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Chapter 1

Introduction

This document serves as a usage guide for the Rosetta specification language. It defines most of the base
Rosetta semantics in an ad hoc fashion and provides general usage guidelines through examples.

The basic unit of Rosetta specification is a facet. Each facet is a parameterized collection of declarations
and definitions specified using a domain theory. Facets are used to define: (i) system models; (ii) system
components; (iii) architectures; (iv) libraries; and (v) semantic domains.

Although definitions within facets use many different semantic representations, the semantics of facet com-
position, inclusion and data types are shared among all facets. Collections of facets are composed using
a collection of common operations that operate regardless of semantic domain. The basic facet definition
provides an encapsulation, parameterization and naming convention for Rosetta systems.

This document describes the semantics of facets in an ad hoc fashion. Its intent is to provide an introduction
to facets and their various uses without discussing any specific domain theory. In addition to facets them-
selves, this document also defines a type system shared among facet definitions. Basic types and operations
available to Rosetta specifiers are identified and primitive definitions provided. Finally, the system construct
used to describe hegerogeneous systems using facets is presented. The system construct supports definition
of facets, assumptions, declarations, and verifications in support of a systems level design activity.



Chapter 2

Facet Basics

The basic unit of specification in Rosetta is termed a facet. Each facet defines a single aspect of a component
or system from a particular perspective. To define facets completely, it is necessary to understand the basics
of Rosetta declarations, functions and expressions. This chapter intends only to introduce the concept and
simple examples of facet definition to motivate the descriptions in following chapters. If concepts are not
fully presented here, assume they will be in chapters dealing with the specifics of facet definition.

A facet is a parameterized construct used to encapsulate Rosetta definitions. Facets form the basic semantic
unit of any Rosetta specification and are used to define everything from basic unit specifications through
components and systems. Facets consist of three major parts: (i) a parameter list; (ii) a collection of
declarations; (iii) a domain; and (iv) a collection of labeled terms. This section introduces the facet syntax,
an ad hoc facet semantics, and provides structure for the remainder of the document. For a formal definition
of facet semantics, please see the Rosetta Language Semantics Guide.

2.1 Facet Definition

Facets are defined using two mechanisms: (i) direct definition; and (ii) composition from other facets. In this
section we will deal only with direct definition and defer facet composition to Section 2.3. Direct definition
is achieved using a traditional syntax similar to a procedure in a traditional programming language or a
theory in an algebraic specification language. The general formal for a facet definition is as follows:

facet <facet-label>(<parameters>) is
<declarations>

begin <domain>
<terms>

end <facet-label>;

The facet definition is delineated by the facet keyword immediately followed by a < facet — label >
providing the facet with a unique name. The facet label is immediately followed by a comma separated
parameter list denoted above by < parameters > and the keyword is. The declarations section, denoted by
< declarations >, is used to declare labeled items and define visibility of locally defined labels. The keyword
begin starts the definition section and is immediately followed by domain theory, denoted < domain >,
used to provide a vocabulary for the definition. Declarations follow in the form of labeled terms, denoted
< terms > that provide a definition for facet. The definition concludes with the keyword end and the facet
label.

As an example, a specification for a find component follows:



facet register(i::in bitvector; o::out bitvector; s0::in bit, sl::in bit) is
state: :bitvector;
begin state_based
11: if s0=0 then
if s1=0 then state’=state
else state’=lshr(state) endif
else if s1=0 then state’= lshl(state)
else state’=i endif
endif;
12: o’=state’;
end register;

This definition describes a facet register with data parameters i, and o of types bitvector and two control
parameters of type bit. The variable state is defined to hold the internal state of the register and is of
type bitvector. As can be deduced from examination of the specification, this register performs hold,
logical shift right and left, and load operations given inputs of 00, 01, 10 and 11 on parameters s0 and s1
respectively.

All Rosetta variables and parameters are declared using the notation v::T where v is a variable name and
T is a type. The “::” notation is used for declarations as it represents bunch membership and all types
are in fact bunches. The notation x::T creates an item labeled x whose values are associated with type T.
The declaration can be viewed as declaring an item v whose possible values are selected from the bunch
associated with T. In the register specification, state: :bitvector defines a variable labeled state whose
values can be selected from the bunch type bitvector.

Parameters are universally quantified variables visible over the scope of the facet. Parameter definitions are
similar to traditional declarations with the addition of a descriptor predicate. Specifically, i::in bitvector
defines a parameter i of type bitvector and declares the predicate in(i) to be true. The semantics of
in(i) are defined by the semantic domain currently being used. In the register example, the state _based
domain defines in to explicitly disallow reference an input parameter in the next state. Specifically, i’ is
disallowed.

The declaration section following the facet interface includes declarations local to the facet. Items defined
in this manner are visible throughout the facet. Such declarations may be made visible outside the facet
using an export statement. In this case, the exclusion of an export clause makes all labels visible outside
the specification.

When referenced in the facet body, a term, variable or parameter is referenced by its label without decoration.
When referenced outside the facet, labels are referenced using the facet name as a qualifier. In the register
example, register.11 refers to the first term in register while register.state refers to the variable
state.

The begin-end pair delimits the domain specific terms within the facet and declares the facet’s domain.
The begin statement opens the set of terms and identifies the semantic domain those terms will use. In
the register specification, the semantic domain is state _based providing the basic semantics for state and
change in the traditional axiomatic style. Specifying a semantic domain indicates what domain theory the
facet uses for its definition. Every facet must have an associated domain even if that domain is the logic
domain common to all facets.

Terms in the term list define the behavior modeled by the facet. Each term is a labeled, well formed formula
(wif) with respect to the facet’s semantic domain.

The general form associated with any term is:

1: term;



where 1 is the label associated with the term and term is the definition itself. The label is used to reference
the term in other definitions as well as when the term is exported. All terms defined in scope of the begin-end
pair are considered top level terms.

The register uses two terms to define behavior. The first, labeled 11, defines the register’s next state in
terms of its current state, input and control inputs. The if statement implements the various cases for hold,
shift right, shift left, and load. It should be noted that the shift operations are implemented using the built
in bitvector shift functions 1shr and 1shl that provide logical shifts over bitvector types. The second term,
labeled 12 defines the next output. This simple expression states that the next output is the same as the
next state as defined by term 11.

It should be noted that both terms defined in register hold simultaneously. Thus, both the next state
and output definitions must hold for the component to behave correctly. The structure of the specification
is much like the structure of a VHDL specification. Each state variable and output parameter is handled
individually. The distinction here is the variability of definition semantics. In this case, the Rosetta function
semantics is used to calculate next values for each variable.

The domain extends the semantics available for specification by adding new definitions and potentially
syntax specific to the domain being specified. In the case of state based, the basic addition is the concept
of current and next state. Specifically in the register definition, state refers to the register contents in the
current state while state’ refers to the register contents in the following state. The state_based domain
defines the semantics of “x’”.

In declarative requirements facets, domains and associated terms are characterized by logical expressions
like those used in register. In operational descriptions, terms may be imperative or functional program
fragments. Regardless, the syntax and semantics of terms are determined by the semantics defined by the
facets domain.

Parameter instantiation is achieved by traditional universal quantifier elimination. An object of the specified
type is selected and the parameter replaced by that object. When formal parameters are instantiated with
objects, those objects replace instances of parameters throughout the facet specification. When A is an actual
parameter and F is a formal parameter, the notation A=>F allows direct assignment of actual parameters to
formal parameters. This notation allows partial instantiation and is sometimes necessary when parameter
ordering in constructed facets is ambiguous.

Consider the following modified register specification:

facet register(i::in bitvector; o::out bitvector; s0O::in bit, sl::in bit) is
state: :bitvector;
export state;
begin state_based
11: if s0=0 then
if s1=0 then state’=state
else state’=lshr(state) endif
else if s1=0 then state’= 1lshl(state)
else state’=i endif

endif;
12: o’=state’;
end find;

This specification is identical to the previous definition except that only the state variable is visible outside
the facet scope. The terms 11 and 12 are no longer visible as they are not listed in the export clause. The
variable state is accessed using the name register.state because register is the label assigned to the
facet.



2.1.1 Examples

Examples are included here to provide motivation for the facet syntax and to provide context for the following
sections. It is intended that these examples provide an overview, not a detailed language description. It
is suggested that these be referred to while reading subsequent chapters as a means for understanding the
utility of Rosetta definition capabilities.

Example 1 (Sort Definition) A declarative specification for requirements and constraints associated with
a sort function has the following form:

facet sort_req(i::in array(integer); o::out array(integer)) is
use array_utils(integer) ;

begin state_based
12: permutation(o’,i);
11: ordered(o’);

end sort_req;

The facet sort_req defines a view of a component that accepts an array of integers as input and outputs
the array sorted. This simple specification demonstrates several aspects of Rosetta specification using the
state_based, ariomatic style.

Parameters for sort_req are simply an input and output arrays of type integer. The facet uses the
state_based domain allowing the use of o’ to represent the output in the state following execution. The
package array_utils (defined later) is included to provide definitions necessary for defining sort. Specifi-
cally, permutation and ordered. These functions could be defined in the declaration section of the pack-
age, however this definition is cleaner and allows reuse of the array utilities in other specifications. Note
that the array utils package is parameterized over a type. This parameterization is used to specialize the
array_utils for any appropriate type.

It is possible to write a sort_req definition that is parameterized over the contents of the input and output
array. This implementation sorts arrays of integers. Although this may be interesting from a pedagogical
perspective, it is not particularly useful or reusable. The following definition parameterizes the facet definition
over an arbitrary type, T:

facet sort_req(T::type; i::in array(T); o::out array(T)) is
use array_utils(T);

begin state_based
12: permutation(o’,i);
11: ordered(o’);

end sort_req;

In this new sort_req facet, the type T associated with the contents of the input and output arrays is a
parameter. This allows specialization of the sort_req facet for various array contents. The only restriction
being that an ordering relationship must be defined on the array elements.

The following instantiation of the parameterized sort_req is equivalent to the original sort_req facet:

sort_req(integer=>T);

This usage replaces all instances of T in the facet with the type integer. The resulting facet is semantically
identical to the original sort_req definition.



Example 2 (array_utils Package) Packages are a parameterized mechanism for grouping together defini-
tions. They are defined using the semantics of facets and will be discussed fully in a later section. Here, the
definition of the array utils package used by the sort_req facet is defined:

package array_utils(T::type) is
begin logic

// numin - return the number of occurrences of x in i
numin(x::T; i::array(T)):: natural is
if i=[] then O
else if x=i 0 then 1+numin(tail(i))
else numin(tail(i))
endif
endif;

// permutation - determine if al is a permutation of a2
permutation(al::array(T); a2::array(T)):: boolean is
forall(x::T | numin(x, al) = numin(x, a2));

// ordered - determine if al is ordered. =< must be defined on T
ordered(al::array(T)):: boolean is
forall(i :: sel(x::naturall| x =< #al-1) | a(i) =< a(i+l));

// tail - return the tail of an array. based on sequence tail.
tail(al::array(T)):: array(T) is [head(™ al)];

end array_utils;

The array_utils package defines four general purpose functions for arrays: (i) numin; (ii) permutation;
(i43) ordered; and (i) tail. It is difficult to explain these definitions fully without deeper understanding of
Rosetta function definition. However, some exploration will aid in understanding and writing more complex
specifications.

As an example, examine the definition of permutation:

permutation(al::array(T); a2::array(T)):: boolean is
forall(x::T | numin(x, al) = numin(x, a2));

This definition can be divided into two parts. First, the signature of permutation is given as
permutation(al::array(T); a2::array(T)):: boolean

The function name is permutation, (al::array(T); a2::array(T)) are the domain parameters, and
boolean is the return type.

The second part of the definition, following the keyword is, denotes the value of the return expression. The
expression specifies the permutation. It is true when every element of T occurs in al and a2 the same number
of times. It is false otherwise. The syntax of function declaration and the semantics of forall and other
constructs are defined later.

Other functions are similarly defined. numin determines the number of occurrences of a value in an array
using a simple recursive definition. ordered defines a predicate that is true when every element of its argu-
ment array is greater than or equal to the preceding element. Finally, tail for arrays is defined by extracting
the elements into a sequence, finding the tail, and recreating an array. Remember, to fully understand these
definitions requires further knowledge of Rosetta type and function semantics that will be presented later.



Example 3 (Sort Constraints) An alternative view of a component models performance constraints. The
following definition models the power consumption constraints of a sorting component.

facet sort_const
power::real;

begin constraints;
pl: power =< 5mW;

end sort_constr;

The variable power is a real number representing power consumed by the component. The facet body defines a
single term that limits power consumption to be less than or equal to 5mW. Both the semantics of constraints
and the unit constructors required to define 5mW are defined in the constraints facet.

Example 4 (Timed Sort) The facet sort_timed is an alternative definition of sort that places timing
constraints on the definition. Here, instead of modeling what is true in an abstract next state, the sort is
specified with respect to its behavior over time.

facet sort_timed(T::type; i::in array(T); o::out array(T)) is
use array_utils(T)

begin continuous;
12: permutation(o@(t+5ms),i);
11: ordered(o@(t+b5ms));

end sort_timed;

This definition uses the continuous domain rather than the state_based domain. The notation z@t refers
to the value of = at time t. The term 12 states that the output, o, 5ms in the future must be a permutation
of the current input, i. The term 11 states that the output must be ordered 5ms in the future.

No notion of next state as used previously is defined. However, this specification provides more detail in
the form of hard timing constraints. Using the continuous domain, the user is allowed to define values of
variables at specific times with respect to the current time t.

Example 5 (Operational Sort) The facet sort_op provides an operation definition for a sorting algo-
rithm by “implementing” a quicksort algorithm that will sort the input. Specifically:

facet sort_op(i::in T; o::out T) is

gsort(i::sequence(T)):: sequence(T) is
let (pivot::T is t(0); t::sequence(T) is tail(i)) in
if i=nil
then i
else gsort(lside(pivot,t));;pivot;;qgsort(rside(pivot,t))
endif;

lside(pivot::T; i::sequence(T)):: sequence(T) is
if i=nil
then nil
else if i(0) =< pivot
then i(0);;lside(pivot, tail(i))
else lside(pivot, tail(i))
endif
endif;
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rside(pivot::T; i::sequence(T))::sequence(T) is
if i=nil
then nil
else if i(0) > pivot
then i(0);;lside(pivot, tail(i))
else lside(pivot, tail(i))
endif
endif;

begin continuous
11: o@(t+bms) = [gsort ~ il;
end sort_op;

This specification is interesting due to its similarity to a VHDL specification and its equivalence to sort_req.
The sort_op specification specifies that the output parameter S5ms in the future is equal to the result of
applying quicksort to the input parameter . The details of the application are unimportant. Suffice to say
that excluding the concept of a wait statement, this is quite similar to how a VHDL specification might be
defined.

The function gsort and the auxiliary functions lside and rside define a quicksort algorithm over sequences.
The definition follows the classic recursive style. As with other function definitions in these examples, these
functions require some further study to understand completely. At this point it is important only to understand
that parameters to the function are specified as param—var: :param-type, separated by the “;” token and
enclosed within parantheses. The final expression defines the return value. In the case of lside, all values
less than or equal to the pivot value are found recursively and returned.

A potentially cleaner specification might have the form:

package work(T) is
begin logic

gsort(i::sequence(T))::sequence(T) is
let (pivot::T is t(0); t::sequence(T) is tail(i)) in
if i=nil
then i
else gsort(lside(pivot,t));;pivot;;qgsort(rside(pivot,t))
endif;

lside(pivot::T; sequence(T))::sequence(T) is
if i=nil
then nil
else if i(0) =< pivot
then i(0);;lside(pivot, tail(i))
else lside(pivot, tail(i))
endif
endif;

rside(pivot::T; i::sequence(T)):: sequence(T) is
if i=nil
then nil
else if i(0) > pivot
then i(0);;1lside(pivot, tail(i))
else lside(pivot, tail(i))

11



endif

endif;

facet sort_op(i::in T; o::out T)
begin continuous

11: o@(t+bms) = [gsort ~ il;
end sort_op;

export sort_op;

end work;

Here the function specifications are removed from the facet specification. The facet and functions are included
in the package work. The similarity to VHDL here is intentional. Unlike VHDL, the package is parameterized
allowing specialization for arbitrary types. Note the inclusion of the export sort_op clause. This causes
the sort_op facet to be visible outside the package. Other declarations such as gsort, lside and rside are
hidden in the package.

Why the obsession with sort? Thus far, an axiomatic, continuous time and operational continuous time
specification have been developed. Together, we can use all three specifications to define various charac-
teristics of a single sorting component in a manner unique to Rosetta. Specifically, in the next section we
will define how a designer can specify a sorting component by combining specifications from multiple do-
mains. The result is a requirements specification, a temporally constrained requirements specification, an
operational specification, and a power specification simultaneously describing a system. With the addition
of facet composition operators, this provides a powerful mechanism for mixing and composing specifications.

Example 6 (Alarm Clock System) Consider the following definition of an alarm clock taken from the
Synopsys synthesis tutorial. This alarm clock provides a basic capability for setting time, setting alarm,
sounding an alarm and keeping time. The specification states the following requirements:

1. When the setTime bit is set, the timeIn is stored as the clockTime and output as the display time.

When the setAlarm bit is set, the timelIn is stored as the alarmTime and output as the display time.

When the alarmToggle bit is set, the alarmOn bit is toggled.

e

When clockTime and alarmTime are equivalent and alarmOn is high, the alarm should be sounded.
Otherwise it should not.

5. The clock increments its time value when time is not being set.
The systems level description of the alarm clock is defined in the following facet:

use timeTypes;
facet alarmClockBeh(timeIn::in time; displayTime::out time;
alarm::out bit; setAlarm::in bit; setTime::in bit;
alarmToggle::in bit) is

alarmTime :: time;
clockTime :: time;
alarm0On :: bit;

begin state_based
setclock: setTime=1 =>
clockTime’ = timelIn and displayTime’ = timeln;

12



setalarm: if setAlarm=1
then alarmTime’ = timeln and displayTime’ = timeln
alarmTime

else alarmTime’
endif;
displayClock: setTime = 0 and setAlarm = 0 =>
displayTime’ = clockTime’;
tick: setTime => clockTime’ = increment_time(clockTime);
armalarm: if alarmToggle = 1
then alarmOn’
else alarm0On’
endif;
sound: alarm’ = alarmOn and %(alarmTime=clockTime);
end alarmClockBeh;

—alarm0On
alarmOn

Inputs correspond to data and control values for the clock. timeIn contains the current time input and can
be used to set either the alarm time or the clock time. displayTime is the time currently being displayed.
alarm drives the audible alarm. setAlarm and setTime control whether the alarm time or clock time are
currently being set. alarmToggle causes the alarm set state to toggle.

Local variables correspond to the state of the clock. alarmTime is the current time associated with sounding
an alarm. clockTime is the current time. alarmOn is “1” when the alarm is set and “0” otherwise.

Exploring the specification indicates that each requirement is defined as a labeled term. FEach term can be
traced back to a requirement from the English specification. Term setclock handles the case where the clock
time is being set. Term setalarm handles when the alarm time is being set. Term armalarm handles the
toggling of the alarm set bit. tick causes the clockTime to be incremented. The clock time is incremented
in the next state only when the clock time is not being set. Finally, the sound term defines the alarm output
in terms of the alarmOn bit and whether the alarmTime and clockTime values are equal. The “” notation
transforms the boolean result of equals into a bit value. All terms must be simultaneously true. Thus, the
specification has the same effect as using multiple processes in VHDL.

The alarm clock facet uses the following collection of time manipulation functions and types:

package timeTypes is
begin logic

hours :: type(natural) = sel(x::natural | x =< 12);
minutes :: type(natural) = sel(x::natural | x =< 59);
time :: type(universal) is record [h::hours; m::minutes];
increment_time(t:: time) :: time is

record [h = increment_hours(t);
m = increment_minutes(t)];

increment_minutes(t:: time) :: minutes is
if t(m) < 59
then t(m) + 1
else 0
endif;

increment_hours(t::time) :: hours is
if t(m) = 59
then if t(h) < 12
then t(h) + 1
else 1

13



endif
else t(h)
endif;
end timeTypes;

hours and minutes are restricted subranges of natural number representing hours and minutes respectively.
The notation type(natural) indicates that hours and minutes are bunches, not singleton values. The sel
operation provides a comprehension operator and is used to filter natural numbers. time is a record containing
an hour and minute value.

Three increment functions define incrementing time. increment_time forms a record from the results of
incrementing the current hours and minutes values. increment_hours and increment_minutes handle in-
crementing hour and minute values respectively. Note that the field names are used to reference hours and
minutes values respectively.

Example 7 (Stack definition) For formal specification fans, a semi-constructive stack definition is in-
cluded to describe an alternate means for function specification. Here, the traditional stack operations are
declared, but are not defined directly. The distinction with other function definitions being that no constant
definition appears in conjunction with the declaration. The specification takes the form:

facet stack(E: type; S: type) is
push(s::S; e::E) :: S;
pop(s::S) :: S;
top(s::S) :: E;
empty?(s::S) :: boolean;
empty::S;

begin logic
axl: forall(s::S | forall(e::E | pop(push(e,s)) = s))
ax2: forall(s::S | forall(e::E | top(push(e,s)) = e))
ax3: forall(s::S | forall(e::E | not(empty?(push(e,s)))))
ax4: empty?(empty)

end stack;

This is a canonical constructive specification for a stack. In the declarations section, push, pop, and top are
defined to operate over stacks and elements. The axioms defined as axl through az4 constrain the values of
functions in the traditional declarative fashion.

This specification style may prove uncomfortable for traditional VHDL users. An alternate definition uses
sequences to represent the stack:

package stackAsSeq(E: type) is
begin logic

S::type(universal) is sequence(E);
push(s::S; e::E) :: S is e;;s;
pop(s::S) :: S is tail(s);
top(s::S) :: E is s(0);

empty::S is nil;

empty?(s::S) :: boolean is s=empty;

end stack;
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This stack definition uses the package construct to present a series of direct definitions. No terms are needed
to describe the behavior of the provided type. The stack type, S, is not an uninterpreted type but is defined as
a sequence of type E. The basic stack operations are now defined on the stack type using concrete operations.

An interesting exercise is to consider the meaning of:

stack(E,sequence(E)) and stackAsSeq(E)

As we shall see later, facet composition states that properties of both stack and stackAsSeq must apply in
the facet formed by and. Effectively, this new definition is consistent only if stackAsSeq obeys the axiomatic
definition provided by stack. In essence, stack represents requirements while stackAsSeq represents an
implementation of stack.

