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ABSTRACT 
 

A significant portion of most DSP 
designs consist of structured components 
like adders and multipliers.  These 
components are most efficiently mapped to 
programmable hardware (FPGA) by 
intelligent module generators.  We use this 
mapping in the implementation of a software 
radios, reconfigurable over multiple 
modulation schemes and a wide range of 
parameters. 

 
1. Introduction 
 

The real time throughput requirements 
of high performance DSP systems often 
dictate hardware intensive solutions. A 
system implementation based on a DSP 
microprocessor often fails to exploit the 
inherent parallelism present in the algorithm. 
But pure hardware solutions have high 
overhead in development and 
implementation time.  Field Programmable 
Gate Arrays (FPGA) provide a rapid 
prototyping platform, with no non-recurring 
engineering costs.  In practice, efficient 
FPGA solutions also have relatively high 
development costs and are relatively 
inflexible. In this paper, we demonstrate 
techniques for implementing rapidly 
reconfigurable radio processing functions on 
FPGAs, that also exhibit good performance 
characteristics. 

Our system combines features of module 
generators, which allow more abstract and 
concise definition of systems, and rule-based 
selection of mappings to generate optimal 

designs based on specific attributes and 
constraints for individual designs. 

 
2. Beyond Module Generators  
 

Module generators take advantage of  
the regular patterns which exist in many of 
the core functions common in DSP 
applications. They can often generalize over 
the width of inputs and/or number of stages.  
Most existing module generator based 
systems, however, only allow one to capture 
a specific algorithm within a single 
module/operation definition. If multiple 
algorithmic alternatives exist for a particular 
operation, a distinct module must be defined 
for each algorithm. Then, when using an 
operation at a higher level, the user must 
choose a specific implementation at 
definition time.  

In our system, definitions are expressed 
as rule definitions.  One can define an 
arbitrary number of alternatives for any rule, 
with different selection criteria. The optimal 
implementation for each operator 
(definition) is selected (based on rule 
transformations) when generating the circuit 
for a complete design. Waiting as late as 
possible to bind an operation to a specific 
implementation provides the maximum 
benefit, because more design specific 
information is available on which to base the 
decision.  

Most user rule definitions are expressed 
as the composition of existing rules. This 
supports a natural, hierarchical definition of 
increasingly complex systems. These 
capabilities make our system appear very 
similar to module generator based systems 



which are increasingly common in today's 
CAD environment.  It shares with them, the 
ability to more quickly define correct and 
concise  definition of solutions through 
abstractions, reuse of  code through 
parameterized common sub-components. In 
addition, however, these user definitions 
transparently acquire the optimizations 
associated with rules being composed. 
 
3. Rule Based Evaluation 

 
Our compiler accepts design descriptions 

defined by rule transformations written in a 
functional language called Flash. The 
compiler reduces the input to successively 
simpler descriptions based on repeated 
application of rule transformations. It then 
generates a low level VHDL description of 
the design. This is then passed on to 
commercial VHDL synthesis tools to 
produce a net list for the target FPGA, 
which in turn, is placed and routed by 
vendor specific tools. 

 
Rule selection is based on a variety of 

compile-time information, including: 
• Input type(s) 
• Input width 
• Binary representation of known 

values 
• Parameter values 
• Compile time constants 
• Global settings, such as “optimize 

for space” 
• Target Hardware 
 
There may be an arbitrary number of 

implementations for any particular operation 
which are distinguished by their selection 
criteria. This flexible rule-based approach 
allows us to select the optimal 
implementation for a generic operation for 
the specific application. 

As a specific example, numerous rules 
are defined for multiplication.  A few of 
these are listed here: 

• Both arguments are known values. 
No circuitry is required for this 
operation. The multiplication can be 
performed in the compiler, and the 
multiplier output replaced with this 
known value. 

• One argument is a known value.  A 
KCM (Constant Coefficient Multiply) 
algorithm can be applied. 
• Number of 1’s in the known value 

binary representation is less than 
cutoff, implement the KCM with a 
shift and add algorithm. 

• Otherwise, use a table- lookup 
implementation for the KCM. 

• Arguments are equal, but unknown; use 
a lookup table. 

