
Wavelet Transform based adaptive image
compression on FPGA

by

Sarin George Mathen

B.Tech. (Computer Science & Engineering),

Regional Engineering College, Calicut,

University of Calicut, Calicut, India, 1996

Submitted to the Department of Electrical Engineering and Computer Science

and the Faculty of the Graduate School of the University of Kansas in partial

fulfillment of the requirements for the degree of Master of Science

Professor in Charge

Committee Members

Date Thesis Accepted

c
 Copyright 2000 by Sarin George Mathen

All Rights Reserved

To all my good friends

Acknowledgments

At the end of two years at the Adaptive Computing Systems Lab, I believe
I have become a lot more adaptable than before. Countless people have helped
me in many different ways. Let me try to remember a few. To those I am sure
to miss out, my sincerest apologies.

Thanks to Dr. Joe Evans, my advisor, for his guidance, support, and free-
dom through this project. I will always remember his amazingly fast and short
e-mail replies. I awe at his ’never say no’ attitude, and hope to carry it along.
My special thanks to Dr. Gary Minden for his support and suggestions. My
thanks also to Dr. John Gauch for his suggestions and for serving on my com-
mittee.

Thanks to Dr. Mike Ashley, my previous advisor, for introducing me to
this project and the scheme programming language. I still marvel how quick
he used to debug my scheme programs. I will certainly miss his antics while
debugging. ’I am baffled,’ comes to mind.

Thanks to my friends here, who have made me feel the two year stay less
than two years. Special mention goes to Sandeep Mukthavaram, Harish Sitara-
man, Hemang Parekh and Pramodh Mallipatna. Thanks also to my old pals
Binu Anand, Sunil Chandran and Sajan Skaria who has made life a lot easier
when times were difficult.

Special thanks to Ashish Sirasao of Synplicity Inc. for introducing me to
Logic Synthesis.

Thanks to Dr. Kissan Joseph and family for making my stay here a lot more
tasteful. My thanks also for his help in editing this thesis.

Thanks to my parents. Thanks to my little brother for all his wit and humor.
Finally, thanks to God, for helping me out at difficult times.

Abstract

Image processing systems can encode raw images with different degrees of
precision, achieving varying levels of compression. Different encoders with d-
ifferent compression ratios can be built and used for different applications. The
need to dynamically adjust the compression ratio of the encoder arises in many
applications. One example involves the real-time transmission of encoded data
over a packet switched network.

To suitably adapt the encoder to varying compression requirements, adap-
tive adjustments of the compression parameters are required. This involves
reconfiguring the encoder in an efficient manner. Our approach exploits the re-
configurable nature of Field Programmable Gate Arrays (FPGA), to adapt the
encoder to the varying requirements in real time. A Wavelet transform based
image compression scheme is implemented for encoding gray-scale frames of
512 by 512 pixels on FPGAs. By varying the zero thresholds, the encoder can
achieve varying compression levels.

The complete design of the encoder on FPGA is presented. Implementation
details of the individual blocks are discussed in great detail. Finally, results
from testing are reported and discussed.

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 Why adaptive image compression? 1

1.1.2 Scope of reconfigurable hardware 2

1.2 Thesis Overview . 3

1.3 Related work . 3

2 Wavelets 4

2.1 Wavelets . 4

2.1.1 Compact support, Vanishing moments, and Smoothness . 5

2.1.2 Orthogonal and Bi-orthogonal Wavelets 5

2.1.3 A simple example - the Haar wavelet 5

2.1.4 Lifting scheme . 6

2.1.5 Wavelets that map Integer to Integer 7

2.1.6 (2,2) Bi-orthogonal Cohen Daubechies Feauveau Wavelet . 7

2.1.7 Boundary treatment . 8

2.1.8 Advantages of Wavelets . 9

3 Design and Implementation 10

3.1 Hardware platform . 10

3.2 Design parameters and constraints 11

3.2.1 Memory read/write . 11

i

3.2.2 Real time performance . 12

3.2.3 Design partitioning . 12

3.3 Stage 1: Discrete Wavelet Transform 12

3.3.0.1 (2, 2) wavelet . 12

3.3.0.2 DWT in X and Y directions 13

3.3.0.3 3 stages of wave-letting 15

3.3.0.4 Over all architecture of Stage 1 16

3.4 Stage 2 . 18

3.4.1 Dynamic quantization . 18

3.4.2 Zero thresholding and RLE on zeroes 20

3.4.3 Entropy encoding . 22

3.4.3.1 Encoding scheme 22

3.4.3.2 Bit packing . 23

3.4.3.3 Shifter . 24

3.4.4 Output file format . 25

3.4.5 Stage 2, Overall architecture 26

4 Results 29

4.1 Metrics for testing . 29

4.1.1 Throughput . 29

4.1.1.1 Embedded memory performance 29

4.1.1.2 Effective throughput 30

4.1.2 Compression level Vs noise 31

4.1.3 Implementation costs on the hardware 34

5 Conclusions and Future Work 37

5.1 Conclusions . 37

5.2 Future work . 38

ii

A Design parameters 40

A.1 Zero threshold levels for different codecs 40

A.2 Throughput comparison with a software encoder 41

A.3 Design flow . 42

B Source code listings 43

B.1 Stage 1 - VHDL source code . 43

B.1.1 waveletX.vhd . 43

B.1.2 waveletY.vhd . 45

B.1.3 pe1lca.vhd (top level for stage1) 47

B.2 Stage 2 - VHDL source code . 54

B.2.1 quantizer.vhd . 54

B.2.2 rle.vhd . 56

B.2.3 huffman.vhd . 58

B.2.4 shifter.vhd . 61

B.2.5 pe1lca.vhd (top level for stage2) 65

B.3 Control software - C source code listing 75

B.3.1 pgm.h . 75

B.3.2 wlt.h . 76

B.3.3 stage1.c . 76

B.3.4 stage2.c . 78

iii

List of Tables

2.1 (2,2) CDF wavelet with lifting scheme 8

3.1 Bit range allocation for RLE . 21

4.1 Embedded memory access times from host computer 30

4.2 Delay along a single thread . 31

4.3 PSNR and RMSE equations . 34

4.4 Compression levels and noise neasurements for ’lena’ 35

4.5 Compression levels and noise neasurements for ’barbara’ 35

4.6 Compression levels and noise neasurements for ’goldhill’ 35

4.7 Device usage and Timing statistics 36

A.1 Zero threshold levels for different configurations 40

A.2 Throughput measured from the software encoder 41

iv

List of Figures

2.1 Lifting Scheme . 6

3.1 Configurable Logic Block (CLB) in XC4000 series FPGA 11

3.2 Coefficient ordering along X direction 14

3.3 Coefficient ordering along Y direction 14

3.4 Fast Wavelet transform data flow blocks 15

3.5 High pass and Low pass coefficients at stage 1, X direction 15

3.6 Mallot ordering along the 3 stages of wave-letting 16

3.7 Interleaved ordering along the 3 stages of wave-letting 17

3.8 Stage 1 architecture . 18

3.9 Dynamic Quantizer . 19

3.10 Run Length Encoder for continuous zeroes 21

3.11 Entropy encoding, bit allocation . 23

3.12 Entropy encoder . 23

3.13 Binary Shifter for bit packing . 24

3.14 Outfile format . 26

3.15 Stage 2, data flow diagram . 27

3.16 Stage 2, control flow diagram . 28

4.1 Original Images . 32

4.2 Configuration 1, Minimum compression 32

4.3 Configuration 2, Medium compression 33

4.4 Configuration 3, Maximum compression 33

v

A.1 Design flow . 42

vi

Chapter 1

Introduction

1.1 Motivation

Several aspects of high performance embedded computing and radio process-

ing functions are considered as part of the ’Adaptive Computing Systems’ project�

at the University of Kansas. The motivation is to use reconfigurable hard-

ware for implementing high performance computation blocks. Essentially, the

same piece of silicon is reprogrammed to achieve different functionalities. In

this regard, a set of re-programmable hardware resources, namely Field Pro-

grammable Gate Arrays (FPGA), with embedded memory [WILDFORCE], is

hosted on a computer with real time operating system. This has been success-

fully used to accelerate computational intensive functions [SHA].

1.1.1 Why adaptive image compression?

Image processing systems can encode raw images with different degrees of

precision, achieving varying levels of compression. Encoding can be achieved

with different encoders with varying compression ratios. The need to dynam-

�This work is funded by DARPA contract number DABT63-97-C-0032 as part of the Adap-
tive Computing Systems initiative.

1

ically adjust the compression ratio of the encoder arises in many situations.

One example involves the real-time transmission of encoded data over a pack-

et switched network. On detecting network congestion, the encoder can cut

down the precision and gain more compression, rather than waiting for some

packets to be dropped.

To suitably adapt the encoder to the varying compression requirements,

adaptive adjustments of the compression parameters are required. This in-

volves reconfiguring the encoder in some sense. In this thesis, reconfigurable

hardware, namely FPGA, is used in the implementation of an adaptive encoder.

1.1.2 Scope of reconfigurable hardware

System performance is a major concern while designing complex systems. The

Von Neumann style of fetch-operate-writeback computation fails to exploit the

inherent parallelism in the algorithm. For example, a 30 tap FIR filter imple-

mented on a DSP microprocessor would require 30 MAC (Multiply Accumu-

late) cycles for advancing one unit of real-time. Further, each MAC operation

may consist of more than one cycle as it involves a memory fetch, the multi-

ply accumulate operation, and the memory write back. In contrast, a hardware

implementation can store the data in registers and perform the 30 MAC oper-

ations in parallel over a single cycle. Thus, high throughput requirements of

real-time digital systems often dictate hardware intensive solutions.

FPGAs provide a rapid prototyping platform. They can be reprogrammed

to achieve different functionalities without incurring the non-reccuring engi-

neering costs typically associated with custom IC fabrication. One drawback,

however, is that due to the rather coarse grained reconfigurable blocks, an im-

plementation on an FPGA is often not as efficient, in terms of space and time,

as on a custom IC.

2

1.2 Thesis Overview

The remainder of this document is organized as follows. Chapter one explains

related work in this field. Chapter two describes Wavelet transform based im-

age compression schemes. Next, chapter three explains the design and imple-

mentation of the encoder. Then, chapter four summarizes the results obtained.

Finally, chapter five concludes.

1.3 Related work

There have been other efforts to implement Wavelet transform based image

compression systems on FPGA. In one implementation [BRIAN], the discrete

wavelet transform coefficients are computed for 256x256 grayscale frames. This

implementation also supports a multiplierless quantizer and a run length en-

coder. The frame rates quoted are 20 frames/second on Xilinx 4008 FPGAs with

on-board embedded memory.

There are many other implementations using ASICs and custom ICs. There

have also been many software based image compression kits like [GEOFF],

which utilizes wavelet based compression techniques.

3

Chapter 2

Wavelets

2.1 Wavelets

The following introduction on wavelets is based on the paper by mathemati-

cian Gilbert Strang [STRANG]. A wavelet is a localized function in time (or

space in the case of images) with mean zero. A wavelet basis is derived from

the wavelet (small wave) by its own dilations and translations.

wj;k(t) = 2
-j

2 w(2-jt- k)

Let the original wavelet start at t = 0 and end at t = N. The shifted wavelet

w0;k, starts at t = k and ends at t = k + N. The rescaled wavelet wj;0 starts

at t = 0 and ends at t = N=2j. At a given resolution j, the basis functions are

wj;k(t), and the time steps at that level are 2-j. At the next finer resolution, j+1,

the time steps are 2-(j+1). Frequencies shift upward by an octave, when time is

rescaled by 2.

Functionally, Discrete Wavelet Transform (DWT) is very much similar to the

Discrete Fourier Transform, in that the transformation function is orthogonal.

A signal passed twice through the orthogonal function is unchanged. As the

input signal is a set of samples, both transforms are convolutions. While the

basis function of the Fourier transform is a sinusoid, the wavelet basis is a set

4

waves obtained by the dilations and translations of the mother wavelet.

2.1.1 Compact support, Vanishing moments, and Smoothness

Wavelets are localized functions and zero outside a bounded interval. This

compact support corresponds to an FIR implementation. Another way to char-

acterize wavelets by the number of coefficients and the level of iteration. If the

frequency response of the corresponding filter has p zeroes at �, the approxima-

tion order is p. In other words, a wavelet basis with p vanishing moments can

give a pth order approximation for any signal. The smoothness of the transfer

functions is measured by the number of its derivatives.

2.1.2 Orthogonal and Bi-orthogonal Wavelets

The wavelet basis forms an orthogonal basis if the basis vectors are orthogonal

to its own dialations and translations. A less stringent condition is that the

vectors be bi-orthogonal. The DWT and inverse DWT can be implemented by

filter banks. This includes an analysis filter and a synthesis filter. When the

analysis and synthesis filters are transposes as well as inverses of each other,

the whole filter bank is orthogonal. When they are inverses, but not necessarily

transposes, the filter bank is bi-orthogonal.

2.1.3 A simple example - the Haar wavelet

One of the first wavelet was that of Haar. The Haar scaling function is shown

below.

w(n) =

8<
:

1; 0 � t � 1

0; otherwise

5

Applying the Haar wavelet on a sequence of values computes its sums and

differences. For example, a sequence of values a, b would be replaced by s =

(a + b)=2 and d = (b - a). The values of a and b can be reconstructed as

a = s - d=2 and b = s + d=2. The input signal with 2n samples is replaced

with 2n-1 averages (s0(i)) and 2n-1 differences (d0(i)). The averages can be

thought of as a coarser representation of the signal and the differences as the

information needed to go back to the original resolution. The averages and

differences are now computed on the coarser signal (s0(i)) of length 2n-1. This

gives (s1(i)) and (d1(i)) of length 2n-2 each. This operation can be performed

n times, till we run out of samples. The inverse operation starts by computing

sn-2(j) from sn-1(j) and dn-1(j).

2.1.4 Lifting scheme

The above computation of the Haar wavelet needs intermediate storage to store

the average and difference. The average computed, cannot be written back in

place of a, till the difference has been computed. Lifting scheme on the other

hand allows for an in place computation. In the first step, we compute only

the difference d = (b - a) and store it in place of b. Next, the average value is

computed in terms of a and the newly computed difference, b, as s = a + b=2.

The inverse can be computed by reversing the order and flipping the signs.

This is a simple instance of lifting.

