
Design and FPGA Implementation of an Adaptive
Demodulator

by

Sandeep Mukthavaram

B.S. E.E Osmania University , Hyderabad, India, 1997

Submitted to the Department of Electrical Engineering and Computer Science and the

Faculty of the Graduate School of the University of Kansas in partial fulfillment of the

requirements for the degree of Master of Science

Professor in Charge

Committee Members (2)

Date of Acceptance

Acknowledgments

”As the going gets tough, tough gets going”. At the end of two years at the ACS lab
working with some amazing folks I would re-phrase it to ”As the going gets tough,
you get stronger, more mature”. To begin with I would like to thank my advisor Dr.
Joe Evans who has helped me through my graduate studies at KU and now with my
thesis. Thank you particularly for amazingly fast email responses including the ones in
the midnight. Thanks also to Dr. Gary Minden for being so patient when results didnot
quite come by at the right intervals in the ACS project. The course I enjoyed most at
KU was ”DSP for Communications” offered by Dr. Glenn Prescott. Thanks Prescott
for making it so interesting and informative. My special thanks to Dr. Arvin Agah
who has obliged to be on my committee at such a short notice. I cannot forget the long
hours spent in the ACS lab with my buddies Karthik, Sarin and Hemang brainstorming
for more ideas to deal with problems both software and hardware. They have been
an amazing team to work with. My special thanks to Dan Depardo and Artur who
have extended such support in dealing with the hardware related problems in the lab
especially considering how frustrating we were sometimes.

Last but not the least I would like to thank my family and friends. Thankyou Mom
and Dad for everything. You guys are amazing. My special friends Monica and Satish
have made the Lawrence experience rich. Thanks guys.

ii

Abstract

Signal Processing systems for communications will have to operate in rapidly chang-

ing environments. To suitably adapt to the varying requirements, control strategies

targeted at selecting and tuning the signal processing algorithms need to be developed.

The work being reported in this thesis is part of the bigger initiative by DARPA to de-

velop and exploit reconfigurable computing for evolving defense systems. This work

focuses on the use of automatic recognition of modulation type of the input signal to

suitably reprogram the FPGA as a particular demodulator. The modulation schemes

considered are PSK2 PSK4 and FSK2. This is used as a case study to demonstrate how

reconfigurable computing can be a promising choice for building more adaptable and

robust signal processing and communication systems.

This thesis first surveys the existing algorithms of Automatic Modulation Recogni-

tion (AMR). These algorithms are briefly analyzed to consider the feasibility of imple-

menting them in hardware. A novel algorithm of automatic modulation is proposed

and its FPGA implementation discussed in detail. It is also discussed how the run-time

reconfigurability offered by the FPGA can aid in building a universal demodulator.

The complete design flow followed for synthesizing the designs for FPGAs is pre-

sented. Design and implementation details of the individual demodulators is dis-

cussed in great detail. Certain hardware optimizations that exploit the available FPGA

architectures are documented. The test setup used for testing these radios is briefed.

Finally all the demodulators and the modulation recognizer are integrated into a

run-time reconfigurable set up. Results from testing are reported and discussed.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Overview . 2

1.3 Reconfigurability, FPGAs, DSP . 3

2 Automatic Modulation Recognition 4

2.1 Need for Automatic Modulation Recognition 4

2.2 Existing Algorithms of Automatic Modulation Recognition 5

2.2.1 Decision Theoretic Approaches . 5

2.2.2 Pattern Recognition Techniques . 6

2.3 New Algorithm of Automatic Modulation Recognition 7

2.4 FPGA Implementation of the AMR Algorithm 8

3 Design and FPGA Implementation of PSK and FSK demodulators 10

3.1 Design Flow for FPGA Synthesis . 10

3.2 Binary Phase Shift Keying Demodulator 13

3.2.1 Theoretical Background . 13

3.2.2 Implementation Details . 16

3.2.2.1 Data Formats . 16

3.2.2.2 Constant Coefficient Multipliers 16

3.2.2.3 Square Law Device . 17

3.2.2.4 Bandpass Filter . 17

iv

3.2.2.5 Frequency Divider . 19

3.2.3 Square to Sine Converter . 19

3.2.3.1 Carrier Recovery . 20

3.2.3.2 Data Filter . 20

3.2.3.3 Integration and Testing 22

3.3 Quaternary Phase Shift Keying Demodulator 24

3.3.1 Introduction . 24

3.3.2 Carrier Recovery . 24

3.3.3 Upper Channel . 25

3.3.4 Recombination of data . 25

3.3.5 Partitioning the design across multiple FPGAs 25

3.4 Binary Frequency Shift Keying Demodulator 27

4 Reconfigurable Demodulator 28

4.1 Introduction . 28

4.2 Architecture . 28

4.2.1 FIFO Interface . 29

4.2.2 Memory Interface . 29

4.2.3 Crossbar Model . 29

4.3 Programming the WILDFORCE . 31

4.4 Adaptive Demodulation . 33

5 Testing and Results 34

5.1 Performance Analysis of the Demodulators in Presence of Additive White

Gaussian Noise . 34

5.1.0.1 Analog Front End . 35

5.1.0.2 Eb/N0 calculation . 35

5.1.0.3 BER Vs Eb/N0 . 35

5.2 Testing the Reconfigurable Demodulator 39

v

5.2.1 Noise Tolerance levels for the AMR algorithm 40

6 Conclusions and Future Work 41

6.1 Future Work . 41

A Filter Details 45

A.1 Automatic Modulation Recognizer . 45

A.1.1 Averaging Filter . 45

A.2 BPSK Receiver . 46

A.2.1 Carrier Recovery . 46

A.2.1.1 Bandpass Filter . 46

A.2.1.2 Square to Sine Converter 47

A.2.2 Data Filter . 47

A.3 QPSK Receiver . 48

A.3.1 Analog Front End Bandpass Filter 48

A.3.2 Carrier Recovery . 48

A.3.2.1 Bandpass Filter . 48

A.3.2.2 Square to Sine Converter 49

A.3.3 Hilbert Transform Filter . 50

A.3.4 Data Filter . 50

vi

List of Figures

2.1 New Algorithm of Automatic Modulation Recognition 8

3.1 Design flow for FPGA synthesis . 11

3.2 Block diagram for BPSK demodulator . 14

3.3 Block diagram for carrier recovery . 14

3.4 Magnitude response of Bandpass filter : Theory Vs Implementation . . . 18

3.5 Magnitude response of Data filter : Theory Vs Implementation 21

3.6 Test setup for the BPSK/QPSK demodulator 22

3.7 Block diagram for the QPSK demodulator 24

3.8 Block diagram for the BFSK demodulator 27

4.1 WILDFORCE : Architecture . 30

4.2 WILDFORCE : Software Hierarchy . 31

4.3 Adaptive Demodulator . 32

5.1 Test setup for characterizing PSK demodulators in the presence of AWGN 34

5.2 BER Vs Eb/N0 curves for BPSK : Theoretical Vs Implementation 36

5.3 BER Vs Eb/N0 curves for QPSK : Theoretical Vs Implementation 37

5.4 BER Vs Eb/N0 curves for PSK : BPSK Vs QPSK 38

vii

List of Tables

3.1 Implementation details for the module Square Law Device 17

3.2 Implementation details for the module Bandpass Filter 19

3.3 Implementation details for the module Frequency Divider 19

3.4 Implementation details for the module Square to Sine Converter 20

3.5 Implementation details for the module Carrier Recovery 20

3.6 Implementation details for the module Data Filter 22

3.7 Implementation details for the BPSK demodulator 23

3.8 Benchmarkings for the BPSK demodulator on FPGA 23

3.9 Implementation details of the QPSK demodulator : IOFPGA 26

3.10 Implementation details of the QPSK demodulator : FPGA-I 26

3.11 Implementation details of the QPSK demodulator : FPGA-II 26

3.12 Implementation details of the BFSK demodulator 27

viii

Chapter 1

Introduction

1.1 Motivation

There has been lot of research on the use of reconfigurable computing based on Field

Programmable Gate Arrays (FPGAs) to accelerate computation intensive applications

like Digital Signal Processing (DSP). A few aspects of DSP considered as part of the

”Adaptive Computing Systems” project at the University of Kansas are radio process-

ing functions and their FPGA implementation. To dynamically reconfigure the same

piece of silicon to perform different radio processing functions as required by changing

requirements forms the basic motivation for the work being presented here. Changing

requirements are identified to be different modulation types that may be present in the

input signal. To be able to detect the change in the input modulation scheme while

demodulating some other modulation type and suitably reconfigure the FPGA is the

end goal. For this we need an algorithm for recognizing the modulation type. There is

enough literature on this and this is a fairly old problem. However most of the algo-

rithms that we came across have been either too expensive propositions for hardware

implementations or good off-line solutions. To address this novel algorithm of modu-

lation recognition is proposed, that can recognize PSK2, PSK4 and FSK2 modulations.