Summary: A facet is the basic unit of Rosetta specification. It consists of a label, optional parameter
list, optional declarations, a domain and terms that extend its domain. Variable declaration is achieved
using the notation v::T interpreted as the value of v is contained in T. Constants are similarly defined
using the notation v::T is c interpreted as the value of v is contained in T and is equal to ¢c. Domains
provide a vocabulary for defining specifications. Terms extend domains to provide definitions for the specific
components. Terms are declarative constructs that are accompanied by a label. Any label defined in a
Rosetta specification may be exported and referenced using the canonical facet-name.label notation. By
default, all labels are exported. However, an explicit export statement may be used in the declaration section
to selectively control label export.

2.2 Facet Aggregation

An important system level specification activity is aggregation of facets into general purpose architectures.
Rosetta supports this directly using facet inclusion and facet labeling. Facet inclusion occurs when a facet
name is referenced in a facet term. Facet labeling occurs when a facet is given a new label.

Consider the trivial example of defining a three input and gate from two input and gates:

facet andgate(x::in bit; y::in bit; z::out bit) is
begin logic

11: z = x and y;
end andgate;

facet andgate3(a::in bit; b::in bit; c::in bit; d::out bit) is
i:: bit;

begin logic
11: andgate(a,b,i);
12: andgate(i,c,d);

end andgate3;

The resulting definition is quite similar to structural VHDL without explicit component instantiation. The
first facet clearly defines the behavior of a simple and gate while the second seems to use facets as terms.
The terms 11 and 12 both reference andgate and are interpreted as stating that the definitions provided
by each are true. Thus, the first term instantiates andgate with items a, b and i where i is an internally
defined variable of type bit. Thus, the facet asserts that i is equal to a and b. The second term does the
same except it asserts that d is equal to i and c.

Communication between facets is achieved by sharing items. Here, the items are variable items defined
either in the parameter list or in the body of the including facet. This models instantaneous exchange of
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information between facets via variables. Later, channels will be introduced to provide means for defining
connections with properties such as storage and delay.

Although similar to VHDL structural definition, this Rosetta definition style is semantically quite different.
To understand this requires some understanding of labels and item labeling. The notation 1: term defines
term and associates label 1 with it. Thus, the definition:

11: andgate(a,b,i);

asserts andgate(a,b,1) as a term and associates label 11 with it. Effectively, the definition renames andgate
locally to 11. Thus, the terms 11 and 12 define facets equivalent to andgate, but with new names. The
reasoning for this is demonstrated in any definition where components that locally define variables and
constants have multiple instances. For example, consider the following incorrect specification:

facet register(i::in bitvector; o::out bitvector; load::in bit) is
memory: :bitvector;

begin state_based
load: if %load then memory’=i else memory’=memory endif;
output: o’=memory;

end register;

facet registerx2(il::in bitvector; i2::in bitvector;
ol::out bitvector; o2::out bitvector;
load::in bit) is
begin state_based
register(il,ol,load);
register(i2,02,lo0ad);
end registerx2;

Consider the memory variable associated with each register. In the above definition, register.memory
reference to the memory variable in facet register. Unfortunately, there’s no way to learn which register.
Further, because the register variables share the same name in the facet, they must be equal.

The proper definition is:

facet register(i::in bitvector; o::out bitvector; load::in bit) is
memory: :bitvector;

begin state_based
load: if %load then memory’=i else memory’=memory endif;
output: o’=memory;

end register;

facet registerx2(il::in bitvector; i2::in bitvector;
ol::out bitvector; o2::out bitvector;
load::in bit) is
begin state_based
rl:register(il,ol,load);
r2:register(i2,02,load);
end registerx2;

In this definition, the facet register is “copied” and relabeled twice. In the first case, the new facet is named
r1 and in the second, r2. The memory variable associated with r1 is referenced via r1.memory and similarly
for r2.memory. Now there is no conflict and the elements of each component have unique references. This
aspect of labeling is simple, but extraordinarily powerful.
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Summary: Including facet definitions as terms supports structural definition through facet aggregation.
Including and instantiating facets in definitions is achieved using relabeling. Instantiating facets replaces
formal parameters with actual items. Unique naming forces these items to be shared among facets providing
for communications. When a facet is renamed, all of its internal items are renamed making each instance of
that included facet unique.

%% The following section is way out of date given the updates to the
%% facet algebra. We need to rethink facet declaration to include
%% parameters (using a notation like functions) to make this happen
%% correctly. I think we can use the same semantics.

2.3 Facet Composition

The essence of systems engineering is the assembling of heterogenous information in making design decisions.
Rosetta supports this type of specification directly with operations collectively known as the facet algebra.
The facet algebra provides mechanisms for defining new specifications by composing existing specifications
using the standard operators and, or, and not.

In the context of facets, these are not logical operators. The operation F1 and F2 does not have a boolean
value. Instead, it defines a new facet with properties from both F1 and F2. Looking ahead, this operation
provides us a mechanism for combining properties from several facets into a single facet.

Facets under composition must maintain the logical truths as specified by standard interpretations of logical
connectives. For example, if F3 = (F1 and F2), then F3 is consistent if and only if F1 and F2 is consistent
(Note: F1 and F3 are enclosed in parentheses because = has higher precedence than and). Facet composition
is useful for specifying many systems level properties by combining properties from various facets. A new
facet can be defined via composition by an expression of the following form:

<name>(<paramlist>) is <facet_exzpression>;

where < name > is the new facet name, < paramlist > is an optional parameter list, and < facet_expression >
is an expression comprised of facet algebra operations.

The following examples describe several prototypical uses of facet composition. Please note that domains
used in these examples are defined in an accompanying document.

F1 and F2 Facet conjunction states that properties specified by terms T1 and T2 must by exhibited by the
composition and must be mutually consistent. Further, the interface is I; U I» implying that all symbols
visible in F1 and F2 are visible in the composition.

The most obvious use of facet conjunction is to form descriptions through composition. Of particular in-
terest is specifying components using heterogeneous models where terms do not share common semantics.
A complete description might be formed by defining requirements, implementation, and constraint facets
independently. The composition forms the complete component description where all models apply simulta-
neously.

Example 8 (Requirements and Constraints) Reconsider the previously defined facets sort_req and
sort_const. Recall that sort_req defined requirements for a sorting component while sort_const defined a
power constraint over the same component. A sorting component can now be defined to satisfy both facets:

sort :: facet is sort_req and sort_const;
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Informally, sort: (i) outputs a sorted copy of its input; and (ii) consumes only 5mW of power. Formally,
the new facet sort is the product of properties from sort_req and sort_const. In this example, the inter-
action between constraints domain and other requirements domains are unspecified. Therefore, analysis of
interactions will reveal little additional information. However, it is certainly possible to define a relationship
between the constraints and state_based domains if desirable.

Example 9 (Postcondition Specifications) Reconsider the specifications for sort_req and sort_op. The
first facet specifies the requirements for a sorting component using a black-box, axiomatic style. The second
facet defines sorting using a specific, operational algorithm. Like the constraint model and requirements
models previously, sort_req and sort_op can be combined into a single sorting definition:

sort = sort_req and sort_op;

Here, the composition behaves much differently. The state-based and models do interact in interesting ways.
The composition of sort_req and sort_op provides a pre- and post-condition for the operational sorting
definition. The net effect is like an assertion in VHDL. However, the requirements are specified distinctly
and are not intermingled in the operational definition. Thus, for this composition to be consistent, the
operational specification must hold along with it’s real time constraints and the axiomatic specification must
hold defining pre- and post-condition requirements on the composition.

Similarly, a sort specification can be developed that combines requirements, operational and constraint models:

sort :: facet is sort_req and sort_op and sort_const;

F1 or F2 Facet disjunction states that properties specified by either terms T1 or T2 must be exhibited by
the composition. Note that this is logical or, not exclusive or. The most obvious use of facet disjunction is
combining different component models into a component family. The following example illustrates such a
situation.

Example 10 (Component Version) Consider the following definitions using sort facets defined previ-
ously:

multisort::facet is sort_req and (bubble_sort or quicksort);

The new facet multisort describes a component that must sort, but may do so using either a bubble sort or
quicksort algorithm. While and is a product operator, or is a sum operator over facets.

Other facet operations are defined and include negation, implication and equivalence. These will be presented
in detail in a later chapter. The objective here is simply to demonstrate various facet composition operations
and where they might apply in a specification.

Summary: The facet algebra supports combining facet definitions into new facet definitions. The and and
or operations corresponding to product and sum operations over facets combine facets under conjunction
and disjunction respectively. The and operation defines new facets with all properties from both constituent
facets. The or operation defines new facets with properties from either facet.

%% Things are okay beyond this point...
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2.4 The Alarm Clock Example

In Section 2.1, the alarm clock example was introduced as an example systems level specification. In this
section, the alarm clock example is examined more carefully and a structural definition introduced. The
example is completely specified to provide an overall view of a Rosetta functional specification.

2.4.1 The timeTypes Package

timeTypes is a general purpose package introduced and explained in Section 2.1. It contains basic data
types and functions used in the definition of the alarm clock system and structural definition. The only
construct used in this definition that may require some explanation is the comprehension quantifier, sel.
This function implements set comprehension for bunches. It does so by taking as its argument a function
that maps a bunch onto the booleans and returning all domain elements for which the function is true. Thus,
the statement:

sel(x::natural | x =< 12)

examines all elements of the natural numbers and returns those that are less than 12. Because its return
type is bunch, its use in defining a type is perfectly legal. Further note that both hours and minutes are
subtypes of type(natural). This indicates that both have bunches as values, not singleton elements.

package timeTypes is
begin logic

hours :: type(natural) is sel(x::natural | x =< 12);
minutes :: type(natural) is sel(x::natural | x =< 59);
time :: type(universal) is record [h::hours; m::minutes];
increment_time(t::time) :: time is

record [h = increment-hours(t);
m = increment-minutes(t)];

increment_minutes(t::time) :: minutes is
if m(t) =< 59
then m(t) + 1
else O
endif;

increment_hours(t::time) :: minutes is
if m(t) = 59
then if h(t) =< 12
then h(t) + 1
else h(t)
endif
else h(t)
endif;

end timeTypes;
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2.4.2 Structural Definition

The structural definition begins by defining facets representing each of the alarm clock components. Specif-
ically, this includes: (i) a multiplexor for defining what values are displayed; (ii) a store for internal state
values; (iii) a counter for incrementing the current time; and (iv) a comparator for determining when the
alarm should be sounded.

Multiplexor

The mux definition describes a component that determines which of its data inputs, timeIn or clockTime,
should be displayed by the clock. This determination is made by examining the control signals setAlarm
and setTime. Three terms are defined that select an output based on the control inputs.

// mux routes the proper value to the display output based on the
// settings of the setAlarm and setTime inputs.
use timeTypes;
facet mux(timeIn::in time; displayTime::out time; clockTime::in time;
setAlarm::in bit; setTime::in bit) is
begin state_based
11: Y%setAlarm => displayTime’ = timeln;
12: %setTime => displayTime’ = timeln;
13: %(-(setTime xor setAlarm)) => displayTime’ = clockTime;
end mux;

Recall that the Rosetta operator 7 converts bit values into boolean values allowing bits to be used in
implications directly.

Store

The store component is the store for the alarm clock’s internal state. It operates by examining the control
bit associated with each stored value. If the control bit is set, a new value is loaded from an appropriate
input, or in the case of alarmOn, toggling the existing value. If the associated control bit is not set, then the
stored value is retained.

// store either updates the clock state or makes it invariant based

// on the setAlarm and setTime inputs. Outputs are invariant if

// their associated set bits are not high.

use timeTypes;

facet store(timeln::in time; setAlarm::in bit; setTime::in bit;
toggleAlarm: :in bit;
clockTime: :out time; alarmTime::out time
alarmOn::out bit) is

begin state_based

11:: if YsetAlarm

then alarmTime’ = timeln
else alarmTime’ = alarmTime
endif;
12:: if YsetTime
then clockTime’ = timeln
else clockTime’ = clockTime

endif;
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13:: if YtoggleAlarm

then alarmOn’ = -alarmOn
else alarmOn’ = alarmOn
endif;

end store;

Counter

The counter component is the simplest component involved in the definition. It states that each time the
clock is invoked, its internal time is incremented.

// counter increments the current time
use timeTypes;

facet counter(clockTime :: inout time) is
begin state_based
14:: clockTime’ = increment_time(clockTime);

end counter

Comparator

The comparator implements the guts of the alarm clock’s alarm function. It determines the appropriate
value for the alarm output given the state of the alarm set bit and the values of the alarm time and the clock
time. If the alarm is set and the alarm time and clock time are equal, then the alarm output is enabled.
Again, the % operator is used to convert a boolean value into the bit value associated with the alarm output.

// comparator decides if the alarm should be sounded based on the
// setAlarm control input and if the alarmTime and clockTime are
// equal.
use timeTypes;
facet comparator(setAlarm:: in bit; alarmTime:: in time;
clockTime:: in time; alarm:: out bit) is
begin state_based
11: alarm = %(setAlarm and (alarmTime=clockTime)) endif
end comparator;

2.4.3 Structural Definition

The actual structural definition instantiates each component and provides appropriate interconnections.

// The alarm clock structure is defined by assembling the components

// defined previously.

use timeTypes;

facet alarmClockStruct(timeIn::in time; displayTime::out time;
alarm::out bit; setAlarm::in bit; setTime::in bit;
alarmToggle::in bit) is

clockTime :: time;
alarmTime :: time;
alarmOn :: bit;

begin logic
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store_1 : store(timeIn,setAlarm,setTime,toggleAlarm,clockTime,
alarmTime,alarmOn) ;
counter_1 : Counter(clockTime) ;
comparator_1 : comparator(setAlarm,alarmTime,clockTime,alarm);
mux_1 : mux(timelIn,displayTime,clockTime,setAlarm,setTime);
end alarmClockStruct;

2.4.4 The Specification

The final specification enclosed in a Rosetta package is shown in Figure 2.1.

22



package AlarmClock is
use timeTypes;

facet mux(timeIn::in time; displayTime::out time; clockTime::in time;
setAlarm::in bit; setTime::in bit) is
begin state_based
11: %setAlarm => displayTime’ = timeln;
12: %setTime => displayTime’ = timelIn;
13: %(-(setTime xor setAlarm)) => displayTime’ = clockTime;
end mux;

facet store(timelIn::in time; setAlarm::in bit; setTime::in bit;
toggleAlarm::in bit; clockTime::out time; alarmTime::out time
alarmOn::out bit) is

begin state_based

11: alarmTime’ = if %setAlarm then timeln

else alarmTime

endif;

if YsetTime then timeln
else clockTime

12: clockTime’

endif;
13: alarmOn’ = if ZtoggleAlarm then -alarmOn
else alarmQOn

endif;
end store;
facet counter(clockTime :: inout time) is
begin state_based
14:: clockTime’ = increment-time clockTime;

end counter

facet comparator(setAlarm:: in bit; alarmTime:: in time;
clockTime:: in time; alarm:: out bit) is
begin state_based
11: alarm = %(setAlarm and (alarmTime=clockTime)) endif
end comparator;

facet alarmClockStruct(timeIn::in time; displayTime::out time;
alarm::out bit; setAlarm::in bit; setTime::in bit;
alarmToggle::in bit) is

clockTime :: time;
alarmTime :: time;
alarmOn :: bit;

begin logic
store_1 : store(timeIn,setAlarm,setTime,toggleAlarm,clockTime,
alarmTime,alarmOn) ;
counter_1 : Counter(clockTime);
comparator_1 : comparator(setAlarm,alarmTime,clockTime,alarm);
mux_1 : mux(timeIn,displayTime,clockTime,setAlarm,setTime);
end alarmClockStruct;

begin logic

end AlarmClock;

Figure 2.1: The complete alarm clock specification
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Chapter 3

Items, Variables, Values and Types

Rosetta’s basic semantic unit is called an item. Items structures result when Rosetta descriptions are parsed
prior to manipulation. Although most users will never deal directly with items, they present an effective
way to describe the relationships between variables, values and types.

3.1 Items and Values

Informally, an item consists of a label naming the item, a value the item represents, and a type from which
specific item values must be chosen. When any structure is defined in a Rosetta specification, an item is
created with the specified label. Variables, constants, terms, even facets themselves are items in a Rosetta
specification. When a label is referred to in a specification, it refers to the value of the item it is associated
with. An items set of potential values is delineated by it’s associated type. In a legal Rosetta specification,
every item’s value is an element of it’s associated type. A more complete description of items can be found
in the Rosetta Semantics Guide.

An item whose value is known is referred to as a constant item while a variable whose value is unspecified
is referred to as a variable item or simply a variable. Any item of any type may be constant or variable
including facets, terms and other traditionally constant items.

Values represent objects that can used as values for items. There are three general classes of values: (i)
elemental; (ii) composite; and (iii) functional. Elemental values represent primitive, atomic values that are
directly manipulated by Rosetta. Elemental values include such things as integers, naturals, characters,
bits and boolean values. Traditional programming languages refer to elemental values as scalar. Composite
values are constructed from other values. Composite values include such things as records, tuples, vectors,
sets, bunches and facets. Functional values represent functions and relations. The name universal to refer
to any value at all. Universal is not itself a bunch, as it must contain bunches.

All Rosetta types are bunches. A bunch is simply an unpackaged collection of items. Functions and properties
for bunches are defined completely in Section 3.3.1. Throughout this document, the terms bunch, type and
subtype are used interchangeably. The notation a: :T represents bunch containment is interpreted as “a is
contained in T”. Although this notation is formally a logical relation, it is also used as a syntax for declaring
variables and constants. Specifically, v::T in a declaration area of a facet declares a variable item of type
T whose value is a single element of bunch T. This distinction will become clear when bunches and bunch
relationships are described fully. Similarly, the notation v: : T=c defines a constant item of type T whose value
is determined by the expression c. This notation will be used and explained extensively in the following
sections.
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3.2 Elements

This section describes how to specify element values and types. By definition, elements are values that
cannot be described as being made up of other elements and element types are bunches of such values.
Numbers such as 1, 5.32, and -32, characters such as ’a’, ’'B’, and ’1’, and boolean values such as true and
false represents such undecomposable values. In contrast, composite values such as records, sequences and
sets are not elemental in that each is defined by describing its contents. Element values are also called atoms
in Rosetta and scalars in traditional programming languages.

3.2.1 Numbers

Numeric types include standard bunches of values associated with traditional number systems. Predefined
numeric types include real, integer, natural, bit and boolean and are listed in the following table:

%% Note that the syntax for rationals might need to be changed. I
%% would suggest the same notation as reals with the additional

%% constraint that to be a rational the number must be the result of
%% dividing one integer by another.

Type Format Subtype Of
boolean true, false integer
bit 1,0 natural
natural 123, true, integer
integer 123,-123, false real
rational 123/456 real

real 123.456, 1.234e56 number
number Any element of the above types element

Numeric values are represented by a strings of digits and optional sign, decimal point or exponential indica-
tors. The format of a Rosetta number follows the canonical number format from traditional programming
languages and will not be referred to here. The type number refers to any legal Rosetta number.

Predefined operators on numbers include: (Assuming A and B are numbers)

Operator Format Valid For
negation - A number
min,max A min B, A max B number
nmin,nmax A nmin B, A nmax B number
+,-,%,/ , x% A+B,A-B,A*B,A/B,Ax*B number
=,/=,<,=<,>=,>,== A<B,A=<B,A>B,A>=B number
abs,sqrt abs(A), sqrt(d) number
sin,cos,tan sin(A), cos(d), tan(A) number
exp,log exp(A), log(A) number

All operators are defined in the traditional manner. The nmin and nmax operators are interpreted as “not
min” and “not max” respectively and provide an inverse for those operators. The ** operator represents
raising a value to a power.

The numeric values true and false obey the following rule:
forall(x::number | false =< x and x =< true)

true acts as positive infinity and false acts as negative infinity. Consequences of this convention are
numerous and useful. They include: (i) max is the same operation as or; (ii) min is the same operation as
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and; and (iii) =< is the same operation as implication (=>) and >= is the same operation as implied by (<=).
The same laws apply to these operations in all cases, and the different signs are taken to be synonyms of each
other, maintained here for the sake of historical recognition. Note that true and false are not associated
with 1 and O as is the case with many traditional programming languages. Adopting this convention is
appealing in a traditional sense, it prohibits semantic simplicity.

3.2.2 Boolean

Although boolean is a number type and obeys number conventions and axioms, its behaviors are important
enough to justify separate discussion. The Rosetta boolean type is defined by the two element bunch
true,false and is a subtype of number.Thus, anything of type boolean must take either true or false as
it’s value. Operators on booleans include all operators on numbers plus the following:

Operator Format Valid For
=,/= A=B, A/=B number
and, or, xor A and B, A or B, A xor B number
min, max A min B, A max B number
non-min, non-max A nmin B, A nmax B number
implies, implied by A =>B, A<=B number
less,greater,greater or equals A < B, A > B, A >> B, A =< B number
not - A number

Rules of mathematics from infinite numbers apply to true and false, but they are not technically infinite.
Nor are booleans are equivalent to machine limitations on numbers. Specifically, when treated as numeric
values, true and false follow the following rules:

Property Meaning

false = -true false is equivalent to not true

-false = true true is equivalent to not false
forall(x::number | x /= true => x < true) true is the greatest number
forall(x::number | x /= false => x > false) false is the least number

forall(x: :number—-—-true | x+1 < true True cannot be generated from other numbers
forall(x::number-—false | x-1 > false False cannot be generated from other numbers

These properties assert that true and false behave like infinite values in that they cannot be generated from
other numbers using increment or decrement functions. They do obey ordering operations and are greater
(or less) than every other number.

An interesting consequence of defining false and true as the minimum and maximum possible numeric
values is that the boolean and and or operators are equivalent to the min and max operators. Given the
axiom defining true and false, we know that false < true. Thus, we have the following table defining
min and max over true and false:

A B A min B A maz B
false false false false
false true false true
true false false true
true true true true

This is identical to the truth table defining and and or. The negation operator, -, also follows directly from
the numeric interpretation of boolean. The greatest positive number negated is the least negative number.
Thus, -true = false. As negation is its own inverse, we know that -(-x)) = x for any boolean value x.
Thus, -false = true. The resulting truth table has the form:

A -A

false true

true false
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Definitions for other logical operations follow directly. Of particular interest is the definition of implication
as:

A =>B == -A or B

By definition, this is equivalent to -A max B. Again, consider the truth table generated by the definition of
true and false as numeric values:

A B -A -A max B
false false true true
false true true true
true false | false false
true true false true

This is precisely the definition of implication. Reverse implication works similarly and the definition of
equivalence (A=B) is consistent with the above definition. Further, when values are restricted to boolean,
the following equivalences hold:

A=>B==A=<B
A<K=B==A>>B
A <= B and B <= A == =B

It should be noted that Rosetta does not define logical equivalence, iff, separately from numerical equiva-
lence. Given the mathematical definition of booleans, the normal equivalence operations are sufficient.

