and
x’ == x@next(s)

The previously defined counter specification is equivalent to the following expansion:

facet counter(v::out natural)::state_based_semantics is
n::natural;

begin
next: if n@s < 7 then n@next(s)=(n0s)+1 else n@next(s)=0 end if;
output: v@next(s) = n@s;

end facet counter;

where the tick notation is replaced by it’s definition and references to labels in the current state are expanded
to explicitly reference the state. Readers curious about the actual definition of the state_based_semantics
domain should refer to Section 6.1.3 defining the semantics of state_based_semantics. Readers needing
only to understand use of the state_based semantics domain may safely skip Section 6.1.3.

Examples

%% Steal the examples from the tutorial and add a few more.

97

Semantics

This and subsequent semantics sections may be skipped by readers who do not wish to see the internals of
a domain definition.

The state_based_semantics domain provides a basic definition of state and change of states. Two basic
mechanisms are provided: (i) a definition of state; and (ii) a definition of what next state means. The
definition of state provides a state type that can be referenced in definitions. In the state _based_semantics
domain, relatively few restrictions are placed on the state definition. The next state function provides the
concept of change by sequencing states. Like the state typ