Extensions to this algorithm can be useful to accommodate other types of modulation.

1

1.2 Thesis Overview

This chapter begins to describe the motivation for the work. The later part of this

chapter will discuss the challenges posed by real-time processing of digital signals and

why FPGAs make such a good candidate choice for implementing signal processing

functions. There are three very distinct and important aspects of this work: reconfig-

urability, FPGAs, and signal processing of communication signals. Each of these are

introduced in this chapter.

The second chapter titled ”Automatic Modulation Recognition” begins with ex-

plaining the need for automatic modulation recognition. Then we do a brief survey of

the existing algorithms and discuss their possible hardware realizations and the prob-

lems involved therein. We then propose a novel algorithm of modulation recognition

for the modulation of the input signal being PSK2, PSK4 or FSK2. We discuss its FPGA

implementation.

Chapter three discusses in depth the FPGA implementation of the demodulators

for PSK2, PSK4, and FSK2. The design flow that starts from hand coding in VHDL to

generating configuration data to download onto the FPGA is explained. The design,

implementation and results of the sub-modules are reported. We discuss certain opti-

mizations that lead to better performance in terms of space and time. To conclude this

chapter we explain the test set up we used to validate the designs.

In chapter four we integrate the modulation recognizer and the individual demod-

ulators into a reconfigurable set up. The idea here is to have a single demodulator on

silicon at a given time, while sensing for any changes in the modulation type.

The chapter titled ”results” reports the results we obtained from testing. In the

concluding chapter some limitations to the algorithm are mentioned with possible ex-

planations .The thesis ends with some suggestions for future work.

2

1.3 Reconfigurability, FPGAs, DSP

System performance is a major concern while designing complicated systems. The

maximum performance can be achieved when circuits are optimized for single prob-

lem. As a new problem arises with minor changes to the old one, the whole system has

to be redesigned and re optimized. Reconfigurable computing addresses this prob-

lem by allowing dedicated circuits to be built on to FPGAs and modifying these cir-

cuits by reprogramming the chips again. This greatly improves system flexibility and

functional density. The circuits are loaded into the hardware and unloaded from it

dynamically during the operation of the system. This was a brief introduction to re-

configurable computing.

The high throughput computational requirements of real-time digital signal pro-

cessing (DSP) systems typically dictate hardware intensive solutions. And by increas-

ing the system density configurable computing can deliver functionality of a device

many times more than its size by dynamically reconfiguring the system. In digital sig-

nal processing (DSP) applications, the emphasis is most often on performance, in terms

of real-time requirements as well as throughput. For radio signal processing in particu-

lar, the high throughput requirements dictate that a hardware solution is almost always

required. Currently available DSP microprocessors are suited for baseband waveform

processing. Conventional DSP microprocessors are implemented using inherently se-

rial architectures. A DSP chip operating at 40 million instruction second (MIPS) has a

useful bandwidth of less than 500 kHz. [12] DSP microprocessors are thus inadequate

for the implementation of most stages of a radio system.

Field Programmable Gate Arrays (FPGAs) provide a rapid prototyping platform,

which can be reprogrammed for different hardware functions without incurring the

non-recurring engineering costs typically associated with custom IC fabrication. Im-

plementing DSP functions in FPGA provides the several advantages over conventional

DSP hardware: Reconfigurability and Parallelism.

3

Chapter 2

Automatic Modulation Recognition

This chapter introduces the concepts of automatic modulation recognition of commu-

nication signals. This is a fairly old problem and we here do a brief survey of the exist-

ing algorithms. Novel algorithm and its FPGA implementation is presented towards

the later part of this chapter.

2.1 Need for Automatic Modulation Recognition

Signal Processing systems for communications will operate in open environments,

where it is required that signals of different typologies be processed, which come from

different sources, hence with different characteristics and for different user require-

ments. [4] Communication signals traveling in space with different modulation types

and different frequencies fall in very wide band. Usually, it is required to identify

and monitor these signals for many applications, both defense and civilian. Civilian

applications may include monitoring the non-licensed transmitters, while defense ap-

plications may be Electronic surveillance systems. [2]

Modulation recognition is extremely important in COMINT applications for sev-

eral reasons. Firstly, applying the signal to an improper demodulator may partially

or completely damage the signal information content. Secondly, knowing the correct

modulation type help recognize the threat and to determine suitable jamming wave-

4

form.

2.2 Existing Algorithms of Automatic Modulation Recognition

Survey of literature in related areas reveal that broadly there are two major approaches

to modulation recognition: decision theoretic approach and statistical pattern recogni-

tion approach. The decision- theoretic approach is based on probability and hypothe-

ses. In statistical pattern recognition approach, the classification system is divided into

two subsystems. First is a feature extraction subsystem, which extracts the pre-defined

features from the stored data. The second system is a pattern recognition subsystem

that actually determines the modulation of the signal. Again the pattern recognizer

works in two phases. The training phase to configure the classifier network followed

by a test phase that gives the classification decision. Clearly the second approach is a

good off-line solution to the problem at hand.

It has been mentioned in [2] that there are five techniques for solving the modula-

tion recognition problem. These are 1. Spectral Processing 2. Instantaneous amplitude,

phase and frequency 3. Histograms of instantaneous amplitude, phase and frequency

4. Combinations of the above three. 5. Universal Demodulator.

2.2.1 Decision Theoretic Approaches

The basic concept involved in these approaches is that likelihood function (LF) or,

equivalently, the log-likelihood function (LLF) of the observed waveform, contains all

the necessary information for a variety of inference tasks (signal detection, classifica-

tion and parameter estimation). In the paper [7] Huang and Polydoros have gener-

alized a likelihood method for classifying any MPSK signal in AWGN. Soliman et al

[13] developed an automatic modulation classification algorithm utilizing the statisti-

cal moments of the signal phase and used it to classify the modulation type of general

M-ary PSK signals. Callagan et al [14] using zero crossing techniques classified dif-

ferent modulation types such as CW, AM, FM, SSB, FSK, and ASK. Hsue and Soliman

5

also use zero-crossing techniques to classify PSK and FSK signals.

Assaleh et al [9] proposed a new method of modulation classification for digitally

modulated signals. This method utilizes a signal representation known as the modula-

tion model. The modulation model provides a signal representation that is convenient

for subsequent analysis, such as estimating modulation parameters. The modulation

parameters could be the carrier frequency, modulation type, and bit rate. The modula-

tion model is formed via autoregressive spectrum modeling.

2.2.2 Pattern Recognition Techniques

Another popular method for the modulation recognition process is the application of

Artificial Neural Networks (ANNs). The basic advantage claimed by this method over

the decision theoretic approach is that a threshold for each neuron is chosen automati-

cally and adaptively unlike the other approach. [2] The modulation recognizers based

on the ANN approach have three stages : 1. Pre-processing in which key features from

every signal are extracted 2. training and learning phase to configure the network. 3.

test phase to classify the modulation type.