3.2.3 Bit

Bits are a subtype of the natural numbers. The type bit consist of the two values 0 and 1 and is defined as
bit=0++1.! Operations over bit mimic operations over boolean. However, bit and boolean are distinct.
Specifically, an item of type boolean cannot have a value of type bit and an item of type bit cannot a value
of type boolean. Conversion operators are defined to provide definitions for various operators. Specifically,
the following operation maps between bit and booleans:

Operation  Format Definition
% % 1, % true Converts between bits and boolean in the canonical fashion

The following operations are defined over bits where x: :bit, y::bit, a=), x, and b=%, y:

Operation Format Definition

=,/= X=y, x /=y Axiom

=, <=, >, K, >, =< x =2y, x<=y, .. a => b, a <= b, ..
max,min,and,or Xx max y, x min y, x and y, ... a max b, a min b, a and b,
not - x % -a

XOTr ,Xnor X XOr y, X XNor y a xor b, a xnor b
nmin,nmax x nmin y, x nmin y a nmin b, a nmin b

All bit operations are defined by converting to boolean, applying the appropriate boolean operation and
converting back. This suggests that the definition of bit is redundant. However, bit is of such importance
in digital design that a representation specific to it is important. The true distinction between bit and
boolean arises when considering the bitvector type later.

!Note that the “++” operator forms bunches from other bunches. It will be explained further in a following section.
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3.2.4 Numbers Revisited
The type number is provided to represent any legal Rosetta number. It is defined as the bunch union of
all types defined thus far and is effectively equivalent to real in the Rosetta numbering system. Formally,
number is defined as:

% Make sure this definition is inclusive of all number types

number == boolean ++ integer ++ rational ++ real ++ bit;

where A++B defines the union of bunches A and B.

3.2.5 Characters

Character constants are defined in the traditional. Character values are referenced using the notation ’>x’.

Type Format  Subtype Of
character ’A’,’a’ element

Given a::character and b::character, operators on characters include:

Operator Format Definition

ord, char ord(a), char(a) Unicode value

=,/=,<,=<,>=,> a<b, a=<b ... ord(a)<ord(b), ord(a)=<ord(b) ...
uc,dc uc(a), dc(a) Raise/lower case

uc and dc change case of a character to upper or lower case respectively. These operators return their
argument unchanged for Unicode values other than alphabetic characters. The ord operator returns Unicode
values associated with characters. The char operator is its dual. Thus, there is a mapping between Unicode
values and unicode characters; ord and char express the mapping, which is one to one. Unicode literals are
expressed using the standard notation ‘U+XXXX’ where XXXX is a 4-digit, hexadecimal number. All other
laws are the same as for their natural number counterparts with respect to ord, and no further laws will be
given here. For example, assuming that x and y are characters, x<y is defined:

x < y == ord(x) < ord(y)

3.2.6 Elements
The type element is provided to contain all items of any elemental type. It is formally defined as all the
bunch union of all elemental type definitions. The type is defined by taking the bunch union of all types

defined in this section. Formally:

element == number ++ character

3.2.7 Null

A special bunch called null is defined to be the bunch containing no elements. Formally, null is defined as:

null: :bunch(universal);
forall(x::universal | -(x::null));

Thus, the type null is the type containing no elements. It is rarely used in the specification process, but

must be included for completeness. As it contains no elements it is neither an element or composite type.
Tts definition is included here for convenience.
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Summary: The following predefined elemental types are predefined for all Rosetta specifications:

null — The empty bunch containing no elements.

bit — The enumerated type containing only the values 0 and 1. Bit is a subtype of natural.
Operations on bit elements correspond to operations on the booleans in the canonical fashion. Note
that this implies that operators such as “+” are specialized for bits such that 1+1=1 (bit) rather than
1+1=2 (natural).

boolean — The named values true and false. Boolean is a subtype of integer. True is the greatest
integer value while false is the smallest. Thus, the boolean operators and, or and not correspond to
min, max and “-” respectively.

integer — Integer numbers, from false to true, including all integral numeric values. Integer is a
subtype of real, specifically real restricted to integral values.

natural — All natural numbers, from zero to true. Natural is a subtype of integer, specifically
integer restricted to non-negative values.

rational — Rational numbers, consisting of two integers, a numerator and a denominator. Rational
is a subtype of real, specifically real restricted to those values that can be expressed as the ratio of
two integers.

real — Real numbers consisting of all real valued numbers expressed as strings of decimals in tradi-
tional decimal or exponential form.

number — Any legally defined Rosetta number.
character — All unicode values associated with characters.

element — All elementary values, including all elements of all types named above and all values.

3.3 Composite Types

Composite types make complex values by combining simpler values. There are two mechanisms for structur-
ing: (i) packaging; and (ii) indexing. Packaging transforms a structure into an element that can be included
in other structures. Specifically, bunches are constructed using the notation A++B while sets are constructed
with element and union. Sets distinguish between a singleton set and an element of a singleton set. As
bunches are unpackaged, they do not. Indexing establishes a function from the natural numbers (from zero
to the size of the structure minus one) to the elements of the structure. There are four kinds of structures,
depending on the mechanisms used to build them:

Packaged? Indexed?  Structure

no
yes
no

yes

no bunch

no set

yes sequence
yes array

We will define each of these in turn.

3.3.1 Bunches

Bunches are collections of elements. Any element is a bunch of size one. Because bunches are not packaged,
bunches may not consist of other bunches. A bunch is defined by creating it with operations, as given in the
following list of operations (where A and B are bunches):
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Operation Format Definition

union A++B x::A++B = x::A or x::B
intersection Ax**B x::A++B = x::A and x::B
difference A--B x::A++B = x::A and - (x::B)
sub-bunch A<<B, A>>B A::B and A/=B,B::A and B/=A

In most circumstances, bunch operations are distinguished from non-bunch operations by simply repeating
the operator symbol twice. For example, “+” is traditionally sum or union while “++” is bunch union. Such
distinction is necessary as all Rosetta items are bunches. Thus, operator symbols are used to distinguish
bunch from non-bunch operations.

Additionally, the following functions are defined over bunches:

Operation  Format Definition

=,/= A =B, A /=B Equivalence

$ size C Number of bunch equivalence
inclusion A::B Contained in

sequence  i++..j Integer bunch

The key to understanding bunches is realizing the effects of the union and inclusion operators. The primary
bunch former is the ++ operator. Given any two bunches A and B, the operator A++B defines the union or
composition. Specifically, every element of A and B is also a member of A++B. Remember that A and B may
be singleton bunches. Unlike sets where both union and add are needed to define composing two sets and
adding an element to a set, bunches require no such distinction. Thus, the notation 1++2++3 forms a bunch
containing 1, 2 and 3.

When we say x: :A, x may be either a singleton or multiple element bunch. In contrast for sets, {a} € S and
a € S are two very different things. Bunches make no such distinction, thus both concepts are embodied
in the notation a::S. Every bunch contained in A or B is also contained in A++B. Formally, x::A or x::B
=> x::A++B. Thus, ++ is referred to as a union operation. The ** operation, bunch intersection, is defined
similarly as is bunch difference, —-.

An interesting result related to variable manipulation is that given a variable declaration x: :B and a bunch
y, the following holds:

y::X and X::y == X=y

If we know we are dealing with singleton values, then we further know that inclusion and equals are similar.
Specifically, the declarations x::T and y: :R both implicitly assert that x and y are singleton bunches. In
this special case, inclusion is equals. Specifically:

X::y == y:i:x == x=y

This does not hold for other situations. If the cardinality of x or y is not 1, then the definition does not
apply.
A shorthand notation, i++..j, is provided for generating bunches of integers over a range. The notation

generates a bunch containing all integers from i to j inclusive. Bunches are not ordered, so the result is not
equivalent to a sequence.

The values of all Rosetta types are bunches. The terms type and bunch are synonyms and may be substituted
for each other at any place in this document. Further, as bunches are values, type values may be manipulated
in the same manner as any Rosetta value. This includes reference and dynamic formation within a Rosetta
specification. Although this dramatically complicates type checking, the added flexibility is useful and well
behaved language subsets can (and will be) be defined.

To declare an item whose value is selected from bunch B, the following declaration notation is used:
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x::B;
Used in the declaration section, this statement defines an item x whose value is a single element taken from

the bunch B.

To define an item whose value is contained in bunch B and is not limited to a single element, the follocation
declaration notation is used:

x::bunch(B);

The item x now refers to any bunch constructed from the elements of B.

The primary use for bunch definition is when defining a new type. Thus the subtype synonym is introduced.
The following notation is semantically identical to the previous bunch declaration:

X: :subtype(B);

When used in this context, the type B is said to be the supertype of type X as by definition X::B in the
general sense.

It is also possible to define a bunch whose values are completely unconstrained at declaration time by making
the supertype universal, the bunch containing all possible Rosetta items. The following notation is used:

x: :bunch(universal)
or
x::subtype(universal)

where x is the new item and bunch(universal) refers to the Rosetta bunch containing all items. This nota-
tion and semantics is particularly useful when defining uninterpreted types whose values are not enumerated,
but are constrained by later specifications. Such definitions are not typical in traditional programming lan-
guages, but can be useful in abstract specification situations where types are defined via properties rather
than via extension.

3.3.2 Sets

Sets are packaged bunches that exhibit properties traditionally defined in classical set theory. Most operations
on sets have their dual in bunches with the exception of power-set. It is impossible to have a bunch of
bunches while it is possible to have a set of sets. This fact can be observed in the distinction between the
set relations in and subset and the bunch relation contained in (“::”). As bunches are not packaged, there
is no distinction between a bunch and an element. Singleton elements are distinct from sets of size one while
singleton elements and bunches of size one are not.

In the following, B and C are bunches, and S and T are the sets that package them, respectively, i.e. S = {B}
and T = {C}. The first table lists functions that form sets from bunches or other sets:

Operation  Format Definition

Formation {B}, {1++2++3}

*, +, - S*T, S+T, S/T  {B*xC},{B++C},{B--C}
power power (T) ({B} in power(T)) = B::C

The basic set former takes an arbitrary bunch and forms a set containing its elements. Operations for
intersection, union and difference are defined by forming a set from the bunches resulting from the bunch
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duals of these operations. The power-set operation creates all possible sets from all bunches contained in
the bunch representing the contents of the original set. Note again that power-set has no dual in bunches.

Operation Format Definition
=,/= S=T,8/=T B=C,B/=C
in a in S a::B and $a=1
<, =<, >, > §>T,S>T. B::C, B>C
size #S $ B

contents ~ S A

empty empty {null}

Other set functions listed above observe properties of sets and typically have duals in bunches. Equivalence
is equivalence of contents, subset and proper subset are defined in terms of inclusion. This is a particularly
good time to point out that A: :B is defined for any bunch A, not just a singleton bunch. This is in contrast
to the in set operation that is distinct from the subset operation. The containment operator for bunches
operates over all bunches.

Size returns the cardinality of the set while empty names the empty set. The contents function returns the
unpackaged bunch and is the dual of the set former.

Note that laws for sets do not eliminate the possibility of paradox; it is not syntactically or semantically
impossible to encode Russell’s Paradox, for example. In some cases, the Rosetta user will have to include a
cardinality argument, or a proof that a given set is well founded.

Defining items of type is achieved using similar notations to defining items of type bunch. The following
notation defines x to be an element of all possible sets composed of items from bunch B:

x::set(B)

The declaration may intuitively be read as ‘x is a set of items from B’.

As for bunches, an item that is an arbitrary set containing any legal Rosetta values is defined:
x::set(universal)

Thus, set (universal) is any set while set (B) restricts possible sets to the elements of B.

The notation x: : set (B) restricts the value of item x to single sets of items from B. It is also useful to define
new set types where we restrict the value of a new item to bunches of sets from B. This is achieved using the
following notation:

X::bunch(set(B));
or

X::subtype(set(B));
Both notations are equivalent and define a new bunch that includes possible subsets of B. The original
notation x: :set (B) declares that x is a singleton bunch contained in the bunch of all subsets of B. The new
notation declares that X is any bunch contained in the buch of all subsets of B. Although mathematically
not equivalent to a powerset, the result is similar to type theoretic systems that use powersets to define new
types. Using the above notations, X is restricted to bunches of subsets of B that can then be used as types.
These bunches can be further restricted as in:

set4 :: subtype(set(B)) is sel(x::bunch(set(B)) | forall(t::x | #t=4))

where set4 is the bunch of subsets of B that contain exactly four elements. The notation z: : set4 declares
z to be a singleton element of the bunch set4, or simply a subset of B containing four elements.
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3.3.3 Sequences

Sequences are indexed, but unpackaged, collections of elements. As with bunches, sequences of sequences
are not defined. Because the elements of sequences are ordered by their mapping, a lexicographic total
order exists on the sequence whenever a total order exists between all of the members of the sequence. The
simplest sequence is nil, the empty sequence. If S and T, are sequences, n a natural number, e an element,
and I a sequence of natural numbers, the following operations are defined on sequences:

%% We don’t have proper definitions for subscription, integer

%% sequence, and mapping. Max, min, and the ordering operators

%% don’t make much sense at this point. What is that?

%% Head and tail appear to be a mess as well, although not too bad.
%% Should we replace nil with empty?

Operation Format Definition

=,/= S=T,S /=T Equality defined on elements
access S(n) nth element of S from 0
subscription S sub I Sequence from S corresponding to I
catenation 1;;2;;S;;T Concatenation

integer sequence 1i;;..J Sequence of integers from i to j
replacement n->e|S Copy S with element n replaced by value e
<,=<,>,>= S<T,S>T Corresponding order on elements
size $S Unpackaged size

max,min S max T, S min T Order defined on elements

nil nil The empty sequence

head,tail head S, tail S head not defined on nil

Most operations operated as expected based on common usage. Equal and not equal take their canonical
meanings. The catenation operator, ;;, concatenates two sequences. Like bunches, any singleton item can
be a sequence. Thus, ;; can form all sequences from the empty sequence.

Subscription is an extraction mechanism where elements from a sequnence are extracted to form a new
sequence. Give S and an integer sequence I, S sub I extracts the elements from S referenced by elements
of I and forms a new sequence. For example:

A;;B;;C;;5D sub 0;;2;;1 == A;;C;55B

The notation i;;..j forms an integer sequence from i runnign to j. The functions head and tail can be
defined using subscription and integer sequence as follows:

head(S)
tail(S)

S(0)
S sub 1;;..$S

S(0) returns the first element in the sequence. The integer sequence former 1;;..$S forms the integer
sequence from 1 to the length of S. Extracting elements of S associated with 1 through $S includes all
elements except the first and thus defines tail in the canoncial fashion.

The replace operator allows repacement of an element within a list. The notation n->e | S generates a new
sequence with the element in position n replacece by e. For example:

2 ->5 | 1;;2;;3;;4;;5 == 1;;2;;5;;4;;5
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The ordering operations as well as min and max are defined much like lexigraphical ordering. If x; ;S<y;;T,
then either x<y or x=y and S<T. Note that for any sequence, S /= nil, S > nil. S=<T is defined as S<T
or S=T. The S min T and S max T operators return the minimum sequence of S and T and the maximum
sequence respectively.

%% Note: because sequences are not packaged, they are not elements and

%% cannot belong to types (bunches); members of types must be arrays or
g yp yp y

hh sets.

To define an item of type sequence containing only elements from type B, the following notation is used:
x: :sequence(B)

refers to any sequence constructed from the elements of B.

To define an item of type sequence, the following notation is used:
x::sequence(universal)

where x is the new item and sequence (universal) refers to the set of all possible Rosetta sequences. Thus,
sequence (universal) is any sequence while sequence (B) restricts possible sequences to the elements of B.

A special case of a sequence is the string type. Formally, string is defined as:
string = sequence(character)

A shorthand for forming strings is the classical notation embedding a sequence of characters in quotations.
Specifically, "ABcdEF" = *A’;;°B?;;°c?;;°d?;;’E?;; ’F’. This definition implies that strings are ordered,
but are not packaged.

Functions defined over strings include those defined for general sequences. In particular, the notation ¢ ‘abc?’
;3 ‘“def’’ is appropriate for concatenation of strings. It is important to note that the ordering operations
for sequences provide lexigraphical ordering for strings. No additional function definitions are required.

3.3.4 Arrays

Arrays are indexed, packaged collections of elements; thus, arrays of arrays (multi-dimensional arrays) are
allowed. Arrays are enclosed in brackets; we allow [] as an abbreviation for [nil]. If A and B are arrays
packaging sequences S and T respectively, n is a natural number, I is a sequence of natural numbers, and e
is an element, the following operations are defined on arrays:

Operation Format Definition

Formation [sl, [1;;2;;3] Array from sequence
Contents ~ A S

=,/= A=B, A /=B S=T,S /=T
access A(n) S(n)

subscription A sub I [S sub I]
catenation A~ B [S;;T]

replacment n->elA [n->e|S]
>=, =<, >, < A>DB, A>B S>T ,S>T,and S /=T
size # A $S

max,min A max B, A min B[S max T], [S min T]
empty ] [nil]
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Arrays are to sequences what sets are to bunches. Packaging a sequence forms an array. Further, array
operations have dual sequence operations in the same manner that sets have dual bunch operations. These
functions are defined formally in the Rosetta Semantics document.

To define an item of type array whose contents are taken from type B, the following notation is used:
x::array(B)

To define an item of type array whose contents are taken from any arbitrary type, the following notation is
used:

x::array(universal)

Thus, array (universal) is any array while array (B) restricts possible arrays to the elements of B.

A special case of an array is the bitvector type. Formally, bitvector is defined as:
bitvector = array(bit);

Operations over bit are generalized to bitvectors by performing each operation on similarly indexed bits
from the two bit vectors. Assuming that op is any bit operation, the bitvector, C, result of applying the
operation over arbitrary bitvector items A and B is defined by:

C(n) = A(n) o B(n)

If either A or B is longer, then the shorter bitvector is padded to the left with 0s. to achieve the end result.

In addition, the following operations are defined over items of type bitvector: (Assume A::bitvector)

Operation Format Definition

bv2n, n2bv bv2n(A) Convert between bitvectors and naturals
twos, swot twos (A) Generate two’s compliment
1shr,lshl,ashr,arshl ashr(A), 1lshl(A) Logical and arithmetic shift right and left
rotr,rotl rotr(A), rotl(A) Rotate right and left

padr, padl padr(A,1,n), padl(A,0,n) Pad right and pad left with value to n bits.

The operations bv2n and n2bv provide standard mechanisms for converting between binary and natural
numbers. It is always true that bv2n (n2bv(x))=x.

The operations twos and swot take and invert the two’s compliment of a binary value. The 1shr and 1shl
operations provide provide logical shift right and left while ashr and ashl provide logical and arithmetic
shifts right and left. The distinction being that logical shift operations shift in 0s while arithmetic shift
operations shift in 1. The rotr and rotl operations provide rotation or circular shift. Note that none of
the compliment, shift, or rotate operations change the length of the bit vector.

The padr and padl operations pad or catenate a bit vector. Each takes three arguments: (i) the bitvector
being manipulated; (i) the pad value (1 or 0); and (iii) the resulting length. If the length value is less than
the length of the argument vector, padr removes bits to the right and padl removes bits to the left resulting
in a vector of length n. In this case, the pad value is ignored.

3.3.5 Composite types

The type composite is defined to contain all bunch, set, sequence and array types.
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Summary: The following predefined composite types are available in a Rosetta specification:

e bunch — The basic collection representation in Rosetta. A bunch is an unpackaged collection of items
that resembles a set without the power-set concept. Rosetta types are bunches. The keyword bunch
is synonymous with the keyword type. The declaration bunch(universal) refers to any collection of
Rosetta items. The notation bunch (B) (or type(B)) refers to any bunch of Rosetta items formed from
the elements of bunch B.

e set — All possible sets that may be defined in Rosetta. A set is a packaged collection of items and is
formed by packaging a bunch. They declaration set (universal) refers to any set of Rosetta items.
The notation set (B) refers to any set formed from the elements of bunch B.

e sequence — The basic ordered structure representation in Rosetta. A sequence is an unpackaged,
indexed collection of times. The declaration sequence (universal) refers to any indexed collection of
Rosetta items. The notation sequence(B) refers to any sequence of Rosetta items formed from the
elements of bunch B. The type string is a special sequence defined as string=sequence(character).

e array — All possible arrays that may be defined in Rosetta. An array is a packeted collection of indexed
items and is formed by packaging a sequence. The declaration array (universal) refers to any indexed
collection of Rosetta items. Then notation array (B) refers to any array of Rosetta items formed from
the elements of bunch B. The type bitvector is a special array defined as bitvector=array(bit).

e composite — All possible bunches, sets, sequences and arrays.

3.4 Functions

Defining functions in Rosetta is a simple matter of defining mappings between bunches. Functions are
extensive mappings between two different types, called the domain and range of the function. Functions
are defined by defining their domain and stating an expression that transforms elements of the domain
into elements of the range. This is achieved by introducing variables of the domain type whose scope is
confined to the function definition and defining a result expression using that variable. The domain is given
by an expression that describes the domain bunch. The range is given by an expression using the variable
introduced by the function, called the result or result function.

3.4.1 Defining Functions

The standard mechanism for defining functions is to define the function’s signature and an expression that
relates domain values to a range values. As an example, the following syntax defines a function that
increments a single integer input:

inc(x::integer) : :integer is x+1;

In this definition, inc is the function name, x: : integer is the domain parameter, and integer is the return
type. Together, these elements define the signature of inc as:

inc(x::integer) : :integer

Following the signature, the keyword is denotes the value of the return expression, in this case x+1. The
return expression is a standard Rosetta expression defined over visible symbols whose type is the return
type. Literally, what the function definition states is that anywhere in the defining scope inc(x) can be
replace by x+1 for any arbitrary integer value.
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Like any Rosetta definition, inc is an item with an associated type and value. In this case, the value of inc
is known and is x+1. Thus, we refer to inc as a constant function.

A variable function is a function whose signature is known, but whose value is not. A variable function is
defined like a constant function, but no is clause is included. Specifically:

f(x::integer): :real;

defines a function f whose single parameter is x: : 0 and whose return type is real. In this case, the precise
relationship between x and the return value is not know. The ability to define variable functions allows
Rosetta users to separate a function’s interface definition from its functional specification. Further, it allows
definition of a function via it’s properties rather than directly.

As with traditional languages, a function may have arbitrarily many parameters. Consider an add function
that accepts two real values and returns their sum:

add(x::real,y::real)::real is x+y;

3.4.2 Applying Functions

Function application is a simple matter of replacing formal parameters in the function expression with actual
parameters in the specific function instance and substituting. This is best understood by interpreting the
is as an equivalence operator. Using the definition above, inc(x)=x+1.2 For example, to find the value of
inc (1) we substitute actual parameters for formal parameters:

inc(1)=1+1;

Thus, inc (1) is equal to 2.