Split Predict Update

+

- Difference
b

a

a

b-a

a+(b-a)/2

b-a

Average

Figure 2.1: Lifting Scheme

A more general lifting scheme consists of three steps - split, predict and up-

6

date, figure 2.1. The splitting stage splits the signal into two disjoint sets of

samples. In the above example, it consists of even numbered samples and odd

numbered samples. Each group contains half as many samples as the origi-

nal signal. If the signal has a local correlation the consecutive samples will be

highly correlated. In other words, given one set it should be able to predict the

other. In the diagram, the even samples are used to predict the odd samples.

Then the detail is the difference between the odd sample and its prediction.

In the Haar case the prediction is simple, every even value is used to predict

the next odd value. The order of the predictor in the Haar case is 1 and it

eliminates zeroth order correlation. The reverse operation is done as undo-

update, undo-predict and merge.

2.1.5 Wavelets that map Integer to Integer

We return to the Haar transform. Because of the division by 2 in the average

computation, it is not an integer transform. A simple alternative is to calculate

the sum instead of the average. Another solution known as the S (sequential)

transform is to round off the average value to an integer value. The sum and

difference of two integers are both even or both odd. So, the last bits of the

difference and average should be identical. Hence the last bit from average can

be omitted, with out loosing information. In the general case, though rounding

may add a non-linearity to the transform, it has been shown to be invertible,

[CALDERBANK].

2.1.6 (2,2) Bi-orthogonal Cohen Daubechies Feauveau Wavelet

The main intent of wavelet transform is to decompose a signal f, in terms of its

basis vectors.

f =
P

aiWi

7

To have an efficient representation of signal f using only a few coefficients ai,

the basis functions should match the features of the signal we want to repre-

sent. The (2,2) Cohen Daubechies Feauveau Wavelet [COHEN] is widely used

for image compression because of its good compression characteristics. The o-

riginal filters have 5+3 = 8 filter coefficients, whereas an implementation with

the lifting scheme has only 2+2 = 4 filter coefficients. The forward and reverse

filters are shown in table 2.1. Fractional numbers are converted to integers at

each stage. Though such an operation adds non-linearity to the transform, the

transform is fully invertible as long as the rounding is deterministic.

Forward transform
si x2i
di x2i+1
di di - (si + si+1)=2

si si + (di-i + di)=4

Inverse transform
si si - di=2

di di + si
x2i si
x2i+1 di

Table 2.1: (2,2) CDF wavelet with lifting scheme

2.1.7 Boundary treatment

Real world signals are limited to a finite interval. However filter bank algo-

rithms assume infinite lengths. The computation of s and d coefficients refer

to k signal samples before and after the current sample, depending on the fil-

ter length k. Different methods of extending the signal at the boundaries has

been suggested. One scheme that is widely used is the symmetric extension. It

extends the finite signal by mirroring it around its boundaries.

8

2.1.8 Advantages of Wavelets

Real time signals are both time-limited (or space limited in the case of images)

and band-limited. Time-limited signals can be efficiently represented by a basis

of block functions (Dirac delta functions for infinitesimal small blocks). But

block functions are not band-limited. Band limited signals on the other hand

can be efficiently represented by a Fourier basis. But sines and cosines are not

time-limited. Wavelets are localized in both time (space) and frequency (scale)

domains. Hence it is easy to capture local features in a signal.

Another advantage of a wavelet basis is that it supports multi resolution.

Consider the windowed Fourier transform. The effect of the window is to lo-

calize the signal being analyzed. Because a single window is used for all fre-

quencies, the resolution of the analysis is same at all frequencies. To capture

signal discontinuities (and spikes), one needs shorter windows, or shorter ba-

sis functions. At the same time, to analyze low frequency signal components,

one needs longer basis functions. With a wavelet based decomposition, the

window sizes vary. Thus it allows to analyze the signal at different resolution

levels.

9

Chapter 3

Design and Implementation

This chapter explains aspects of design and implementation of the encoder.

3.1 Hardware platform

Xilinx 4000 series FPGAs[XC4000] were available and used for the implemen-

tation. These are look-up table based FPGAs. Each basic block called a CLB

(Configurable Logic Block) consists of two 4 input look-up tables and one 3

input look-up table (figure A.1). Each CLB also has 2 flip flops. There are mul-

tiplexers within a CLB to achieve internal connectivity among the flip flops

and look-up tables. The CLBs are arranged as a matrix. In addition to CLBs,

these FPGAs have horizontal and vertical interconnects and switches (routing

resources) to achieve connectivity between different ports of different CLBs.

The look-up tables can be programmed with truth tables of 4 input or 3 in-

put logic functions. The routing resources can be programmed to achieve the

required connectivity between the CLBs.

The hardware platform used[WILDFORCE] is a PCI plug-in board with five

Xilinx 4085 FPGAs, also referred to as PEs (Processing Elements). The board is

stacked with five 1MB SRAM chips. Each of the five SRAM chips are direct-

ly connected to one of the five PEs. The embedded memory is accessible for

10

Figure 3.1: Configurable Logic Block (CLB) in XC4000 series FPGA

read/write from both the host computer as well as from the corresponding PE.

Each of the 1MB memory chip is organized as 262144 words of 32 bits each.

3.2 Design parameters and constraints

3.2.1 Memory read/write

The input image to the encoder is raw gray scale frames of 512 by 512 pixels.

Each pixel is represented by 256 gray scale levels (8 bits). Input frames are

loaded to the embedded memory by the host computer and results are read

back, once the PE has processed it. The PE also uses the embedded memory as

intermediate storage to hold results between different stages of processing.

The memory has a read latency of 2 cycles while memory writes are com-

pleted in the same cycle. Memory reads can be pipelined so that the effects

of this latency is minimized. However, a clock cycle is wasted when there is

a read to write turn around. The design concerns are to minimize memory

11

read/write turn arounds and to allow longer spells of read or write cycles in-

stead. Attempts have also been made to minimize memory operations.

3.2.2 Real time performance

While the conventional television standards require 30 frames/second, many

multimedia applications like video conferencing run at much lower frame rates.

In general, a good system clock ensures a good throughput. Other con-

tributing factors to throughput include the time taken by the operating system

driver routines to read/write from the embedded memory.

3.2.3 Design partitioning

The whole computation is partitioned into two stages. The first stage computes

discrete wavelet transform coefficients of the input image frame and writes it

back to the embedded memory. The second stage, operates on this result to

complete the rest of the processing. The second stage does dynamic quantiza-

tion, zero thresholding, run length encoding for zeroes, and entropy encoding

on the coefficients. The two stages are implemented on two separate FPGAs.

3.3 Stage 1: Discrete Wavelet Transform

Discrete Wavelet transform is implemented by filter banks. The filter used is

the (2,2) Cohen-Debuchies-Feaveu wavelet filter. Though much longer filters

are common for audio data, relatively short filters are used for video.

3.3.0.1 (2, 2) wavelet

A modified form of the Bi-orthogonal (2,2) Cohen-Debuchies-Feaveu wavelet

filter is used. The analysis filter equations are shown below.

12

High pass coefficients: g(k) = 2x(2k + 1) - x(2k) - x(2k+ 2)

Low pass coefficients: f(k) = x(2k) + (g(k- 1) + g(k)=8

The boundary conditions are handled by symmetric extension of the coeffi-

cients as shown below:

x[2]; x[1]; [x[0]; x[1]; :::; x[n- 1]; x[n]]; x[n- 1]; x[n- 2]

The synthesis filter equations are shown below.

Even samples: x(2k) = f(k) - (g(k- 1) + g(k+ 1)=8

Odd samples: x(2k+ 1) = (g(k) + f(k) + f(k+ 1))=2

3.3.0.2 DWT in X and Y directions

Each pixel in the input frame is represented by 16 bits, accounting for 2 pixels

per memory word. Thus, each memory read brings in two consecutive pixel-

s of a row. Each clock cycle generates one value each of f and g coefficients.

These have to be written back in place. The f coefficients are used again in

the next stage of wave-letting. Two consecutive values of f are written back

in one memory location (figure 3.2). This saves on memory reads of the f co-

efficients in the next stage. In the next stage, where only the fs are processed,

only alternate memory words are read from. Thus, the f and g coefficients are

written back in an interleaved fashion. Another way to write back the coeffi-

cients is to put all the low frequency coefficients (f) ahead of the high frequency

coefficients (g). This scheme of ordering the coefficients is called Mallot order-

ing. It allows progressive image transmission/reconstruction. The bulk of the

’average’ information is ahead, followed by the minor ’difference’ information.

However, this ordering scheme requires temporary storage to hold the com-

puted coefficients until the they can be written back. In our design, we use

13

the in-place ordering scheme described above which is optimized for memory

read/write operation. Once the three stages of wave-letting is done, we resort

back to Mallot ordering.

0 1 2 3 4 5 *** 508 509 510 511

f2 f3g0 g1f0 f1 *** f254 f255 g254 g255

Pixel Data

Coefficient data

Figure 3.2: Coefficient ordering along X direction

Once the filter has been applied along all rows in a stage, the same filter

is applied along the columns. With the afore mentioned interleaved ordering

scheme, alternate columns are all fs or all gs. Unlike the row traversal, the two

values obtained in a memory read on a column traversal, are not consecutive

values of the same column. Rather, they are corresponding values from two

different vertically parallel streams (figure 3.3).

a0 b0

b510

a1 b1

a2 b2

a511 b511

a510

Input Data Coefficient data

**
*

**
*

f0

g0

f1

g255

f255

g1

f0

g0

f1

g1

f255

g255

a

a

a

a

a

a

b

b

b

b

b

b

Figure 3.3: Coefficient ordering along Y direction

These differences along the row and column computations are accounted

14

by having two separate data flow blocks along the two directions. The data

flow block in X direction (ForwardWaveletX) accepts two successive values of

the same row and outputs either two consecutive fs or two consecutive gs,

in alternate fashion. The data flow block in Y direction (ForwardWaveletY)

accepts one value each from two parallel streams and outputs either the fs for

the two streams or the gs in an alternate manner, (figure 3.4). These blocks also

need information on when a row/column starts/ends to handle the boundary

conditions. They also have a pipeline latency of 3 cycles.

ForwardWaveletX

Clk

Output2

Output1(16)
(16)Input2

Input1

(1)
(1)RowEnd

RowStart
(16)

(16)

ForwardWaveletY

Clk

RowStart
(16)

(16)

Output1

Output2RowEnd

Input2
Input1 (16)

(16)

(1)

(1)

Figure 3.4: Fast Wavelet transform data flow blocks

3.3.0.3 3 stages of wave-letting

The 512 by 512 pixel input image frame is processed with three stages of wave-

letting. In the first stage, 512 pixels of each row are used to compute 256 high

pass coefficients (g) and 256 low pass coefficients (f), figure 3.5. The coefficients

are written back in place of the original row.

g0
g7

f1

g1

f2

g3

f4
f5

f6
f7f3

g2 g4 g6
g5

1 2 3 4 5 6 7 8 10 11 129 13 140 15 511510509

g254 g255

508507506

g253

f254 f255f0

Figure 3.5: High pass and Low pass coefficients at stage 1, X direction

Once all the 512 rows are processed, the filters are applied in the Y direction.

15

This completes the first stage of wave-letting. While conventional Mallot order-

ing scheme aggregates coefficients into the 4 quadrants, our ordering scheme

interleaves the coefficients in the memory. The second stage of wave-letting

only processes the low frequency coefficients from the first stage. This corre-

sponds to the upper left hand quadrant in the Mallot scheme. Thus, second

stage operates on row and columns of length 256, while the third stage oper-

ates on rows and columns of length 128. The aggregation of coefficients along

the 3 stages under Mallot ordering is shown in figure 3.6. The memory map

with the interleaved ordering is shown in figure 3.7.

After stage1 in X direction

After stage1 in Y direction

After stage2 in X direction

After stage2 in Y direction

After stage3 in X direction

After stage3 in Y direction

Figure 3.6: Mallot ordering along the 3 stages of wave-letting

3.3.0.4 Over all architecture of Stage 1

Stage one starts with a raw frame and does three stages of wave-letting. The

over all architecture is shown in figure 3.8. Memory addressing is done with a

pair of address registers - read and write address registers. The difference be-

tween write and read registers is the latency of the pipelined data-flow blocks.

The maximum and minimum coefficient values for each block (each quadrant

16

ff gg ff gg ff gg ff gg
ff gg

gg
gg

ff
ff

ff
ff
ff

gg
gg
gg

ff
ff
ff

gg
gg
gg

ff
ff
ff

gg
gg
gg

0 1 2 255

511

0
1
2

After stage1 in X direction

ff
gg

gg
ff

ff
gg

gg

gg

gg

gg

gg

ff

ff

ff

ff

ff

0 1 2 255
0
1
2

511

After stage1 in Y direction

gg ggff ff

After stage2 in X direction

0 2 4 254
0

2

4

510

After stage2 in Y direction

0 1 2
ff

ff

gg

gg

ff
gg

gg
ff

2

4

510

254
0

ff gg

ff
0

0

4

508

252
gg

After stage3 in Y direction

ff

After stage3 in X direction

0
0

4

508

252
gg

ff gg

Figure 3.7: Interleaved ordering along the 3 stages of wave-letting

17

in the multi stage wave-letting) are maintained on the FPGA. These values are

written back to a known location in the lower half (lower 0.5MB) of the embed-

ded memory. The second stage, uses these values for the dynamic quantization

of the coefficients.

Row/Column Address registers,
Memory access state machine
and other control logic

ForwardWaveletX ForwardWaveletY

From MEM_READ

To MEM_WRITE

Figure 3.8: Stage 1 architecture

3.4 Stage 2

Stage 2 does the rest of the processing on the wavelet coefficients computed

in the first stage. The coefficients, are quantized, zero-thresholded, zeroes run

length encoded, and entropy encoded to get the final compressed image.

3.4.1 Dynamic quantization

The coefficients from different sub-bands (different quadrants with the Mallot

ordering scheme) are quantized separately. The dynamic range of the coeffi-

cients for each sub-band (computed in first stage) is divided into 16 quantiza-

18

tion levels. The coefficients are quantized into one of the 16 possible levels.

The maximum and minimum value of the coefficients for each sub-band is also

needed while decoding the image.