Key Feature Extraction - A communication signal can be completely defined by its

amplitude, frequency and phase. Now based on certain experiments are chosen the

statistics related to these parameters. The idea is to create a mapping between these

key features and the modulation scheme. Choice of these features and the network

architecture define the speed of convergence and the accuracy of the results. The basic

advantage claimed by the pattern recognition techniques compared to the decision the-

oretic approach is that the threshold for the key features is set automatically in the first

case. Thus there has been lot of work by various people who have come up with nu-

merous sets of key features to identify the modulation scheme. However though some

of them have excellent identification capabilities all of them are rather cumbersome

options for real time identification systems.

Training Phase - Once the key features are identified and extracted the network is

6

trained with the input-output pairs. This is done iteratively till the network ”settles” to

the minimum error state. The speed of convergence again depends on the key features

and the ambiguity associated with them. For example in case of PSK2 signal and a

FSK2 signal mean instantaneous amplitude is a very ambiguous feature to distinguish

the two. The simple fact being that both are constant amplitude signals and have dif-

ferences in tones. Once the error falls below a specified limit the network is said to

have converged. The weights or the interconnects are assigned the fixed values to be

used for the testing phase.

Testing Phase - The network with pre-computed weights is used to identify the

modulation in the given input signal.

2.3 New Algorithm of Automatic Modulation Recognition

The modulation types considered are Binary Phase Shift Keying (BPSK) - PSK2, Quadra-

ture Phase Shift Keying (QPSK) - PSK4, and Binary Frequency Shift Keying (BFSK) -

FSK2. All these signals can be characterized to have constant amplitude. It can be

easily proved that by introducing Mth degree non-linearity into an M-ary PSK signal

will remove the modulation present in the signal. Consequently, squared PSK2 sig-

nal should provide a spectral line at twice the carrier frequency 2fc, while PSK4 signal

would yield a PSK2 signal, a fact that can be used to discriminate between the two.

Number of clock cycles between two zero crossings would be different for different

tones, a characteristic of the FSK2 signal. PSK signal would have a constant number of

clock ticks between zero crossings. This is used to distinguish the PSK signals from the

FSK signals.

The algorithm is explained diagrammatically in the figure 2.1. The modulated sig-

nal is squared. This gives a unmodualted waveform for the input being a PSK2 signal

and a PSK2 signal for the PSK4 input. Time averaging is performed on the squared

signal. A PSK2 signal would result in a dc value whereas a PSK4 signal would give

spikes at places where modulation is still present in the signal. Differentiating this

7

| u |Averaging
 Filter

Unit Delay

 Spike
Counter-

Zero Cross
Counter

Zero Cross
Detector

Counter

Decision
Clock

Time Period = Decision Interval

RST

RST

PSK2

PSK4

FSK2

2(*)
Modulated

Signal

+

Square

Device
Law

Figure 2.1: New Algorithm of Automatic Modulation Recognition

time-averaged signal helps capture the discontinuities in the PSK4 signal. A threshold

is specified for the height of the spike. Number of spikes in a predetermined decision

interval distinguishes PSK2 from PSK4. The modulation recognition process is a two

parallel stage process. One parallel arm classifies the PSK2 and PSK4 while the other

arm distinguishes FSK from PSK signals. It is assumed that the carrier frequency of

the PSK signals lies in between the mark and the space frequencies of the FSK signal.

To determine the frequency of the carrier, the number of clock cycles between zero

crossings are counted. A threshold is fixed for the number of clock cycles between zero

crossings. Cross overs of the threshold in a predetermined decision interval is used to

determine if the signal has single or multiple tones.

2.4 FPGA Implementation of the AMR Algorithm

Certain optimizations need to be done to make the algorithm space efficient while

implementing it in hardware. Here are a few of them.

Square law device is implemented as a table lookup. If the input modulated signal

is digitized then we have finite number of bits that are used to represent each sample

value. We used 8 in this case as the input bit width. If we take two’s complement as

a format to represent the data with no integer bits and 7 bits to represent the fraction

8

then we have only 128 discrete possible outcomes for the squared value of the input

signal. This is stored as a value in the ROM table. This is a much efficient way of

squaring a signal compared to using a general purpose multiplier in terms of space.

Averaging Filter is implemented as a FIR low pass filter. The cut off is set to the data

rate which is about 100 kHz. The filter is designed using the kaiser window with 25

taps. In the multiply and accumulate units of the FIR the multipliers are reduced to

look up tables since the coefficients are known before hand. More detailed implemen-

tation details regarding the constant coefficient multipliers are discussed in the chapter

3.

Decision Clock. The decision interval is calculated by rigorous simulation. This

block is implemented as a counter that resets at the end of every decision interval.

Zero Crossing Counter. Since the MSB of the input signal gives the zero crossings,

counting the number of clock cycles between two rising edges of the MSB will give

count between zero crossings which in turn gives a measure of the carrier frequency.

The individual blocks are integrated as shown in figure 2.1. At anytime only one of

the output signals will be high depending on the input modulation. However it must

be noted that change in the modulation type at the input will be reflected only at the

end of the next decision interval. It is assumed that changes in the input modulation

occur much slower than the decision clock.

In the above discussed blocks the averaging filter is the most expensive in terms of

space. The results from the FPGA implementation of the proposed algorithm of modu-

lation recognition have been very promising and in chapter 4 it will be discussed how

this algorithm was used to build a run-time reconfigurable demodulator on FPGAs.

9

Chapter 3

Design and FPGA Implementation

of PSK and FSK demodulators

This chapter begins with an in depth description of the design flow used to synthe-

size FPGAs. Later the design and implementation of the three demodulators, namely,

PSK2, PSK4 and FSK2 is discussed. Certain domain specific optimizations that helped

improve circuit performance in terms of space and time are documented. Also the

hardware test setup is explained.

3.1 Design Flow for FPGA Synthesis

The design cycle starts with verifying the behavior of the block diagram that we are in-

terested in implementing. We typically used Simulink from Mathworks for this purpose.

The parameters for various lower-level components based on the specifications for the

high-level modules are then derived. There are various software tools that support

design of individual components and then integration into the system to verify the

design using simulation. Most of the tools use floating point formats. Unfortunately,

when we actually implement the design, we are constrained with finite length regis-

ters. The truncated values due to finite word lengths are typically fed back into the

10

simulation tools in order to give a better approximation to the actual implementation.

from Specifications

Signal Processing Toolkits

Block Diagram
Verification Tools

Synthesis Tools

* Analyze source code
* Synthesise for target architecture
* Optimize subject to design constraints
* Generate netlist.

Handcoded
VHDL

Place and Route Tools

* Generate optimal placement

* Generate FPGA configuration data

Placed and routed Netlist

Derive Design Parameters

* Route the placed logic

Optimized FPGA Netlist

Programmable Hardware

Figure 3.1: Design flow for FPGA synthesis

Once the ”magic numbers” from this phase of the design are obtained, the design

is coded in VHDL. The synthesis involves analyzing the VHDL code, synthesizing

for the target architecture, optimizing subject to design constraints such as placement

directives or delay specifications, and generating an optimized FPGA netlist.

Placement and routing tools generate an optimal placement subject to delay con-

straints and then interconnect the logic using the available routing resources on the par-

11

ticular FPGA. A bit file containing FPGA configuration data that can be downloaded

onto the chip is finally generated. The figure 3.1 explains this flow graphically.

12

3.2 Binary Phase Shift Keying Demodulator

The demodulator has a data rate of 100 kbps, although higher rates are quite feasible.

The carrier frequency was selected to be 500 kHz. The binary PSK modulated signal

is sampled at 8 MHz and fed as a digital input to the design. The PSK signal has the

characteristic that the phase of the carrier wave changes at the data rate. The phase

of the signal will be one of the M values for an M-ary PSK, where the M phases differ

by 360/Mo. In this implementation of BPSK we had the carrier changing phase by

180o. The phase switching occurs based on the data bit transmitted. The demodulator

should be able to distinguish between a one or a zero based on the modulated input.