Consider the evaluation of the following function application:

inc(inc(0)) == inc(0+1)
inc(inc(0)) == 0+1+1
inc(inc(0)) == 2

Note that the substitutions can be performed in the opposite order with the same result:

inc(inc(0)) == inc(0)+1
inc(inc(0)) == 0+1+1
inc(inc(0)) == 2

The same operations can be performed where multiple parameters are involved yielding the expected result:

add(2.0,inc(0)) == add(2.0,0+1)
add(2.0,inc(0)) == 2.0+0+1
add(2.0,inc(0)) == 3.0

Rosetta functions are pure functions in the sense that call by reference parameters and other mechanisms
for achieving side effects are not allowed. The syntax for defining expressions is provided in Chapter 4 and
will be discussed fully there. Note that the return expression must have the same type as specified in the
function signature definition.

The semantics of functions in Rosetta is far more sophisticated than the previous function definition capa-
bilities indicate. For most users, the direct definition style is appropriate. In the following sections, more
sophisticated aspects of function definition and application are presented.

2The observant reader may wonder why is is used in the definition rather than =. This has to do purely with parsing
language definitions and disambiguating where a range definition starts and the return expression begins.
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3.4.3 Function Types

%% Rework this entire section making it consistent with the previous
%% type definitions. Specifically, inc(x::integer) is x+1 should be
%% interpretted as an item, inc(x) that is equal to the expression
%% x+1. The pure functional stuff should be presented either before
%% or after, but strictly distinct.

As previously discussed, all Rosetta declarations follow a general form:
label : :type is expression;

Functions are no different. The notation presented in the previous section is a shorthand for a more general
declaration. For example, the definition:

inc(x::integer)::integer is x+1;
Is semantically equivalent to the definition:

inc :: <*(x::integer)::integer*>;
inc = <x(x::integer)::integer is x+1*>

where the term delimited by <* *> is referred to as a function type or unlabeled function depending on
whether an expression is specified. This particular definition states that inc is of type:

<*(x::integer) : :integer*>
and its value is:

<x(x::integer) ::integer is x+1%>

%% Need to add the concept of a function’s rank to distinguish from
%% its domain. Might simplify the use of domain later...

A function type is defined by specifying a domain and return type using the <* *> function former. Specif-
ically:

<x (domain)::return *>

This notation specifies a bunch of functions whose parameters are selected from the bunch specified as domain
and whose application results in a value of type return. The angle brackets serve to define scope in the
function definition. Note that the is <exp> construct is not included in a function type definition.

The following notation defines the set of all functions mapping integers to characters:
<* (x::integer):: character *>

Defining a variable of this type defines a function whose value is a function mapping integers to characters.
The following declares a function, f, that maps integers to characters:

f::<* (x::integer) :: character *>
Rosetta provides the special type function that contains all functions definable in a specification. Stating

that f::function says that f is a function, but does not specify its domain or range values.

In a traditional specification or programming language, this declaration is said to define the signature or
prototype of £. The parameter and result type of f are known while the specific function remains unknown.
If a function interface is needed without specifying implementation details, this notation is appropriate. Note
that while the function type definition defines a bunch of functions, f is an individual function.
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3.4.4 Anonymous Functions

A function type whose range value is specified by an expression is referred to as an unlabeled or anonymous
function. Consider the specification of an increment function from the previous example:

inc::<x (x::natural)::natural is x+1 *>;

The function type definition here specifies not only parameters and a range set, but also an expression relating
the parameter to specific elements in the range set. This notation, as mentioned earlier, is semantically
equivalent to the shorthand notation:

inc(x::natural)::natural is x+1;

Clearly, the distinction between the anonymous function definition and the previous function type definition
is that the range value is defined as an expression defined over x. This expression is defined over the parameter
and indicates a relationship between the parameter and the result of applying the function. Thus, the range
of this function is the application of the expression to all legal domain values rather than an explicit bunch
specification.

To understand the specification above, the definition of a function need simply be applied. The range of inc
is simply the bunch of values satisfying the expression x+1. Specifically, given that the x is selected from the
function domain, the range is the natural numbers excluding 0.

The following definition is equivalent to the inc definitions provided earlier. The variable inc is first defined
to be a function mapping naturals to naturals. Then, the value of inc is set to the bunch of functions
mapping each element x from the natural numbers to x+1.

inc :: <* (X::natural) :: natural *>;
inc = <* (X::natural)::natural is x+1 *> ;

It is perfectly legal to use this notation to define functions that are not mathematical functions. However,
caution must be exerted as the return value may be a bunch of cardinality greater than 1. Consider a square
root function over natural numbers. For any value other than 0, the expression returns a bunch of size 2.

3.4.5 Multi-Parameter Functions

This far in the discussion of function types and anonymous functions those functions with multiple parameters
have been carefully avoided. At it’s most basic level, all Rosetta functions are unary functions. Specifically,
any two parameter function

fr:<x(x::R,y::9)::T is exp*>;
can be expressed as follows:
fro<k(x::R):1:<*(y::8)::T is exp *x>*>;

The function f is expressed is unary function over items of type R that returns another unary function that
maps items of type S to type T. Given that r::R and t::T, the following equivalence holds:

f(r,t) == £(r)(t)
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Consider a definition of add defined over two real numbers:
add::<x(x::real,y::real)::real is x+y*>;

Using a simple syntactic transformation gives:
add::<x(x::real)::<(*y::real)::real is x+y *>*>;

The use of x in the expression is perfectly legal as the second function definition is done in the scope of x.
Now consider application of the function in the following manner:

add(1,2) == add(1)(2)

add(1,2) == <*x(x::real)::<*(y::real)::real is x+y*>*>(1)(2)
add(1,2) == <x(y::real)::real is 1l+y*>(2)

add(1,2) == <x1+2%>

add(1,2) == 3

The function is evaluated by substituting an actual parameter for a formal parameter in first the original add
function and then in the unary function returned by add. It is particularly interesting to note the following
equivalence:

add(1) == <*k(x::real)::<*(y::real)::real is x+y*>*>(1)
add(1) == <x(y::real):real is 1l+y*>

This process, called currying, will allow performance of partial evaluation on functions. Partial evaluation
in effect allows specialization and optimization of function application.

3.4.6 Partial Evaluation

Partial evaluation is the process of taking a function and instantiating only a subset of it’s parameters. The
semantics of partial evaluation are defined using currying as described previously. Here, only the usage and
application of partial evaluation are discussed.

Consider again the following definition of £ over real numbers:
f(x::real,y::real,z::real)::real is (x+y)/z;

Application of £ follows the traditional rules of substituting actual parameters for formal parameters in
the expression and substituting the expression for the function. Partial evaluation will perform the same
function, but will not require instantiating all parameters. Consider a situation where £ is applied knowing
that in all cases the value of z will be fixed at 2 to perform an average. The following syntax partially
evaluates £ and assigns the resulting function to the new function name avg:

avg(x::real,y::real)::real;

avg=f(_,_,2);

In this definition, the “_” symbol is used as a placeholder for a parameter that will not be instantiated. To
calculate the value of £(_,_,2), we simply follow the instantiate and substitute rule:
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f(_,_,2) == <x(x::real,y::real)::real is (x+y)/2*>;

The result is a 2-ary function that returns a real value. As noted, this function calculates the average of its
two arguments. An alternate, more compact notation for the definition is:

avg(x::real,y::real)::real is £(_,_,2);

This general approach is applicable to functions of arbitrarily many value.

Summary: A Rosetta function is defined by specifying a domain, range and an expression defining a
relationship between domain and range elements. The notation:

f(d::domain)::range is exp;

Defines a function mapping domain to range where exp is an expression defined over domain parameters
and gives a value for the associated range element. The notation:

f(d::\emph{domain}) : :\emph{range};

defines f as an element of the bunch of all functions relating domain to range without specifying the precise
mapping function.

As an example, the increment function is defined over naturals using the notation:
inc :: <*(xX::natural)::natural is x+1 *>

The angle brackets define the scope of the named parameter x while x+1 defines the result.

Applying a function is simply substitution of an actual parameter for a formal parameter. Evaluating inc(2)
involves replacing x with 2 and applying the definition of a function. Specifically:

inc(2) = 2+1 =
inc(2) = 3

Function types are specified as anonymous functions using the notation:
<x(d::domain)::range*>

This function type specifies the bunch of all functions mapping domain to range. The definition:
f::<x(d::domain) : : range*>

says that £ is a function that maps domain to range.

An anonymous function is a function type whose range elements are specified using an expression using the
following format:

<x(d::domain)::range is exp*>

This anonymous function specifies the function mapping domain to range using the expression erp. It is
semantically the same as f(d: :domain) : :range. The definition:

f::<x(d::domain)::range is exp*>

says that f is a function that maps domain to range using the expression exp. It is semantically the same
as £(d::domain) : :range is exp.
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3.5 Bunch Constructors and Quantifiers

Other important operations available for functions include what are traditionally called quantifiers. In
Rosetta, all quantifiers are functions defined over other functions. As an example, consider the min function.
The signature for the min function is:

min(f::<*(x::univ)::univ*>)::univ

The min function accepts an arbitrary function and returns the minimum value associated with the range
of the argument function. Recall that the range of the argument function is the result expression applied to
each element of the domain. Consider the following function application:

min(<*x(x::1++2++3++4) : :natural is x*2 *>)

The domain of the argument is the bunch 1++2++3++4. Although it is unusual to define a bunch by extension
in these circumstances, it is perfectly legal. The range of the argument function is the expression applied to
each element of the domain. Specifically, 2++4++6++8. The min function then returns the minimum value
associated with 2++4++6++8 or 2.

If the unaltered minimum value associated with the input bunch is desired, the min function can be applied
using an identity function as in:

min(<*(x::1++2++3++4) : :natural is x *>)

The max function is defined similarly and operates in the same manner.

A number of second order functions such as min and max are defined and will be presented here. Given that
F(x::univ)::univ and P(x::univ) : :boolean, the following quantifier functions are defined:

Operation  Format Traditional name
dom dom(F) Domain

max max (F) Maximum value
min min (F) Minimum value
sel sel(P) Comprehension

ret ret (F) Return type

ran ran(F) Range or Image
exists exists(P) Existential quantifier
forall forall(P) Universal quantifier
+ + B Summation

* * B Product

The ret function takes a function and returns its defined return type. This is the type specified in the function
definition following parameters and limits the values that can be returned by the function definition. The
ran function is similar to a bunch comprehension function and returns the image of a function with respect
to its domain. It returns the bunch resulting from applying the parameter function’s expression to each
element of the domain. By definition, ran(F) : :ret (F), but it is not necessar for the range of a function to
be equal to its return type. Consider the following example where ran is used to add one to each element of
bunch B:

ran(<*(x::B)::natural is x+1%>)

Given that B=1++2++3, the expression above evaluates to 2++3++4. This is precisely the application of x+1
to each element of the range bunch. Applying ret to the same function woule return natural as the return

type.
The dom function is defined similarly to the range function but instead returns the domain associated with
its function argument. For example:
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dom(<*(x::B)::natural is x+1%>)

evaluates to the bunch B.

The domain and range functions present a greater challenge when dealing with functions of arity other than
1. The domain of a nullary function is defined as the null type while the range of a nullary function is the
result of its evaluation:

dom(<* 3+2 *>) == null
ran(<*x 3+2 *>) == 5

Using this identy, one can define evaluation of a fully instantiated function as taking the range of that
function. Specifically, if all arguments to a function are known, then the range of that instantiated function
is the same as evaluating the function.

%% The following mangling of the domain function must be fixed.

The domain of functions with arity greater than one is defined as the sequence formed from its parameter
types. The range of such a function is defined as the result of evaluating the function over all possible
combinations of domain variable values. Specifically, given the canonical add function:

add(x,y::natural)::natural is x+y
domain and range are defined as:

dom(add) = natural;;natural
ran(add) natural
ret (add)

natural

As previously defined, the functions min and max provide minimum and maximum functions as defined
previously. Interestingly, min and max provide quantification functions forall and exists when F is a
boolean valued function. Recall that true and false are defined as the maximum and minimum integer
values respectively. As noted earlier, and and or correspond to the binary relations min and max respectively.
This fact is born out by introduction of truth tables. As forall and exists are commonly viewed as general
purpose and and or operations, this makes some sense.

Consider the following application of forall to determine if a bunch, B, contains only integers greater than
Zero:

forall(<*x (x::B)::boolean is x>0 *>)

Here, the domain of the argument function is the bunch B and the result expression x>0. To determine the
range of the argument function, x>0 is applied to each element of B. Assume that B=1++2++3. Substituting
into the above expression results in:

forall (<x(x::1++2++3) ::boolean is x>0 *>)
Applying the result expression to each element of the domain, the range of the function becomes:

true++true++true
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As true is greater or equal to all boolean values, the minimum resulting value is true as expected. Assuming
B=-1++0++1 demonstrates the opposite effect. Here, the range of the internal function becomes:

falset++falset++true

As false is less than true, the minimum resulting value is false. Again, this is as expected.

It is important to note here that forall and exists behave identically to min and max for boolean valued
functions. The min and max functions applied in the same way would result in the same outcome. forall
and exists provide useful shorthands and are not absolutely necessary in the larger language. Thus, max
and min are referred to as quantifiers.

The function sel provides a comprehension operator over boolean functions. The signature for sel is defined
as follows:

sel(<*x(x::univ) : :boolean*> is bunch(univ)*>)

Like min and max, sel observes the range of the input function. However, instead of returning a single value,
sel returns a bunch of values from the domain that satisfy the result expression. Consider the following
example where sel is used to filter out all elements of B that are not greater than 0:

sel(<*x(x::B)::boolean is x>0%>)

Assuming B=1++2++3, x>0 is true for each element. Thus, the above application of comprehension returns
1++2++3. If B=-1++0++1 then x>0 holds only for 1 and the application of comprehension above returns 1.

3.5.1 Notation Issues

A shorthand notation is provided to make specifying forall, exists, sel, min and max expressions simpler.
Notationally, the following statement:

forall(x::B | x>0)
is equivalent to:
forall(<*(x::B)::boolean is x>0%>);

and returns true if every x selected from B is greater than 0. The notation allows specification of the domain
on the left side of the bar and the expression on the right. The domain of the expression is assumed to be
boolean for forall, exits, and sel. For min and max, the domain is taken from the expression. This
notation is substantially clearer and easier to read than the pure functional notation. Note that the original
notation is still valid for specifying quantified functions.

The notation extends to n-ary functions by allowing parameter lists to appear before the “|” to represent
parameter lists. The format of these lists is identical to the format of function parameter lists. Specific
examples include:

forall(x,y::integer | x+y>0)
exists(x,y::integer | x+y>0)
sel(x,y::integer | x+y>0)

It is important to remember that like forall and exists, sel observes the function range and selects
appropriately. Interpreting the notation in the standard way results in the definitions:

forall(<* (x,y:integer)::boolean is x+y>0 *>)

exists(<* (x,y:integer)::boolean is x+y>0 *>)
sel(<* (x,y:integer)::boolean is x+y>0 *>)
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Summary: Quantifier functions operate on other functions. Each generates the range of their function
argument and returns a specific value associated with that range. min and max return the minimum and
maximum range values respectively and are synonymous with forall and exists. sel and ran provide
comprehension and image functions respectively. sel applies a specific boolean expression to a function’s
range and returns a bunch of domain elements satisfying the expression. dom returns the domain of a function
defined as the application of the result expression to every domain element.

3.5.2 Set Constructors and Quantifiers

There are no direct mechanisms for defining sets by comprehension or for providing quantification. Quantifi-
cation functions over bunches in conjunction with the set former and elements functions provide an effective
means for achieving such definitions. For example, Given a set S and a boolean expression P, the set of
objects from S satisfying P is defined as:

{sel(x::" S | P(x))}

The result of evaluation is the set formed from the bunch of items from S satisfying P. Effectively, the select
operation forms the bunch of set elements by: (i) extracting the bunch of elements from S using the contents
operator; (ii) filtering the resulting bunch for those elements satisfying P; and (iii) using the set former to
construct a set from the bunch. Using a similar approach, other operations from bunches can be quickly
applied to set objects. Assuming that S::set(T), F::<*(t::T)::univ*> and P::<*(t::T): :boolean*>

Set Operation Definition

max(x in S|F(x)) {max(<*(x::~ S)::univ is F(x)*>)}
min(x in S|F(x)) {min(<*(x::~ S)::univ is F(x)*>)}
ran(x in S|F(x)) {ran(<*(x::~ S)::univ is F(x)*>)}
sel(x in S|P(x)) {sel(<*(x::~ S)::boolean is P(x)*>)}

forall(x in S|P(x)) {forall(x::~ S)::boolean is P(x)*>)}
exists(x in S|P(x)) {exists(x::~ S)::boolean is P(x)*>)}

Note that these shorthands are defined in terms of the dual bunch operations. Users are advised to use the
shorthand notations whenever possible rather than risk definition error.

Summary: Quantifiers and set formers are defined indirectly using the contents operator to extract
bunches, applying the associated bunch operator, and rebuilding the set using set formers.

3.5.3 Function Types and Inclusion

The function type former <*(d::domain)::range*> defines the bunch of functions mapping domain to
range. This bunch is in all ways a Rosetta type and can be manipulated as a bunch. Thus, operations such
as bunch containment are defined over functions.

Bunch containment applied to functions is referred to as function containment. Function containment,
f1::£2, holds when a function is fully contained in a function or function type. Assuming f1(x::d1)::rl
and £2(x::d2)::72 where d1, d2, r1 and r2 are expressions (potentially bunches):

f1 :: £2 == d1::d2 and forall(x::dl | r1(x) :: r2(x))

where r1(x) is the result of instantiating the expression associated with £1 with x and evaluating the result.

f1 is contained in £2 if and only if the domain of f£1 is contained in the domain of £2 and for every element
of £1’s domain, £1(x) is contained in £2(x). Exploring function inclusion’s several cases reveals how it
applies in several situations.
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The simplest case is when r1 and r2 are specified as bunches where the parameter x is not involved in
the definition. Examining the function inclusion law, the universal quantifier falls out and the following
relationship results:

f1 :: £2 == d1::d2 and rl1 :: r2

In this case, £1 is included in £2 when: (i) its domain is contained in dom(£2); and (ii) its range is contained
in ran(£2).

A second case occurs when r1 is an expression and r2 is a bunch. Instantiating the function inclusion law
results in the following statement:

f1 :: £2 == d1::d2 and forall(x::d1 | f1(x) :: r2)

r2 is a constant value independent of x. Therefore, the law requires that the result of applying expression
rl to actual parameter x result in an element of r2. This is actually equivalent to the previous result and
can be simplified to:

f1 :: £f2 == d1::d2 and ran(f1) :: r2
As an example, consider the increment function defined over natural numbers. It should hold that:
inc :: <*(x::natural)::naturalx>

Instantiating the function inclusion law gives:

inc :: natural -> natural
== dom(inc) :: natural and forall(x::natural | inc(x) :: natural)
== patural :: natural and forall(x::natural | x+1 :: natural)
== true and true
Thus, increment is of type <*(x::natural):: natural*>. It is interesting to note that this is exactly the

relationship that must be checked for every definition of the form:
f(x::R)::S is T;

as it indicates that the actual function is of the same type as the specified signature.

The final case defines when one constant function is included in another. In this case, both d1 and 42 are
expressions and the most general expression of the function inclusion law must be applied.

First, consider determining if the increment function is included in itself. Clearly, this should be the case
and the function inclusion law supports the assertion:

inc :: inc
== dom(inc) :: dom(inc) and forall(x::nmatural | inc(x) :: inc(x))
== natural :: natural and forall(x::natural | x+1 :: x+1)
== true and true

This holds because for any Rosetta item, i::i holds by definition.

Consider the case of determining if increment is contained in identity over natural numbers. In this case,
the law should not hold:
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inc :: id

== <x(x::natural)::natural is x+1*> :: <x(x::natural)::natural is x*>
== dom(inc) :: dom(inc) and forall(x::natural | inc(x) :: id(x))

= natural :: natural and forall(x::natural | x+1 :: x)

== true and false

false is obtained from the second expression by the counter example provided by x=0 as 0+1 /= 0.

When f1::d1->el where el is an expression, the following holds:

f1 :: <*(x::d42)::r2%> == d1::d2 and forall(n::d1 | f1(n) :: r2x%>)
or

f1 :: <*(x::d2)::r2%> == d1::42 and ran(rl) :: r2

%% Note that in both the immediately preceding equation and an early
%% equation, dom(rl) was replaced with ran(rl). There may be too
%% much coincidence here to let that go unchecked.

The function containment law gives the criteria by which one function may be said to be included within a
function type. Each function type defines a bunch of functions consisting of all those functions included in
it. This means that any function can be used as a type, or bunch, and all the containment laws for bunches
apply to them. This is particularly useful when using a function that returns a bunch rather than a single
value. Consider the function <*(n: :natural) : :natural*>. This function defines the bunch of all functions
that take a natural number as an argument and return a natural number. Rosetta allows the user to ask if
a given function is contained in that bunch (is a member of that type). For example, consider:

succ(n::natural)::natural is n+1;

We wish to determine:

succ(n: :natural) : :natural is n+l1 :: succ(n::natural)::natural;
== (natural::natural) and forall(<*n::natural —-> succ(n)::natural*>)
== true and forall(<#*n::natural -> (n+1)::naturalx>)
== true and true
== true

Assume that £(x::df)::rf and g(x::dg) : :rg. The following operations are defined over two functions:

Relation Format Definition
=,/= f=g,f /=g f::gand g::f
-(f::g) or -(g::1)
, < f£>g, f>g g::f
f>g=g::fand f /=g

>=, =<, >

Functional equivalence checks to determine if every application of £ and g to elements from the union of
their domains results in the same value. Specifically, £(x) = g(x) for every x in either domain. Function
inequality is defined as the negation of function equality.

Function inclusion comes in several forms and is specified using the same relational operators used for
numerical relations, subset and sub-bunch relationships. One function is included in another (f=<g) when
applying the including function to every element of the included function’s range is the same as applying
the included function. The distinction here is that the range of the included function, not both functions, is
evaluated. Proper inclusion £<g occurs when f is included in, but not equal to g. It is easy to show that f
=< g and g =< f == f = g. Further, the operations define a partial order over functions.
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3.5.4 Limits, Derivatives and Integrals

A special class of functions for defining limits, derivatives and integrals are provided for use with real valued
functions. These functions exist primarily to allow specification of differential equations (both ordinary and
partial) over real valued functions. Given a real valued function f (x: :real) : :real, the following definitions
are provided:

Function Format Definition
Limit lim(f,x,n) limg_p, f(x)
Derivative deriv(f,x) /i

dz
Indefinite Integral antideriv(f,x,c) fmf(x)d:c +ec
Definite Integral  integ(f,x,u,1) [ f(x)da

The derivative of a function is defined with using limit in the canonical fashion. The following axiom is
defined for all real valued functions and real valued delta:

deriv(f,x) = lim((f (x+delta)-f(x)/(x+delta)-x),delta,0)

In the derivative function, f is the object function and x is the label of the parameter subject to the derivative.
In the above function, the following holds:

deriv(f,x) = %

The derivative function is generalizable to expressing partial derivatives. Assuming that g is defined over
multiple parameters, such as g(x::real,y::real,z: :real): :real, then:

deriv(g,x) = g—g

Antiderivative, or indefinite integral, is the inverse of derivative. The antiderivative of £ with respect to x is
expressed as:

antideriv(f,x,c) = [ f(z)dz + ¢

f being the function in question, x being the variable integrated over, and ¢ being the constant of integration.