(16)

Coefficients
(16)

Minimum

(16)
Maximum

Dynamic

quantizer

Quantized output
(4)

Enable

Clk

Figure 3.9: Dynamic Quantizer

The dynamic quantizer is implemented as a binary search tree look up in

hardware (figure 3.9). A table look up based quantization scheme is not feasible

since the range is dynamic - different for each sub-band, and different for each

frame. The incoming stream of coefficients in the range [min:max] is translated

to [0,max-min] by adding (or subtracting) the minimum. The shifted incoming

value is then compared with half the dynamic range (r
2
) to determine whether

it lies in the lower eight or upper eight quantization levels. The result forms

the first bit (most significant bit) of the quantizer output. Depending on the

outcome, the value is then compared with r
2
+ r

4
or r

2
- r

4
. This forms the second

bit of the quantized output. The next two comparisons provide the remaining

bits. The quantizer is a pipelined design, with 4 stages.

19

3.4.2 Zero thresholding and RLE on zeroes

Regions with abrupt changes will have larger wavelet coefficients while region-

s of little or no change would have smaller coefficients. Coefficients of small

magnitude can be neglected without considerable distortion to the image. The

error introduced is proportional to the magnitude of the coefficient being ne-

glected. Coefficients are truncated to zero, based on a threshold. Different

thresholds are used for different sub-bands, resulting in different resolution in

different sub-bands. Further, different sets of thresholds are used to achieve

different levels of compression. Three different set of thresholds are used for

each sub-band to get three different variants of the encoder with different com-

pression levels. The corresponding levels for the three configurations of the

encoder are shown in the appendix.

After the zero thresholding a large number of coefficients are truncated to

zero. Long sequences of zeroes can be effectively compressed by run length

encoding, which replaces each individual occurrence of a zero in a continuous

spell with a count indicating the length of the spell. To decode a run length en-

coded stream, this count has to be distinguishable from other characters of the

input data set. The other valid character are the 4 bit output from the quantiz-

er. Sixteen numbers 0 to 15 are reserved for the quantizer output values, while

numbers 16 to 255 (240 numbers) are free. Thus, any continuous spell of zeroes

ranging from 1 (represented by the number 16) to 240 (represented by the num-

ber 255) can be replaced by the corresponding count. Longer spells have to be

broken down to fall within this range. Table 3.1 shows the bit range allocation.

The run length encoder, might not have an output on every cycle. The suc-

ceeding block has to be signalled as to when to read the RLE count, and when

to wait for a spell to finish. Whenever RLE detects a zero, it asserts ’RLErun-

ning,’ and starts counting the sequence of continuous zeroes. The current sum

of zeroes is always available on ’RLEout.’ When the continuous spell of zeroes

20

00000000 16 numbers allocated
... for the output of quantizer,

00001111 16 quantization levels.
00010000 256-16=240 numbers available

... for RLE. RLE can count
11111111 upto 240 continuous zeroes.

Table 3.1: Bit range allocation for RLE

end, ’RLErunning’ is deasserted, and ’RLEspellEnd’ is asserted for one cycle to

allow the next block to read off the RLE count. The RLE counter is also reset to

15.

In this set-up, there is look ahead problem. Before RLE can signal the end

of a spell, it needs to see the next value is the stream. But, RLE is used in

conjunction with the dynamic quantizer, (RLE and quantizer are connected in

parallel) which is a 4 staged pipeline.

RLE might face an arbitrarily long sequence of zeroes. RLE can count only

upto a maximum of 240 zeroes. Thus, when RLE has seen 240 continuous ze-

roes and still more zeroes are arriving, ’RLEspellEnd’ would be asserted for one

Input
(16)

Zero threshold
(16)

RLE output
(8)

RLErunning

RLEspellend

(1)

(1)

RLE

Clk Reset

Enable Flush

Figure 3.10: Run Length Encoder for continuous zeroes

21

clock cycle, and the internal counter is reset to 15. Here, ’RLErunning’ would

be high through out the spell.

The logic followed by the succeeding block is as follows. If ’RLErunning’

is asserted then wait till ’RLEspellEnd’ is asserted and read the ’RLEout’. Else,

read the output of the dynamic quantizer.

3.4.3 Entropy encoding

Entropy encoding involves assigning a smaller length encoding for more fre-

quently used characters in the data set and a larger length encoding for infre-

quently used characters in the data set. This involves variable length encoding

of the input data. To efficiently retrieve the original data, an encoded word

should not be a proper prefix of any other encoded word. Huffman trees are an

efficient way of coming up with a variable length encoding for a set of charac-

ters, given the relative frequencies. Further, for a Huffman tree based encoding,

decoding can be done in linear time (linear in the length of the encoded word).

Various other schemes of encoding using different levels of context sensitive

information exits. This might incur a costlier decoding function.

3.4.3.1 Encoding scheme

In our implementation, we use an encoding scheme which is not a Huffman

tree based code. The bit allocation is shown in figure 3.11. Eight bit inputs are

variable length encoded between 3 to 18 bits. The complete encoding table is

shown in the appendix. The encoding is implemented by two look-up tables

on the FPGA. Given an eight bit input, the first look-up table (LUT), provides

information about the size of encoding. The second LUT gives the actual en-

coding. Only the relevant bits from the second LUT should be used. The rest of

the bits in the output are don’t care and are either chosen as logic 0 or 1 during

logic optimization. The VHDL description of the encoder can be found in the

22

0 50 100 150 200 250
0

2

4

6

8

10

12

14

16

18

20

Numbers [0−255]

N
um

be
r

of
 b

its
 u

se
d

fo
r

en
co

di
ng

Figure 3.11: Entropy encoding, bit allocation

appendix, huffman.vhd.

length bit
encoding

variable
LUT for

LUT for

length
encoding

(18)

(5)

(8)

Figure 3.12: Entropy encoder

3.4.3.2 Bit packing

The output of the entropy encoder varies from 3 to 18 bits. The bits need to be

packed into 32 bit words before being written back to the embedded memory.

This is achieved by the shifter discussed below. This shifter is inspired from the

Xtetris computer game and the binary search algorithm.

23

3.4.3.3 Shifter

The shifter consists of 5 register stages, each 32 bits wide. The input data can

be shifted (rotated) by 16 or latched without shifting, to stage 1. The data can

be shifted by 8 or passed on straight from stage 1 to stage 2. Similarly data

can be shifted by 4, 2, and 1 when moving between the remaining stages. Data

is shifted from stage to stage, and is accumulated at the last stage. When the

last stage has 32 bits of data, a memory write is initiated and the last stage is

flushed.

0

31

1

30
29

2
3

28
27

4
5

26
25

6
7

23
24

8
9

22
21

10
11
12

20
19
18

13
14

17

15
16

0

31

1

30
29

2
3

28
27

4
5

26
25

6
7

23
24

8
9

22
21

10
11
12

20
19
18

13
14

17

15
16

0

31

1

30
29

2
3

28
27

4
5

26
25

6
7

23
24

8
9

22
21

10
11
12

20
19
18

13
14

17

15
16

0

31

1

30
29

2
3

28
27

4
5

26
25

6
7

23
24

8
9

22
21

10
11
12

20
19
18

13
14

17

15
16

0

31

1

30
29

2
3

28
27

4
5

26
25

6
7

23
24

8
9

22
21

10
11
12

20
19
18

13
14

17

15
16

31
30
29
28
27
26
25

23
24

22
21
20
19
18
17

15
16

stage1 stage2 stage3 stage4 stage5

shift by 16 shift by 8 shift by 4 shift by 2 shift by 1

input

(18)

or pass thru or pass thru or pass thru or pass thru or pass thru

0

31

1

30
29

2
3

28
27

4
5

26
25

6
7

23
24

8
9

22
21

10
11
12

20
19
18

13
14

17

15
16

Figure 3.13: Binary Shifter for bit packing

The data is shifted to the right place over the 5 stages in order to complete a

word at the last stage. The key decision is whether to shift or not at each stage.

A 5 bit counter is maintained to store the length of the data currently held. For

24

example, let the lengths of the words arriving at stage 1 be a1, a2, a3, etc. The

counter will have values 0, a1, a1 + a2, etc. in the corresponding clock cycles.

The counter is allowed to overflow once it reaches 31. Thus, the counter value

indicates where the next word should start by the time it reaches the last stage.

Different bits of the counter (delayed appropriately) are used to decide whether

to shift or not at each stage.

Part of the last stage needs double buffering. To determine the size of the

double buffer needed, consider the worst case. The last stage already has 31

bits and the next data coming from stage 4 is of maximum size (18 bits). Only

1 out of the 18 bits can be added to the last stage and a memory write initiated.

The rest of the 17 bits need to be buffered for this cycle, and brought out in

the next cycle. Thus, 17 out of the 32 bits in the last stage are double buffered.

Thus, whenever an overflow is detected, the double buffer is loaded with the

excess bits and taken out during the next cycle. The detailed hardware imple-

mentation may be found in the appendix in the file shifter.vhd.

3.4.4 Output file format

At the end of the second stage, the upper memory (upper 0.5MB) contains the

packed bit stream. The total count of the bit stream approximated to the nearest

WORD is written to memory location 0. To reconstruct the data from the bit

stream, the following information is needed.

� The actual bit stream. On Huffman decoding, the actual 8 bit codes are

retrieved. These codes are either the quantizer output, or the RLE count.

On expanding the RLE count to the corresponding number of zeroes, we

get the actual quantized stream.

� The four quadrants of the final stage of wave-letting can be located at

the first four 128*128 byte blocks. The three quadrants of the next stage

25

can be located at at next three blocks sized at 256*256 bytes each. Each

quadrant (sub-band) is quantized separately. The dynamic range of each

of the quadrant should be known to reconstruct the original stream.

The output file written has all the information needed to reconstruct the image.

The format of the output file generated is shown in figure 3.14.

Block0 Min/Max

(4 bytes)

Block1 Min/Max
Block2 Min/Max
Block3 Min/Max

Number of Bytes

Block4 Min/Max
Block5 Min/Max
Block6 Min/Max

Block0 size

(8 bytes)
(8 bytes)
(8 bytes)
(4 bytes)
(4 bytes)
(4 bytes)
(4 bytes)
(4 bytes)
(4 bytes)
(4 bytes)

(8 bytes)
(8 bytes)
(8 bytes)
(8 bytes)

Block1 size
Block2 size

Block4 size
Block5 size
Block6 size

Bit stream

Block3 size

(variable)

Figure 3.14: Outfile format

3.4.5 Stage 2, Overall architecture

The top level data flow diagram of the second stage is shown in figure 3.15.

Wavelet coefficients from memory are read from the lower half of the embed-

ded memory. The block (sub-band) minimum and maximum is also read from

the memory. The packed bit stream output is written to the upper memory,

and the bit stream length is written to memory location 0. The control soft-

ware, reads the embedded memory and generates the compressed image file.

26

RLE on 0

Dynamic

Quantizer

(bit packing)

Shifter

Entropy
Encoder

LUT1

LUT2

Coefficients
Wavelet

Threshold
Zero

Coefficients
Wavelet

Coefficient
Minimum

Maximum
Coefficient

Bit stream
Packed

Figure 3.15: Stage 2, data flow diagram

The control flow is show in figure 3.16. Before reading the wavelet coeffi-

cients, the maximum and minimum of coefficients in each sub-band are read

from the lower memory. The coefficients are then read and processed for each

sub-band, starting with the lowest frequency band. As shown in the state di-

agram, a memory read is fired in stage Read 001. Memory read has a latency

of 2 clock cycles. The results of the read is finally available in state Read 100.

Memory writes are completed in the same cycle. The two intermediate states,

Read 010 and Write can be used to write back the output, if output is available.

Each memory read brings in two wavelet coefficients. Consider the worst case,

where the two coefficients gets expanded to 18 bits each. There are two memo-

ry write cycles before the next read. When ever a memory write is performed,

the memory address register is incremented.

The read address generators, read each sub-band from the interleaved mem-

ory pattern. The address ranges for each sub-band with the interleaved order-

ing scheme is shown in appendix. The output is written as a continuous stream,

27

Wait for Bus

Read Block 1 MIN/MAX

Read Block 2 MIN/MAX

Read Block 4 MIN/MAX

Read Block 5 MIN/MAX

Read Block 6 MIN/MAX

Read Block 7 MIN/MAX

Read Block 3 MIN/MAX

Read Block Data 010

Read Block Data 001

Write Data

Read Block Data 100

Write Data Count

Write Block Size 1_2

Write Block Size 3_4

Write Block Size 5_6

Write Block Size 7

Interrupt Host
(R)

(W?) (W?)

Figure 3.16: Stage 2, control flow diagram

starting with the lowest sub-band. Thus the output is effectively in Mallot or-

dering and can be progressively transmitted/decoded.

28

Chapter 4

Results

4.1 Metrics for testing

The metrics on which encoder is graded include the compression ratio, through-

put, processing noise, and implementation costs. Further, the adaptivity of the

encoder to support different compression levels at different noise levels is also

measured.

4.1.1 Throughput

The encoder runs in two stages. A raw frame of 512 by 512 pixels is loaded to

the embedded memory. After stage 1 finishes its processing on this memory,

the memory image is used as input for the second stage. The two hardware

configurations, corresponding to the two stages, can be run at a system clock of

25MHz. The two hardware configurations are loaded onto two different FPGAs

on the same board.

4.1.1.1 Embedded memory performance

The embedded memory is loaded and unloaded by the host computer using

the operating system driver routines. The measured memory access times are

29

listed below and it quantifies the time taken by the DMA based read/write

APIs provided by the board vendor. The operating system running on the host

computer is Linux, kernel version 2.2.5.

Read from host 4.244 ms
0.5 MB

Write from host 4.017 ms
0.5 MB

Read from host 8.398 ms
1.0 MB

Write from host 7.981 ms
1.0 MB

Table 4.1: Embedded memory access times from host computer

The host computer loads a raw frame in the embedded memory correspond-

ing to PE1 and signals it to start. On finishing the processing of stage1, PE1

interrupts the host. The host then reads back the contents of the embedded

memory and loads it into the embedded memory of PE2. PE2 then finishes the

rest of the processing and interrupts the host. The host reads back the contents

of the PE2’s memory.