3.2.1 Theoretical Background

Phase Shift Keying is a widely used form of data transmission, well suited for syn-

chronous data communications. [8] For unrestricted bandwidth PSK gives the lowest

bit error rate for a given transmitted energy per bit. It is also efficient in the use of

bandwidth [11]. The basic PSK system, for binary data, transmits one of the two

phases of a carrier signal, depending on the sense of the bit transmitted. Thus one

may be transmitted by the symbol Acoswct, while a zero is transmitted as �Acoswct.

The sign reversal corresponds to a 180 degree phase shift, hence the name phase shift

keying. The received modulated signal therefore is

The received modulated signal is

s(t) = k � d(t)cos(2�fct+ �) (3.1)

d(t)�f�1;+1g (3.2)

The basic function of the BPSK demodulator is illustrated in Figure 3.2. At the

receiver, a reference carrier is created from the input signal. This recovered carrier is

13

at the same frequency as that of the original carrier, but devoid of any phase changes

in the sense that the reference carrier has a constant phase. The recovered carrier is

mixed with the input modulated signal to bring the signal to baseband. The baseband

signal is passed through a low pass filter, which will filter out the higher frequency

components arising a a result of mixing. A zero/one decision is made based on this

output.

X
Recovery
Carrier

Delay

Threshold

Carrier: 500 kHz
Data Rate: 100 kbps

Integrate
Signal

BPSK

Bit

Demodulated

Figure 3.2: Block diagram for BPSK demodulator

There are numerous methods for generating the reference carrier from the input

modulated signal. We chose an open loop carrier recovery scheme for implementation.

The goal of the carrier recovery scheme is to generate a reference carrier with exactly

the same frequency as that of the original carrier and having a constant phase, but it

may have a constant phase difference with the original carrier. When data changes

occur, the carrier will be in phase for one of the symbols (zero or one) and totally out

of phase for the other symbol, so that when we mix the two signals we can have two

different levels of amplitude from which we can make a decision.

 2
(*) @ 2fc

 BPF f/2

 Zero
Crossing
Detection

 Sine
 to

 Square

Square
 to
 Sine

BPSK

Signal
Recovered

Carrier

LPF

Figure 3.3: Block diagram for carrier recovery

14

The carrier recovery scheme takes the input in the form of a phase-modulated

wave. The first module in the carrier recovery is a square law device. This elimi-

nates the modulation present in the input signal and produces frequency components

at twice the carrier frequency. By passing this output through the bandpass filter we

select twice the carrier component. The output of the bandpass filter will then be

c(t) = k � d2(t)sin(2�fct+ 2�) (3.3)

To have a clean reference at the carrier frequency we need to divide the frequency

of the wave at the bandpass filter’s output. To do this we convert the sine wave into a

square wave by zero crossing transformation, since it is easier to half the frequency of

the square wave. We then have a square wave of frequency same as that of the carrier.

By passing it through a low pass filter which has a cutoff at the carrier frequency, we

can exploit the fact that a square wave of a particular frequency can be viewed as

a superposition of sine waves of different frequencies and pick out the sine wave of

the fundamental frequency. The output of the carrier recovery circuit will always be

locked to the input frequency for minor drifts in the frequency of the input. The drift

the circuit can tolerate without losing synchronization will depend on the bandwidth

of the bandpass filter.

We then have the phase-modulated input and a recovered carrier that have the

same frequency. A delay is used to compensate for the delay through the tap line in

the carrier recovery circuit so that the reference signal can be exactly in phase with

one of the symbols. We then multiply these two signals. For symbols interval for

which the input is in phase with the reference carrier, the multiplication will yield

exactly the same as the squaring of the input signal would yield. The resulting wave

would be all positive and have frequency components primarily at twice the carrier.

For symbol intervals for which the input is totally out of phase with respect to the

reference carrier, the multiplication would always yield a negative result and have

15

similar frequency components as in the first case. By passing this output through a

low pass filter, a square wave switching between positive and negative sides of the

mean can be detected. The mean is used as a threshold to make a bit decision.

3.2.2 Implementation Details

3.2.2.1 Data Formats

We chose two’s complement format to represent the signals in digital domain due to its

ability to handle negative numbers inherently without an extra sign bit. Positive and

negative numbers can be distinguished by the most significant bit of the given number.

3.2.2.2 Constant Coefficient Multipliers

One major class of DSP blocks used for communications is the filter. Filter implemen-

tation reduces to delay, multiply, and accumulate. The multipliers used in most filters

are reduced multipliers, in the sense that one of the operand is fixed. Using constant

coefficient multipliers instead of general multipliers yields significant savings in hard-

ware resources for the circuit.

A constant coefficient multiplier can be implemented as a lookup table. [3] The

output is determined for all possible values of the input and stored as a ROM. For

example, for an 8 bit input and an 8 bit constant, there would be 256 entries in the ROM

table, each entry being 16 bits wide. To take a practical approach, we use a hybrid

technique, where the look up table is stored only for k*0,... k*F, where k represents

the constant input. The input bits are grouped into groups of 4 bits. The lookup is

performed with each group of four to obtain partial products, which are added to

get the final product. For the above example, the 8 bit input would be split into two

groups of 4 bits each (the upper nibble and the lower nibble), and two table lookups

are performed to get two partial sums. The partial product resulting from the upper

nibble is left shifted by 4 and added to the partial product resulting from the lower

nibble to get the final product.

16

Two’s complement multiplication is also easily implemented, by using a signed

lookup table.

3.2.2.3 Square Law Device

The first block of the carrier recovery scheme is the square law device. This is im-

plemented as a normal signed multiplier. The input is an 8 bit two’s complemented

number. This is the input to the whole system as such. Output for full precision would

be 15 bit wide but is truncated to 8 bit to make it ideal for cascading it with the band-

pass filter that follows it. The effect of squaring removes the modulation present in

the input. The frequency spectrum of the output ideally would contain only the dc

component and double the frequency component but in practice due to some finite

amount of dc that may be present in the signal the carrier frequency also persists. The

implementation details are tabulated in table 3.1.

Parttype 4013PG223-5
CLB Usage 62 of 576 available ... 10%
Max. Clock 17.75 MHz

CPU Times On Ultra Sparc 1
Partition Placement Routing

1s 24s 26s

Table 3.1: Implementation details for the module Square Law Device

3.2.2.4 Bandpass Filter

The frequency response of the signal that is the input to bandpass filter is shown in

the figure 3.4. The frequency of interest is double the carrier frequency. In this case for

a carrier of 500 kHz the bandpass should be centered at 1 MHz. To implement this a

Remez exchange window is used. The resulting filter is a 21 tap FIR. The filter design

was done using Signal Processing Workshop (SPW). The 6dB bandwidth for the filter

is 500 kHz and a null-null bandwidth of 950 kHz. The design takes a 8 bit two’s com-

plement input and gives a 12 bit wide output which also is two’s complemented. The

17

multiplication in the filter is done using constant coefficient multipliers which gives

a lot of saving in space as compared to a generic multiplier. The theoretical versus

implementation plots for the magnitude response is shown in the figure 3.4.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

−70

−60

−50

−40

−30

−20

−10

0

Implementation
Theoretical

Figure 3.4: Magnitude response of Bandpass filter : Theory Vs Implementation

Here are the implementation details for the design.

18

Parttype 4013PG223-5
CLB Usage 351 of 576 available ... 60%
Max. Clock 10.32 MHz

CPU Times On Ultra Sparc 1
Partition Placement Routing

5s 3m 1s 1m 49s

Table 3.2: Implementation details for the module Bandpass Filter

3.2.2.5 Frequency Divider

The sine wave from the bandpass is converted to a square wave by taking the most

significant bit. This single bit square wave is used input to the frequency divider. The

logic used for frequency division is as follows. The rising edge of the input wave is

tracked and transition from the current state of the output enforced. The output stays

latched for the falling edge of the input, hence doubling the time period or dividing

the frequency by two. The implementation details are tabulated in table 3.3.