As antiderivative is the dual of derivative, the following axiom is defined for all real valued functions:
antideriv(deriv(f,x),x,0) == deriv(antideriv(f,x,0),x) ==

The definite integral of £ with respect to x over the range u to 1 is expressed as:
integ(f,x,1,u) == f_lAu f(z)dx

The definite integral is defined as the difference of the indefinite integral applied at the upper and lower
bounds:

integ(f,x,1,u) == antideriv(f,x,0) (u) - antideriv(f,x,0) (1)

It is possible to express a definite integral over an infinite range using the notation:
integ(f,x,false,true) = [ _inf " inf f(z)dz

It should be noted that limit, derivative, antiderivative and integral functions are defined over real valued

functions only. Further, the functions provide a mechanism for expressing these operations and some semantic
basis for them. Solution mechanisms are not provided.
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3.6 Function Composition and Selective Union

Thus far, all Rosetta functions have been defined by using an expression in the function definition. Rosetta
provides two mechanisms for function construction: (i) function composition; and (ii) selective union. Func-
tion composition is simply an application of function definition techniques that allow a new function to be
constructed from existing functions. Selective union allows functions to be specified by extension.

3.6.1 Function Composition

Function composition is an application of function definition capabilities. Assume that two functions, £ and
g exist and that ran(g) : :dom(f). We can define a new function h as the composition of £ and g using the
following definition style:

h(x::R)::T is f(g(x));

The approach extends to other definition styles in addition to the direct definition style.

3.6.2 Selective Union
Selective union of two functions f and g is defined formally as:

(flg) (x) = if x::dom(f)
then f(x)
elseif x::dom(g)
then g(x)
endif;

Further, the domain and range can be defined as:

dom(f|g) == dom(f)++dom(g);
ran(flg) == ran(f)++ran(g);

Selective union is highly useful for implementing a form of polymorphism, defining records and tuples, and
defining constructed data types. An example of a function defined by selective union is the simple non-zero
function:

non-zero(n: :number): :boolean is
(<*¥(n::0) is truex> |
<k(n::sel(x::integer | x>0))::boolean is falsex*> |
<k(n::sel(x::integer | x<0))::boolean is falsex*>)

This is a rather pedestrian use of selective union and there are better definitions of the non-zero function.
However, it does demonstrate how domain values can be used to select from among different function
definitions.

%% What occurs when the argument is in two ranges? (Choose first)
%% What occurs when an argument is covered by no range? (Undefined
%% or add an else or others case. I favor the former)

%% I’m killing off the function composition section for awhile

%% because I don’t see that it’s necessary with the new notation.

%% Specifically, h=(f g) is really just h(x::T)::T is f(g(x)) I

%% suppose function composition buys us something somewhere, but I’m
%% not seeing it.
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3.7 Tuples and Records

Tuples and records provide mechanisms for assembling collections of potentially heterogeneous data struc-
tures. Like sequences, tuples and records are indexed and elements can be accessed in any order. Tuples are
indexed much like an array or sequence. Given a tuple, it’s n*" value can be accessed using n as an accessor
function. Records are identical except that the user is allowed to provide names for each accessor function.

In Rosetta, both records and tuples are defined using constructed functions. A record type is a function
constructed from individual functions accessing each record. A tuple is the same except that the names
of the access functions are defined to be a sequence of natural numbers. It is not necessary to understand
the semantics of records and tuples to use them, however doing so does lead to a deeper understanding of
constructed functions.

3.7.1 Records

The syntax for defining a record type is the keyword record followed by a vertical bar delimited list of fields.
The general syntax is:

record [ f0::TO | f1::T1 | ... fn::Tn ]

where £1 through fn are the names of the various fields and T1 through Tn are the types associated with
those fields. To define a specific record type that represents Cartesian coordinates, the following notation is
used:

record[x::real | y::real | z::real]
To define an element of this type, the standard Rosetta declaration syntax is used:
c :: record [x::real | y::real | z::reall;

Accessing individual fields of the record is achieved by applying the ¢ to on of the named fields. To access
field y, the following notation is used:

c(y)

The actual semantics of the record definition shows how the record behaves. Specifically, the type definition
for the Cartesian type translates to:

<xc(q::x++y++z) ::real is
(<*x(q::x):: realx> |
<x(q::y):: real*> |
<x(q::z):: real*>)*>

Note that the values x, y and z are field names and not type bunches. As every item in Rosetta is a bunch,
they can be used in this manner. In this case, the notation defines three cases where q is equal to x, y and
z respectively.

One desirable effect of this semantics is that all operations and properties associated with functions also apply
to records. Thus, composition, application, equality and other concepts define the behavior of a record.

Forming a record is achieved by specifying the value associated with each field in a vertical bar separated
list. The square brackets are used to delineate the list. The syntax for record formation is:
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record[f0 is vO | f1 is vl | ... fn is vn]

where £1 through fn name the fields and v1 through vn name the specific values. Defining a coordinate in
Cartesian space using the definition above is achieved by:

record[x=1 | y=0 | z=0]
This is semantically equivalent to the function:

(<x(q::x)i: 1> | <x(qi:y):: 0x> | <*x(q::z):: 0%>)

3.7.2 Tuples
Tuples are simply a special case of records where field names are natural numbers rather than arbitrary
values. Defining and using tuples is achieved using a simple shorthand notation specifically for tuples.
Defining a tuple is achieved using the following notation:
tuple [TO | T1 | ... Tn]
where T1 through Tn name the types of each tuple element. Please note that this definition is identical to:
record [0::TO | 1::T1 | ... n::Tn]
and thus is semantically defined by:
<xc(q::0++1++2, . .++n) : :T1+T2+...+Tn is
(<x(q::0):: Tix> |
<x(qi:l):: T2%> |
<x(q::n):: Tn*>)*>
As with records, all operations on functions apply to tuples. In addition, all operations on arrays also apply

to tuples. The use of the indexes above makes tuples equivalent to arrays, and array operations may also be
used on tuples as long as the type restrictions above are observed.

Looking again at Cartesian coordinates, an alternative definition using tuples has the following form:
tuple [real | real | reall
Given c of this type, accessing the y coordinate of c is achieved using;:
c(1)

Tuples are also formed using the notation borrowed from records. Like records, the field names are dropped
giving:

tuple[1 | 0 | 0]

Unlike records, it is not possible to form a tuple with “missing” elements. Defining a Cartesian record as [x
is 1 | z is 0] is perfectly legal and forms a record of the correct type. However, [1 | 0] forms a two
element tuple, not a coordinate tuple.
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3.7.3 Univ Types
The type univ is now introduced to contain all element, composite, record, and tuple types. This type

contains all basic data types provided in the Rosetta type system. It differs from universal in that it does
not contain function types, facet types or other types traditionally used to represent non-data constructs.

Summary: Records and tuples provide a means for defining collections of indexed data. Both share
semantics with tuples being defined as records whose accessor functions are named by a sequence of natural
numbers. A record is defined using the syntax:

record [f0::TO | £1::T1 | ... fn::Tn]

where £1 through fn name the fields and T1 through Tn define their associated types. A tuple is defined
similarly:

tuple [TO | T1 | ... Tn]

where T1 through Tn are the types of the tuple elements.

The semantics of records and tuples is defined based on the semantics of functions. Thus, accessing and
manipulating tuples and records is achieved using standard function application techniques.

Records are formed using the notation:
record[f0 is v0O | f1 is vl | ... fn is vn]

where f£1 through fn name the fields and v1 through vn are their associated values.

Tuples are formed using the notation:
record[ vO | v1 | ... vn]

The type univ is now defined as the bunch containing element, composite, record and tuple types.

3.8 Let Expressions

Function application provides Rosetta with a mechanism for defining expressions over locally defined vari-
ables. An additional language construct, the let expression generalizes this providing a general purpose
let construct. The Rosetta let is much like a Lisp let in that it allows definition of local variables with
assigned expressions. The general form of a let expression is:

let x::T = exl in ex2

This expression defines a local variable x of type T and associates expression ex! with it. The expression
er? is an arbitrary expression that references the variable x. FEach reference to x is replaced by ezl in the
expression when evaluated.

The syntax of the let expression is defined by transforming the expression into a function. Specifically, the
semantic equivalent of the previous let expression is:

%% The type here might not be what we want.
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<*(x::T)::univ is ex2x*>(exl)
When the function is applied, all occurrences of x in ex2 are replaced by ex!. This process is identical to
the application of any arbitrary function to an expression. Assume the declaration i::integer and consider
the following let expression:

let x::integer = i+l in i’=x
The semantics of this let expression is:

<x(x::integer)::univ is i’=x*>(i+1)
Evaluation of the function application gives:

i’=i+1

The usefulness of let becomes apparent when an expression is used repeatedly in a specification. Consider

a facet with many terms that reference the same expressing. The let construct dramatically simplifies such
a specification.

Let expressions may be nested in the traditional fashion. In the following specification, the variable x of
type T has the associated expression ezl while y of type R has the expression ex2. Both may be referenced
in the expression ex3.
let x::T = ezl in let y::R = ex2 in ez3
This expression may also be written as:
%% Should it be comma rather than semicolon in the following??
let x::T = exl; y::R = ex2 in ex3
The semantics of this definition are obtained by applying the previously defined semantics of let:

<* (x::T)::univ is <*(y::R)::univ is ez3 *>*>(ezl) (ex2)

Consider the following specification assuming that i is of type integer and fcn is a two argument function
that returns an integer:

let x::integer=i+1; y::integer=i+2 in i’=fnc(x,y);
When evaluated, the following function results:
<x(x::integer) ::univ is <*(y::integer)::univ is i’=fnc(x,y)*>*>(i+1) (i+2)
The result of evaluating this function is:
<x(x::integer)::univ is <*y::integer is i’=fnc(x,y)*>*>(i+1) (i+2) ==
<x(y::integer) ::univ is i’=fnc(i+1l,y)*>(i+2) ==
i’=fnc(i+1,i+2)
In order for normal argument substitution to work, the expressions in the Rosetta let expression must not

be mutually recursive. If recursion is necessary, the expressions must be represented as normal Rosetta rules
or predicates.
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Summary: The let expression provides a mechanism for defining local variables and assigning expressions
to them. This provides shorthand notations that can dramatically simplify complex specifications by reusing
specification fragments. The syntax of the general let expression is:

let v1::Tl=el; v2::T2=e2; ... vn::Tn=en in exp

where v1 through vn define variables, T1 through Tn define the types associated with each variable, and el
through en define expressions for each variable.

Evaluating the let expression results in the expression exp with each variable replaced by its associated
expression. The semantics of the let expression are defined using function semantics. It is sufficient to
realize that the let provides local definitions for expressions.

3.9 User Defined Types

User defined types are declared in the same manner as any constant or variable. The notation:
T: :subtype(integer)

defines a variable type T whose value is unspecified, but whose elements must come from the integers. The
expression specified in the subtype declaration is the supertype of the type being defined. Recall that the
expression subtype is synonymous with bunch, thus T is a subtype of the integers. Such variable types are
referred to as uninterpreted as their values cannot be determined at compile time. The natural numbers can
be defined from the integers using the following definition:

natural: :subtype(integer) is sel(x::integer | x >= 0)

Here, the value of natural is known to be the bunch of integers greater than or equal to zero. Like T,
natural is a suptype of integer, but its value is given by the expression.

In general, the notation:
T: :subtype(supertype)

defines a new type T whose value is not specified, but constrained to be any bunch contained supertype. Such
variable types are again referred to as uninterpreted subtypes. Their specific values are unknown, but they
are restricted to be a sub-bunch of their associated supertype.

Finally, the notation:
T::subtype(supertype) is b

Declares a new type whose supertype is a sub-bunch of supertype and whose value is b. It is implied that
b: : supertype. If the supertype is left unconstrained, the new type will have no explicit supertypes.

Consider the definition of the type bit as a subtype of natural. The specific definition of bit has the
following form:

bit::subtype(natural) is O0++1
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Because 0++1 :: mnatural, this represents a perfectly legal type definition.

Consider the definition of the type natural as a subtype of integer. The specific definition of natural has
the following form:

natural: :subtype(integer) is sel(x::integer | x >= 0)

As Rosetta is declarative, there is no reason why the declaration cannot include an expression. Further, it
is quite possible that that expression may not be evaluated until analysis time.

In addition to constructing new types comprised of elements, the subtype construct can be used to define
types comprised of composite values. The following definition:

time: :subtype(record[h: :hours | m::minutes | s::seconds]);

defines a new type named time that is comprised of records. Similarly, it is possible to define types containing
sets, sequences, arrays, and tuples.

One final note about the distinction between the notations x::T and x: :subtype(T) as declarations. The
first says that the value of x is a single element of type T. The second says that the value of x is a bunch of
values selected from T. If the first definition is used as a type, then only single element types are allowed.
The second explicitly allows bunches. In contrast, if these statements are used as terms in a specification,
they are identical. This distinction will become clearer when terms are presented.

3.9.1 Uninterpreted Types

The notation:
T::subtype(universal)

defines a type T that is a subtype of all possible Rosetta values. The universal type represents the entire
domain of discourse for Rosetta. A variable of type universal may take any value in the Rosetta universe.
Thus, T may be any bunch of values in the Rosetta domain of discourse. Usually, T will be constrained by
definitions in the model where it is used. Types of this kind are refered to as unterpretted types and play a
very similar role to sorts in a sorted type system, although structurally they are quite different.

3.9.2 Parameterized Types

Any function returning a bunch can be used to define a Rosetta parameterized type. Consider the following
function definition:

boundedBitvector(n: :natural): :subtype(bitvector) is
sel(b::bitvector | $b = n)

Remembering that subtype is a synonym for bunch, the function signature defines a mapping from natural
numbers to a bunch of bitvectors. That bunch of bitvectors is defined by the sel operations to be those
whose lengths are equal to the parameter n. Thus, boundedBitvector will return the bunch of bitvectors
of length equal to its parameter. We can now use boundedBitvector as as a type definition construct.

The notation:

reg: :boundedBitvector(8);
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defines reg to be a bitvector of length 8.

The notation:
bv8: :subtype(bitvector) is boundedBitvector(8)

defines bv8 to be the bunch of all bitvectors of length 8.

Summary: User defined types are declared exactly as are other Rosetta variables and constants. While
the notation x::T forces x to be a singleton element of T, the notation x::subtype(T) allows x to be a
bunch selected from T. Types can be formed from any element or composite type.

Uninterpreted types are defined as subtypes of the universal type.

Parameterized types are defined by using functions to return bunches as types.

3.10 Facet Types

Like other items in Rosetta, facets are also a type defined by a bunch of items. The specifics of the facet
type are defined in the following chapters and in the Rosetta Semantics Guide. Here, the declaration and
an alternate definition mechanisms for facets are presented.

In Chapter 2 a format for defining facets directly is provided. Specifically, the following defines a simple
facet that increments an input value and outputs it:

facet inc(i::in integer; o::out integer) is
begin state-based

11: o’=i+1;
end inc;

Most basic facets will be described using this method.

In contrast, facets may be defined by composing other facets using the facet algebra. To achieve this, a
facet is declared and assigned to the composition of other facets. An example from Chapter 2 describes the
composition of requirements and constraints for a sorting component. Specifically:

sort :: facet is sort-req and sort-comnst;

This declaration follows the definitional style used for all Rosetta declarations. The label sort names the
facet while the built-in type facet defines the collection of facets. In this case and forms a new facet from
sort-req and sort-const. Note that and is a facet forming operation and not a boolean operation in this
case.

Like types, parameterized facets may be defined using the function notation. The facet type is a type like
any other and can be returned by functions. Thus, the signature of a parameterized sort facet definition is:

sort(gs: :boolean)::facet is
sort-const and (if gs then quick-sort-req else sort-req);

In this definition, the parameter qs selects whether requirements for a quicksort or more general sorting
requirements are included in the conjunction.

The following operators are defined over facets:
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Operation  Format Definition

and F and G co-product of F and G
or For G product of F and G
not - G, not G Inverse of G

implies F =>G, F implies G -F or G

=, /= F=G,F /=G Equivalence operations

Facet algebra operations are not logical operations. For example, F and G produces a new facet that is
the product of F and G. The properties of each operation are defined by the category theoretic notations of
co-product and product. When the co-product of two items is formed, the new item must have the properties
of both the original items. Specifically, the facet F and G must have all properties of both F and G. When
the product of two items is formed, the new item must have the properties of one or the other of the original
items. Specifically, the facet F or G must have either properties of F or G. Negation is similarly defined. not
F has none of the properties of F.

As facets are a Rosetta type, all operations defined over Rosetta bunches are also defined over facet types.
Some specific examples include defining functions over facets and using quantification on functions with facet
domains. This special property will be used heavily when defining reflection and defining meta-functions
operations over facets. The facet algebra is described fully in Chapter 5. It is necessary here only to
understand the mechanisms used to declare facets and the format of facet algebra expressions.

Summary: Facets are a Rosetta type. As such, the traditional item declaration syntax is used to declare
and define facets in specifications. Facet variables and constants can be defined in the traditional Rosetta
style.

The facet algebra supports creating new facets from existing facets. Operations for conjunction, disjunction,
negation, implication and equivalence are defined. The semantics of the facet algebra are defined using
product and sum concepts from category theory and will be defined in a subsequent chapter.

3.11 Summary

The Rosetta type system provides a rich environment for specifying types and functions independent of any
specific specification domain. Rosetta specifies three basic types of data types: (i) elements; (ii) composite
types; and (iii) functions. Elements include basic data items that cannot be decomposed. Composite types
include data structures containing other structures such as bunches, sets, sequences and arrays. Functions
and function types include mappings from one bunch to another.

3.11.1 Declaring Types, Variables and Constants

Every Rosetta type is defined as a bunch. Thus, the operation for bunch membership is used to define
variables and constants of a particular type. Specifically, defining a Rosetta variable of type T is achieved
using the following notation:

ve:T
Defining a similarly typed Rosetta item with a constant value c is achieved using the following notation:
v::T is c

Because Rosetta types are bunches, they are first class values and can be manipulated just as any other
value would. Any operation defined on bunches can be used on a type. Additionally, the terms bunch and
type are used interchangeably and are synonyms of each other.
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3.11.2 Elements

The following element types are pre-defined in all Rosetta specifications:

null — The empty bunch containing no elements.

boolean — The named values true and false. Boolean is a subtype of integer. True is the greatest
integer value while false is the smallest.

integer — Integer numbers, from false to true. Integer is a subtype of real.
natural — Natural numbers, from zero to true. Natural is a subtype of integer.

rational — Rational numbers, consisting of two integers, a numerator and a denominator. Rational
is a subtype of real.

real — Real numbers consisting of all real valued numbers expressed as strings of decimals in tradi-
tional decimal or exponential form.

number — Any legally defined Rosetta number.
character All traditional character values.
element — All elementary values, including all elements of all types named above and all values.

null — The empty type.

3.11.3 Composite Types

The following composite types are defined in Rosetta:

bunch — The basic collection representation in Rosetta. A bunch is an unpackaged collection of items
that resembles a set without the power-set concept. The notation bunch(B) (or type(B)) refers to
any bunch of Rosetta items formed from the elements of bunch B.

set — All possible sets that may be defined in Rosetta. A set is a packaged collection of items and
is formed by packaging a bunch. The notation set refers to any set of Rosetta items. The notation
set (B) refers to any set formed from the elements of bunch B.

sequence — The basic ordered structure representation in Rosetta. A sequence is an unpackaged,
indexed collection of times. The keyword sequence refers to any indexed collection of Rosetta items.
The notation sequence (B) refers to any sequence of Rosetta items formed from the elements of bunch
B.

bitvector — A special sequence defined as bitvector=sequence(bit).
string — A special sequence defined as string=sequence(character).

array — All possible arrays that may be defined in Rosetta. An array is a packeted collection of
indexed items and is formed by packaging a sequence. The keyword array refers to any indexed
collection of Rosetta items. Then notation array (B) refers to any array of Rosetta items formed from
the elements of bunch B.

univ — The bunch containing element and all structure types including record and tuple defined
below.
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In addition, the following composite types are defined for records and tuples. Although they are officially
defined using function semantics, they are included here as their behavior is more closely related to composite

types:

e record [f1::T1 | £2::T2 | ... £n::Tn] — Defines a record structure with fields £1 through fn
of type T1 through Tn respectively.

e tuple [T1 — T2 — ... Tn] — Defines a tuple structure with elements of type T1 through Tn.

3.11.4 Functions

Funtions are typically defined by providing a signature and an optional expression. The syntax:
add(x,y::natural): :natural;

defines the signature of a function add that maps pairs of natural into natural. The domain of his function
is the sequence natural ; ;natural while the return type and range are both natural. We call this a variable
function as no expression is defined mapping elements of the range type into the return type.

The definition:
add(x,y::natural): :natural is x+y;

defines a function add whose domain and return type are the same as the previous definition, but with
a defined mapping. Wherever the function add(a,b) appears in an expression, it can be replaced by the
expression a+b.

Anonymous functions, frequently called lambda functions, are defined by excluding the name and enculating
the function definition in the function former <* *>. The definition:

<* (x,y::natural)::natural *>

defines an anonymous function signature with the same properties as the first definition of add. We call this
a function type because it defines a class of functions mapping pairs of natural numbers to natural numbers.
The definition:

add::<* (x,y::natural)::natural *>

is equivalent to the function signature defined above.

The definition
<* (x,y::natural)::natural is x+y*>

defines an anonymous function identical to the constant function add above, except the anonymous function
has no label. Such functions are equivalent to lambda functions. The definition and declaration:

add::<* (x,y::natural)::natural *>
add = <* (x,y::natural)::natural is x+y*>
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is equivalent to the concrete definition of add above. The add function is defined as a variable. The
declaration asserts that the add function is equivalent to the anonymous function defined above. In reality,
this definition provides the semantics for the first definitional notation.

Functions may also be defined by selective union. The notation:
dl -> el | d2 -> e2
defines a function that is applied by examining the type of the item applied to and using it to select from

alternative expressions. Specifically, if the argument is in d1, then el. If it is in d2, then e2 results. Such
notation is particularly useful for defining record and tuple structures.

A direct application of the function semantics is the definition of the let construct. Specifically:
let x1::Tl=el; x2::T2=e2; ... xn::Tn=en in exp

defines the local items x1 through xn and assigns them expressions el through en. These symbols can then
be used normally in expression exp. Note also that the function:

<k b5+7 x>

is a nullary, constant function whose value is constant 12.

