A FPGA Implementation of an Adaptive Reconfigurable Image Encoder

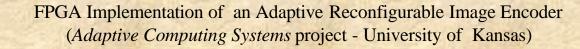
Sarin G. Mathen, Joseph B. Evans

Information and Telecommunication Technology Center University of Kansas, USA

> HPEC 2000 20-21 September 2000

Adaptive Image Encoding - Motivation

Why adaptive image compression?


- Application specific compression requirements e.g., video conference, streaming movie ...
- Changing bandwidth availability of the underlying network e. g., peak usage time ...

Key requirements?

- Support different levels of compression
- Real time performance in both encoding and switching between codecs

An FPGA based solution (Xilinx 4k series FPGAs + Wildforce PCI board)

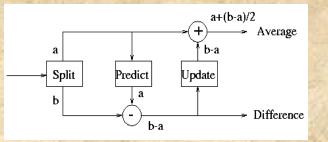
- Computationally intensive problems dictate a hardware intensive solution
- Same piece of silicon can re-used for different configurations/codecs
- Real time performance in encoding, achieved about 10 frames/second
- Real time performance in switching between configurations

Wavelet Transform & Image Compression

(2,2) Cohen Daubechies Feauveau wavelet

- A sequence of pixels are represented by a set of *average* and *difference* coefficients
- Average coefficients are further resolved into next level of *average* and *difference* coefficients
 multiple levels of wave-letting
- Filter implemented with *lifting scheme*

Wavelet transform based image compression


- DWT of input image over 3 levels of wave-letting
- Coefficients are <u>quantized</u> coefficients in each subband, quantized separately
- Coefficients are zero thresholded different subbands have different thresholds
- Longs spells of zeroes are run length encoded
- The coefficients are then entropy encoded

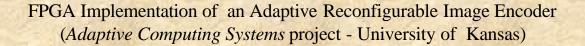
Achieving different compression ratios

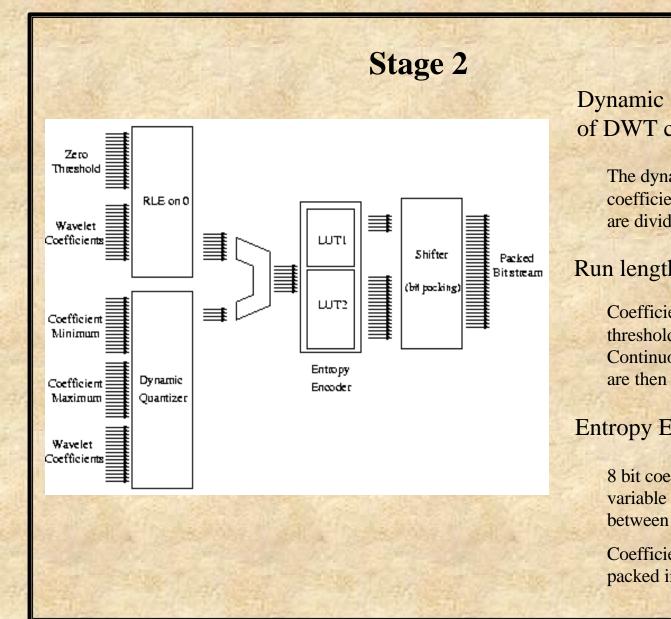
- The error induced due to truncating a coefficient to 0, is proportional to its magnitude.
- Different zero thresholds result in different noise levels and compression levels.

FPGA Implementation of an Adaptive Reconfigurable Image Encoder (Adaptive Computing Systems project - University of Kansas)

Design Specs and Design Partition

Specs


- Input image: 512x512 pixel gray scale frame, 8 bits/pixel
- Output image: Compressed DWT coefficients
- Support 3 different configurations of encoder with varying levels of compression


Design Partition - into 2 stages

- <u>Stage 1</u>: DWT coefficients over 3 stages of wave-letting
- Stage 2: Dynamic Quantization, Zero thresholding, RLE of zeroes, and Entropy encoding
- 2 stages are implemented on 2 separate FPGAs

Stage 1 - DWT Coefficients

- Level 1: 512 pixels in a row => 256 average + 256 difference coefficients
- Level 2: 256 coefficients from level 1 => 128 + 128 coefficients
- Level 3: 128 coefficients from level 2 => 64 +64 coefficients
- Symmetric extension of coefficients at the boundaries
- In place computation
- Each level computed along X and Y directions

Dynamic Quantization of DWT coefficients

The dynamic range of coefficients in each subband are divided into 16 levels

Run length encoding of 0's

Coefficients below the zero threshold are truncated to 0. Continuous sequences of 0's are then Run Length Encoded.

Entropy Encoding

8 bit coefficients are variable length encoded between 3 and 18 bits.

Coefficients are then packed into 32 bit words.

FPGA Implementation of an Adaptive Reconfigurable Image Encoder (Adaptive Computing Systems project - University of Kansas)

5

Encoder at Different Compression Levels

FPGA Implementation of an Adaptive Reconfigurable Image Encoder (Adaptive Computing Systems project - University of Kansas)

Compression Ratio and Noise Metrics

 $MSE = \frac{1}{512X512} \sum_{i=1}^{i=512} \sum_{j=1}^{j=512} [p(i, j) - p'(i, j)]2 \qquad PSNR = 20\log_{10}(255 / RMSE)$

 $RMSE = \sqrt{MSE}$

	LENA				BARBARA				GOLDHILL			
Configuration	Comp ratio	bpp	PSNR (dB)	RMS	Comp ratio	bpp	PSNR (dB)	RMS	Comp ratio	Врр	PSNR (dB)	RMS
Config. 1 Minimum compression	9.11	0.878	30.783	7.368	8.82	0.906	24.891	14.520	8.7	0.916	29.733	8.314
Config. 2 Medium compression	47.18	0.169	29.630	8.414	32.01	0.249	24.412	15.343	43.18	0.185	28.001	10.150
Config 3 Maximum compression	69.58	0.114	28.040	10.104	53.33	0.149	23.525	16.992	72.09	0.110	26.355	12.267

FPGA Implementation of an Adaptive Reconfigurable Image Encoder (Adaptive Computing Systems project - University of Kansas)

Implementation Costs and Timing Results

Device Utilization on Xilinx XC4085 XLA

Block	LUTS (4)	LUTS (3)	CLB flops	Total CLBs	I/O Bufs	I/O flops	Gate count	Timing (MHz)
Stage 1	547	109	406	399 (12%)	75	88	8244	26.553
Stage 2 Conf. 1	1248	356	924	890 (28%)	77	88	17058	36.381
Stage 2 Conf. 2	1297	367	975	948 (30%)	77	88	17937	31.254
Stage 3 Conf. 3	1297	373	965	925 (29%)	77	88	17830	34.632

LUTS(4) : 4 input look up tables LUTS(3) : 3 input look up tables CLB : Configurable Logic Block XC4085 has 57x57=3249 CLBs

Timing : Results of static timing analysis in terms of maximum allowable clock rate

FPGA Implementation of an Adaptive Reconfigurable Image Encoder (Adaptive Computing Systems project - University of Kansas)

8