Parttype 4013PG223-5
CLB Usage 4 of 576 available ... 1%
Max. Clock 74.6 MHz

CPU Times On Ultra Sparc 1
Partition Placement Routing

1s 13s 1s

Table 3.3: Implementation details for the module Frequency Divider

3.2.3 Square to Sine Converter

The output of the frequency divider is a square wave that has exactly the same fre-

quency as that of the carrier. The goal is to generate a sine wave from the square wave.

The input to the square to sine converter therefore is the square wave of carrier fre-

quency. The input is a single bit and an output of 8 bits. The square wave can be

visualized to be a superposition of sine waves of fundamental frequency along with

other odd harmonics. By applying low pass filtering to such a frequency spectrum

would yield a sine wave of fundamental frequency. As far as the implementation is

19

concerned the multiplies can be done away with. This is because the input is a single

bit and hence the product terms will be multiplication of the coefficients with either 1

or -1. The filter has a cutoff just more than the fundamental frequency, which is 500

kHz in our case. The filter chosen for implementation is a 16 tap kaiser window.

Parttype 4013PG223-5
CLB Usage 193 of 576 available ... 33%
Max. Clock 18.9 MHz

CPU Times On Ultra Sparc 1
Partition Placement Routing

1s 1m 1s

Table 3.4: Implementation details for the module Square to Sine Converter

3.2.3.1 Carrier Recovery

The whole carrier recovery is integrated and tested. The table here shows the imple-

mentation details.

Parttype 4025EHQ240-4
CLB Usage 530 of 1024 available ... 51%
Max. Clock 10.14 MHz

CPU Times On Ultra Sparc 1
Partition Placement Routing

8s 4m 45s 8m 7s

Table 3.5: Implementation details for the module Carrier Recovery

3.2.3.2 Data Filter

The function of the data filter is to smoothen the baseband waveform and reject the

higher frequency components that result due to mixing. The input is 8 bit and output is

12 bit. The filter is designed to have a 6dB cutoff of 150 kHz and a null-null bandwidth

of 500 kHz. The resulting filter is a 19 tap FIR filter. The window used was kaiser. The

20

following plot shows a comparison of the magnitude responses of the filter designed

and the implemented on the FPGA.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
6

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Implementation
Theoretical

Figure 3.5: Magnitude response of Data filter : Theory Vs Implementation

Here are the implementation details.

21

Parttype 4013PG223-5
CLB Usage 378 of 576 available ... 57%
Max. Clock 10.3 MHz

CPU Times On Ultra Sparc 1
Partition Placement Routing

5s 2m 46s 1m 57s

Table 3.6: Implementation details for the module Data Filter

3.2.3.3 Integration and Testing

All the above discussed modules are integrated as in the block diagram discussed in

section 2. For generating the BPSK modulated signal Stanford Telecom’s STEL-9231 is

used. This takes as input the carrier frequency from the signal generator, serial data

from the Bit Error Rate Tester (BERT) and gives out a modulated signal. This analog

input is sampled using an A/D converter and the digital output is fed an input to the

demodulator. The demodulation is performed which outputs a single bit data stream

which is fed back into the received data terminal of the BERT. A detailed test setup is

shown illustrated below:

BERT

IF_in

Sym_Clk

Tx_Data

70 MHz

IOFPGA
XC4013

FPIC 1

PG223-5

XC4025
EHQ240-4

IOFPGA-II

FPIC 2 FPIC 3

APTIX MP3A

BOARD

CLK

Sampling Clock
8 MHz

Rx_Data

Signal Generator

A/D
Converter

Signal

8

STEL-9231

MODULATOR
PSK

PSK

Figure 3.6: Test setup for the BPSK/QPSK demodulator

The IOFPGA on the APTIX board is used to route signal to and from the actual

22

chip XC4025 on which the demodulator is implemented. The implementation details

are presented below.

Parttype 4025EHQ240-4
CLB Usage 898 of 1024 available ... 87%
Max. Clock 10.07 MHz

CPU Times On Ultra Sparc 1
Partition Placement Routing

35s 11m 44s 11m 23s

Table 3.7: Implementation details for the BPSK demodulator

The above implementation yielded a bit error rate of 10�9 or higher. The testing

was done for more than 3 hours without a single bit error. The performance of the

demodulator will be discussed in the Testing and Results chapter. To compare the im-

plementation discussed above here are few other FPGA implementations and bench-

marks [6]. The design used for bench marking was built for a data rate of 512 kpbs, a

5 MHz modulated carrier sampled at 20 MHz.

Vendor Device Required Logic Available Logic % of Available Logic
Altera 10K100 1682 LE’s 4992 LE’s 33.7 %
Lucent 2C40 355 PLC’s 900 PLC’s 39.4 %
Altera 10K50 1682 LE’s 2880 LE’s 58.4 %
Lucent 2C26 355 PLC’s 576 PLC’s 61.6 %
Lucent 2C15 355 PLC’s 400 PLC’s 88.8 %
Xilinx 4025E 919 CLB’s 1024 CLB’s 90.0 %

Table 3.8: Benchmarkings for the BPSK demodulator on FPGA

23

3.3 Quaternary Phase Shift Keying Demodulator

3.3.1 Introduction

The design was extended to 4-ary PSK and this section documents the design and

implementation details. The date rate was doubled to 200 kbps or 100 k symbols/sec

with two bits for each symbol. Most of the modules developed for the BPSK design

were reusable for this design. The modules are discussed in the following section.

Carrier
Recovery

90
o

Parallel

Serial
To

Differential

Decoder

X

X LPF Decision

LPF Decision

Signal

QPSK

Rx_Data

* IF : 40 - 70 MHz

* Carrier : 500 kHz

* Symbol Rate : 100 k symbols/sec

* Data Rate : 200 k bits/sec

Analog
Front
End

DIGITAL PART

Figure 3.7: Block diagram for the QPSK demodulator

3.3.2 Carrier Recovery

Essentially all the blocks used for the BPSK design are reused. The square law device

is replaced with a fourth power device. The reason for introducing a fourth power

non-linearity is to get rid of the four phases contained in the modulated wave and get

a pure sine wave. The output of the fourth power device now will have components

at 500 kHz, 1 MHz, and 2 MHz. But only the components at 2 MHz are the one’s

without any phase changes. So in order to extract a 2 MHz signal we need to shift the

center frequency of the band pass filter to 2 MHz. Since a carrier of 500 kHz is needed,

the 2 MHz signal needs to be divided in frequency by 4. So the 2 MHz sine wave is

converted into a square wave of 2 MHz and the square wave is divided by four in

24

frequency. This is done by cascading two D-flip flops. The square wave is converted

into a sine wave the same way as was done in BPSK. A QPSK demodulator can be

built using two separate BPSK channels which are orthogonal to each other. For this

purpose the carrier recovered needs to be phase shifted by 90o to implement a channel

orthogonal to the first one. This is implemented using a Hilbert transform filter. Hilbert

transform filter is realized as a 4-tap FIR structure with anti-symmetric coefficients. [5]

One carrier locks in phase to one of the four possible phases and other carrier locks in

phase to an orthogonal phase. The carrier recovery and the Hilbert transformer are fit

into a single FPGA 4025EHQ240-4.

3.3.3 Upper Channel

The upper channel is implemented exactly as the in the BPSK design. The carrier recov-

ered is mixed with the incoming QPSK signal that is delayed using an external delay

elements. Then the data is demodulated. The lower channel that uses the orthogonal

is also implemented on similar lines. The data filter is redesigned for a cutoff of 250

kHz to accommodate higher data rate.

3.3.4 Recombination of data

The I and Q data that are obtained on two channels need to be recombined before fed

back into the BERT. Data is time multiplexed using a clock double the speed of the data

in each channel. This is accomplished by suitably dividing the global clock by 40 again

to synchronize with the data clock. Before feeding to the BERT the recombined data

is decoded differentially. This is done simply by storing the previous bit and XORing

with the current data bit.