Functions evaluation uses a lazy semantics where formal parameters are replaced by actual parameters in
the function expression and the result is simplified. Thus:

add(3,4) == <*x3+4x%>
==7

This concept directly supports partial evaluation as in the following:
add(3,_) == <*(y::natural)::natural is 3+nx*>

where evaluating the result of the instantiation results in an expression parameterized over the remaining
free parameter.

3.11.5 User Defined Types

As types are first class items in Rosetta, user defined types are declared exactly as any other constant or
variable. The following classes of type definitions are defined:

e T::type(universal) — Unconstrained type
e T::type(B) — Unconstrained subtype of B
e T::type = b — Defined type whose value is bunch b

e T::type(B) = b — Defined subtype of B whose value is bunch b. b : : B must hold

3.12 Pending New Sections

The following sections are planned for addition to the Usage Guide in the future, but do not purport to
represent final language design decisions.
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3.12.1 Constructed Types

Using selective union as a semantic basis, Rosetta provides a shorthand for creating types and functions that
create values of this type. These are called constructed types (or bunches), and the functions that create
values of these types are called constructor functions. A bunch predicate of the following form:

b = data f1 bl1l b12 ... bli |
f2 b21 b22 ... b2j |
fn bnl bn2 ... bnk ;

This expression is equivalent to the following definitions and laws (where the definitions are in the definition
section and the laws in the predicate section):

b:: bunch;

f1:: b1l -> b12 -> ... => bli -> b;

£2:: b21 -> b22 -> ... -> b2j -> b;

fn:: bnl -> bn2 -> ... =-> bnk -> b;

Xx:: b;

export g,f1,f2,...,fn

begin

x::b = exists<xl::bl1l -> ... -> xi::bli -> f1 x1 x2 ... xi = x> or
exists<x1::b21 -> ... -> xj::b2j -> f2 x1 x2 ... xj = x> or
exists<x1l::bnl -> ... -> xk::bnk -> fn x1 x2 ... xk = x>

Constructed types, and constructor functions, are well known in the areas of functional programming and
type theory. In addition to making a type theory decidable (which is not a factor in the design of Rosetta),
they allow the user to distinguish otherwise identical types from each other, assuring that type checking
and proofs will catch accidental substitution of one type of values for another. It also allows definitions of
standard operations (such as addition and multiplication) to use different algorithms when necessary.

3.12.2 The Universal Type

universal This identifies that the variables before the colon may take on any value whatever, including
elements, bunches, or sequences.

To Do Items

e Constructed Types — Rework and add the constructed type definitions

e Universal type — Add the definition of universal formally
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Chapter 4

Expressions, Terms, Labeling and
Facet Inclusion

4.1 Expressions

A Rosetta expression is constructed using operators and variables as defined in the current scope. Predefined
operators and types are defined in Chapter 3 and form the basis of the Rosetta expression syntax. All rosetta
expressions are recursively defined in terms of unary and binary operations. Parenthesized operations have
the highest priority followed by unary operations and binary operations in traditional fashion.

Expressions are formed using unary operations, binary operations, grouping operations, and with function
calls. The following general rules are used to define Rosetta expressions:

Any constant a is an expression.

Given any unary operation, o, and expression e, then oe is also an expression.

Given any binary operation, o, and expressions e; and ez, then e; o ez is also an expression.

Given any function, f, and expressions e;...e,, then f(eq, ..., €,—1) is an expression where n is the arity
of f.

e Given any expression, e, then (e1), {e1} and [e1] are also expressions.

Precedence for Rosetta unary and binary operations follow the canonical style. The following table lists
Rosetta operators in tabular form:

Operator Type

0,{},0 Grouping

-, not, %, $, #, ~ Unary

~, in, :: Power and membership
x, [/, %% Product

+, =, +, =, 33 Sum

<, =<, >=, >, <L, >> Relational

=, /= Equality

min, and, nand Boolean product
max, nmax, nmin, or, mor, Xor, xmor, <=, => Boolean Sum
== Equivalence

Table 4.1: Precedence table for pre-defined Rosetta operations.
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The type of an expression is the bunch of items resulting from all possible instantiations of the expres-
sion. For example, given the declaration x: :natural and the expression x+1, the type of x+1 is the bunch
ran(x::natural | x+1) equl to the whole or counting numbers. Any function or facet parameter or variable
may be legally instantiated with any expression of the same type.

4.2 Terms

A Rosetta term is a labeled, expression that appears within the scope of a begin-end pair within a facet. All
terms are asserted as true within the scope of the facet. Note that simply because a term is boolean valued
does not imply the term cannot represent an operational specification. It simply says that the statements
made within the term are declared to be true.

The general format for a Rosetta term is a label, followed by an expression, terminated by a semicolon.
Specifically:

label : term;
For example, the following term states that inc 3 is equal to 4:
11: inc(3) = 4;

Term label is 11, the term is inc(3) = 4 and the semicolon terminates the term definition. Effectively,
the semicolon terminates the scope of the label’s assigned term. All terms defined in this fashion must be
labeled.

The function of the semicolon is to terminate a labeled expression. Thus, the specification fragment:

11: inc(3) = 4;
12: forall(x::1++2 | x<4);

defines two terms with labels 11 and 12 and term expressions inc(3) = 4 and forall(<*x::1,2 -> x<4
x>) respectively. In contrast:

11: inc(3) = 4
12: forall(x::1++42 | x<4);

is illegal as 12: is not an operation in the specification grammar.

%% Operators do in fact distribute over semicolons. This is,
%% unfortunately wrong and needs to be corrected.

Semantically, the semicolon behaves as a conjunction. Terms delineated by semicolons in the body of a
specification are simultaneously true and form a set of terms associated with the facet. This set of terms
must be consistent with respect to the facet domain. A facet is consistent if and only if its domain, bunch
of terms, and declarations are mutually consistent.

No term’s semantic meaning can be inferred without reference to the including facet’s domain. For example,
the following definitions seem quite similar, but with proper interpretation mean quite different things. The
following examples demonstrate this fact by showing how similarly defined terms have different semantics
based on the definition domain. In each case, reference to the VHDL signal assignment semantics is mentioned
to aide in understanding what is being specified. The various domains are explained in Chapter 6.

The following term asserts that x is equal to f of x:

63



begin logic
11: x = £(x);

The domain for this term is logic, referring to Rosetta’s basic mathematical system. There is no concept of
state, time or change in this domain. Thus, x = f(x) is an assertion about x that must always hold. This
domain is frequently termed the monotonic domain because change is not defined. If f£(x) is not equal to
X, then this term is inconsistent and the specification is in error.

The following term asserts that x in the next state is equal to f of x in the current state:

begin state-based
11: x? = £(x);

The state-based domain provides the basics of axiomatic specification. Specifically, the notion of current
and next state. x’ refers to the value of x in the state resulting from evaluating the facet’s function. x
refers to the value in the current state. This specification fragment has roughly the same semantics as
an assignment statement as it specifies that x in the next state is equal to £ x. Thus, if x /= £(x), no
inconsistency results. It is interesting to note that this statement is quite similar in nature to a basic signal
assignment in VHDL. Specifically in VHDL:

x <= £(x);
The following term asserts that x at current time plus 5ms is equal to £ of x in the current state:

begin continuous
11: x@(t+bms) = f(x);

This specification is quite similar to the previous specification in that the value of x in some future state is
equal to f(x). It differs in that the specific state is defined temporally. Specifically, in the state associated
with 5ms in the future, x will have the value associated with f (x) where the argument to f is the value of x
in the current state. Again, this definition bears some resemblance to VHDL signal assignments. This time,
a wait statement is specified in conjunction with the signal assignment:

x <= f(x) after b5ms;

Other domains and semantics are available for discrete time, constraints and mechanical specifications. The
intent here is to demonstrate only the relationship between a term and its associated domain.

Another example uses classical axiomatic specification to define a function. The function inc has been used
repeatedly as an example of constant function definition. Here, the function is defined as an abstract function
and constrained using a term in the specification body:

inc(x::integer) : :integer;
begin logic
incdef: forall(x::integer | inc(x) = x + 1);

The definition states that for every integer, x, calling the function inc on x is equal to adding 1 to x. This
is semantically equivalent to previous the previous definition, however it is more difficult for an interpreter
to evaluate.

An alternate definition assigns a specific function to the function variable defined:
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inc(x::integer) : :integer;
begin logic
incdef: inc = <* (x::integer)::integer is x + 1 *>

Semantically, this is identical to the standard definition. Like the previous definition, it is not as easy for
the compiler to determine the value of inc.

The let form is also used to form terms. Consider the following definition:
11: let x::integer=a+1 in f(x,5);

When the let form is evaluated, the following term results:
11: f£((a+1),5);

Note that let currently supports defining variables over a single expression. Let forms cannot define variables
over multiple terms.

Summary: A term is a labeled, boolean expression defined within the body of a facet. Each term is
separated by a semicolon and is simultaneously true within the facet scope. Terms must be evaluated with
respect to the domain associated with their enclosing facet to be fully interpreted.

4.3 Labeling

Labeling is the process of assigning a name to a Rosetta item. Facet definitions, item declarations, and
terms all define items and provide labels. Recall that all Rosetta items consist of a label, value and type.
Where the value and type define current and possible values associated with the item, the label provides
a name used to reference the item. Specifically, labels serve as names for terms, variables, constants, and
facets. Any item may be referenced using it’s label. This provides the basis of reflection in Rosetta allowing
Rosetta specifications to reference elements of themselves.

4.3.1 Facet Labels

Facet labels name facets and provide a mechanism for controlling visibility within a facet. Facets are labeled
when they are defined directly. Further, they are defined when labeled terms define new facets from existing
definitions using the facet algebra described in Chapter 3 and later in Chapter 5. When that label appears
within a definition, it references the defined facet.

In a traditional facet definition, the facet name following the facet keyword becomes the defined facet’s
label. Consider the following definition of find:

facet find(k::in keytype; i::in array[T]; o::out T)
power::real;

begin state-based
postcondl: key(o’) = k;
postcond2: elem(o’,i);

end find;
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This definition produces a facet item labeled find whose type is facet and whose value results from parsing
all declarations and terms within the facet.

Ttems declared in and exported from a facet visible outside the facet. Such items are referenced using the
standard notation name.label where name is the facet label and label is the item label. For example, key (o)
= k is accessed using the name find.postcondl. Consider the following facet definitions:

facet find-power is facet find-emi is
power::real; power::real;

begin constraint-requirements begin constraint-requirements
heatConst: heatDiss power <= 10mW; emiConst: emi power;

end find-power; end find-emi;

These facets describe electromagnetic interference (EMI) constraints and heat dissipation constraints in
facets labeled find-emi and find-power. Both facets are defined over a physical variable representing
power consumption. Consider the composition of these facets into a single electrical constraints facet.
The new facet is defined by conjuncting the find-power and find-emi facets and providing a new label,
find-electrical:

find-electrical :: facet is find-power and find-emi;

Note that this declaration is identical to all other Rosetta declarations. An item of type facet is declared
and named find-electrical. Then, the value of find-electrical is constrained to be the product
(conjunction) of find-emi and find-power. The declaration does not assert the facet in the current scope,
but asserts that find-electrical references the new facet. This definition is the equivalent of saying:

find-electrical :: facet;
begin domain
11: find-electrical = find-emi and find-power;

Alternatively, a facet can be defined and referenced in a definition using the following form:

find-electrical: find-power and find-emi;

%% Work on this. It’s a bit old and I think there’s a much better
%% way to assert facets as terms.

As stated earlier, all terms are boolean valued expressions. However, in the earlier definition and is used to
define a new facet. The distinction is this form defines a new facet and asserts it to be true in the current
context. Again it is named find-electrical and all labels and variables defined in it are accessed using
find-electrical, not their original names. Facet labels do not nest, but instead the new label always
replaces the old. Because no export clause is specified, power, heatConst and emiConst are all visible
using the find-electrical.label notation. Further discussion of facet inclusion and assertion is presented
in Section 4.5. It suffices here to understand that a new facet is being defined and it’s resulting label is the
assigned term label.

4.3.2 Term Labels

Fach term defined in a facet must have a label. The Rosetta syntax allows labels to be omitted, however
the resulting term’s label is simply undefined and may be constrained to particular value by language tools.
The label identifies the term and is effectively equal to the term throughout the facet definition. All term
definitions have the form:
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l: term;

where [ is the term label and term is the term body. Any reference to the label [ in the scope of this definition
refers to the term specified. Consider again the term from the earlier specification for EMI:

emiConst: emi power;

This simple definition defines a term emiConst that asserts emi power. Thus, the item referred to by emi
instantiated with the item power is asserted as a true statement.

Consider the following term involving a let expression:
11: let x::natural = 1 in inc x;

The label 11 refers to the term defined by the let expression. Simplifying this definition based on the
definition of let results in the term 11: inc 1. Given the classic definition of inc, this term is not legal
as it asserts the value associated with inc 1. The only condition where this could be legal is if inc returns
a boolean value or a facet.

4.3.3 Variable and Constant Labels

Labels for variable and constant items are labels for the objects they represent. Like term and facets,
variables and constants are also made visible using their label. Like all other items, variables are referenced
using the name.label notation where name is the facet label and label is the physical variable name. Consider
the definition of power from the earlier constraint facet:

power::real;

This declaration defines a variable item referenced by the label power. Outside the facet definition, this
variable is accessed using the notation find.power.

Constants work similarly. Consider the following constant definition:
pi :: real = 3.14159;

Within the scope of this definition, the label pi refers to the defined item whose value is the constant
3.14159.

It is important to remember that functions, types and facets are all items that can be declared within a facet.
Thus, they may all be referenced using their associated labels. Recall the definition of increment-minutes
from the alarm clock specification:

increment-minutes(t::time): :minutes is
if m(t) =< 59 then m(t) + 1 else 0;

This definition is interpreted exactly like the previous constant definition. The label increment-minutes
refers to the item of type time->minutes whose value is specified by the constant function definition. Thus,
timeTypes.increment-minutes is used in the body of including specifications to reference the functions.
This practice of collecting declarations within facets will form the basis of the Rosetta package construct
defined later.
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4.3.4 Explicit Exporting

Visibility of labels is controlled using the export clause that appears in the declaration part of a facet. The
convention for label exporting is that any label listed in the export clause is visible outside the enclosing
facet using the standard facet.label notation. Labels not listed in the export clause are not visible and cannot
be referenced. All labels within a facet can be exported using the special shorthand export all notation.
If the export clause is omitted, then no labels from the facet are visible.

Summary: All Rosetta items are labeled and can be referenced in a specification by their associated label.
Three major labeling operations are the definition of facets, the declaration of variables and constants, and
the definition of terms within a facet. Any label may be referenced outside its enclosing facet using the
canonical notation facet.label where facet is the containing facet’s name and label is the label being access.
Controlling access is achieved using the export clause. If an export clause is present, all listed labels are
visible and all unlisted labels are not. If all appears in the export clause, then all labels are exported. If
no export clause is present, then no labels are visible outside the facet.

4.4 Label Distribution Laws

Given two labeled Rosetta items, distributive properties of labels over logical operations can be defined as
follows:

FEquivalence Name

11:7 and 2 = 11:5 and 11:4 and Distribution

11:(j or %) = 11:j or 11:i or Distribution
11:(not %) = not 11:1¢ not Distribution

11: 4; 11: g5 =11: < and j; term Distribution
11::8; 11::T = 11::S and T; Declaration Distribution

Label distribution works consistently for any Rosetta definition. An identical label can be distributed into
or factored out of any logical or collection operation regardless of the types of it’s arguments. For example,
labels distribute over and in exactly the same manner whether the arguments are expressions, facets, or
terms. Let’s examine distribution law in two general classes: (i) boolean operations; and (ii) term and
declaration distribution.

4.4.1 Distribution Over Logical Operators

Label distribution over logical operations follows the same process regardless of the specific operation.
Namely:

11: A o B == 11: A o 11: B

for any logical operator and, or or not. The definition easily extends to cover cases for =>, = and other
logical connectives. For example, the definition:

11: P(x) or Q(y)
is equivalent to the definition:
11: P(x) or 11: Q(y)
The semantics of each term depends on the specifics of the term value. In this case, if P and Q are both

boolean valued operations, then the terms assert that the disjunction of the two properties holds. If the
term types are facets, then the resulting definition defines and labels a new facet.
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4.4.2 Distributing Declarations and Terms

Label distribution over semicolons occurs when two declarations or terms share the same label. Specifically,
an example in the case of declarations:

Xx::integer;
X::character;

and in the case of terms:

bl: and-gate(x,y,z);
bl: constraint(p);

In both cases, the terms or declarations share the same label. In such circumstances, the semantics of
distribution is the conjunction of the definitions. In the case of declarations:

v::S is c; v::T is d;
is equivalent to:

v::S and T;
begin <domain>
t: v=c and v=d;

The semantics of the declaration are such that v is the coproduct of S and T.! Specifically, any value associated
with v has both the properties of S and the properties of T. This is not type intersection, but product in the
category theoretic sense. The definition does not say that v is in the intersection of the original types, but
says that it has a projection into both types.

The semantics of distribution over term declarations is similar. The definition:

bl: and-gate(x,y,z);
bl: constraint(p);

is equivalent to:
bl: and-gate(x,y,z) and constraint(p);

If the two conjuncts are boolean expressions, the definition of conjunction applies. If the two conjuncts are
facets, then the new facet b1 has the properties of both an and-gate and constraint simultaneously.

Summary: Label distribution is defined across all boolean operators as well as semicolons as used in
declarations and term definitions. In all cases for boolean operations, identical labels distribute across
operations. In all cases for semicolons, declarations and terms sharing labels can be combined into a single
declaration or term resulting from the product (conjunction) of their definitions.

1See Chapter 5 for details of conjunction usage.
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4.5 Relabeling and Inclusion

The ability to rename object in conjunction with label distribution laws allows definition of: (i) facet inclusion
and instances; (ii) system structures; and (iii) type combination. Facet inclusion supports use of facets as
units of specification modularity. If renamed when included, the new facet represents a renamed instance
of the original. With inclusion, describing structural definitions becomes possible. Finally, using variable
labels allows definition of type combination and interface union.

4.5.1 Facet Instances and Inclusion

Facet inclusion allows compositional definition in a manner similar to packages or modules in programming
languages and theory inclusion in formal specification language. Whenever a facet label is referenced in a
term, that facet is included in the facet being defined. Consider the following extended find specification:

facet find-primitives(T,K::type(univ)) is
key(t::T)::K;
elem(t::T,a::array(T)): :boolean;
export all;

begin logic

end find-primitives;

facet find(k::in keytype; i::in array(T); o::out T)
power::real;
begin state-based
findpkg: find-primitives(T,keytype);
postcondl: findpkg.key(o’) = k;
postcond2: findpkg.elem(o’,i);
facet find;

In previous find specifications, definitions for key and elem remain unspecified. In this example, the facet
find-primitives defines those operations. The find facet includes a copy of find-primitives in the term
labled findpkg. Semantically, this term includes a copy of find-primitives and relables the facet with
findpkg.

In the resulting definition, elements of the newly renamed facet are accessed using findpkg as their associated
facet name. Specifically, the elem and key functions defined in find-primitives are referened using the
findpkg.elem and findpkg.key notations respectively. findpkg is said to be an instance of the original
facet because each newly named copy is distinct from the original. This includes physical variables as well
as terms. Thus, two renamed copies of the same facet will not inadvertently interact. This is exceptionally
important when defining structural definitions where many instances of the same component may be required.

Alternatively, a facet or package may be referenced in a use clause to make their definitions visible in the
current scope. Consider the following definition:

facet find-primitives(T,K::type(univ))
begin requirements
key(t::T)::K;
elem(t::T,a::array(T)): :boolean;
begin logic
end find-primitives;

use find-primitives(T,keytype);
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facet find(k::in keytype; i::in array(T); o::out T)
power::real;

begin state-based
postcondl: key(o’) = k;
postcond2: elem(o’,i);

facet find;

Here the use clause makes all labels defined in find-primitives visible in the current scope. When using
this approach, the “.” notation is no longer necessary as the functions key and elem are now visible. In most
situations, this is the desired mechanism for packaging and using definitions. The special package definition
provides a facet construct specifically for this purpose. Please see Chapter 2 and Chapter 5 for more details

on the semantics and use of packages.

4.5.2 Structural Definition

System structure is defined using facet inclusion and labeling in the sam manner as defined previously. Facets
representing components are included and interconnected by instantiating parameters with common objects.
Labeling provides name spaced control and supports defining multiple instances of the same component.
Consider the following specification of a two bit adder using two one bit adders:

facet one-bit-adder(x,y,cin::in bit; z,cout::out bit)
delay::real;
export delay;
begin state-based
z’= X Xor y xor cin;
cout’ = x and y;
end one-bit-adder;

facet two-bit-adder (x0,x1,y0,y2::in bit; z0,z1l,c::out bit)
delay::real;
export delay;
begin logic
cx::bit
b0: one-bit-adder (x0,y0,0,z0,cx);
bl: one-bit-adder(x1l,yl,cx,zl,c);
delay = b0.delay+bl.delay;
end two-bit-adder;

Facet interconnection is achieved by sharing symbols between component instances. When a facet is included
in the structural facet, formal parameters are instantiated with objects. When objects are shared in the
parameter list of components in a structural facet, those components share the object. Thus, information as-
sociated with the object are shared between components. The two-bit-adder specification includes two copies
of one-bit-adder. Parameters of the two adders are instantiated with parameters from two-bit-adder to
associated signals with those at the interface. The internal variable cx is used to share the carry out value
from the least significant bit adder with the carry in value from the most significant bit adder.

When the two one-bit-adder instances are included in the two-bit-adder definition, they are labeled with
b0 and b1. The result is that the first one-bit-adder is renamed b0 and the second b1. The implication of the
renaming is that the delay physical variable associated with the adder definition is duplicated. I.e. the values
b0.delay and bl.delay are available for reference and represent distinct objects. Without renaming using
labels, both one-bit-adder instances would refer to the same physical variable, one-bit-adder.delay. This
is not appropriate as the adders should be distinct. The same result can be achieved using parameter for
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delay. In large specifications including parameters for physical variables representing constraint specifications
becomes cumbersome. Further, delay is not a parameter but a characteristic of the component.

After including the two adder instances, the value of delay in the two-bit-adder specification is constrained
to be equivalent to the sum of the one-bit-adder delays. In this way, it is possible to specify composition
of non-behavioral characteristics across architectures.