4.1.1.2 Effective throughput

The control software utilized, for loading the memory and servicing the PE

interrupts is written in C. The device driver routines provided by the board

vendor are employed for this task. A threaded implementation was used in

which both the PEs we run simultaneously in a pipelined fashion. Assuming a

realtime image source, the file system overheads are neglected. Consequently,

3 input frames were pre-loaded in the host computer’s main memory and used

as the frame source. For measuring the throughput, the processed image is read

back to host computer’s main memory and discarded. A write to secondary s-

torage media is avoided to exclude host computer performance and secondary

30

storage media charecteristics. With the above set up, the sustained through-

out observed varied from 10 to 12 frames per second. The detailed break of the

times along a single thread are displayed in table 4.2. With multi threaded con-

trol software, few of the opreations are run concurrently. This achieves speed

up.

Memory write from host 4.017 ms
0.5 MB

PE 1 running time @24MHz 57.402 ms
(stage 1)

Memory read from host 8.401 ms
1.0 MB

Memory write from host 7.948 ms
1.0 MB

PE 2 running time @24MHz 5.51 ms
(stage 2)

Memory read from host 8.394 ms
1.0 MB

Table 4.2: Delay along a single thread

4.1.2 Compression level Vs noise

Three different hardware configurations with different compression levels were

built and tested. The characteristics of the three configurations over three dif-

ferent frames are displayed in tables (4.4, 4.5, 4.6). A software decoder avail-

able was used to recontruct the encoded image in order to compare with the

original. Noise figures from a software encoder (using 32 bit integer arithmetic)

are also quoted (in braces). The PSNR and RMSE metrics are computed as per

the equation given below. Percentage compression is the ratio of compressed

image size to the original image size (512x512 bytes). Bits per pixel (bpp) is the

ratio of image size in bits to number of pixels. The corresponding reconstructed

images are also shown in figures 4.3, 4.4.

31

(a) lena.pgm (b) barbara.pgm (c) goldhill.pgm

Figure 4.1: Original Images

(a) lena.pgm (b) barbara.pgm (c) goldhill.pgm

Figure 4.2: Configuration 1, Minimum compression

32

(a) lena.pgm (b) barbara.pgm (c) goldhill.pgm

Figure 4.3: Configuration 2, Medium compression

(a) lena.pgm (b) barbara.pgm (c) goldhill.pgm

Figure 4.4: Configuration 3, Maximum compression

33

MSE = 1
512x512

Px=512

x=1

Py=512

y=1 [p(x; y) - p 0(x; y)]2

RMSE =
p
MSE

PSNR = 20log10(255=RMSE)

Table 4.3: PSNR and RMSE equations

4.1.3 Implementation costs on the hardware

These designs were implemented on Xilinx 4085XLA FPGAs. The device usage

is normally reported in terms of number of look-up tables, I/O buffers, and

flip flops. The routing resource usage is not given by the place and route tools

- a higher device utilization implies a greater routing resource utilization. The

total number of CLBs used are a function of the the device resources used and

how densely they are packed. For example, on a CLB only a flip flop could

be used, but still it adds to the CLB count. The usages for both the stages for

displayed in table 4.7.

34

Configuration Compressed Compression bpp PSNR RMS
size (bytes) ratio (dB)

Configuration 1, 28775 9.11 0.878 30.894 7.274
Least compression (31.102) (7.102)
Configuration 2, 5556 47.18 0.169 29.530 8.511

Medium compression (30.015) (8.049)
Configuration 3, 3767 69.58 0.114 28.059 10.082

Most compression (28.120) (10.012)

Table 4.4: Compression levels and noise neasurements for ’lena’

Configuration Compressed Compression bpp PSNR RMS
size (bytes) ratio (dB)

Configuration 1, 29708 8.82 0.906 25.017 14.310
Least compression (25.024) (14.299)
Configuration 2, 8187 32.01 0.249 24.472 15.237

Medium compression (24.589) (15.033)
Configuration 3, 4915 53.33 0.149 23.427 17.185

Most compression (23.556) (16.932)

Table 4.5: Compression levels and noise neasurements for ’barbara’

Configuration Compressed Compression bpp PSNR RMS
size (bytes) ratio (dB)

Configuration 1, 30024 8.7 0.916 30.038 8.027
Least compression (30.045) (8.021)
Configuration 2, 6070 43.18 0.185 28.119 10.013

Medium compression (28.014) (10.134)
Configuration 3, 3636 72.09 0.110 26.417 12.181

Most compression (26.446) (12.140)

Table 4.6: Compression levels and noise neasurements for ’goldhill’

35

Block LUTs LUTs CLB Total I/O I/O Gate Timing
(4) (3) Flops CLBs Buf Flops count (MHz)

Stage 1, 547 109 406 399 75 88 8244 26.553
(12%)

Stage 2, 1248 356 924 890 77 88 17058 36.381
config. 1 (28%)
Stage 2, 1297 367 975 948 77 88 17937 31.254
config. 2 (30%)
Stage 2, 1297 373 965 925 77 88 17830 34.632
config. 3 (29%)

Table 4.7: Device usage and Timing statistics

36

Chapter 5

Conclusions and Future Work

5.1 Conclusions

We have designed and implemented a Wavelet transform based image encoder

on re-programmable hardware - FPGA. The encoder has multiple configura-

tions which support different compression levels. The effective frame rate

achieved ranges between 10 and 12. The major conclusions are as follows:

� Wavelet based image compression is ideal for adaptive compression since

it is inherently a multi-resolution scheme. Variable levels of compression

can be easily achieved. The number of wave-letting stages can be var-

ied, resulting in different number of sub bands. The zero thresholds for

truncating coefficients of small magnitude can be varied. Different filter

banks with different characteristics can be used. For example, audio data

has much longer correlation and hence longer filter are used for audio,

compared to video. Filters tuned to the nature of the data achieve much

higher compression.

� Efficient fast algorithm (pyramidal computing scheme) for the compu-

tation of discrete wavelet coefficients, makes a wavelet transform based

encoder computationally efficient.

37

� Computationally intensive problems often require a hardware intensive

solution. Unlike a microprocessor with a single MAC unit, a hardware

implementation achieves greater parallelism, and hence higher through-

put.

� Reconfigurable hardware is best suited for rapid prototyping application-

s where the lead time for implementation can be critical. It is an ideal

development environment, since bugs can be fixed and multiple design

iterations can be done, with out incurring any non recurring engineering

costs.

� Reconfigurable hardware is also suited for applications with rapidly chang-

ing requirements. In effect, the same piece of silicon can be reused.

� With respect to limitations, achieving good timing/area performance on

these FPGAs is much harder, when compared to an ASIC or a custom IC

implementation. There are two reasons for this. The first pertains to the

fixed size look-up tables. This leads to under utilization of the device.

The second reason is that the pre-fabricated routing resources, run out

fast with higher device utilization.

5.2 Future work

The lessons learned from this experience will help us enhance similar imple-

mentations in the future. Few of the improvements that we now foresee are

listed below:

� Build a corresponding decoder on the FPGA and demonstrate the adapt-

ability of the encoder-decoder pair. The encoder would need to signal the

decoder on which codec is being used.

38

� Data movement from host to embedded memory and back to host takes

a significant amount of the processing time. Data movement could have

been minimized. By implementing both the stages of the encoder on a

single FPGA, one read/write memory cycle could have been avoided. On

the other side, when these FPGAs are utilized more than about 40%, the

timing performance drops sharply. This is because it runs out of routing

resources; consequently many long and circuitous routes result. Hence

the over all system clock drops. This tradeoff can be better optimized.

� An alternate architecture would be to use the two PEs for the two stages

(to get good timing), but use the local bus on the board to transfer data

from PE1 to PE2.

� A suggestion with respect to embedded memory architecture is to have

two embedded memory chips attached to each PE, so that is can work

as a double buffer. Here, the host can refill the next frame on one of the

memory chips, while the PE is still working with the other chip.

39

Appendix A

Design parameters

A.1 Zero threshold levels for different codecs

subband config. 1 config. 2 config. 3
0 0 0 0
1 39 78 156
2 27 54 108
3 104 208 416
4 79 158 316
5 50 100 200
6 191 382 764

Table A.1: Zero threshold levels for different configurations

40

A.2 Throughput comparison with a software encoder

The software encoder distributed as part of the ACS bench mark suite was used

to obtain time stamps. The encoder was run on a Linux based computer with

Pentium 2 processor, running at 333MHz, and having a main memory of 256M-

B. Time stamps were inserted at points which demarcate the 2 stages. As for

the FPGA implementation, timing measurements do not include secondary s-

torage media latencies.

stage time
1 181.046 ms
2 132.331 ms

Table A.2: Throughput measured from the software encoder

41

A.3 Design flow

VHDL design
descriptionConstraints

Timing

VHDL synthesis
tools

RLT netlist
(XNF netlist)

FPGA specific

- Place and Route
- Bit generation
- Static timing analysis

Xilinx tools

BitStream for
configuring
the FPGA

tools
VHDL simulation

Figure A.1: Design flow

42

Appendix B

Source code listings

B.1 Stage 1 - VHDL source code

B.1.1 waveletX.vhd
--
-- WAVELET TRANSFORM IMPLEMENTATION
-- Stage1 - Forward Wavelet (in X direction)
--
--
-- Author: sarin@ittc.ukans.edu, 03/27/2000
--
-- File : waveletX.vhd
--
-- Input : A 512x512 pixel image, streamed row wise, two pixels
-- at a time, ’p2’ and ’p3’; two previous samples are
-- held in ’p0’ and ’p1’.
--
-- Output: ’f’ and ’g’ are two weighted difference functions,
-- the data dependency is as shown below:
--
-- pixel: 0 1 2 3 4 5 6 7 8 ... 506 507 508 509 510 511
-- |\ | / \ | / \ | / \ | / \ | / \ | /\ / |
-- g: | g0 g1 g2 g3 ... g253 g254 g255 |
-- | / \ / \ / \ / \ / \ | |
-- f: f0 f1 f2 f3 ... f254 f255
--
-- The output is 256 values of ’f’ and 256 values of ’g’.
-- Note that ’f’ and ’g’ at the boundary are slightly
-- different, due to which we need two additional signals
-- to signal row begining and ending.
--
-- Note that output is send back as ’f0’, ’f1’, ’g0’, ’g1’ ...
-- instead of ’f0’, ’g0’, ’f1’, ’g1’ ...
-- This is because of the order it is written back into
-- memory in the higher level module.
--
-- Pipeline latency (timing)
--
-- Input pixels Output FwavStart FwavEnd ForG
-- --------------+--------------+-----------+---------+-------
-- 0 1 ** ** 1 0 X
-- 2 3 ** ** 0 0 f (0)
-- 4 5 ** ** 0 0 g (1)
-- 6 7 f0 f1 0 0 f (0)
-- 8 9 g0 g1 0 0 g (1)
-- 10 11 f2 f3 0 0 f (0)
-- 12 13 g2 g3 0 0 g (1)
--
-- 506 507 f250 f251 0 0 f (0)
-- 508 509 g250 g251 0 0 g (1)
-- 510 511 f252 f253 0 1 f (0)
-- *** *** f252 g253 0 0 g (1)
-- *** *** f254 f255 0 0 f (0)
-- *** *** g254 g255 0 0 g (1)

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

43

use ieee.std_logic_signed.all;

entity ForwardWaveletX is
port
(FwavClk : in std_logic;

FwavEnbl : in std_logic;
FwavStart : in std_logic;
FwavEnd : in std_logic;
Fwav_p3 : in std_logic_vector (15 downto 0);
Fwav_p2 : in std_logic_vector (15 downto 0);
Fwav_f : out std_logic_vector (15 downto 0);
Fwav_g : out std_logic_vector (15 downto 0)

);
end ForwardWaveletX;

architecture structural of ForwardWaveletX is
constant prop_delay : time := 5 ns;
subtype std16 is std_logic_vector (15 downto 0);

signal p0, p1, g_out, g_prev1, g_prev2 : std16;
signal f_tmp1, f_tmp2, f_out, f_prev : std16;
signal ForG, FwavStart1, FwavEnd1 : std_logic;

begin

run : process(FwavClk)
begin

if(rising_edge(FwavClk)) then
if(FwavEnbl = ’1’) then

p0 <= Fwav_p2 after prop_delay;
p1 <= Fwav_p3 after prop_delay;

if(ForG=’1’) then
Fwav_f <= f_prev after prop_delay;
Fwav_g <= f_out after prop_delay;

else
Fwav_f <= g_prev2 after prop_delay;
Fwav_g <= g_prev1 after prop_delay;

end if;

if(FwavStart=’1’) then
ForG <= ’0’ after prop_delay;

else
ForG <= not(ForG) after prop_delay;

end if;

g_prev2 <= g_prev1 after prop_delay;
g_prev1 <= g_out after prop_delay;
f_prev <= f_out after prop_delay;

FwavEnd1 <= FwavEnd after prop_delay;
FwavStart1 <= FwavStart after prop_delay;

end if;
end if;

end process;

computeg : process(Fwav_p3, p1, p0, FwavEnd1)
begin

if(FwavEnd1=’1’) then
g_out <= (p0(15) & p0(13 downto 0) & ’0’) -

(p1(15) & p1(13 downto 0) & ’0’);
else

g_out <= (p0(15) & p0(13 downto 0) & ’0’)-
(p1 + Fwav_p3);

end if;
end process;

computef : process(FwavStart1, g_out, g_prev1,
f_tmp1, f_tmp2, p1)

begin
if(FwavStart1=’1’) then

f_tmp1 <= g_out +
g_out;

else
f_tmp1 <= g_prev1 +

g_out;
end if;

-- if((f_tmp1(15) = ’1’) and
-- ((f_tmp1(2)=’1’) or (f_tmp1(1)=’1’) or (f_tmp1(0)=’1’))) then
-- f_tmp2 <= (f_tmp1(15) & f_tmp1(15) & f_tmp1(15) & f_tmp1(15 downto 3)) + 1;
-- else

f_tmp2 <= (f_tmp1(15) & f_tmp1(15) & f_tmp1(15) & f_tmp1(15 downto 3));
-- end if;

f_out <= p1 + f_tmp2;

44

end process;

end structural;