3.3.5 Partitioning the design across multiple FPGAs

The general test set up shown in Figure is used for testing QPSK demodulator. The

whole design is split across three different FPGAs. The IOFPGA contains the clock

25

generator, data generator and the encoder along with the Front end, and the lower

channel. The implementation details are tabulated in table 3.9.

Parttype 4013PG223-5
CLB Usage 530 of 576 available ... 92%
Max. Clock 10.06 MHz

CPU Times On Ultra Sparc 1
Partition Placement Routing

4s 2m 25s 2m 23s

Table 3.9: Implementation details of the QPSK demodulator : IOFPGA

The FPGA1 which is 4025EHQ240-4 has the carrier recovery along with the Hilbert

transformer implemented in it. The implementation details are tabulated table 3.10.

Parttype 4025EHQ240-4
CLB Usage 835 of 1024 available ... 81%
Max. Clock 9.41 MHz

CPU Times On Ultra Sparc 1
Partition Placement Routing

8s 4m 32s 4m 15s

Table 3.10: Implementation details of the QPSK demodulator : FPGA-I

The FPGA2 has the upper channel in it. The input to this FPGA is the recovered

carrier from the FPGA1 and the output of the front end of from the IOFPGA. The other

implementation details are tabulated in table 3.11.

Parttype 4025EHQ240-4
CLB Usage 538 of 1024 available ... 52%
Max. Clock 9.34 MHz

CPU Times On Ultra Sparc 1
Partition Placement Routing

4s 2m 43s 2m 51s

Table 3.11: Implementation details of the QPSK demodulator : FPGA-II

The performance of the demodulator will be discussed in the chapter 5

26

3.4 Binary Frequency Shift Keying Demodulator

Zero Crossings
CounterSignal

Modulated Demodulated

Data

ThresholdZero Crossings
Detector

Figure 3.8: Block diagram for the BFSK demodulator

FSK signals have multiple tones in them. Each tone can be characterized by the

number of clock cycles it takes between two zero crossings for a given sampling fre-

quency. For example a 400 kHz signal sampled at 8 MHz will have 20 samples between

two zero crossings and a 600 kHz signal would have about 13 samples. So a counter

that can resets for every zero crossing would have two discreet values at the output. A

threshold somewhere in between 20 and 13 would hard limit the output to digital lev-

els. Thus demodulating the FSK signal. The block diagram for the FSK demodulator is

shown in the figure To demonstrate this the two carriers are chosen to be 400 and 600

kHz for Mark and Space frequencies. To increase the tolerance to noise the sampling

can be increased so that the values from the counter are separated further apart and

decreasing the probability of an error. The test set up is very similar to the BPSK test

set up. The implementation details are presented in the following table.

Parttype 4013PG223-5
CLB Usage 4 of 576 available ...1%
Max. Clock 63.4 MHz

CPU Times On Ultra Sparc 1
Partition Placement Routing

1s 4s 5s

Table 3.12: Implementation details of the BFSK demodulator

27

Chapter 4

Reconfigurable Demodulator

This chapter describes the reconfigurable platform used to implement the adaptive

demodulator.

4.1 Introduction

The WILDFORCE reconfigurable computing engine is a Commercial Off the Shelf

(COTS) product from Annapolis Micro Systems, Inc. It has Xilinx 4000 series of FPGAs

as Parallel Processing Elements (PEs). It is a PCI based parallel high speed processing

board.

4.2 Architecture

The general architecture is shown in the figure 4.1. [1] The board has 5 Xilinx 4085XLA

FPGAs on them. Each Processing Element (PE) consists of a Xilinx 4000 Series FPGA

programmable by the user, a memory controller and shared memory. WILDFORCE

has a crossbar switch which allows non-adjacent processing elements to communicate.

The communication between the host computer and the board is made possible using

FIFOs which are in turn implemented on xilinx 4010 FPGAs or Direct Memory Access

both using the ’C’ API interface. For real time processing the board is equipped with

28

external IO interface. It is also possible to get signals in and out of the and other control

logic part from the functionality specified by the user. The interface to the memory or

the other mezzanine cards is implemented on the Xilinx of the Processing Element

being used along with the user code also called as ”Logic Core”.

4.2.1 FIFO Interface

The FIFO interface is meant to provide a simple means of file I/O to the FIFO. The ac-

tual FIFO is implemented on a xilinx 4010 FPGA. This is configured as a FIFO when the

drivers are loaded. The FIFO interface to the user program however is implemented

on the part of the Xilinx that user will program. The host to FIFO interface is provided

by a ”C” Application Programmer’s Interface (API) calls. The clock for the circuit may

be specified again by the C APIs. The three FIFOs used on the WILDFORCE board are

36 bit wide, consisting of a 32 bit wide bi-directional data word and a 4-bit wide tag,

that is input only from the host.

4.2.2 Memory Interface

The Dual Port Memory Controller (DPMC) allows both the host and the processing

elements to access the external memory cards on the WILDFORCE mezzanine expan-

sion connectors. The memory accesses performed by the processing elements or the

host are pipelined. All the accesses are arbitrated by the dual port memory controller.

The external memory card is of size 1 MB.

4.2.3 Crossbar Model

The crossbar network is a set of Xilinx FPGAs used to implement processing element

interconnection network. The data port between the processing elements and the cross-

bar is 36 bits wide, and is divided into nine four-bit nibbles. The crossbar can be con-

figured between to establish connections between any same nibble of the two distinct

PE ports. Each processing element has one connection to the crossbar, except for pro-

29

S

U

B

I

C

P

EXTERNAL
I/O CARD CONNECTOR

SIMD

SWITCH

CPE ’0’

Logic

DSP / Memory

Mezz. Card

DPMC ’0’

Core

C R O S S B A R

512 x 36
FIFO ’4’

FIFO

face
Inter- 512 x 36

FIFO ’1’

Logic

Core

DSP / Memory

Mezz. Card

Logic

Core

DSP / Memory

Mezz. Card

Logic

Core

DSP / Memory

Mezz. Card

Logic

Core

DSP / Memory

Mezz. Card

PE ’1’

DPMC ’1’ DPMC ’2’

PE ’2’ PE ’3’ PE ’4’

FIFO ’0’
512 x 36

DPMC ’3’ DPMC ’4’PE Interrupts

Reset Signals

Handshake
Bus

Memory
Bus

36

36

36

36

36

36
36 36 36 36

36

36

36 36 36

32
2

2
2

2
32

180

24

36

32

8 8
32 32

Figure 4.1: WILDFORCE : Architecture

30

cessing element 0 (CPE0), which has two such connections to port zero and ports five

on the crossbar. There are lot of options in which crossbar can be configured. The

crossbar allows for a reconfigurable, bi-directional set of data paths that enable any

processing element to develop a set of connections to any other processing elements

on the WILDFORCE board. Like the crossbar, another powerful means of communica-

tion between processing elements 1 through 4 is the systolic interface. Each processing

element is connected to its neighboring element by this systolic bus. The systolic bus

is bi-directional.

4.3 Programming the WILDFORCE

User’s Host ’C’ Application

Applications
User’s Processing Element

WILDFORCE Device Driver

WILDFORCE API Library

(API)

(OS Specific driver interfaces)

(Hardware Interfaces)

Figure 4.2: WILDFORCE : Software Hierarchy

The API routines provide high-level operations by performing combinations of

31

BPSK
AMR

LOGIC CORE
Configuration Files

HOST

AMR

AMR

QPSK

BFSK

FPGA

Data
Configuration

MODULATED
SIGNAL

AUTOMATIC
MODULATION
RECOGNISER

DEMODULATOR
Demodulated
Data

Enable
Signal

Figure 4.3: Adaptive Demodulator

low-level hardware interfaces. The software hierarchy is explained in the figure 4.2. [1]

The input data file can be read using the C API and the data fed to the FPGA using

the FIFO interface explained earlier. Similarly the processed data from the FPGA is

dumped to the FPGA from where the C API can read it back. The C API accesses the

FPGA via the WILDFORCE API library which in turn communicates with the hard-

ware device drivers. This gives tremendous possibilities to the user to prototype,

debug and implement complex systems. The application we are interested is to dy-

namically reconfigure the FPGAs depending on the type of modulation present in the

input signal so as to demodulate accordingly. The user C program can be written to

accordingly to download a different configuration file as and when required. Since

the download time is extremely small to the order of less than a second, the interface

could be acceptable for real time data processing. The modifications to extend the idea

to process real signals is minimal. The fifo interface will be replaced by the external IO

interface.

