
High Level Abstractions for Implementation of Software Radios

J. B. Evans, Ed Komp, S. G. Mathen, and G. Minden

Information and Telecommunication Technology Center
 University of Kansas, Lawrence, KS 66044-7541

ABSTRACT

A significant portion of most DSP
designs consist of structured components
like adders and multipliers. These
components are most efficiently mapped to
programmable hardware (FPGA) by
intelligent module generators. We use this
mapping in the implementation of a software
radios, reconfigurable over multiple
modulation schemes and a wide range of
parameters.

1. Introduction

The real time throughput requirements
of high performance DSP systems often
dictate hardware intensive solutions. A
system implementation based on a DSP
microprocessor often fails to exploit the
inherent parallelism present in the algorithm.
But pure hardware solutions have high
overhead in development and
implementation time. Field Programmable
Gate Arrays (FPGA) provide a rapid
prototyping platform, with no non-recurring
engineering costs. In practice, efficient
FPGA solutions also have relatively high
development costs and are relatively
inflexible. In this paper, we demonstrate
techniques for implementing rapidly
reconfigurable radio processing functions on
FPGAs, that also exhibit good performance
characteristics.

Our system combines features of module
generators, which allow more abstract and
concise definition of systems, and rule-based
selection of mappings to generate optimal

designs based on specific attributes and
constraints for individual designs.

2. Beyond Module Generators

Module generators take advantage of
the regular patterns which exist in many of
the core functions common in DSP
applications. They can often generalize over
the width of inputs and/or number of stages.
Most existing module generator based
systems, however, only allow one to capture
a specific algorithm within a single
module/operation definition. If multiple
algorithmic alternatives exist for a particular
operation, a distinct module must be defined
for each algorithm. Then, when using an
operation at a higher level, the user must
choose a specific implementation at
definition time.

In our system, definitions are expressed
as rule definitions. One can define an
arbitrary number of alternatives for any rule,
with different selection criteria. The optimal
implementation for each operator
(definition) is selected (based on rule
transformations) when generating the circuit
for a complete design. Waiting as late as
possible to bind an operation to a specific
implementation provides the maximum
benefit, because more design specific
information is available on which to base the
decision.

Most user rule definitions are expressed
as the composition of existing rules. This
supports a natural, hierarchical definition of
increasingly complex systems. These
capabilities make our system appear very
similar to module generator based systems

which are increasingly common in today's
CAD environment. It shares with them, the
ability to more quickly define correct and
concise definition of solutions through
abstractions, reuse of code through
parameterized common sub-components. In
addition, however, these user definitions
transparently acquire the optimizations
associated with rules being composed.

3. Rule Based Evaluation

Our compiler accepts design descriptions

defined by rule transformations written in a
functional language called Flash. The
compiler reduces the input to successively
simpler descriptions based on repeated
application of rule transformations. It then
generates a low level VHDL description of
the design. This is then passed on to
commercial VHDL synthesis tools to
produce a net list for the target FPGA,
which in turn, is placed and routed by
vendor specific tools.

Rule selection is based on a variety of

compile-time information, including:
• Input type(s)
• Input width
• Binary representation of known

values
• Parameter values
• Compile time constants
• Global settings, such as “optimize

for space”
• Target Hardware

There may be an arbitrary number of

implementations for any particular operation
which are distinguished by their selection
criteria. This flexible rule-based approach
allows us to select the optimal
implementation for a generic operation for
the specific application.

As a specific example, numerous rules
are defined for multiplication. A few of
these are listed here:

• Both arguments are known values.
No circuitry is required for this
operation. The multiplication can be
performed in the compiler, and the
multiplier output replaced with this
known value.

• One argument is a known value. A
KCM (Constant Coefficient Multiply)
algorithm can be applied.
• Number of 1’s in the known value

binary representation is less than
cutoff, implement the KCM with a
shift and add algorithm.

• Otherwise, use a table- lookup
implementation for the KCM.