Logical operators are defined to distribute across structure components. Assume the following facets defining
power constraints on a one bit adder and an architecture defining constraints on a two bit adder composed
of two one bit adders:

facet one-bit-adder-const; facet two-bit-adder-const;
power: :posreal; power: :posreal;
begin constraints begin constraints
power <= 5mW; b0: one-bit-adder-const;
end one-bit-adder-const; bl: one-bit-adder-const;

pO: power = b0O.power + bl.power;
end two-bit-adder-const;

The facet conjunction two-bit-adder = two-bit-adder and two-bit-adder-const is equivalent to:

facet two-bit-adder (x0,x1,y0,y2::in bit; z0,z1l,c::out bit)
delay::real;
power: :posreal;
export delay,power;
begin logic
cx::bit
b0: one-bit-adder (x0,y0,0,z0,cx);
b0: one-bit-adder-const;
bl: one-bit-adder(x1,yl,cx,z1,c);
bl: one-bit-adder-const;
delay = b0.delay+bl.delay;
power = b0.power+bl.power;
end two-bit-adder;

This definition results from the definition of facet conjunction. The term set is simply the set of all defined
terms in the two facets.

This definition results from the distributivity of labeling. The same result holds for disjunction, implication
and logical equivalence. Application of label distribution results in:

facet two-bit-adder (x0,x1,y0,y2::in bit; z0,z1l,c::out bit)
delay::real;
power: :posreal;
export delay,power;

begin logic
cx::bit
b0: one-bit-adder (x0,y0,0,z0,cx) and one-bit-adder-const;
bl: one-bit-adder(x1,yl,cx,zl,c) and one-bit-adder-const;
delay = b0O.delay+bl.delay;
power = b0.power+bl.power;

end two-bit-adder;

Here, conjunction distributes across the structural definition. Proper label selection allowed power constraints

to be associated with each component. The result can be viewed as either the conjunction of a power and
functional model or the composition of two component models both having constraint and functional models.
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%% Working Here %%
Example 11 (Structural Example) Consider the following facets:

facet sort(x::in array(T); y::out array(T))
begin state-based

11: permutation(x,y’);

12: ordered(y’);
end sort;

facet binsearch(k::in keytype; x::in array(T); y:out T)
begin state-based

11: ordered(y);

12: member(k, dom(x)) => member(y’, dom(x)) AND key(y’)=k;
end binsearch;

facet find-structure(k::in keytype; x::in array(T); y:out T)
buff::array(T);

begin logic
bl: sort(x,buff);
b2: binsearch(k,buff,t);

end find-structure;

The sort and binsearch facets define requirements for sorting and binary search components. The find-
structure facet defines a find architecture by connecting the two components. The state variable buff is
shared by the binary search and sorting components and facilitates sharing information. Note that new does
not generate a new copy of buff because new is called on both sort and binsearch before parameters are
instantiated. Thus, the same object buff is references in the terms of both components and constrained by
those terms.

The following collection of examples are designed to demonstrate several configurations of a simple transceiver
system. The following represent simple specifications of a transmitter and receiver used throughout the
examples:

use signal-processing-requirements(T) ; use signal-processing-requirements(T);
facet tx (data::in T; output::out T) is facet rx (data::out T; input::in T) is
begin state-based begin state-based

output’=encode(data) ; data’=decode (input)
end tx; end rx;

These specifications assume the following domain facet for signal processing;:

facet signal-processing-requirements(T:TYPE) is
encode(t::T)::T;
decode(t::T)::T;
export encode,decode;
begin logic
encode-decode: forall(t::T | decode(encode(t))=t);
end signal-processing-requirements;

Recall that in the presense of an export statement, only specified labels are visible outside the facet. Here,
a facet is used rather than a facet to allow specification of the encode-decode axiom that states the inverse
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relationship between the encode and decode functions. The use clause makes the functions visible and
available to the transmitter and receiver specifications. The axiom is not visible, but does remain present in

the definition.

Example 12 (Transmit/Receive Pair) The following defines the simplest possible communications chan-
nel transmitting and receiving encoded, baseband signals:

facet tx-rx-pair (data-in::in T; data-out::out T) is
channel::T;

begin logic
txb: tx(data-in,channel);
rxb: rx(data-out,channel);

end tx-rx-pair;

The resulting component represents a perfect transmitter receiver pair where input data is perfectly transmitted
to an output data stream.

Example 13 (Transceiver) The following defines a simple transceiver combining the transmitter and re-
cetwer functions into a single component:

facet transceiver (data-in::in T; data-out::out T;
out-chan::out T; in-chan::in T) is
being structural
txb: tx(data-in, out-chan);
rxb: tx(data-out, in-chan)
end transceiver;

Note that in this specification, the transmitter and receiver do not interact. They simply operate in parallel
on indepednent data streams.

Example 14 (Transceiver Pair) Now consider a tranceiver pair constructed from two transceivers:

facet trx-pair (data-inl, data-in2::in T;
data-outl, data-out2::out T)
begin logic
chanl,chan2::T;
trxl: transceiver(data-inl,data-outl,chanl,chan2);
trx2: transceiver(data-in2,data-out2,chan?,chanl);
end trx-pair

Example 15 (Transceiver Pair - Common Channel) An adaptation of a tranceiver pair is one where
transmission from both devices occurs on the same channel. Here, only one channel parameter is defined:

facet trx-pair (data-inl, data-in2::in T;
data-outl, data-out2::out T)
chan::T;
begin logic
trxl: transceiver(data-inl,data-outl,chan,chan);
trx2: transceiver(data-in2,data-out2,chan,chan);
end trx-pair
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Example 16 (Low Power Transmitter) Define a new facet for transmitters and receivers that constrains
power consumption:

facet low-power is
power: :real;
begin constraints
power =< 10MW
end low-power;

%% Cindy, look at this syntax...
One can now define a low power transmitter as:
tx-low-power (data::in T, output::out T)::facet is tx and low-power;

In this definition, a new facet called tz-low-power is defined that is the composition of the transmitter
functional facet and the low power constraints.

%% The definition below should be contained in a facet definition as
%% it’s really a function.

Example 17 (Transmitter Configuration) Define a new facet for high power transmission:

facet high-power is
power::real;
begin constraints
11: power =< 100Mw;
end high-power;

Now define a configurable device that represents either the high or low power version:

tx-power-select(select: :boolean)::facet is
tx(data,output) and
if select
then low-power
else high-power
endif;

When the select parameter is true, then the tz facet is composed with the low-power constraints facet.
Otherwise, the tz facet is composed with the high power constraint facet.

75



Chapter 5

The Facet Algebra

%% Needs a good introductory paragraph

%% Still need to define syntax for the facet composition operators.
%% Also need some reference to the formal semantics. Put a small
%% section in on the theory calculus from the interactions white
%% paper.

The following sections describe several prototypical uses of facet composition. Please note that domains use
in these examples are defined in Chapter 6. In the following definitions, assume that all F}, are facets where
T,, D, and I, are the term set, domain and interface associated with F;, respectively.

5.1 Facet Conjunction

Facet conjunction, Fi; A F5, states that properties specified by terms 77 and T must by exhibited by the
composition and must be mutually consistent. Further, the interface is Iy + +1I implying that all symbols
in the parameter lists of F; and F5 are also visible in the parameter list of the composition.

The most obvious use of facet conjunction is to form descriptions through composition. Of particular in-
terest is specifying components using heterogeneous models where terms do not share common semantics.
A complete description might be formed by defining requirements, implementation, and constraint facets
independently. The composition forms the complete component description where all models apply simulta-
neously.

Example 18 (Requirements and Constraints) Consider the following facets describing a sorting com-
ponent:

facet sort-req(i::in T; o::out T) facet sort-const
begin state-based; power::real;
12: permutation(o’,i); begin constraints;
11: ordered(o’); pl: power =< bmW;
end sort-req; end sort-constr;

A sorting component can now be defined to satisfy both facets:

sort::facet is sort-req and sort-const;
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Alternatively, the following definition can be used to define sort:

sort::facet;
begin domain
11: sort = sort-req and sort-comnst;

end domain;
Another alternative is using relabeling to define a single sort component in a structural Rosetta description:

begin domain
sort: sort-req and sort-const;

end domain ;

In each case, the resulting sort definition is the conjunction of the sort-req and sort-const definitions.

Summary:

5.2 Facet Disjunction

Facet disjunction, Fy V Fy, states that properties specified by either terms 7} in domain D; or T3 in domain
D, must be exhibited by the resulting facet. Like conunction, the interface of the resulting facet is I; + +1s,
the union of the facet interfaces.

The most obvious use of facet disjunction is the definition of cases. Two situations are of particular interest:
(i) using predicatative semantics to define component behavior; and (ii) defining families of components.

Example 19 (Case Specification) Given a container C defined as a collection of key (K ), element (E)
pairs, naive requirements for a simple search algorithm are defined as:

facet search(c::in C; k::in K; o::out E) is
begin state-based

member ((k,0’),c);
end search;

Clearly, this specification will be inconsistent if there is no element in ¢ corresponding to k. Thus, it is
traditional to break the requirements into two cases: (i) the element is present and is returned; and (ii) the
element is not present. Such a situation is modeled by the following two specifications:

facet searchOK(c::in C; k::in K; facet searchErr(c::in C; k::in K;
o::out E) is o::out E) is
begin state-based; begin state-based;
exists(x::E | member((k,x), c)); -exists(x::E | member((k,x), c));
member ((k,0’),c); end searchOK;

end search(K;

Facet search is now defined:

search: :facet is searchOK or searchErr;
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Example 20 (Component Version) Another excellent example of disjunction use is representing a family
of components. Consider the following definitions using sort facets defined previously:

multisort::facet is sort-req and (bubble-sort or quicksort);

The new facet multisort describes a component that must sort, but may do so using either a bubble sort or
quicksort algorithm. !

A more interesting definition configures a component to represent both low and high power configurations of
a device:

facet low-power is facet power is
power: :real; power: :real;
begin constraints; begin constraints;
power =< 1mW; power =< bmW;
end low-power; end power;

facet tx-req(d::in data; s::out signal) is low-power-tx::facet is tx-req and low-power;
begin continuous

<transmitter definition here> high-power-tx::facet is tx-req and power;
end tx;

In this example one specification for a transmitter function is provided along with two definitions of low and
high power versions. Facet conjunction is used to combine power constraints with functional transmitter
properties.

Consider the following specification:

tx(select::boolean)::facet = if select then
low-power-tx
else high-power-tx
endif;

Here a generic parameter is introduced into the definition to select one version over another. When select
is instantiated, then tx resolves to the appropriate model. A more interesting case occurs when select is
skolemized to an arbitrary boolean constant a:

tx(a) == if a then low-power-tx else high-power-tx endif;

Whenever facet tx is used in this manner, both specifications must be considered. Effectively, tx defines two
transmitter models. When instantiated in a structural facet, both models must be considered in the analysis
activity. It must be noted that the parameter select is a boolean valued parameter and not a facet. It is
tempting to attempt a definition of if-then-else that uses facets as all its parameters. However, such a
definition has been shown to have little utility.

%% These must be dealt with separately because they do not result in
%% facets. Although implication should if it’s defined in terms of
%% disjunction.

Summary:

1 Assume the facet quicksort has been defined in the canonical fashion.
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5.3 Facet Implication

Facet implication, F} = F5, states that properties specified by term 7} must imply properties specified by
term T5. Note that F; = F» = —F; V F,5. The most obvious use of refinement is showing that one facet
“implements” the properties of another. Specifically, if Fy = F5, then the theory of F» is a subset of the
theory of F3.

Example 21 (Implementation) Given the requirements defined for sort in sort-req, any legal imple-
mentation of a sorting algorithm must implement these properties. We say that sort-req can be refined
into bubble-sort and state this as:

sort-ref::facet is bubble-sort => sort-req;

Additional constraints may be added by conjuncting facets in the consequent of the implication. The following
is an example of adding a low power constraint to the specification:

constrained-sort-ref::facet is bubble-sort => low-power and sort-req;

This is an interesting result because it insists that bubble-sort be a low power solution to the sorting
problem.

As an aside, the definition of conjunction requires that FiandFy => F7.

Summary:

5.4 Facet Equivalence

Facet equivalence, F} < Fb, states that properties specified by terms T} and T» in domains D; and D, must
be equivalent. The formaly definition of equivalence can be expressed in terms of implication. Formally:

Fie Fy,=F = KANF,=F

Summary:

5.5 Parameter List Union

Throughout the defintion of the facet algebra, reference is made to the union of parameter lists. Specifically,
when facets are combined the parameter list of the new facet is defined as I; + +1>. Viewed as bunches, this
definition is literally true where all parameters from both facets become parameters in the new facet.

Given the facet declarations:
facet F1(x::R, y::S, t::T) is facet F2(w::Q,x::R) is
enc'i'l;'l; en('i'l;2;
The parameter list of F1 and F2is (x::R, y::S, t::T, w::Q). Note that the declaration of parameter x

is shared in both facet declarations. Bunch union implies that a single x appears in the result of parameter
list union.
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5.5.1 Type Composition

The more interesting case occurs when a parameter is shared betweeen facets, but the declarations specify
different types. Consider the following two facet declarations:

facet F1(x::R, y::S, t::T) is facet F2(w::Q,x::P) is
end F1; end F21;

In this case, the parameter list of F1 and F2 is (x::R, x::P, y::S, t::T, w::Q). Note that two dec-
larations of x exist in the parameter list definition. Recall that parameter declarations are simply terms
appearing in the parameter list. Specifically, a variable or parameter declaration is shorthand for:

x:e::R

Viewing the parameter definition in this way allows application of label distribution laws. This application
yeids the parameter list (x::R and P, y::S, t::T, w::Q). Note that in this parameter list x is of type R
and P implying that x can be viewed both as type R and type P.

When conjuncting and disjunction facets, care must be taken to assure that parameters having the same
name represent the same physical quantity. The type declaration R and P results in a type that, in principle,
behaves like the result of facet conjunction. Specifically, an item of this type is simultaneously viewed as
being of both types. It is also important to understand that type composition is not type union. Specifically
R and P is not equal to R ++ P. In the latter case, elements of R ++ P can take values from either R or P.

An excellent example of type composition occurs when looking at a circuit component such as a simple gate
from multiple perspectives. Consider a simple and gate viewed in both the analog and digital domains:

facet and-discrete(x,y::in bit; facet and-continuous(x,y::in real;
z::out bit) is z::out real) is
begin state-based begin continuous
11: z’ = xx*y; <and gate definition here>
end and; end and;

The definition of a completely modeled and gate becomes:
and :: facet is and-discrete and and-continous;
The parameter list resulting from this definition is:
(x,y::in bit and real, z::out bit and real)
Thus, each parameter can be viewed as either a real or discrete value.

%% Need discussion of parameter interaction here. Defer semantics
%% to the semantics guide, but some discussion must occur.
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5.5.2 Parameter Ordering

The pragmatics of using parameter list union insist that some ordering be placed on the results. Typically,
specifiers use the order of parameters in parameter list to associated actual parameters with formal param-
eters. Rosetta provides two mechanisms for handling this situation. The first is for the user to define an
ordering and the second is to use explicit parameter assignment.

To explicitly define parameter ordering in the facet resulting from a conjunction the user specifies parameters
in the facet declaration. For our and gate example previously, the following definition specifies an ordering
for resulting parameters:

and(z,y,x::null)::facet is and-discrete and and-continuous;

In this definition, the parameter ordering in the definition of and defines the parameter ordering. The
null type is used to specify the parameter types as for any type T, T and null == T. Thus, the parameter
definitions add ordering information, but add no additional type information to the definition.

Users may also allow Rosetta to order the types for them.

%% Ordering definition here
Examples

Summary: h
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Chapter 6

Domains and Interactions

Domains and interactions are special facets that define domain theories and interactions between domain
theories respectively.

6.1 Domains

%% Add reference to the fact that facets extend domains. This
%% defines what domain inclusion means.

A domain is a special purpose facet that defines a domain theory for facets. The syntax for a domain is
defined as:

domain <name> (f::facet) is
<declarations>;

begin <domain>
<terms>

end <name>;

where jnameg is the label naming the domain, jdeclarations; are items defined in the facet, jdomaing is the
domain facet extended by the new definition, and ;terms; define the new domain facet. All domains are
parameterized over a single facet variable that represents a place holder for the facet including the domain
theory. Given a domain called state-based used in the following facet:

facet register(i::in bitvector; o::out bitvector; sO::in bit, sl::in bit) is
state::bitvector;
begin state-based
11: if s0=0 then
if s1=0 then state’=state
else state’=lshr(state) endif
else if s1=0 then state’= lshl(state)
else state’=i endif

endif;
12: o’=state’;
end find;
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the parameter f in state-based refers to the including facet register. Thus, the domain definition can
generically reference elements of the including facet in its definition. For example, it is possible to reference
M__labels(f) or M__items(f) to reference the labels and items defined in f respectively.

As with traditional facet definition, a domain definition extends the theory provided by its referenced domain.
It is therefore possible to define a lattice of domains that inherit and specialize each other. Figure 6.1 shows
one such specification lattice including pre-defined domain definitions. Solid arrows represent extension
between domains.

()
£
b
(2]
>
o
2
.-‘E g
(@] =1
o ]
) 2
@ [}
- S
0 5 75
() =
S 2 S
= =
£
E
©
Q
(%]
®©
<
I
@©
I
(%)

finite-state

Figure 6.1: Lattice of pre-defined specification domains.

The following sections provide basic definitions and usage examples for each pre-defined domain.

6.1.1 Null

The null domain refers to the empty domain. It is included to provide a basis for defining domains that
inherit nothing from other domains. The logic domain that provides basic mathematics will use null as
a domain to indicate that it is self contained. There is no constructive definition of null because it has no
domain definition.

6.1.2 Logic

domain logic(f::facet) is
begin null
end logic;
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Examples

Summary

6.1.3 State Based

The domain state-based is used to define systems that change state. The state-based domain extends
the mathematical capabilities provided by the logic domain to include the concept of state and change.
Recall that in the logic domain, the values associated with items could not change. Doing so created
inconsistencies with the original definitions. The state-based domain provides the basis for modeling the
concepts of state and change by defining: (i) the state of a facet; (ii) the current state; and (iii) a next state
function that derives the next state from the current state.

Consider the following trivial definition of a counter that counts from 0 to 7 and repeats:

facet counter(v::out natural) is
n::natural;

begin state-based
next: if n < 7 then n’=n+1 else n’=0 endif;
output: v’ = n;

end counter;

This definition uses a natural number, n, to maintain the current counter value and uses two terms to define
the next state and output respectively. The first term, labeled next, defines the next state given the current
state:

next: if n < 7 then n’=n+1 else n’=0 endif;

In this term, n refers to the value of n right now in the current state. The notation n’ refers to the value of
n in the next state after the component or system represented by the facet has completed its computation.
Understanding this convention, the term can now be interpreted as a conditional statement stating ‘if n is
less than seven in the current state, then n in the next state is n+1, else n in the next state is 0.” This is
precisely how a counter calculates its next value.

Similarly, the second term defines the next output:
output: v’ = n;

Using the same interpretation mechanism, the next value of v will be the current value of n. This is somewhat
interesting as the output lags the current state by one value. If such behavior is not desired, then this term
can be modified to state v’=n’.

It is exceptionally important to recognize that the following term similar to a C-like programming statement
is not correct:

next: if n < 7 then n=n+1 else n=0 endif;

Remember that terms state things that are true. The are not executed and there is no notion of assignment.
Although legal in C where = is an assignment operator, in Rosetta this statement asserts that if n < 7,
then n = n + 1 is also true. Looking at = as equality rather than assignment makes the second statement
inconsistent as there is no natural number that is equal to itself plus one. The key to using state-based
domains is recognizing that no label tick indicates the current state and label tick indicates the next state.

The state-based tick notation is defined based on the more fundamental state-based domain definitions of
current state and the next state function. In reality, the notation x’ is shorthand for the notation x@next (s)
where: (i) @ refers to the value of a label in a state; (ii) next defines the state following a given state, and s
is the current state. Specifically:
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x == x@s
and
X’ == x@next(s)
The previously defined counter specification is equivalent to the following expansion:

facet counter(v::out natural) is
n::natural;

begin state-based
next: if n@s < 7 then n@next(s)=(n@s)+1 else nCnext(s)=0 endif;
output: v@next(s) = n@s;

end counter;

where the tick notation is replaced by it’s definition and references to labels in the current state are expanded
to explicitly reference the state. Readers curious about the actual definition of the state-based domain
should refer to Section 6.1.3 defining the semantics of state-based. Readers needing only to understand
use of the state-based domain may safely skip Section 6.1.3.

Examples

%% Steal the examples from the tutorial and add a few more.

Semantics

This and subsequent semantics sections may be skipped by readers who do not wish to see the internals of
a domain definition.

The state-based domain provides a basic definition of state and change. Two basic mechanisms are
provided: (i) a definition of state; and (ii) a definition of what next state means. The definition of state
provides a state type that can be referenced in definitions. In the state-based domain, relatively few
restrictions are placed on the state definition. The next state function provides the concept of change by
sequencing states. Like the state type, the state-based domain places few restrictions on the next state
function.

The state type, S, is defined as an uninterpreted type representing possible states. The function M__item
defined in the Semantics Guide is a function mapping a label and state to the item associated with that label.
Within the body of the state-based domain definition, M__item(1,s) is defined to refer to the same object
in every state as is defined in the facet. In other words, each state is an extension of the facet definition.
Information can be added, but base definitions cannot be change. A specific instance, s: :S, is defined as the
current state. Effectively, s provides a name that can be referenced in definitions rather than quantifying
over all states.

The next state function, next, is defined as a function that maps one state to another. No other constraints
are defined for the next function. In other domains related to state-based, next will be restricted and
specialized to model varying definitions of time and state change. In the basic domain, only the existence of
a current and next state are defined.

domain state-based(f::facet) is
S::bunch(items);
s::5;
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next(s::8)::S;
M__parse(l::M__labels(f))::universal is M__value(M__item(1,s));
__@__(1l::1label; s1::S)::universal is M__value(M__item(1,s1)));
__?(x::1label)::item is x@next(s);
begin logic
al: forall(<*(s::S)::boolean is
forall(<*(1l::M__labels(f))::boolean is
M__item(1l,f) = M__item(1,s)*>)

end state-based;

The Rosetta Semantics Guide defines the function M__parse as a function that assigns semantics to Rosetta
structures. When applied to an arbitrary Rosetta structure, M__parse is equal the semantic definition of
that structure. In the state-based domain, the definition of M__parse is specialized to provide a mapping
from labels to their associated values in a particular state. The function is specialized only for atomic items
forming the leaves of the parse tree. In other words, items associated with lexical tokens.

M__parse for a given label is defined to return the value associated with that label in the current state. The
meta-function M__item(1,c) refers to the item associated with 1 in the state (or context) c. In M_parse,
M__item is instantiated to reference specifically the state s defined in the state-based domain to be the
current state. M__value is used to access the value of the item. Thus, any label appearing in a state-based
facet refers to the value of the item named by the label in the current state.