32

4.4 Adaptive Demodulation

The algorithm for the automatic modulation recognition was explained in chapter 2.

This algorithm is used to build a reconfigurable demodulator. The modulation recog-

nizer constantly monitors the type of the modulation present in the input signal and

generates distinct enable signals for PSK2, PSK4 and FSK4 modulation type. Each of

the demodulator is equipped with a modulation recognizer at the front end so that it

can track the changes in the modulation of the input signal. While the data is being

demodulated the enable signals are read using the C API. The C program keeps the

state of the FPGA configuration as to what the current demodulator is. If the modula-

tion changes the FPGA is reconfigured by downloading the appropriate bit file. So the

”Logic Core” (explained in section 4.2) can be either a PSK2, PSK4 or a FSK4 demodu-

lator with a modulation recognizer hooked onto it. The general block diagram for the

Logic Core is explained in the figure 4.3.

33

Chapter 5

Testing and Results

5.1 Performance Analysis of the Demodulators in Presence of

Additive White Gaussian Noise

The general setup to test the demodulators in the presence of noise is illustrated in the

figure 5.1.

STEL-9231
BPSK

MODULATOR
BERT

IF_in

Sym_Clk

Tx_Data

70 MHz

IOFPGA
XC4013

FPIC 1

PG223-5

XC4025
EHQ240-4

IOFPGA-II

FPIC 2 FPIC 3

APTIX MP3A

BOARD

CLK

Sampling Clock
8 MHz

Rx_Data

+

Noise
Generator

Signal Generator

@ 70 MHz
Analog BPF

Amp
20 dB

White
Gaussian

Noise FRONT END
ANALOG

A/D
Converter

BPSK
Signal

8

Figure 5.1: Test setup for characterizing PSK demodulators in the presence of AWGN

34

5.1.0.1 Analog Front End

In order to test the receiver in the presence of Additive White Gaussian Noise an analog

front end was built. The Signal-to-Noise ratio is calculated at the input of the front end.

The front end comprises a bandpass filter at 70 MHz with a 5 MHz bandwidth (3 dB

bandwidth) and a 20 dB amplifier to push the amplitude levels into the operating range

of the digital demodulator. The signal is brought down to the second IF stage that is

500 kHz by suitably sub sampling the 70 MHz IF by a 8.75 MHz clock so that it forms

images at every 500 kHz and the first image is used for the rest of the processing.

5.1.0.2 Eb/N0 calculation

We are interested in plotting the variation of the average Bit Error Rate (BER) with

changing Eb/N0. The Eb/N0 is calculated the following way. [10]

Eb = PTb (5.1)

where P represents the received signal data power in watts and N0 the one-sided PSD

level of the noise. For the tests performed the signal power was about -25 dB which is

about -75 dBm/Hz for a data rate of 100 kbps. The noise power is varied accordingly

so as to get a ratio of 0 to 15 dB.

5.1.0.3 BER Vs Eb/N0

The standard BER Vs Eb/N0 curves are plotted and compared with the theoretical ones

in the figure 5.2 and figure 5.3. The theoretical expression for the probability of BER as

a function of Eb/N0 is given by the formula [10]:

For Antipodal (BPSK) Signals) -

P (E) = Q(

r
2Eb

N0

) (5.2)

35

For Bi-Orthogonal (QPSK) Signals) -

P (E) = Q(

r
Eb

2N0

) (5.3)

where Q is the error function.

7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
−9

−8

−7

−6

−5

−4

−3

−2

E
b
/N

0
, dB

lo
g 10

P
b(E

)

Implementation
Theoretical

Figure 5.2: BER Vs Eb/N0 curves for BPSK : Theoretical Vs Implementation

To compare the performance of QPSK receiver vis-a-vis the BPSK receiver both the

curves are plotted in the figure 5.4.

As expected the performance of BPSK receiver is better than that of the QPSK. The-

36

7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
−9

−8

−7

−6

−5

−4

−3

−2

E
b
/N

0
, dB

lo
g 10

P
b(E

)

Implementation
Theoretical

Figure 5.3: BER Vs Eb/N0 curves for QPSK : Theoretical Vs Implementation

37

7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12
−7

−6.5

−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

E
b
/N

0
, dB

lo
g 10

P
b(E

)

BPSK
QPSK

Figure 5.4: BER Vs Eb/N0 curves for PSK : BPSK Vs QPSK

38

oretically the performance is expected to drop by about 3dB of SNR which means that

for the same probability of error QPSK requires that the SNR or equivalently Eb/N0 3

dB more than that would be needed for the BPSK receiver.

5.2 Testing the Reconfigurable Demodulator

The functioning of the adaptive demodulator was tested on the WILDFORCE platform

about which was explained in the ”Reconfigurable Demodulator” chapter. This plat-

form is ideally suited for reconfiguring the FPGA based on the modulation detected

at the input by the modulation recognizer hooked to each of the demodulators. The

testing strategy adopted is that the FIFO interface of the WILDFORCE setup is used to

pump in data to the FPGA from a file and the enable signals read from the FPGA using

the same interface. The state of the FPGA as to what demodulator is currently being

used is maintained by the used C program and when ever the modulation changes

the FPGA is reconfigured by downloading the appropriate bit file. So three different

bit files are generated one for each demodulator. At start only the modulation recog-

nizer resides in the FPGA and monitors the input signal to determine the modulation

type. The decision interval is 2048 clock cycles. This figure is arrived at after extensive

tests to decide on an optimum value. Though the modulation at the input signal may

change between two decision intervals the reconfiguration takes place only at the end

of the decision interval. This is to avoid misfiring of the download program for false

changes in the sense that unless a particular modulation type is sensed for the some-

time as determined by the decision interval the changes are ignored and considered

false. This is important for testing because the signal should possess a particular mod-

ulation in it for the time posed by the decision interval. The data is generated using

matlab and simulink and stored into a file.

39

5.2.1 Noise Tolerance levels for the AMR algorithm

Testing was done with the strategy explained in the previous section. This was a noise

free environment. The results are as expected. To elaborate, the modulation recognizer

could successfully identify the modulation type and also initiate the reconfiguring the

FPGA as a appropriate demodulator. However a more useful metric while compar-

ing the algorithm with the existing ones is to quote the noise tolerance level which

usually is mentioned in dB of Signal-to-Noise ratio. The reconfigurable demodulator

was tested in the presence of noise. For successfully classifying the modulation types

among FSK2, PSK2 and PSK4 the proposed algorithm required a signal-to-noise ratio

of 20 dB or more which is not particularly bad. Most of the classifiers referenced in this

work require about 10-20 dB of SNR for 100% success rate of classification. It would be

interesting to see the variation of the thresholds with SNR.

40

Chapter 6

Conclusions and Future Work

To summarize, this thesis documents the design and FPGA implementation of cer-

tain radio processing functions. It also demonstrates how the reconfigurability offered

by FPGAs can be exploited to implement adaptive algorithms of signal processing and

communications. A novel algorithm of modulation recognition has been proposed and

implemented. This aided the integration of the individual demodulators into an adap-

tive demodulator. As opposed to more common universal demodulators which switch

between resident demodulators based on the input from the modulation recognizer, it

has been shown how the same FPGA can be reconfigured as a desired demodulator on

the fly as the input modulation scheme changes thus saving extra silicon. The capa-

bilities offered by the reconfigurable platform have been demonstrated which can be a

promising choice for a more robust signal processing or communication system.