• Arguments are equal, but unknown; use
a lookup table.

• Otherwise, perform a general shift and
add implementation.

All definitions in Flash are defined in

terms of rules. As a result, optimizations can
be applied at arbitrary levels of abstraction.
This allows one to take advantage of
information available only at more global or
abstract view of an algorithm.

As a specific example, consider
implementation of a Finite Impulse
Response (FIR) filter. The typical
implementation is a regular sequence of
Multiply Accumulate (MAC) blocks
separated by latches. Each MAC multiplies
the input by a constant (tap) associated with
that stage of the filter. Since these taps are
represented with a finite number of bits,
multiple taps may have equivalent
representations. Recognizing this fact,
allows one to define an implementation of
the FIR which first examines the binary
representation for the taps, and generates a
multiplication circuit only for each distinct
valued tap (rather than a multiplication
circuit for every tap).

Flash is supplied with a core set of
optimization rules for the basic boolean
operations on bits. In addition we have
developed a core library of elementary DSP
functions including elementary arithmetic
functions and some higher level functions
such as FIR filters. Typically, users begin
the definition of a specific system based on
these core rule libraries.

All rules are entirely external to the
Flash compiler itself. Users can augment
this set with new function definitions or
additional optimization rules for existing
functions.

4. Implementation of Digital Radios

Radio processing functions for various

modulation and demodulation schemes map
well to digital operations. With a relatively
small collection of basic modules, including:

• Signal mixers, using multiplication;.
• Filtering. with FIR filters;
• Multi-stage delays;
• Carrier recovery;
• Local carrier generation, via ROM

tables of the sine or cosine functions
a wide variety of digital radios can be
implemented.

Our design environment has been
successfully tested with the implementation
of the following digital radios: AM; LSB;
USB; FM; BFSK; BPSK; and QPSK.

Our primary objective has been to
implement a set of highly configurable
radios to address some of the issues in the
adaptive computing systems environment.
At the same time we hope to be able to at
least approximate the performance of hand-
coded designs written for a specific
parameter set.

The following section briefly describes
the design of one of these radios in greater
detail.

4.1 BFSK Demodulator

In BFSK (Binary Frequency Shift
Keying) modulation, zeros and ones are sent

at narrowly separated mark and space
frequencies. Figure 1 shows a block diagram
of a simple BFSK demodulator.

The Flash implementation, shown
below, parameterizes the design over the
system sampling rate and the mark and
space transmit frequencies. In this example,
the order of the filters and the amount of
precision used for the tap coefficients have
been set internally. Each of these values,
appears as a constant in a lower level rule
application which is easily changed in a text
editor.

(define (bfsk sample-freq mark-freq
 space-freq data-freq)
 (term-rules
 [(input : fixedpt) => fixedpt
 ;; Transition BW for mark/space filters
 (let ((sb-adj (- (/ (+ mark-freq
 space-freq) 2)
 mark-freq)))
 (bind ((filtered-input
 ;; BP filter to remove noise

 ;; outside space/mark freq
 (app (bandpass-filter-remez
 sample-freq
 (* .5 mark-freq)
 mark-freq space-freq
 (* 1.5 space-freq)
 16 input.f)
 input)))
 ;; LP filter before output
 (app (lowpass-filter-remez
 sample-freq data-freq
 (1.5 data-freq) 12 input.f)
 (@ subtract
 (app absolute
 ;; BP filter at mark-freq.
 (app (bandpass-filter-remez
 sample-freq
 (- mark-freq sb-adj)
 (- mark-freq data-freq)
 (+ mark-freq data-freq)
 (+ mark-freq sb-adj)
 16 input.f)
 filtered-input))
 (app absolute
 ;; BP filter at space-freq.
 (app (bandpass-filter-remez
 sample-freq
 (- space-freq sb-adj)
 (- space-freq data-freq)
 (+ space-freq data-freq)
 (+ space-freq sb-adj)
 16 input.f)
 filtered-input)
 filtered-input)))))]))

5. Results

Our design environment has been
successfully tested with the implementation
of a variety of digital radios. These radio
descriptions were abstracted over design
constants like carrier frequencies and data
rates. In this way we obtain rapid
reconfiguration within a wide range of
design specifications. The reconfiguration
time required is less than half an hour -
which is the time required for the
compilation and for the FPGA vendor tools
to perform place and route.