• Otherwise, perform a general shift and 
add implementation. 

 
All definitions in Flash are defined in 

terms of rules. As a result, optimizations can 
be applied at arbitrary levels of abstraction. 
This allows one to take advantage of 
information available only at more global or 
abstract view of an algorithm. 

As a specific example, consider 
implementation of a Finite Impulse 
Response (FIR) filter. The typical 
implementation is a regular sequence of 
Multiply Accumulate (MAC) blocks 
separated by latches. Each MAC multiplies 
the input by a constant (tap) associated with 
that stage of the filter. Since these taps are 
represented with a finite number of bits, 
multiple taps may have equivalent 
representations. Recognizing this fact, 
allows one to define an implementation of 
the FIR which first examines the binary 
representation for the taps, and generates a 
multiplication circuit only for each distinct 
valued tap (rather than a multiplication 
circuit for every tap).  



Flash is supplied with a core set of 
optimization rules for the basic boolean 
operations on bits. In addition we have 
developed a core library of elementary DSP 
functions including elementary arithmetic 
functions and some higher level functions 
such as FIR filters. Typically, users begin 
the definition of a specific system based on 
these core rule libraries. 

All rules are entirely external to the 
Flash compiler itself. Users can augment 
this set with new function definitions or 
additional optimization rules for existing 
functions.  

 

 
 
4. Implementation of Digital Radios 

 
Radio processing functions for various 

modulation and demodulation schemes map 
well to digital operations. With a relatively 
small collection of basic modules, including:  

• Signal mixers, using multiplication;.  
• Filtering.  with FIR filters; 
• Multi-stage delays; 
• Carrier recovery; 
• Local carrier generation, via ROM 

tables of the sine or cosine functions 
a wide variety of digital radios can be 
implemented. 

Our design environment has been 
successfully tested with the implementation 
of the following digital radios: AM; LSB; 
USB; FM; BFSK; BPSK; and QPSK.  

Our primary objective has been to 
implement a set of highly configurable 
radios to address some of the issues in the 
adaptive computing systems environment.  
At the same time we hope to be able to at 
least approximate the performance of hand-
coded designs written for a specific 
parameter set. 

The following section briefly describes 
the design of one of these radios in greater 
detail. 
 
4.1 BFSK Demodulator 
 

In BFSK (Binary Frequency Shift 
Keying) modulation, zeros and ones are sent 

at narrowly separated mark and space 
frequencies. Figure 1 shows a block diagram 
of a simple BFSK demodulator. 

The Flash implementation, shown 
below, parameterizes the design over the 
system sampling rate and the mark and 
space transmit frequencies.  In this example, 
the order of the filters and the amount of 
precision used for the tap coefficients have 
been set internally.  Each of these values, 
appears as a constant in a lower level rule 
application which is easily changed in a text 
editor. 

 
(define (bfsk sample-freq mark-freq 
              space-freq data-freq) 
  (term-rules 
    [(input : fixedpt) => fixedpt 
     ;; Transition BW for mark/space filters 
     (let ((sb-adj (- (/ (+ mark-freq 
                            space-freq) 2) 
                      mark-freq))) 
       (bind ((filtered-input 
               ;; BP filter to remove noise 



               ;; outside space/mark freq 
               (app (bandpass-filter-remez 
                     sample-freq 
                     (* .5 mark-freq) 
                     mark-freq space-freq 
                     (* 1.5 space-freq) 
                     16 input.f) 
                    input))) 
         ;; LP filter before output 
         (app (lowpass-filter-remez 
               sample-freq data-freq 
               (1.5 data-freq) 12 input.f) 
              (@ subtract 
                 (app absolute 
            ;; BP filter at mark-freq. 
            (app (bandpass-filter-remez 
                  sample-freq 
                  (- mark-freq sb-adj) 
                  (- mark-freq data-freq) 
                  (+ mark-freq data-freq) 
                  (+ mark-freq sb-adj) 
                  16 input.f)                      
                filtered-input)) 
       (app absolute 
             ;; BP filter at space-freq. 
            (app (bandpass-filter-remez 
                  sample-freq 
                  (- space-freq sb-adj) 
                  (- space-freq data-freq) 
                  (+ space-freq data-freq) 
                  (+ space-freq sb-adj) 
                  16 input.f) 
                 filtered-input) 
            filtered-input)))))])) 
 
5. Results 
 

Our design environment has been 
successfully tested with the implementation 
of a variety of digital radios. These radio 
descriptions were abstracted over design 
constants like carrier frequencies and data 
rates. In this way we obtain rapid 
reconfiguration within a wide range of 
design specifications. The reconfiguration 
time required is less than half an hour - 
which is the time required for the 
compilation and for the FPGA vendor tools 
to perform place and route. 
 