B.1.2 waveletY.vhd
--
-- WAVELET TRANSFORM IMPLEMENTATION
-- Stage1 - Forward Wavelet (in Y direction)
--
--
-- Author: sarin@ittc.ukans.edu, 03/27/2000
--
-- File : waveletY.vhd
--
-- Input : A 512x512 pixel image, streamed row wise, two pixels
-- at a time, ’p2’ and ’p3’; two previous samples are
-- held in ’p0’ and ’p1’.
--
-- Output: ’f’ and ’g’ are two weighted difference functions,
-- the data dependency is as shown below:
--
-- pixel: 0 1 2 3 4 5 6 7 8 ... 506 507 508 509 510 511
-- |\ | / \ | / \ | / \ | / \ | / \ | /\ / |
-- g: | g0 g1 g2 g3 ... g253 g254 g255 |
-- | / \ / \ / \ / \ / \ | |
-- f: f0 f1 f2 f3 ... f254 f255
--
-- The output is 256 values of ’f’ and 256 values of ’g’.
-- Note that ’f’ and ’g’ at the boundary are slightly
-- different, due to which we need two additional signals
-- to signal row begining and ending.
--
-- Pipeline latency (timing)
--
-- Input pixels Output FwavStart FwavEnd ForG
-- ------------+--------------+-----------+---------+-------
-- 0 0 * * 1 0
-- 1 1 * * 0 0 0 (f)
-- 2 2 * * 0 0 1 (g)
-- 3 3 f0 f0 0 0 0 (f)
-- 4 4 g0 g0 0 0 1 (g)
-- 5 5 f1 f1 0 0 0 (f)
-- 6 6 g1 g1 0 0 1 (g)
-- 7 7 f2 f2 0 0 0 (f)
-- 8 8 g2 g2 0 0 1 (g)
--
-- 509 509 f253 f253 0 0 0 (f)
-- 510 510 g253 g253 0 0 1 (g)
-- 511 511 f254 f254 0 1 0 (f)
-- *** *** f254 g254 0 0 1 (g)
-- *** *** f255 f255 0 0 0 (f)
-- *** *** g255 g255 0 0 1 (g)

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use ieee.std_logic_signed.all;

entity ForwardWaveletY is
port
(FwavClk : in std_logic;

FwavEnbl : in std_logic;
FwavStart : in std_logic;
FwavEnd : in std_logic;
Fwav_a4 : in std_logic_vector (15 downto 0);
Fwav_b4 : in std_logic_vector (15 downto 0);
Fwav_a : out std_logic_vector (15 downto 0);
Fwav_b : out std_logic_vector (15 downto 0);
Fwav_Max : out std_logic

);
end ForwardWaveletY;

architecture structural of ForwardWaveletY is
constant prop_delay : time := 5 ns;
subtype std1 is std_logic;
subtype std16 is std_logic_vector (15 downto 0);

signal a2, a3 : std16; -- 2 previous values of a4
signal b2, b3 : std16; -- 2 previous values of b4

signal a_g, b_g, a_gd : std16; -- g outputs of 2 streams,
signal b_gd, a_gdd, b_gdd: std16; -- latched, double latched ...

45

signal a_f1, a_f2, a_f3, a_f3d : std16; -- f, partial outputs
signal b_f1, b_f2, b_f3, b_f3d : std16; -- f, partial outputs

signal FwavStart1, FwavStart2 : std1; -- delayed FwavStart’s
signal FwavEnd1, FwavEnd2 : std1; -- and FwavEnd’s

signal ForG : std1; -- keep track of whether f or g
-- is going out

begin

run : process(FwavClk)
begin

if(rising_edge(FwavClk)) then
if(FwavEnbl = ’1’) then

a2 <= a3 after prop_delay;
a3 <= Fwav_a4 after prop_delay;

b2 <= b3 after prop_delay;
b3 <= Fwav_b4 after prop_delay;

FwavStart2<= FwavStart1 after prop_delay;
FwavStart1<= FwavStart after prop_delay;
FwavEnd1 <= FwavEnd after prop_delay;
FwavEnd2 <= FwavEnd1 after prop_delay;

a_gdd <= a_gd after prop_delay;
b_gdd <= b_gd after prop_delay;

a_gd <= a_g after prop_delay;
b_gd <= b_g after prop_delay;

a_f3d <= a_f3 after prop_delay;
b_f3d <= b_f3 after prop_delay;

if(FwavStart=’1’) then
ForG <= ’0’ after prop_delay;

else
ForG <= not(ForG) after prop_delay;

end if;

end if;
end if;

end process;

computeg : process(a2, a3, Fwav_a4,
b2, b3, Fwav_b4,
FwavEnd1)

begin
if(FwavEnd1=’1’) then

a_g <= (a3(15) & a3(13 downto 0) & ’0’)-
(a2(15) & a2(13 downto 0) & ’0’);

b_g <= (b3(15) & b3(13 downto 0) & ’0’)-
(b2(15) & b2(13 downto 0) & ’0’);

else
a_g <= (a3(15) & a3(13 downto 0) & ’0’)-

a2 -
Fwav_a4;

b_g <= (b3(15) & b3(13 downto 0) & ’0’)-
b2 -
Fwav_b4;

end if;
end process;

computef : process(FwavStart2, a2, b2,
a_g, b_g, a_gdd, b_gdd,
a_f1, b_f1, a_f2, b_f2)

begin

if(FwavStart2=’1’) then
a_f1 <= a_g + -- current g

a_g; -- current g
b_f1 <= b_g + -- current g

b_g; -- current g
else

a_f1 <= a_gdd + -- prev g
a_g; -- current g

b_f1 <= b_gdd + -- prev g
b_g; -- current g

end if;

-- divide by 8 and drop fractional part,
-- because of two’s compliment representation, if number is
-- negative and there is a non zero fractional value, we need to
-- add 1 after dropping the fractional part.

-- if((a_f1(15) = ’1’) and

46

-- ((a_f1(2)=’1’) or (a_f1(1)=’1’) or (a_f1(0)=’1’))) then
-- a_f2 <= (a_f1(15) & a_f1(15) & a_f1(15) & a_f1(15 downto 3)) + 1;
-- else

a_f2 <= (a_f1(15) & a_f1(15) & a_f1(15) & a_f1(15 downto 3));
-- end if;

-- if((b_f1(15) = ’1’) and
-- ((b_f1(2)=’1’) or (b_f1(1)=’1’) or (b_f1(0)=’1’))) then
-- b_f2 <= (b_f1(15) & b_f1(15) & b_f1(15) & b_f1(15 downto 3)) + 1;
-- else

b_f2 <= (b_f1(15) & b_f1(15) & b_f1(15) & b_f1(15 downto 3));
-- end if;

a_f3 <= a_f2 + a2;
b_f3 <= b_f2 + b2;

end process;

out_mux : process(ForG, a_f3d, a_gdd, b_f3d, b_gdd)
begin

if(ForG = ’0’) then
Fwav_a <= a_f3d;
Fwav_b <= b_f3d;

if(a_f3d > b_f3d) then
Fwav_Max <= ’0’;

else
Fwav_Max <= ’1’;

end if;

else
Fwav_a <= a_gdd;
Fwav_b <= b_gdd;

if(a_gdd > b_gdd) then
Fwav_Max <= ’0’;

else
Fwav_Max <= ’1’;

end if;

end if;
end process;

end structural;

B.1.3 pe1lca.vhd (top level for stage1)
--
-- WF4 memory interface for the wavelet dataflow
-- block - Forward Wavelet
--
-- File : pe1lca.vhd
--
-- Author: sarin@ittc.ukans.edu, 01/11/2000
--
-- Description:
-- This file along with "waveletX.vhd" & "waveletY.vhd" implements
-- DWT (discrete wavelet transform) / multi resolution encoding
-- of the input image.
--
-- The input image is 512x512 pixels, with each memory WORD
-- holding 2 pixels (12 bits each) the input is a 512x256
-- memory array (0.5 MB).
--
-- Stage 1: Process each row (512 pixels), extract 256 ’f’s and
-- 256 ’g’s from each row, write it back in place:
-- [pppppppp...pppp] => [fgfgfgfg...fgfg]
--
-- Instead, it is actually written back as:
-- [pppppppp...pppp] => [ffggffgg...ffgg].
--
-- Then same operation along Y direction.
--
-- Stage 2: Only ’f’s from first stage are input to second stage.
-- Thus we have rows of length 256.
-- (see why f/g outputs from stage1 was written back
-- jumbled? need only 256 memory READS, else it would
-- have taken 512 memory READS).
--
-- Stage 3: The third stage follows similarly, processing only
-- the ’f’s from second stage. Each stage has to be
-- done in both X and Y directions.
--

47

-- It is smooth sailing in X direction with two pixels of a row
-- arriving on each memory READ and two values being written back
-- in each memory WRITE.
--
-- In Y direction, we have to perform two memory READs to get two
-- consecutive values of a stream (column). By then we also get
-- two consecutive values from the next (vertically parallel) stream.
-- Hence, two different ForwardWavelet blocks (ForwardWaveletX and
-- ForwardWaveletY) are used for the X and Y directions.
--
-- ForwardWaveletX: accepts two successive values of the same row
-- and outputs either two consecutive f’s or
-- two consecutive g’s (alternately).
--
-- ForwardWaveletY: accepts one pixel each from two columns and
-- outputs either one f each of the two columns or
-- one g each of the two columns (alternately).

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;

architecture Memory_Access of PE1_Logic_Core is

component ForwardWaveletX is
port (FwavClk : in std_logic;

FwavEnbl : in std_logic;
FwavStart : in std_logic;
FwavEnd : in std_logic;
Fwav_p3 : in std_logic_vector (15 downto 0);
Fwav_p2 : in std_logic_vector (15 downto 0);
Fwav_f : out std_logic_vector(15 downto 0);
Fwav_g : out std_logic_vector(15 downto 0));

end component;

component ForwardWaveletY is
port (FwavClk : in std_logic;

FwavEnbl : in std_logic;
FwavStart : in std_logic;
FwavEnd : in std_logic;
Fwav_a4 : in std_logic_vector (15 downto 0);
Fwav_b4 : in std_logic_vector (15 downto 0);
Fwav_a : out std_logic_vector (15 downto 0);
Fwav_b : out std_logic_vector (15 downto 0);
Fwav_Max : out std_logic);

end component;

type MemoryStates is
(MemWaitforBus,

MemRead001, -- READ fired in this cycle, results later
MemRead010, -- READ fired last cycle, still waiting for results
MemRead100, -- READ result arrives
MemWrite, -- normal coefficients
MemWriteMinMax1, -- coefficient min/max block1 (done at end of each stage)
MemWriteMinMax2, -- coefficient min/max block2
MemWriteMinMax3, -- coefficient min/max block3
MemWriteMinMax4, -- coefficient min/max block4
MemInterrupt,
MemDone); -- Black hole state!

signal Mem_PState : MemoryStates; -- Present state
signal Mem_NState : MemoryStates; -- Next state
signal Enbl : std_logic;
signal nPass : std_logic_vector(1 downto 0); -- 00, 01, 10

signal ENDofROWx : std_logic; -- Row BEGIN and END signals
signal STARTofROWx : std_logic;

signal ENDofROWy : std_logic; -- Col BEGIN and END signals
signal STARTofROWy : std_logic;

signal ROWorCOL : std_logic; -- 0=>row, 1=>col.
signal ROWorCOL1 : std_logic; -- delayed versions of
signal ROWorCOL2 : std_logic; -- ROWorCOL
signal ROWorCOL3 : std_logic;

signal cntrROW : std_logic_vector(8 downto 0); -- ROW, COL address
signal cntrCOL : std_logic_vector(7 downto 0); -- registers for READ

signal cntrROW_old1 : std_logic_vector(8 downto 0);
signal cntrCOL_old1 : std_logic_vector(7 downto 0);

signal cntrROW_old2 : std_logic_vector(8 downto 0);
signal cntrCOL_old2 : std_logic_vector(7 downto 0);

signal cntrROW_old3 : std_logic_vector(8 downto 0); -- ROW, COL address

48

signal cntrCOL_old3 : std_logic_vector(7 downto 0); -- registers for WRITE.

signal ROW_limit : std_logic_vector(8 downto 0); -- 511, 510, 508
signal COL_limit : std_logic_vector(7 downto 0); -- 255, 254, 252

signal ROW_skip : std_logic_vector(8 downto 0); -- 1, 2, 4
signal COL_skip : std_logic_vector(7 downto 0); -- 1, 2, 4

signal userInputU : std_logic_vector(15 downto 0); -- Input, from mem READ
signal userInputL : std_logic_vector(15 downto 0);

signal userOutputUx : std_logic_vector(15 downto 0); -- Output from
signal userOutputLx : std_logic_vector(15 downto 0); -- ForwardWaveletX

signal userOutputUy : std_logic_vector(15 downto 0); -- Output from
signal userOutputLy : std_logic_vector(15 downto 0); -- ForwardWaveletY

signal normalCoeffU : std_logic_vector(15 downto 0); --
signal normalCoeffL : std_logic_vector(15 downto 0); --
signal Fwav_MaxY : std_logic;

signal block1min : std_logic_vector(15 downto 0); -- Collect coefficient
signal block1max : std_logic_vector(15 downto 0); -- MIN/MAX at each stage of
signal block2min : std_logic_vector(15 downto 0); -- Waveletting, to be used
signal block2max : std_logic_vector(15 downto 0); -- the next stage - quantizer
signal block3min : std_logic_vector(15 downto 0);
signal block3max : std_logic_vector(15 downto 0); -- This saves an additional
signal block4min : std_logic_vector(15 downto 0); -- pass over the data.
signal block4max : std_logic_vector(15 downto 0);

begin
wlet_x : ForwardWaveletX

port map (PE_Pclk, -- here is the forward Wavelet
Enbl, -- transform block for X direction
STARTofROWx,
ENDofROWx,
userInputU,
userInputL,
userOutputUx,
userOutputLx);

wlet_y : ForwardWaveletY
port map (PE_Pclk, -- here is the forward Wavelet

Enbl, -- transform block for Y direction
STARTofROWy,
ENDofROWy,
userInputU,
userInputL,
userOutputUy,
userOutputLy,
Fwav_MaxY);

memdata_mux : process (ROWorCOL3, Mem_PState,
userOutputUx, userOutputLx,
userOutputUy, userOutputLy,
normalCoeffU, normalCoeffL,
block1max, block1min)

begin

if(ROWorCOL3=’0’) then
normalCoeffU <= userOutputUx;
normalCoeffL <= userOutputLx;

else
normalCoeffU <= userOutputUy;
normalCoeffL <= userOutputLy;

end if;

if(Mem_PState=MemWrite) then
PE_MemData_OutReg(31 downto 16)<= normalCoeffU;
PE_MemData_OutReg(15 downto 0) <= normalCoeffL;

else
PE_MemData_OutReg(31 downto 16)<= block1max;
PE_MemData_OutReg(15 downto 0) <= block1min;

end if;

end process memdata_mux;

st_update : process (PE_Pclk, PE_Reset)
variable xtest, ytest: std_logic;

begin

if (PE_Reset = ’1’) then

Mem_PState <= MemWaitforBus; -- Initialize current state

49

cntrROW <= "000000000"; -- Initialize ROW and COL
cntrCOL <= "00000000"; -- address registers.
cntrROW_old1 <= "000000000";
cntrCOL_old1 <= "00000000";
cntrROW_old2 <= "000000000";
cntrCOL_old2 <= "00000000";
cntrROW_old3 <= "000000000";
cntrCOL_old3 <= "00000000";