Our system facilitates design re-use and
permits concise definitions of complex
systems. The table below compares the
number of lines of Flash code required to
define each radio to the number of lines of
VHDL code generated for each. Though
hand crafted VHDL could be more concise,
the size of generated VHDL output is a

rough indication of the compactness of our
source representation.

Design Functional

Description
Generated
VHDL

AM 16 306
FM 45 520
BFSK 50 571
BPSK 82 972
QPSK 72 1334

In the following implementation results,
the hardware target for all implementations
was a Xilinx XC4085XLA FPGA. Size is
reported in allocated CLBs (Configurable
Logic Blocks) and speed as the maximum
clock rate as reported by the place and route
tools.

To evaluate the performance gain of
selected higher level design rule
optimizations, we generated circuits for the
same system definition, but with different
sets of rule transformations in place. This
allows us to evaluate exactly the
improvement attributable to the additional
rule(s).

The results in the following table
summarize the results for implementation of
a 22 tap FIR low pass filter, using 10 bits of
binary precision for the coefficients. The
Basic design results were generated using a
FIR transformation based on a standard
series of 22 multiply accumulate blocks, The
MinMult design results were generated
using a FIR transformation which minimizes
the number of multiply circuits.

Design Size

CLBs
Speed
Mhz

Basic 401 36.30
MinMult 346 37.00

For comparison to hand-coded VHDL,

other members of the team implemented
some of the radios directly in VHDL. These
implementations were written for a specific

set of parameters, allowing the authors to
make optimizations based on bit-widths,
filter tap coefficients, etc.

The following table shows these results
for the BFSK demodulator.

Design Size

CLBs
Speed
Mhz

HandCoded 855 29.13
Flash 737 30.87

The Flash implementation is both

smaller and can run at a higher clock rate.
From the perspective to source language

definitions (Flash compared to VHDL), the
Flash implementation is very clearly
superior. Only 50 lines of Flash were
required to define the BFSK demodulator,
while the hand-coded VHDL includes over
90 FILES (and 6000+ lines of code).

In addition the hand-coded VHDL
implementation was customized for a
particular bit width, specific filter
coefficients. Modification of any system
parameter, or a variation in accuracy
requirements would require significant re-
design for large portions of the 6000 source
lines. In contrast, any combination of these
changes could be altered in the Flash design
by modification of the associated parameter.

We note that the amount of VHDL code
is significantly larger than the number of
lines of VHDL generated through the Flash
design. This is largely due to the coding
style employed for the hand-coded
implementation. The author wisely chose to
separate the various components into
separate entities in order to perform unit
testing, etc. Combining separate entities in a
hierarchical fashion in VHDL involves
significant overhead when simply counting
lines of code. In addition, a utility program
to generate table- lookups for KCMs was
employed which generated approximately
150 lines of VHDL for each KCM.

6. Conclusion

This paper summarizes the results

pertaining to the use of intelligent module
descriptions and a design compiler for DSP
based designs. The design reuse and
exploitation of application domain specific
optimizations are strong factors in favor of
this approach. Specific instances of the radio
designs were generated from our generic
descriptions, allowing rapid reconfiguration
of the programmable hardware to perform
different radio functions and still provide
final circuit implementations with
efficiencies comparable to hand-coded,
parameter specific implementations.
.

ACKNOWLEDGEMENT: This work is
funded by DARPA contract number
DABT63-97-C-0032 as part of the Adaptive
Computing Systems Initiative.