Our system facilitates design re-use and 
permits concise definitions of complex 
systems. The table below compares the 
number of lines of Flash code required to 
define each radio to the number of lines of 
VHDL code generated for each. Though 
hand crafted VHDL could be more concise, 
the size of generated VHDL output is a 

rough indication of the compactness of our 
source representation. 
 
Design  Functional 

Description 
Generated 
VHDL 

AM 16 306 
FM 45 520 
BFSK 50 571 
BPSK 82 972 
QPSK 72 1334 
 

In the following implementation results, 
the hardware target for all implementations 
was a Xilinx XC4085XLA FPGA.  Size is 
reported in allocated CLBs (Configurable 
Logic Blocks) and speed as the maximum 
clock rate as reported by the place and route 
tools. 

To evaluate the performance gain of 
selected higher level design rule 
optimizations, we generated circuits for the  
same system definition, but with different 
sets of rule transformations in place. This 
allows us to evaluate exactly the 
improvement attributable to the additional 
rule(s). 

The results in the following table 
summarize the results for implementation of 
a 22 tap FIR low pass filter, using 10 bits of 
binary precision for the coefficients. The 
Basic design results were generated using a 
FIR transformation based on a standard 
series of 22 multiply accumulate blocks, The 
MinMult design results were generated 
using a FIR transformation which minimizes 
the number of multiply circuits.  

 
Design Size 

CLBs 
Speed 
Mhz 

Basic 401 36.30 
MinMult 346 37.00 

 
For comparison to hand-coded VHDL, 

other members of the team implemented 
some of the radios directly in VHDL.  These 
implementations were written for a specific 



set of parameters, allowing the authors to 
make optimizations based on bit-widths, 
filter tap coefficients, etc. 

The following table shows these results 
for the BFSK demodulator. 

 
Design Size 

CLBs 
Speed 
Mhz 

HandCoded 855 29.13 
Flash 737 30.87 

 
The Flash implementation is both 

smaller and can run at a higher clock rate. 
From the perspective to source language 

definitions (Flash compared to VHDL), the 
Flash implementation is very clearly 
superior.  Only 50 lines of Flash were 
required to define the BFSK demodulator, 
while the hand-coded VHDL includes over 
90 FILES (and 6000+ lines of code). 

In addition the hand-coded VHDL 
implementation was customized for a 
particular bit width, specific filter 
coefficients.  Modification of  any system 
parameter, or a variation in accuracy 
requirements would require significant re-
design for large portions of the 6000 source 
lines. In contrast, any combination of these 
changes could be altered in the Flash design 
by modification of the associated parameter. 

We note that the amount of VHDL code 
is significantly larger than the number of 
lines of VHDL generated through the Flash 
design.  This is largely due to the coding 
style employed for the hand-coded 
implementation.  The author wisely chose to 
separate the various components into 
separate entities in order to perform unit 
testing, etc.  Combining separate entities in a 
hierarchical fashion in VHDL involves 
significant overhead when simply counting 
lines of code.  In addition, a utility program 
to generate table- lookups for KCMs was 
employed which generated approximately 
150 lines of VHDL for each KCM. 

 

6. Conclusion 
 
This paper summarizes the results 

pertaining to the use of intelligent module 
descriptions and a design compiler for DSP 
based designs. The design reuse and 
exploitation of application domain specific 
optimizations are strong factors in favor of 
this approach. Specific instances of the radio 
designs were generated from our generic 
descriptions, allowing rapid reconfiguration 
of the programmable hardware to perform 
different radio functions and still provide 
final circuit implementations with 
efficiencies comparable to hand-coded, 
parameter specific implementations. 
. 
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