6.1 Future Work

Future work may extend in different directions which may include the following:

� Extension of the modulation recognition algorithm to accommodate other mod-

ulation types.

41

� Analysis of the effects of Signal to Noise ratio on the thresholds in the AMR

algorithm to make them more noise tolerant than 20 dB.

� Exploit the reconfigurability of FPGAs to partially reconfigure them, thereby

making the demodulators adapt to changing environments. Supporting a wide

range of data rates would be a good example in this direction.

42

Bibliography

[1] Annapolis Micro Systems Inc. WILDFORCE Reference Manual, 1999. revision 3.4.

[2] Elsayed Elsayed Azzouz and Asoke Kumar Nandi. Automatic Modulation Recog-

nition of Communication Signals. Kluwer Academic Publishers, 1996.

[3] Ken Chapman. Constant coefficient multipliers for the xc4000e. Application Note,

december 1996. Xilinx Inc.

[4] Sebastiano B. Serpico Fabio Roli and Gianni Vernazza. Intelligent control of sig-

nal processing algorithms in communications. IEEE Journal on Selected Areas in

Communications, pages 1553–1565, 1994.

[5] M. E. Frerking. Digital Signal Processing in Communication Systems. Chapman &

Hall, 1994.

[6] Thad Genrich. Bpsk demodulator/bit synchronizer fpga implmentation and

benchmarking.

[7] Chung-Yu Huamg and Andreas Polydros. Likelihood methods for mpsk mod-

ulation classification. IEEE Transactions on Communications, 43(2/3/4):1493–1504,

1995.

[8] D. Duponteil J. C. Bic and J. C. Imbeaux. Elements of Digital Communications. John

Wiley and Sons, 1991.

43

[9] K. Farrell K. Alssaleh and R. J. Mammone. A new method of modulation classifi-

cation for digitally modulated signals. MELCOM, pages 30.5.1–30.5.5, 1992.

[10] William C. Lindsey Marvin K. Simon, Sami M. Hinedi. Digital Communication

Techniques. Prentice Hall, 1995.

[11] Steve P. Nicoloso. An investigation of carrier recovery techniques for psk modu-

lated signals in cdma and multipath mobile environments. Master’s thesis, Vir-

ginia Polytechnic Institute and State University, June 1997.

[12] Glenn E. Prescott. Rapid prototyping of software radio systems using fpgas and

dsp microprocessors. Technical report, University of Kansas, Lawrence, 1997.

[13] Samir S. Soliman and Shue-Zen Hsue. Signal classification using statistical mo-

ments. IEEE Transactions on Communications, 40(5):908–916, 1992.

[14] J. L. Perry T. G. Callaghan and J. K. Tjho. Sampling and algorithms aid modulation

recognition. Microwaves RF, 24(9):117–119, 121, 1985.

44

Appendix A

Filter Details

A.1 Automatic Modulation Recognizer

A.1.1 Averaging Filter

Filter Structure : FIR

Sampling Frequency : 8 MHz

Window Method : Kaiser

Tap Length : 25

-6 dB cut-off : 100 kHz

Trade Off Factor : 3.5

Coefficients :

b0 = b24 = 0.008738

b1 = b23 = 0.013567

b2 = b22 = 0.019045

b3 = b21 = 0.025014

b4 = b20 = 0.031278

b5 = b19 = 0.037611

b6 = b18 = 0.043771

b7 = b17 = 0.049510

45

b8 = b16 = 0.054590

b9 = b15 = 0.058792

b10 = b14 = 0.061935

b11 = b13 = 0.063878

b12 = b12 = 0.063878

A.2 BPSK Receiver

A.2.1 Carrier Recovery

A.2.1.1 Bandpass Filter

Filter Structure : FIR

Sampling Frequency : 8 MHz

Window Method : Remez Exchange

Tap Length : 21

Center Frequency : 1 MHz

Passband Width : 400 kHz

Stopband Width : 800 kHz

Stopband Weight : 8

Passband Weight : 8

Coefficients :

b0 = b21 = 0.008738

b1 = b19 = 0.049727

b2 = b18 = 0.044479

b3 = b17 = 0.034744

b4 = b16 = 0.001235

b5 = b15 = -0.041227

b6 = b14 = -0.064711

46

b7 = b13 = -0.049342

b8 = b12 = -0.000223

b9 = b11 = 0.0.052975

b10 = b10 = 0.075775

A.2.1.2 Square to Sine Converter

Filter Structure : FIR

Sampling Frequency : 8 MHz

Window Method : Kaiser

Tap Length : 16

-6dB cut-off : 600 kHz Trade Off Factor : 3.39 Coefficients :

b0 = b15 = 0.003834

b1 = b14 = 0.012247

b2 = b13 = 0.026880

b3 = b12 = 0.047420

b4 = b11 = 0.071685

b5 = b10 = 0.095893

b6 = b9 = 0.115520

b7 = b8 = 0.126520

A.2.2 Data Filter

Filter Structure : FIR

Sampling Frequency : 8 MHz

Window Method : Kaiser

Tap Length : 19

-6 dB cut-off : 150 kHz

47

Trade Off Factor : 2.0

Coefficients :

b0 = b18 = 0.023438

b1 = b17 = 0.031250

b2 = b16 = 0.039063

b3 = b15 = 0.046875

b4 = b14 = 0.054688

b5 = b13 = 0.062500

b6 = b12 = 0.062500

b7 = b11 = 0.070313

b8 = b10 = 0.070313

b9 = b9 = 0.070313

A.3 QPSK Receiver

A.3.1 Analog Front End Bandpass Filter

Center Frequency : 70 MHz

-6 dB Bandwidth : 5 MHz

A.3.2 Carrier Recovery

A.3.2.1 Bandpass Filter

Filter Structure : FIR

Sampling Frequency : 8 MHz

Window Method : Rectangular

Tap Length : 25

-6 dB Bandwidth : 800 kHz

48

Center Frequency : 2 MHz Coefficients :

b0 = b24 = -0.028095

b1 = b23 = 0.000000

b2 = b22 = 0.000000

b3 = b21 = 0.000000

b4 = b20 = 0.042142

b5 = b19 = 0.000000

b6 = b18 = 0.090916

b7 = b17 = 0.000000

b8 = b16 = 0.013637

b9 = b15 = 0.000000

b10 = b14 = -0.168570

b11 = b13 = 0.000000

b12 = b12 = 0.180190

A.3.2.2 Square to Sine Converter

Filter Structure : FIR

Sampling Frequency : 8 MHz

Window Method : Kaiser

Tap Length : 16

-6dB cut-off : 600 kHz

Trade Off Factor : 3.39

Coefficients :

b0 = b15 = 0.003834

b1 = b14 = 0.012247

b2 = b13 = 0.026880

b3 = b12 = 0.047420

49

b4 = b11 = 0.071685

b5 = b10 = 0.095893

b6 = b9 = 0.115520

b7 = b8 = 0.126520

A.3.3 Hilbert Transform Filter

Filter Structure : FIR

Sampling Frequency : 8 MHz

Tap Length : 4

Coefficients :

b0 = 0.671875

b1 = 0.406250

b2 = -0.406250

b3 = -0.671875

A.3.4 Data Filter

Filter Structure : FIR

Sampling Frequency : 8 MHz

Window Method : Kaiser

Tap Length : 19

-6 dB cut-off : 150 kHz

Trade Off Factor : 2.0

Coefficients :

b0 = b18 = 0.023438

b1 = b17 = 0.031250

b2 = b16 = 0.039063

50

b3 = b15 = 0.046875

b4 = b14 = 0.054688

b5 = b13 = 0.062500

b6 = b12 = 0.062500

b7 = b11 = 0.070313

b8 = b10 = 0.070313

b9 = b9 = 0.070313

51