The infix function @ is used to reference a label’s value in an arbitrary state. The notation x@s5 refers to
the value of x in a state referred to by s5. The definition of @ is nearly identical to M__parse using M__item
and M__value to obtain the value of a label in an arbitrary state. Ad anticipated, the theorem that x==x@s
easily proven by instantiating the state variable in @ with the current state s. Of special note is that the first
argument to @ is a label. Because the label rather than the value is desired in this situation, the M__parse
function is not applied to the first argument of @.

In the state-based domain, the dominant specification methodology is axiomatic specification. Thus, the
primary use of @ is to refer to label values in the next state. Specifically, statements such as R(x,x@next (s))
are used to constraint the value of x in the next state based on the value of x in the current state. In
axiomatic specification, the standard notation x’ is used as a shorthand for x@next(s). Thus, Rosetta
provides a shorthand notation for any symbol, %, in the next state as x’. The previous example specification
can thus be rewritten in a more compact notation as R(x,x’).

Summary

The state-based domain provides a mechanism for specifying how a component or system changes state. It
provides a basic type, S, for states and a state variable, s: : S, that represents the current state. In addition,
the STATE-BASED domain provides a definition for next, a function that generates a new state from a given
state. Thus, if s is the current state, then next (s) is the next state.

To refer to the value of a variable in a state, the “@” operation dereferences a label in a bunch of items.
Specifically, given an item bunch c and a label 1, the notation 1@c refers to the value of the item associated
with 1 in the context c. As states are defined as bunches of items, the “@” operation is easily used to obtain
values of items in a state.

Because relationships between the current and next state are frequently the objective of state based specifica-
tion, the state-based domain provides a shorthand for referencing items in the next state. Specifically, the
notation x’ is equivalent to x@next (s) providing a convenient shorthand for referencing next state values.

The state-based domain should be used whenever a system level description of component or system is
needed. At early design stages when working at high levels of abstraction, the state-based domain provides
a mechanism for describing state transformations without unnecessary details.
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The state-based domain should not be used when details such as timing are involved in the specification.
Furthermore, the state-based domain provides no automatic mechanism for composing component states
when developing structural models.

6.1.4 Finite State

The finite-state domain provides a mechanism for defining systems whose state space is known to be finite.
As finite-state extends state-based, all definitions from state-based remain valid in the new definition.
Specifically, next, “@”, and tick retain their original definitions. The only addition is the constraint that S
must be a finite bunch. Consider the simple definition of a counter:

facet counter(clk::in bit; c::out natural) is

begin finite-state
state-space: S=0++1++2++3;
next-state: next(s)=if s=<2 then s+1 else 0 endif;
output: c’=next(s);

end counter;

In this counter, the state space is explicitly defined as the bunch containing 0 through 3. Because #S=4, the
state space is clearly finite causing no inconsistency with the axiom added by the finite-state domain.
Here, instead of defining the next state function in terms of properties of the next state, it is explicitly
defined as modulo 4 addition on the current state. This is quite different than the previous state-based
specifications where the actual value of the next state was not defined.

The final term in the counter asserts that the output in the next state is the value of the next state.
Remember that here state is defined as a collection of numeric values from 0 through 4. Expanding the final
term reveals the following:

cOnext (s)=next(s)

The output in the next state is equal to the value of the next state.

Examples
Semantics
The domain finite-state is an extension of the state-based. Specifically, in the finite-state domain

the number of defined states is finite. The domain definition extends the finite-state facet by simply
adding the assertion that the size of the state type, S, is finite:

domain finite-state(f::facet) is
begin state-based

11: #S < TRUE;
end finite-state;

Because finite-state is an extension of state-based, all other definitions remain true.
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Summary

The finite-state domain is simply an extension of the state-based domain where the set of possible
states is known to be finite. Using the finite-state domain is exactly the same as using the state-based
domain with the additional restriction assuring that the state bunch is finite. Note that all finite-state
specifications can be expressed as state-based definitions with the added restriction on the state space size.

The finite-state domain is useful when defining systems known to have finite states. Whenever a sequen-
tial machine is the appropriate specification model, the finite-state domain is the appropriate specification
model. Typically, the elements of the state type are specified by extension or comprehension over another
bunch to assure the state type is finite. Most RTL specifications can be expressed using the finite-state
domain if desired.

The finite-state domain should not be used when the state type is not known to be finite. If the additional
finite state property does not add to the specification, then the state-based domain should be used. Of
particular note is that finite-state specifications should not typically be used when timing information is
specified as a part of function. In such circumstances, the set of possible states is almost always know to be
infinite.

6.1.5 Infinite State

Like the finite-state domain, the infinite-state domain extends the state-based domain by restricting
the state definition. Instead of making the state type finite, the infinite-state domain explicitly makes
the state type infinite by adding the term next(s) > s. With this definition, two concepts are defined: (i)
an ordering on states; and (ii) the next state is always greater than the current state. Strictly, the latter
definition is somewhat too restrictive as it implies no loops in the state transition diagram. However, the
restricted model does lend itself to systems level specification.

Examples
Semantics

The infinite-state domain extends the state-based domain by adding the assertion that the next state
is always greater than the current state. This is expressed in term 11 in the following domain definition:

domain infinite-state(f::facet) is
__>__(s1::8,s82::8)::boolean;
begin state-based
11: forall(<*(s1::S8)::boolean is next(sl) > sl *>);
12: forall(<*(s1::8)::boolean is -(s1 < s1) *>);
13: forall(<*(s1::S,s2::S)::boolean is sl < s2 => -(s2 < s1) *>);
13: forall(<*(s1::8,s82::5,s83::5)::boolean is
sl < s2 and s2 < s3 => (s1 < s1) *>);
end infinite-state;

The addition of 11 to the definition implies a potentially infinite number of states as a side effect of state
ordering. Specifically, a total order, “>”, must be defined over any bunch of items used to define state.
To assure the total order property, terms constrain the “<” to be a total order. Note that although this
declaration is local to the infinite-state domain, the specifier is responsible for assuring the definition of
the operation. Specifically, the specifier must define what “<” means for the state bunch S. When specifying
time models in the discrete-time and continuous-time domains later, the elements of S will be fixed in
such a way that the ordering property is assured.

Like the finite-state domain, because the infinite-state domain extends state-based, all definitions
remain true. Expanding the state-based domain gives the following definition of infinite-state:
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domain infinite-state(f::facet) is
S::bunch(items) ;
s::9;
next(s::S8)::S;
__>__(s1::S,s82::8)::boolean;
M__parse(l::M__labels(f))::universal is M__value(M__item(1,s));
__@__(1::1abel; s1::S)::universal is M__value(M__item(1,s1)));
__?(x::1label)::item is x@next(s);
begin logic
al: forall(<*(s::8)::boolean is
forall(<*(1l::M__labels(f))::boolean is
M__item(1,f) = M__item(1,s)*>)
11: forall(<*(s1::S8)::boolean is next(sl) > s *>);
12: forall(<*(s1::8)::boolean is -(s1 < sl1) *>);
13: forall(<*(s1::S,s82::8)::boolean is sl < s2 => —(82 < s1) *>);
14: forall(<*(s1::S8,s2::5,83::5)::boolean is
sl < 82 and 82 < 83 => (81 < s81) *>);
end infinite-state;

Summary

The infinite-state domain is another extension of the state-based domain where the set of possible
states is known to be infinite and ordered. Using the infinite-state domain is exactly the same as using
the state-based domain with the additional restriction of assuring the existence of a state ordering and
that next generates new states in order. Note that all infinite-state specifications can be expressed as
state-based definitions with appropriate added restrictions on state ordering.

The infinite-state domain is useful when defining systems where states are ordered and potentially
infinite numbers exist. For example, representing a discrete event simulation system is appropriate for the
infinite-state domain.

The infinite-state domain should not be used when the state type is know to be finite or if no state se-
quencing is known. Nor should the infinite-state domain be used when timing models are known. As such,
most specifiers will choose to use the discrete-time or continuous—-time domain over the infinite-state
domain in most modeling situations.

6.1.6 Discrete Time

The discrete-time domain is a special case of the infinite-state domain where: (i) each state has an
associated time value; and (ii) time values increased by a fixed amount. Specifically, in the discrete-time
domain, time is a natural number denoted by t and discrete time quanta is a non-zero natural number
denoted by delta. The next state function is defined as next (t)=t+delta and following from previous
domain definitions, x@t is the value of x and time t and x’ is equivalent to x@next (t).

Specifications are written in the discrete time domain in the same fashion as the infinite and finite state
domains. The additional semantic information is the association of each state with a specific time value.
Thus, the term:

tl: x? = f(x)

constrains the value of x at time t+delta to be the value of f£(t) in the current state. This specification
style is common and reflects the general syntax and semantics of a VHDL signal assignment.
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Examples
Semantics

The discrete-time domain extends the infinite-state domain by: (i) refining state to be of type natural;
and (ii) refining the next. These definitions are provided in the definition section while the association
between state and time is made in term 11 in the following definition:

domain discrete-time(f::facet) is
T::natural;
t::T;
delta::natural--0;
next(t::T)::T is t+delta;

begin infinite-state
11: T=S and t=s;

end discrete-time;

Expanding fully the definition of infinite-state results in the following specification:

domain discrete-time(f::facet) is
S::bunch(items);

s::5;
T::natural;
t::T;

delta: :natural--0;
next(s::5)::S;
next(t::T)::T is t+delta;
__>__(s1::8,s82::8)::boolean;
M__parse(l::M__labels(f))::universal is M__value(M__item(1,s));
__0__(1::1label; s1::S)::universal is M__value(M__item(1l,s1)));
__’(x::label)::item is xO@next(s);
begin logic
al: forall(<*(s::S)::boolean is
forall(<*(1::M__labels(f))::boolean is
M__item(1,f) = M__item(1,s)*>)
11: forall(<*(sl1::8)::boolean is next(sl) > s *>);
12: forall(<x(sl1::8)::boolean is -(s1 < s1) *>);
13: forall(<*(s1::S,s2::5)::boolean is sl < s2 => -(s2 < s1) *>);
14: forall(<*(s1::8,s82::5,s83::5)::boolean is
sl < s2 and s2 < 83 => (s1 < s1) *>);
15: T=S and t=s;
end discrete-time;

Simplifying and removing redundant terms results in: (Note that the simplification is achieved by rewriting
S and s with T and t throughout the specification.)

domain discrete-time(f::facet) is
T::natural;
t::T;
delta::natural--0;
next(t::T)::T is t+delta;
__>__(s81::T,s2::T)::boolean;
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M__parse(l::M__labels(f))::universal is M__value(M__item(1,t));
__@__(1l::1label; s1::T)::universal is M__value(M__item(1,s1)));
__?(x::1label)::item is x@next(t);
begin logic
al: forall(<*(s::T)::boolean is
forall(<*(1l::M__labels(f))::boolean is
M__item(1l,f) = M__item(1l,s)*>)
11: forall(<*(s1::T)::boolean is next(sl) > t *>);
12: forall(<*(s1::T)::boolean is -(s1 < sl1) *>);
13: forall(<*(s1::T,s2::T)::boolean is sl < s2 => -(82 < s1) *>);
14: forall(<*(s1::T,s2::T,s3::T)::boolean is
sl < s2 and s2 < s3 => (s1 < s1) *>);
end discrete-time;

Of particular note is the axiom asserting that next(s) > s from the infinite-state domain. It is a simple
matter to show that specializing next(s) with t+delta satisfies this requirement. Specifically, delta is
constrained to be a non-zero natural number. Adding delta to any natural number t results in a value that
is greater than t by the canonical definition of natural number addition.

Summary

The discrete—-time domain is an extension of the infinite-state domain where the set of possible states
is the set of natural numbers and the next state function is constrained to be the addition of a discrete value
to the current state. Using the discrete-time domain is exactly the same as using the infinite-state
domain with the addition of discrete time values to the definition of state. Note that all discrete-time
specifications can be expressed as infinite-state and state-based definitions with appropriate added
restrictions on state ordering.

The discrete-time domain is the workhorse of the state-based specification domain. It is exceptionally
useful when defining digital systems of all types. Using the expression notation:

x’ = £(x,y,2)
provides a mechanism for constraining the value of variables in the next state. Furthermore, the notation:
x@t+(n*delta) = f(x,y,z)

provides a mechanism for looking several discrete time units in the future. Such mechanisms are useful when
defining delays in digital circuits.

The discrete-time domain should not be used when no fixed timing constraints are known. In such
situations, the infinite-state or state-based domains may be more appropriate and will help avoid
over-specification.

6.1.7 Continuous Time

Continous time specifications provide a mechanism for defining temporal specifications using a maximally
general notion of time. Unlike discrete time specifications, continuous time specifications allow reference to
any specific time. Time becomes real-valued.

The continuous-time facet provides a type T representing time that is real valued. This differs from the
discrete-time domain where time values were restricted to the natural numbers, a countably infinite set.
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The function next is defined as is x’ for any variable x. Using these concepts, the time derivative, or
instantaneous change associated with x is defined as deriv(x@t) or simply deriv(x) by viewing x as a
function of time. An ny, order time derivative can be referenced by recursive application of deriv. The
second derivative is defined deriv(deriv(x)), the third derivative deriv(deriv(deriv(x))), and so forth.

If x is defined as a function over time, x=f (t), the derivative is defined in the canonical fashion as:

Z—f = dfd—(tt) = deriv(f)
It is interesting to note that the definition x=f (t) expands to x@t=f (t)@t. Although this notation may be
a bit awkward, it is consistent with the definition of the state of a Rosetta specification at a particular time
t. It should be noted that deriv(f) defined in this context is identical to the derivative deriv(f,t) using
the general derivative structure provide in the logic domain. The same applies for any of the derivative
and integral functions provided in the time domain.

The indefinite integral with respect to t is defined as antideriv(x) and behaves similarly when x is a
function over time. Note that the antiderivative with respect to time assumes an integration constant of
zero. Making the integration constaint different is a simple matter of adding or subtracting a real value from
the indenfinite integral. As with the standard indefinite integral, the following is defined:

antideriv(deriv(x)) ==

The indefinite integral of the derivative of any function over time is the original function.

The definite integral is provided as integ(x,1,u) and is defined as:
integ(x,1,u) == antideriv(x) (u) - antideriv(x) (1)

This is the canonical definition of the definite integral over a specified time period.

Examples
Semantics

%% There are still numerous problems with the following definitioms.

domain continuous-time(f::facet) is
T::real;
__0__(x::1label; t::T)::univ is M__value(x,M__items(f,t));
next(t::T)::T;
__’(x::label)::item is x@next(s);
deriv(x::real)::real is deriv(x,t);
antideriv(x::real)::real is antideriv(x,t,0);
integ(x,u,l::real)::real is integ(x,t,u,1l);
begin logic
tl: forall(<*(t::T)::boolean is
forall(<*(d::M__type(x,M__items(f)))::boolean is
forall(<*(e::T)::boolean is
abs(x@(t+e)-x’) < d *>)*>)%x>)
t2: forall(<*(t::T)::boolean is
deriv(x@t) = lim((x@next(t) - x0t) / (t - next(t)),next(t),0))
end continuous-time;

%% Original definition of next from discussions earlier in the
Wh year.
%% deriv(x@t) = x@next(t) - x@t) / (t - next(t))
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Summary

6.2 Interactions

An interaction is a special purpose facet that defines situations where two domains interact. Unlike domain
and traditional facet definitions, signficant syntactic sugar is added to the interaction definition syntax to
simplify the special characteristics of the interaction definition.

Facets, Domains and Terms

An atomic facet, F}, is a pair, (Dg,Tk), where Dy, is the domain of Fj, and T}, is the term set of Fj. The
domain of a model is its semantic basis. The term set of a model is a set of terms that extend its domain to
describe a more specific system. Thus, Dy provides meaning and inference capabilities to terms expressed
in Ty. We say that a term, ¢, is a consequence of a model if M}, Fp, t, where Fp, is inference as defined
by domain Dy. Specifically, a term follows from a model if it can be inferred using the model’s inference
mechanism. The theory, O, of a model, My, is defined as the closure with respect to domain specific
inference:

Or ={t| My Fp, t}

The complete calculus for models is given in the semantics guide and is taken largely from existing model
theoretic research. It is sufficient for this effort to understand that each model consists of a semantic domain
model and a set of terms extending that domain.

Interaction Semantics

A composite facet is a set of facets that are simultaneously true. Generally, a composite facet is defined
using facet conjunction. Given two facets F; and F}, we define F' = FjandF}, as:

F={(D;,T;uM_I(F}, Fy)),(Dy,Tp UM _I(Fy, Fj))}

where M __I is an interaction function defining the domain interaction. M__I(Fj, F},) defines a set of terms,
called the interaction term set or simply interaction set, in the semantic domain of F;. The interaction set
defines the impact of F}, on F} using terms defined in the semantic domain D;. Under composition, the
terms of F; are unioned with the interaction term set to augment the original model with interaction results.
Again, the key to the approach is that the interaction term set is expressed in the affected domain. In a
design flow, composing models in this way corresponds to putting a design in its operational environment.

The Rosetta syntax for the default domain interaction function is:

M__I(F1l::domainl; F2::domain?2)::set(term) is empty;

Interaction definitions overload M__I for various domains. The default interaction defined by the function
above is the empty term set. Specifically, if no interaction has been defined between domains, then the
interaction is assumed to be null.

The projection of a composite model into a domain, 7, is the atomic facet assocated with domain D resulting
from the interaction. While composition combines models, projection pulls them back apart maintaining the
effect of the interaction. Specifically:

WD(F):FkﬁFkGF/\DZDk

The Rosetta syntax for the projection function is:
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M__pi(D::domain,F::facet)::facet;

The projection function retrieves domain aspects of a composite facet specific to a domain. To find the
projection, the composition is formed using the interaction function and the projection with respect to
the domain in question is extracted. If there is no model in the composition associated with D, then the
projection is undefined. In a design flow, taking projections in this way corresponds to assessing the results
of putting a design in its operational environment from one particular perspective.

A special case of facet composition exists when D; = D;. In this case:
F = (Dj,Tj UTk)

Specifically, the resulting model is an atomic model with the domain shared by the original models and term
set equal to the union of the original term sets. Further, only mp, is defined. It is not possible to retrieve
the original theories from the composition.

They syntax for an interaction is defined as:

interaction operator (domainl,domain2::domain) is
begin interaction
11: M__I(facet::domainl; facet::domain2) is term-ezpresstion;
12: M__I(facet::domain2; facet::domainl) is term-ezpression;
end operator;

In this definition, operator is the facet algebra operation associated with the interaction while the domaini
and domain2 values specify parameters representing the two interacting domains. Typically, interactions are
defined only over conjunction operations. Other operations may introduce interactions in the future and the
notation is flexible to allow such definitions. Note that the definition semantics differs from traditional facet
definition in that the parameter types are the domains associated with facets, not types in the traditional
sense.

The domain of an interaction definition is the special interaction domain where the interaction operations
and the projection operation are defined. By building from the interaction domain, designers start with
a basic set of interaction definition capabilities. The terms associated with an interaction are a set of
traditional terms that define the interaction functions. To completely specify the interaction, the definition
of M__I must be included for both perumtations of the domain parameters. If this is not done, then the
interaction definition will not be complete. The interaction definition applies any time two facets of the
appropriate types are specified in a facet algebraic operation involving operator.

One of the simplest and most powerful interactions defined is the interaction between monotonic logic
(mathematics) and a state-based semantics. Two interactions define the relationship defined in the logic
domain and temporal claims defined in the state-based domain.. Assume that logic simply provides a
mathematical domain that is monotonic, i.e. unchanging. In contrast the state based domain provides the
concepts of current and next state. Intuitively, if both models describe the same system, each assertion made
in the monotonic (logic) model must be true in every state of the temporal (state based) domain.

interaction and(state-based,logic::domain) is
begin interaction
11: M__I(f::logic,g::state-based)::set(term) is
dom(t::M__terms(f) | dom(s::g.S | t@s));
12: M__I(g::state-based,f::logic)::set(term) is
sel(t::M__terms(g) | forall(s::g.S | t@s));
end and;
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The first interaction equation defines the impact of an interaction between logic and state based specifications
on the logic domain:

M__I(f::logic,g::state-based)::set(term) is
dom(t::M__terms(f) | dom(s::g.S | t@s))

This function states that every predicate defined in the logic facet is an invariant in the state-based facet.
Specifically, the interaction is defined as the set of all terms from the logic facet asserted in every state of
the state-based facet. The notation t@s is used to represent the term t asserted in state s. The set S is
the set of all possible states as defined by the state-based domain. Assuming that:

forall(x::integer | P(x) is a term in the logic domain,
then:

forall(s::g.S | forall( x:integer | P(x)@s))
holds in the state based domain and the set:

dom(s::S | forall(x::integer | P(x))@s)

defines the interaction. Specifically, because forall(x::integer | P(x)) is monotonic, it must hold in
every state.

This interaction is extremely useful in defining system constraints such as power consumption. Many con-
straints are defined in a monotonic fashion. By composing a constraints model for a component and a
functional model using a state based semantics, the interaction asserts that the constraint is true in all
states.

The second interaction equation is the dual of the first:

M__I(g::state-based,f::logic)::set(term) is
sel(t::M__terms(g) | forall(s::g.S | t@s));

The interaction set is defined as all those terms in the state-based facet that are true in every state. The
property expressed is that if a term is true in every state, that term is invariant over all states. It is, in effect,
invariant and can be stated without reference to state. The generation of the interaction set is analogous to
the previous example.

Although similar in nature to its dual, this interaction discovers invariant properties in a state-based spec-
ification. Although discovering a constraint is an interesting concept, its usefulness arises typically when
modeling properties such as safety and liveness conditions.

As noted, this is the simplest of the interactions defining relationships between domains using different
temporal semantics. Other currently defined domains provide pair-wise relationships between monontonic,
state based, finite state, infinite state, discrete time and continuous time domains. Not all of these domains
are isomorphic, thus many interactions define only partial transformations of information.

Just a few interesting interactions useful for defining constraints and requirements include:

e Monotonic constraints interpreted as moving averages — Rather than treating monotonic specifica-
tions as absolute limits, check moving averages over time. Useful for specifying constraints whose
instantaneous values are not as important as values over time.
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o Aziomatic specifications interpreted as assertions in operational specifications — Preconditions and
postconditions specified in the state based domain become assertions checked at the initiation and
termination of an operationally specified process. Useful for mapping “black box” requirements onto
detailed specifications.

e Temporal specifications interpreted as temporal constraints in operational specifications — Like ax-
iomatic specifications, but checked at specific temporal instances. Useful for mapping real time con-
straints onto detailed specifications.

In the design flow, interactions provide information to designers whenever models are composed using the
projection operators. When the model composition occurs is a matter of style, however the projection
operators deliver back to the domain specific designers the implications of the interaction. Specifically,
the designers working with the state based, functional model learn what impacts constraints have on their
design without requiring access to the constraint model. Conversely, the constraints engineer understands
the impact of the functional design on constraints issues.
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