ROWorCOL <= ’0’; -- Initialize ROW / COL
ROWorCOL1 <= ’0’; -- direction indicator
ROWorCOL2 <= ’0’; -- to ROW
ROWorCOL3 <= ’0’;

userInputU <= (others => ’0’);
userInputL <= (others => ’0’);

block1max <= (others => ’0’);
block1min <= (others => ’0’);
block2max <= (others => ’0’);
block2min <= (others => ’0’);
block3max <= (others => ’0’);
block3min <= (others => ’0’);
block4max <= (others => ’0’);
block4min <= (others => ’0’);

nPass <= "00";

ROW_skip <= "000000001"; -- 1, 2, 4
COL_skip <= "00000001"; -- 1, 2, 4

-- Pass 1 covers:
-- ROWS [0,1,2,3, ..., 511] and COLS [0,1,2,3, ..., 255]
--
-- Pass 2 covers:
-- ROWS [0,2,4,6, ..., 510] and COLS [0,2,4,6, ..., 254]
--
-- Pass 3 covers:
-- ROWS [0,4,8,12,..., 508] and COLS [0,4,8,12,..., 252]

ROW_limit <= "111111111"; -- Initialize to 511
COL_limit <= "11111111"; -- Initialize to 255

elsif (rising_edge(PE_Pclk)) then

Mem_PState <= Mem_NState;

if (Mem_PState = MemWrite) then

if((cntrROW = ROW_limit) and -- Switch between
(cntrCOL = COL_limit)) then -- X,Y directions

ROWorCOL <= not(ROWorCOL); -- (ROWorCOL=0) => X,
-- (ROWorCOL=1) => Y.

if(ROWorCOL = ’1’) then
ROW_skip <= (ROW_skip(7 downto 0) & ’0’);
COL_skip <= (COL_skip(6 downto 0) & ’0’);

ROW_limit <= (ROW_limit(7 downto 0) & ’0’);
COL_limit <= (COL_limit(6 downto 0) & ’0’);

nPass <= UNSIGNED(nPass) + 1;
end if;

end if;

ROWorCOL1 <= ROWorCOL; -- update delayed
ROWorCOL2 <= ROWorCOL1; -- versions of
ROWorCOL3 <= ROWorCOL2; -- ROWorCOL

if(ROWorCOL = ’0’) then
cntrCOL <= UNSIGNED(cntrCOL) + UNSIGNED(COL_skip);
if (cntrCOL = COL_limit) then

cntrROW <= UNSIGNED(cntrROW) + UNSIGNED(ROW_skip);
end if;

else
cntrROW <= UNSIGNED(cntrROW) + UNSIGNED(ROW_skip);
if (cntrROW = ROW_limit) then

cntrCOL <= UNSIGNED(cntrCOL) + UNSIGNED(COL_skip);
end if;

end if;

cntrROW_old1 <= cntrROW; -- 2 sets of address
cntrCOL_old1 <= cntrCOL; -- regsisters, one for

-- memory READ and another
cntrROW_old2 <= cntrROW_old1; -- for memory WRITE.
cntrCOL_old2 <= cntrCOL_old1; --

50

-- WRITE lags the READ
cntrROW_old3 <= cntrROW_old2; -- by the latency of
cntrCOL_old3 <= cntrCOL_old2; -- ForwardWavelet.

end if;

if (Mem_PState = MemRead100) then
userInputU <= PE_MemData_InReg(31 downto 16);
userInputL <= PE_MemData_InReg(15 downto 0);

end if;

if ((Mem_PState = MemWriteMinMax1) or
(Mem_PState = MemWriteMinMax2) or
(Mem_PState = MemWriteMinMax3) or
(Mem_PState = MemWriteMinMax4)) then

block1max <= block2max;
block1min <= block2min;

block2max <= block3max;
block2min <= block3min;

block3max <= block4max;
block3min <= block4min;

block4max <= (others => ’0’);
block4min <= (others => ’0’);

elsif (Mem_PState = MemWrite) then

if (nPass = "00") then
xtest := cntrROW_old3(0);
ytest := cntrCOL_old3(0);

elsif (nPass = "01") then
xtest := cntrROW_old3(1);
ytest := cntrCOL_old3(1);

else
xtest := cntrROW_old3(2);
ytest := cntrCOL_old3(2);

end if;

if ((xtest = ’0’) and (ytest = ’0’) and (ROWorCOL3=’1’)) then
if(Fwav_MaxY=’0’) then

if(SIGNED(block1max) < SIGNED(normalCoeffU)) then
block1max <= normalCoeffU;

end if;
if(SIGNED(block1min) > SIGNED(normalCoeffL)) then

block1min <= normalCoeffL;
end if;

else
if(SIGNED(block1max) < SIGNED(normalCoeffL)) then

block1max <= normalCoeffL;
end if;
if(SIGNED(block1min) > SIGNED(normalCoeffU)) then

block1min <= normalCoeffU;
end if;

end if;
end if;

if ((xtest = ’0’) and (ytest = ’1’) and (ROWorCOL3=’1’)) then
if(Fwav_MaxY=’0’) then

if(SIGNED(block2max) < SIGNED(normalCoeffU)) then
block2max <= normalCoeffU;

end if;
if(SIGNED(block2min) > SIGNED(normalCoeffL)) then

block2min <= normalCoeffL;
end if;

else
if(SIGNED(block2max) < SIGNED(normalCoeffL)) then

block2max <= normalCoeffL;
end if;
if(SIGNED(block2min) > SIGNED(normalCoeffU)) then

block2min <= normalCoeffU;
end if;

end if;
end if;

if ((xtest = ’1’) and (ytest = ’0’) and (ROWorCOL3=’1’)) then
if(Fwav_MaxY=’0’) then

if(SIGNED(block3max) < SIGNED(normalCoeffU)) then
block3max <= normalCoeffU;

end if;
if(SIGNED(block3min) > SIGNED(normalCoeffL)) then

block3min <= normalCoeffL;
end if;

else
if(SIGNED(block3max) < SIGNED(normalCoeffL)) then

block3max <= normalCoeffL;
end if;
if(SIGNED(block3min) > SIGNED(normalCoeffU)) then

51

block3min <= normalCoeffU;
end if;

end if;
end if;

if ((xtest = ’1’) and (ytest = ’1’) and (ROWorCOL3=’1’)) then
if(Fwav_MaxY=’0’) then

if(SIGNED(block4max) < SIGNED(normalCoeffU)) then
block4max <= normalCoeffU;

end if;
if(SIGNED(block4min) > SIGNED(normalCoeffL)) then

block4min <= normalCoeffL;
end if;

else
if(SIGNED(block4max) < SIGNED(normalCoeffL)) then

block4max <= normalCoeffL;
end if;
if(SIGNED(block4min) > SIGNED(normalCoeffU)) then

block4min <= normalCoeffU;
end if;

end if;
end if;

end if;

end if;
end process st_update;

start_end : process(ROWorCOL,
cntrCOL, cntrROW,
ROW_limit, COL_limit)

begin
STARTofROWx <= ’0’;
ENDofROWx <= ’0’;
STARTofROWy <= ’0’;
ENDofROWy <= ’0’;

if(ROWorCOL = ’0’) then -- if X direction
if (cntrCOL = "00000000") then -- STARTofROW

STARTofROWx <= ’1’;
end if;

if (cntrCOL = COL_limit) then -- ENDofROW
ENDofROWx <= ’1’;

end if;
else -- else if Y direction

if (cntrROW = "000000000") then -- STARTofROW
STARTofROWy <= ’1’;

end if;

if (cntrROW = ROW_limit) then -- ENDofROW
ENDofROWy <= ’1’;

end if;
end if;

end process;

PE_MemAddr_OutReg(21 downto 18) <= (others => ’0’);

mem_state: process(Mem_PState, nPass,
PE_MemBusGrant_n,
ROWorCOL2, ROWorCOL3,
cntrROW, cntrCOL,
cntrROW_old3, cntrCOL_old3,
PE_InterruptAck_n)

begin
PE_InterruptReq_n <= ’1’; -- Default, do not interrupt host
PE_MemWriteSel_n <= ’1’; -- read/write, default read
PE_MemStrobe_n <= ’1’; -- No strobe, later
PE_MemBusReq_n <= ’0’; -- Always request bus
Enbl <= ’0’;
PE_MemAddr_OutReg(17 downto 0) <= (others => ’X’);

case Mem_PState is

when MemWaitforBus => -- Wait for bus, when bus is
if(PE_MemBusGrant_n = ’0’) then -- available, fire READ in

Mem_NState <= MemRead001; -- in next clock. Firing READ
else -- in same clock kills the

Mem_NState <= MemWaitforBus;-- timing performance...
end if;

when MemRead001 => -- Fire READ, results of
PE_MemStrobe_n <= ’0’; -- this will come later...
Mem_NState <= MemRead010;

52

PE_MemAddr_OutReg(17) <= ’0’;
PE_MemAddr_OutReg(16 downto 8) <= cntrROW; -- Use cntrROW and
PE_MemAddr_OutReg(7 downto 0) <= cntrCOL; -- cntrCOL for READ

when MemRead010 => -- Still waiting for
Mem_NState <= MemRead100; -- READ results...

when MemRead100 => -- Got READ results here
Mem_NState <= MemWrite;

when MemWrite =>
Enbl <= ’1’;
PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;

PE_MemAddr_OutReg(17) <= ’0’;
PE_MemAddr_OutReg(16 downto 8) <= cntrROW_old3; --Use cntrROW_old3
PE_MemAddr_OutReg(7 downto 0) <= cntrCOL_old3; --cntrCOL_old3 for

--WRITE

if((ROWorCOL3 = ’1’) and -- If COL->ROW switch
(ROWorCOL2 = ’0’)) then -- Write max/min statistics

Mem_NState <= MemWriteMinMax1;
else

Mem_NState <= MemRead001;
end if;

-- After each stage of wave-letting, we get 4 blocks,
-- the MAX and MIN values of coefficients in each block are
-- computed for use in next stage, (dynamic quantization).
-- At the end of each stage, we write back 4 WORDs for
-- each of the 4 blocks (each word contains MAX and MIN, 15 bits each),
-- into an upper portion of memory (unused).
-- The addressing scheme is as follows:

-- 0XXXXXXXXXXXXX XX XX // normal data/coefficients

-- 10000000000000 00 00 // 4 blocks from stage1
-- 10000000000000 00 01
-- 10000000000000 00 10
-- 10000000000000 00 11
--
-- 10000000000000 01 00 // 4 blocks from stage2
-- 10000000000000 01 01
-- 10000000000000 01 10
-- 10000000000000 01 11
--
-- 10000000000000 10 00 // 4 blocks from stage3
-- 10000000000000 10 01
-- 10000000000000 10 10
-- 10000000000000 10 11

when MemWriteMinMax1 =>
PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;
Mem_NState <= MemWriteMinMax2;

PE_MemAddr_OutReg(17 downto 4) <= "10000000000000";
PE_MemAddr_OutReg(3 downto 2) <= nPass;
PE_MemAddr_OutReg(1 downto 0) <= "00";

when MemWriteMinMax2 =>
PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;
Mem_NState <= MemWriteMinMax3;

PE_MemAddr_OutReg(17 downto 4) <= "10000000000000";
PE_MemAddr_OutReg(3 downto 2) <= nPass;
PE_MemAddr_OutReg(1 downto 0) <= "01";

when MemWriteMinMax3 =>
PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;
Mem_NState <= MemWriteMinMax4;

PE_MemAddr_OutReg(17 downto 4) <= "10000000000000";
PE_MemAddr_OutReg(3 downto 2) <= nPass;
PE_MemAddr_OutReg(1 downto 0) <= "10";

when MemWriteMinMax4 =>
PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;

PE_MemAddr_OutReg(17 downto 4) <= "10000000000000";

53

PE_MemAddr_OutReg(3 downto 2) <= nPass;
PE_MemAddr_OutReg(1 downto 0) <= "11";

if((cntrROW_old3 = "000000000") and -- Wind up after
(cntrCOL_old3 = "00000000") and -- 3 passes.
(nPass = "11")) then

Mem_NState <= MemInterrupt;
else

Mem_NState <= MemRead001;
end if;

when MemInterrupt =>
PE_MemBusReq_n <= ’1’; -- Give up bus
PE_InterruptReq_n <= ’0’; -- Interrupt host
if(PE_InterruptAck_n = ’0’) then

Mem_NState <= MemDone;
else

Mem_NState <= MemInterrupt;
end if;

when MemDone =>
PE_MemBusReq_n <= ’1’; -- Give up bus, host program
Mem_NState <= MemDone; -- to READ memory now...

end case;

end process mem_state;

--
-- "Inactive" output port signal assignments
--

PE_MemHoldReq_n <= ’1’; -- Disable memory hold requests

PE_Left_OE <= (others => ’0’); -- Disable left port output

PE_Right_OE <= (others => ’0’); -- Disable right port output

PE_FifoSelect <= "00"; -- Deselect fifo
-- "00" selects none
-- "01" selects External I/O Fifo
-- "10" selects On-Board Fifo
-- "11" selects On-Board Mailbox

PE_Fifo_WE_n <= ’1’; -- Disable fifo write mode
PE_FifoPtrIncr_EN <= ’0’; -- Disable fifo pointer increment

end Memory_Access;

B.2 Stage 2 - VHDL source code

B.2.1 quantizer.vhd
--
-- WAVELET TRANSFORM IMPLEMENTATION
-- Stage2 - Dynamic Quantizer
--
-- Author : sarin@ittc.ukans.edu, 06/10/2000
--
-- File : quantizer.vhd
--
-- Design : Given a stream of numbers, the stream is quantized into 16
-- levels (4 bits). The 16 quantization levels are:
--
-- [min -> min + 1*(max-min+8)/16] => "0000"
-- [min + 2*(max-min+8)/16 -> min + 3*(max-min+8)/16] => "0001"
-- [min + 3*(max-min+8)/16 -> min + 4*(max-min+8)/16] => "0010"
--
-- [min + 14*(max-min+8)/16 -> min + 15*(max-min+8)/16] => "1110"
-- [min + 15*(max-min+8)/16 -> max] => "1111"
--
-- ’min’ and ’max’ are not know prior and depends on the
-- input stream making it a dynamic quantizer.
--
-- Input : A stream of 15 bit numbers on ’QUANTin’
-- Output : The quantized (4 bit) values on ’QUANTout’.
--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use ieee.std_logic_signed.all;

54

entity QUANT is
port
(QUANTclk : in std_logic;

QUANTen : in std_logic;
QUANTmax : in std_logic_vector (15 downto 0);
QUANTmin : in std_logic_vector (15 downto 0);
QUANTin : in std_logic_vector (15 downto 0);
QUANTout : out std_logic_vector (3 downto 0)

);
end QUANT;

architecture structural of QUANT is
subtype std4 is std_logic_vector (3 downto 0);
subtype std16 is std_logic_vector (15 downto 0);
subtype std20 is std_logic_vector (19 downto 0);

signal r : std16;
signal r_by_2 : std20;
signal r_by_4 : std20;
signal r_by_8 : std20;
signal r_by_16: std20;

signal in1 : std16;
signal in2 : std16;
signal in3 : std16;
signal in4 : std16;

signal cmp1 : std20;
signal cmp2 : std20;
signal cmp3 : std20;
signal cmp4 : std20;

signal level1 : std4;
signal level2 : std4;
signal level3 : std4;
signal level4 : std4;

begin

r <= (QUANTmax - QUANTmin);

run : process(QUANTclk)
begin

if(rising_edge(QUANTclk)) then

if(QUANTen = ’1’) then

-- The nice thing here is that at the edges of subbands
-- when the range changes, the subranges also changes
-- in sync with the data.

r_by_2 <= (r(15) & r & "000");
r_by_4 <= (r_by_2(19) & r_by_2(19 downto 1));
r_by_8 <= (r_by_4(19) & r_by_4(19 downto 1));
r_by_16 <= (r_by_8(19) & r_by_8(19 downto 1));

in4 <= in3;
in3 <= in2;
in2 <= in1;
in1 <= (QUANTin - QUANTmin); -- DC shifting.

if(SIGNED(in1) > SIGNED(r_by_2(19 downto 4))) then
level1 <= "1000";
cmp1 <= (r_by_2 + r_by_4);

else
level1 <= "0000";
cmp1 <= (r_by_2 - r_by_4);

end if;

if(SIGNED(in2 & ’0’) > SIGNED(cmp1(19 downto 3))) then
level2 <= (level1 or "0100");
cmp2 <= (cmp1 + r_by_8);

else
level2 <= level1;
cmp2 <= (cmp1 - r_by_8);

end if;

if(SIGNED(in3 & "0000") > SIGNED(cmp2(19 downto 0))) then
level3 <= (level2 or "0010");
cmp3 <= (cmp2 + r_by_16);

else
level3 <= level2;
cmp3 <= (cmp2 - r_by_16);

end if;
cmp4 <= cmp3;

if(SIGNED(in4 & "0000") > SIGNED(cmp3(19 downto 0))) then

55

level4 <= (level3 or "0001");
else

level4 <= level3;
end if;

end if; -- end if(QUANTen=’1’)
end if; -- rising_edge(clk)

end process run;

QUANTout <= level4;
end structural;

B.2.2 rle.vhd
--
-- WAVELET TRANSFORM IMPLEMENTATION
-- Stage3 - Run Length Encoder (for ZEROS only)
--
-- Author : sarin@ittc.ukans.edu, 04/14/2000
--
-- File : rle.vhd
--
-- Input : A stream of 15 bit numbers on ’RLEin’,
-- the zero threshold value on ’RLEzeroth’,
-- an enable signal on ’RLEen’.
--
-- Output : Output stream of 8 bit numbers on ’RLEout’,
-- other control outputs on ’RLErunning’ and ’RLEspellEnd’.
--
-- Design : The input stream is compared with zero threshold
-- to decide if it should be truncated to zero.
-- Any continuous sequence of ZEROes are run length
-- encoded, and the sum is output on ’RLEout’.
--
-- The RLE works like this:
--
-- Whenever we detect a ZERO, we would assert ’RLErunning’,
-- and start counting the sequence of continuous ZEROes.
-- The current sum of ZEROes is always available on ’RLEout’.
-- When ever the continuous spell of ZEROes end,
-- we unset ’RLErunning’ and assert ’RLEspellEnd’ for one cycle
-- (to allow the higher block to read off the RLE count)
-- and we also reset our internal counter.
--
-- Yeah, there is look ahead problem? Before we signal the end
-- of a spell, we need to see the next value is the stream.
-- Luckily, RLE is used in conjunction with a quantizer,
-- (RLE and quantizer are connected in parallel) which is a
-- 4 staged pipeline.
--
-- We may face an arbitrarily long sequence of ZEROes. From the
-- design specs we are allowed to count only upto 240 ZEROes:
--
-- output of quantizer: 00000000 (16 quantization levels)
-- ...
-- 00001111
--
-- output of RLE: 00010000 (256-16 = 240)
-- ...
-- 11111111
--
-- Thus, when we have seen 240 continuous ZEROes and still going
-- strong, ’RLEspellEnd’ would be asserted for one clock cycle,
-- and we would reset our internal counter to 00010000.
-- Ofcourse ’RLErunning’ would be high through out the spell.
--
-- We know that the preceeding stage may not have an output
-- on every clock, (due to memory READ/WRITE scheduling)
-- so please let us know on which all clocks we need to run,
-- by asserting ’RLEen’.
--
--
-- The higher block using RLE works (should work) like this:
--
-- if(RLErunning = 1)
-- {
-- wait till (RLEspellEnd = 1)
-- collect ’RLEout’.
-- }
-- else // (RLErunning = 0)
-- {
-- collect the output of the quantizer.
-- }

56

--
-- The enable signal for the next stage is as follows:
--
-- if((RLEspellEnd = 1) or // output from RLE
-- (RLErunning = 0)) // output from QUANT
-- NextStageEnable = 1;
-- else
-- NextStageEnable = 0;
-- end
--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_signed.all;

entity RLE is
port
(RLEclk : in std_logic;

RLEreset : in std_logic;
RLEen : in std_logic;
RLEflush : in std_logic;
RLEin : in std_logic_vector (15 downto 0);
RLEzeroth : in std_logic_vector (15 downto 0);
RLEout : out std_logic_vector (7 downto 0);
RLErunning : out std_logic;
RLEspellEnd : out std_logic

);
end RLE;

architecture structural of RLE is

signal z1 : std_logic;
signal z2 : std_logic;
signal z3 : std_logic;
signal z4 : std_logic;
signal z5 : std_logic;
signal s240 : std_logic;

signal count : std_logic_vector (7 downto 0) := "00010000";

begin

run : process(RLEreset, RLEclk)
begin

if(RLEreset = ’1’) then

count <= "00001111";

z1 <= ’0’;
z2 <= ’0’;
z3 <= ’0’;
z4 <= ’0’;
z5 <= ’0’;

elsif(rising_edge(RLEclk)) then

if(RLEen = ’1’) then

if((SIGNED(RLEin) < SIGNED(RLEzeroth)) and
(SIGNED(RLEin) > SIGNED(-RLEzeroth)) and
(RLEflush = ’0’)) then
z1 <= ’1’;

else
z1 <= ’0’;

end if;

z2 <= z1;
z3 <= z2;
z4 <= z3;
z5 <= z4;

s240 <= ’0’; -- default assignment

if(z4 = ’0’) then -- ZERO spell broken
count <= "00001111";

else
if(count = "11111110") then

s240 <= ’1’;
end if;

if(count = "11111111") then
count <= "00010000";

else
count <= UNSIGNED(count) + 1;

end if;

57

end if;

end if; -- (RLEen = ’1’)

end if; -- rising_edge(RLEclk)
end process run;

RLEout <= count;
RLErunning <= z5;
RLEspellEnd <= (z5 and not(z4)) or s240;

end structural;

B.2.3 huffman.vhd
--
-- WAVELET TRANSFORM IMPLEMENTATION
-- Stage4 - Huffman Encoder
--
--
-- Author : sarin@ittc.ukans.edu, 01/30/2000
--
-- Input : A stream of 8 bit characters on ’in_stream’.
--
-- Output : Huffman tree encoded coefficients, and length.
--
-- Design : Huffman table implementation, takes about 165 CLBs.
-- 8 bit input values are variable length (3-18) encoded.
--
-- Revision history:
--
-- v1.0 reversed the bits for HUFFdout, to suit honeywell
-- style of bit packing. This change along with the byte reversal
-- in shifter would do it.
--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity HUFF is
port

(HUFFclk : in std_logic;
HUFFin : in std_logic_vector (7 downto 0);
HUFFlout : out std_logic_vector (4 downto 0);
HUFFdout : out std_logic_vector (17 downto 0)

);
end HUFF;

architecture structural of HUFF is
signal tmp : std_logic_vector(7 downto 0);

begin

run : process (HUFFclk)
begin

if(rising_edge(HUFFclk)) then

tmp <= HUFFin;

case tmp is
when "00000000" => HUFFdout<="111010010XXXXXXXXX"; HUFFlout<="01001";
when "00000001" => HUFFdout<="0110011XXXXXXXXXXX"; HUFFlout<="00111";
when "00000010" => HUFFdout<="111000XXXXXXXXXXXX"; HUFFlout<="00110";
when "00000011" => HUFFdout<="01101XXXXXXXXXXXXX"; HUFFlout<="00101";
when "00000100" => HUFFdout<="0000XXXXXXXXXXXXXX"; HUFFlout<="00100";
when "00000101" => HUFFdout<="1101XXXXXXXXXXXXXX"; HUFFlout<="00100";
when "00000110" => HUFFdout<="100XXXXXXXXXXXXXXX"; HUFFlout<="00011";
when "00000111" => HUFFdout<="1111XXXXXXXXXXXXXX"; HUFFlout<="00100";
when "00001000" => HUFFdout<="010XXXXXXXXXXXXXXX"; HUFFlout<="00011";
when "00001001" => HUFFdout<="001XXXXXXXXXXXXXXX"; HUFFlout<="00011";
when "00001010" => HUFFdout<="0111XXXXXXXXXXXXXX"; HUFFlout<="00100";
when "00001011" => HUFFdout<="10101XXXXXXXXXXXXX"; HUFFlout<="00101";
when "00001100" => HUFFdout<="111011XXXXXXXXXXXX"; HUFFlout<="00110";
when "00001101" => HUFFdout<="101001XXXXXXXXXXXX"; HUFFlout<="00110";
when "00001110" => HUFFdout<="0001110XXXXXXXXXXX"; HUFFlout<="00111";
when "00001111" => HUFFdout<="10110111XXXXXXXXXX"; HUFFlout<="01000";
when "00010000" => HUFFdout<="1100XXXXXXXXXXXXXX"; HUFFlout<="00100";
when "00010001" => HUFFdout<="10111XXXXXXXXXXXXX"; HUFFlout<="00101";
when "00010010" => HUFFdout<="00010XXXXXXXXXXXXX"; HUFFlout<="00101";
when "00010011" => HUFFdout<="101100XXXXXXXXXXXX"; HUFFlout<="00110";

58

when "00010100" => HUFFdout<="000110XXXXXXXXXXXX"; HUFFlout<="00110";
when "00010101" => HUFFdout<="1110011XXXXXXXXXXX"; HUFFlout<="00111";
when "00010110" => HUFFdout<="1010000XXXXXXXXXXX"; HUFFlout<="00111";
when "00010111" => HUFFdout<="0110000XXXXXXXXXXX"; HUFFlout<="00111";
when "00011000" => HUFFdout<="11101011XXXXXXXXXX"; HUFFlout<="01000";
when "00011001" => HUFFdout<="10110100XXXXXXXXXX"; HUFFlout<="01000";
when "00011010" => HUFFdout<="01100011XXXXXXXXXX"; HUFFlout<="01000";
when "00011011" => HUFFdout<="00011111XXXXXXXXXX"; HUFFlout<="01000";
when "00011100" => HUFFdout<="111001011XXXXXXXXX"; HUFFlout<="01001";
when "00011101" => HUFFdout<="111010011XXXXXXXXX"; HUFFlout<="01001";
when "00011110" => HUFFdout<="101101101XXXXXXXXX"; HUFFlout<="01001";
when "00011111" => HUFFdout<="111001001XXXXXXXXX"; HUFFlout<="01001";
when "00100000" => HUFFdout<="101000111XXXXXXXXX"; HUFFlout<="01001";
when "00100001" => HUFFdout<="011001011XXXXXXXXX"; HUFFlout<="01001";
when "00100010" => HUFFdout<="011000101XXXXXXXXX"; HUFFlout<="01001";
when "00100011" => HUFFdout<="1110101011XXXXXXXX"; HUFFlout<="01010";
when "00100100" => HUFFdout<="000111101XXXXXXXXX"; HUFFlout<="01001";
when "00100101" => HUFFdout<="1110101001XXXXXXXX"; HUFFlout<="01010";
when "00100110" => HUFFdout<="1011010100XXXXXXXX"; HUFFlout<="01010";
when "00100111" => HUFFdout<="1011011000XXXXXXXX"; HUFFlout<="01010";
when "00101000" => HUFFdout<="1110010100XXXXXXXX"; HUFFlout<="01010";
when "00101001" => HUFFdout<="1011010111XXXXXXXX"; HUFFlout<="01010";
when "00101010" => HUFFdout<="1011010110XXXXXXXX"; HUFFlout<="01010";
when "00101011" => HUFFdout<="1110100000XXXXXXXX"; HUFFlout<="01010";
when "00101100" => HUFFdout<="1010001100XXXXXXXX"; HUFFlout<="01010";
when "00101101" => HUFFdout<="1010001101XXXXXXXX"; HUFFlout<="01010";
when "00101110" => HUFFdout<="1010001010XXXXXXXX"; HUFFlout<="01010";
when "00101111" => HUFFdout<="11101000100XXXXXXX"; HUFFlout<="01011";
when "00110000" => HUFFdout<="0110010100XXXXXXXX"; HUFFlout<="01010";
when "00110001" => HUFFdout<="11100100001XXXXXXX"; HUFFlout<="01011";
when "00110010" => HUFFdout<="11100101010XXXXXXX"; HUFFlout<="01011";
when "00110011" => HUFFdout<="0110001001XXXXXXXX"; HUFFlout<="01010";
when "00110100" => HUFFdout<="0110010001XXXXXXXX"; HUFFlout<="01010";
when "00110101" => HUFFdout<="10110101010XXXXXXX"; HUFFlout<="01011";
when "00110110" => HUFFdout<="11101000010XXXXXXX"; HUFFlout<="01011";
when "00110111" => HUFFdout<="11100100000XXXXXXX"; HUFFlout<="01011";
when "00111000" => HUFFdout<="01100101011XXXXXXX"; HUFFlout<="01011";
when "00111001" => HUFFdout<="01100101010XXXXXXX"; HUFFlout<="01011";
when "00111010" => HUFFdout<="10100010001XXXXXXX"; HUFFlout<="01011";
when "00111011" => HUFFdout<="111001000101XXXXXX"; HUFFlout<="01100";
when "00111100" => HUFFdout<="101101100101XXXXXX"; HUFFlout<="01100";
when "00111101" => HUFFdout<="111010001110XXXXXX"; HUFFlout<="01100";
when "00111110" => HUFFdout<="111010101011XXXXXX"; HUFFlout<="01100";
when "00111111" => HUFFdout<="10100010110XXXXXXX"; HUFFlout<="01011";
when "01000000" => HUFFdout<="01100010001XXXXXXX"; HUFFlout<="01011";
when "01000001" => HUFFdout<="111010100000XXXXXX"; HUFFlout<="01100";
when "01000010" => HUFFdout<="01100100111XXXXXXX"; HUFFlout<="01011";
when "01000011" => HUFFdout<="111001010110XXXXXX"; HUFFlout<="01100";
when "01000100" => HUFFdout<="011001000000XXXXXX"; HUFFlout<="01100";
when "01000101" => HUFFdout<="111001010111XXXXXX"; HUFFlout<="01100";
when "01000110" => HUFFdout<="111010000111XXXXXX"; HUFFlout<="01100";
when "01000111" => HUFFdout<="01100100100XXXXXXX"; HUFFlout<="01011";
when "01001000" => HUFFdout<="1011011001000XXXXX"; HUFFlout<="01101";
when "01001001" => HUFFdout<="011001001011XXXXXX"; HUFFlout<="01100";
when "01001010" => HUFFdout<="101101010110XXXXXX"; HUFFlout<="01100";
when "01001011" => HUFFdout<="111010001101XXXXXX"; HUFFlout<="01100";
when "01001100" => HUFFdout<="101000100001XXXXXX"; HUFFlout<="01100";
when "01001101" => HUFFdout<="1110100011110XXXXX"; HUFFlout<="01101";
when "01001110" => HUFFdout<="111010001100XXXXXX"; HUFFlout<="01100";
when "01001111" => HUFFdout<="1110100001100XXXXX"; HUFFlout<="01101";
when "01010000" => HUFFdout<="1110101000101XXXXX"; HUFFlout<="01101";
when "01010001" => HUFFdout<="0110010011001XXXXX"; HUFFlout<="01101";
when "01010010" => HUFFdout<="01100100101001XXXX"; HUFFlout<="01110";
when "01010011" => HUFFdout<="0110010011010XXXXX"; HUFFlout<="01101";
when "01010100" => HUFFdout<="1110100010111XXXXX"; HUFFlout<="01101";
when "01010101" => HUFFdout<="11101000111110XXXX"; HUFFlout<="01110";
when "01010110" => HUFFdout<="1110010001100XXXXX"; HUFFlout<="01101";
when "01010111" => HUFFdout<="1110101000111XXXXX"; HUFFlout<="01101";
when "01011000" => HUFFdout<="1011011001101XXXXX"; HUFFlout<="01101";
when "01011001" => HUFFdout<="1011011001110XXXXX"; HUFFlout<="01101";
when "01011010" => HUFFdout<="11101010100100XXXX"; HUFFlout<="01110";
when "01011011" => HUFFdout<="1011011001111XXXXX"; HUFFlout<="01101";
when "01011100" => HUFFdout<="1010001001111XXXXX"; HUFFlout<="01101";
when "01011101" => HUFFdout<="0110010010101XXXXX"; HUFFlout<="01101";
when "01011110" => HUFFdout<="1110100010100XXXXX"; HUFFlout<="01101";
when "01011111" => HUFFdout<="0110001000011XXXXX"; HUFFlout<="01101";
when "01100000" => HUFFdout<="1010001011100XXXXX"; HUFFlout<="01101";
when "01100001" => HUFFdout<="1110100001101XXXXX"; HUFFlout<="01101";
when "01100010" => HUFFdout<="1110101010000XXXXX"; HUFFlout<="01101";
when "01100011" => HUFFdout<="1110010001101XXXXX"; HUFFlout<="01101";
when "01100100" => HUFFdout<="11100100011100XXXX"; HUFFlout<="01110";
when "01100101" => HUFFdout<="1011010101111XXXXX"; HUFFlout<="01101";
when "01100110" => HUFFdout<="11100100010000XXXX"; HUFFlout<="01110";
when "01100111" => HUFFdout<="1010001011101XXXXX"; HUFFlout<="01101";
when "01101000" => HUFFdout<="1010001001000XXXXX"; HUFFlout<="01101";
when "01101001" => HUFFdout<="11101010100110XXXX"; HUFFlout<="01110";
when "01101010" => HUFFdout<="111010101001011XXX"; HUFFlout<="01111";
when "01101011" => HUFFdout<="1110100010101XXXXX"; HUFFlout<="01101";

59

when "01101100" => HUFFdout<="1110101010001XXXXX"; HUFFlout<="01101";
when "01101101" => HUFFdout<="10110110010011XXXX"; HUFFlout<="01110";
when "01101110" => HUFFdout<="1010001001101XXXXX"; HUFFlout<="01101";
when "01101111" => HUFFdout<="11101010101001XXXX"; HUFFlout<="01110";
when "01110000" => HUFFdout<="1010001001010XXXXX"; HUFFlout<="01101";
when "01110001" => HUFFdout<="11101010100111XXXX"; HUFFlout<="01110";
when "01110010" => HUFFdout<="0110001000001XXXXX"; HUFFlout<="01101";
when "01110011" => HUFFdout<="10100010000011XXXX"; HUFFlout<="01110";
when "01110100" => HUFFdout<="11101010001000XXXX"; HUFFlout<="01110";
when "01110101" => HUFFdout<="11100100010001XXXX"; HUFFlout<="01110";
when "01110110" => HUFFdout<="11101010101000XXXX"; HUFFlout<="01110";
when "01110111" => HUFFdout<="1010001001011XXXXX"; HUFFlout<="01101";
when "01111000" => HUFFdout<="0110001000000XXXXX"; HUFFlout<="01101";
when "01111001" => HUFFdout<="1110101000110XXXXX"; HUFFlout<="01101";
when "01111010" => HUFFdout<="0110010011000XXXXX"; HUFFlout<="01101";
when "01111011" => HUFFdout<="11101010001001XXXX"; HUFFlout<="01110";
when "01111100" => HUFFdout<="1011010101110XXXXX"; HUFFlout<="01101";
when "01111101" => HUFFdout<="0110010011011XXXXX"; HUFFlout<="01101";
when "01111110" => HUFFdout<="1010001001100XXXXX"; HUFFlout<="01101";
when "01111111" => HUFFdout<="1110010001001XXXXX"; HUFFlout<="01101";
when "10000000" => HUFFdout<="01100100001010XXXX"; HUFFlout<="01110";
when "10000001" => HUFFdout<="1011011001100XXXXX"; HUFFlout<="01101";
when "10000010" => HUFFdout<="101000100111010XXX"; HUFFlout<="01111";
when "10000011" => HUFFdout<="11101010101010XXXX"; HUFFlout<="01110";
when "10000100" => HUFFdout<="111010001111110XXX"; HUFFlout<="01111";
when "10000101" => HUFFdout<="11100100011101XXXX"; HUFFlout<="01110";
when "10000110" => HUFFdout<="01100100001011XXXX"; HUFFlout<="01110";
when "10000111" => HUFFdout<="1010001001001XXXXX"; HUFFlout<="01101";
when "10001000" => HUFFdout<="11101000101100XXXX"; HUFFlout<="01110";
when "10001001" => HUFFdout<="1110101010010100XX"; HUFFlout<="10000";
when "10001010" => HUFFdout<="11101010101011XXXX"; HUFFlout<="01110";
when "10001011" => HUFFdout<="11101000101101XXXX"; HUFFlout<="01110";
when "10001100" => HUFFdout<="1010001000000XXXXX"; HUFFlout<="01101";
when "10001101" => HUFFdout<="111010100001XXXXXX"; HUFFlout<="01100";
when "10001110" => HUFFdout<="101000101111XXXXXX"; HUFFlout<="01100";
when "10001111" => HUFFdout<="0110001000010XXXXX"; HUFFlout<="01101";
when "10010000" => HUFFdout<="101101100100101XXX"; HUFFlout<="01111";
when "10010001" => HUFFdout<="011001000010000XXX"; HUFFlout<="01111";
when "10010010" => HUFFdout<="11101010100101011X"; HUFFlout<="10001";
when "10010011" => HUFFdout<="011001000011011000"; HUFFlout<="10010";
when "10010100" => HUFFdout<="011001000011011001"; HUFFlout<="10010";
when "10010101" => HUFFdout<="011001000010001010"; HUFFlout<="10010";
when "10010110" => HUFFdout<="10100010000010111X"; HUFFlout<="10001";
when "10010111" => HUFFdout<="11100100011110010X"; HUFFlout<="10001";
when "10011000" => HUFFdout<="011001001010000XXX"; HUFFlout<="01111";
when "10011001" => HUFFdout<="11100100011110011X"; HUFFlout<="10001";
when "10011010" => HUFFdout<="011001000010001000"; HUFFlout<="10010";
when "10011011" => HUFFdout<="1010001001110110XX"; HUFFlout<="10000";
when "10011100" => HUFFdout<="11100100011110100X"; HUFFlout<="10001";
when "10011101" => HUFFdout<="11100100011110101X"; HUFFlout<="10001";
when "10011110" => HUFFdout<="0110010000110100XX"; HUFFlout<="10000";
when "10011111" => HUFFdout<="0110010010100010XX"; HUFFlout<="10000";
when "10100000" => HUFFdout<="011001000010001001"; HUFFlout<="10010";
when "10100001" => HUFFdout<="011001000011001100"; HUFFlout<="10010";
when "10100010" => HUFFdout<="1010001001110111XX"; HUFFlout<="10000";
when "10100011" => HUFFdout<="011001000011001101"; HUFFlout<="10010";
when "10100100" => HUFFdout<="0110010010100011XX"; HUFFlout<="10000";
when "10100101" => HUFFdout<="011001000011011010"; HUFFlout<="10010";
when "10100110" => HUFFdout<="011001000011011011"; HUFFlout<="10010";
when "10100111" => HUFFdout<="011001000011010100"; HUFFlout<="10010";
when "10101000" => HUFFdout<="1110010001111110XX"; HUFFlout<="10000";
when "10101001" => HUFFdout<="0110010000011000XX"; HUFFlout<="10000";
when "10101010" => HUFFdout<="0110010000011001XX"; HUFFlout<="10000";
when "10101011" => HUFFdout<="011001000011010101"; HUFFlout<="10010";
when "10101100" => HUFFdout<="011001000011000XXX"; HUFFlout<="01111";
when "10101101" => HUFFdout<="0110010000011010XX"; HUFFlout<="10000";
when "10101110" => HUFFdout<="011001000001010100"; HUFFlout<="10010";
when "10101111" => HUFFdout<="101000100000100XXX"; HUFFlout<="01111";
when "10110000" => HUFFdout<="0110010000011011XX"; HUFFlout<="10000";
when "10110001" => HUFFdout<="011001000001010101"; HUFFlout<="10010";
when "10110010" => HUFFdout<="0110010000110010XX"; HUFFlout<="10000";
when "10110011" => HUFFdout<="1010001001110011XX"; HUFFlout<="10000";
when "10110100" => HUFFdout<="011001000001010110"; HUFFlout<="10010";
when "10110101" => HUFFdout<="011001000001010111"; HUFFlout<="10010";
when "10110110" => HUFFdout<="011001000011010110"; HUFFlout<="10010";
when "10110111" => HUFFdout<="011001000011010111"; HUFFlout<="10010";
when "10111000" => HUFFdout<="0110010000100011XX"; HUFFlout<="10000";
when "10111001" => HUFFdout<="011001000011001110"; HUFFlout<="10010";
when "10111010" => HUFFdout<="1011011001001000XX"; HUFFlout<="10000";
when "10111011" => HUFFdout<="011001000011011110"; HUFFlout<="10010";
when "10111100" => HUFFdout<="011001000011011111"; HUFFlout<="10010";
when "10111101" => HUFFdout<="011001000011101110"; HUFFlout<="10010";
when "10111110" => HUFFdout<="0110010000111010XX"; HUFFlout<="10000";
when "10111111" => HUFFdout<="011001000011101111"; HUFFlout<="10010";
when "11000000" => HUFFdout<="011001000011101100"; HUFFlout<="10010";
when "11000001" => HUFFdout<="011001000011101101"; HUFFlout<="10010";
when "11000010" => HUFFdout<="011001000001001110"; HUFFlout<="10010";
when "11000011" => HUFFdout<="011001000001001111"; HUFFlout<="10010";

60

when "11000100" => HUFFdout<="011001000001001000"; HUFFlout<="10010";
when "11000101" => HUFFdout<="011001000001001001"; HUFFlout<="10010";
when "11000110" => HUFFdout<="011001000001001100"; HUFFlout<="10010";
when "11000111" => HUFFdout<="011001000001001101"; HUFFlout<="10010";
when "11001000" => HUFFdout<="0110010000011100XX"; HUFFlout<="10000";
when "11001001" => HUFFdout<="0110010000011101XX"; HUFFlout<="10000";
when "11001010" => HUFFdout<="011001000010011010"; HUFFlout<="10010";
when "11001011" => HUFFdout<="011001000010011011"; HUFFlout<="10010";
when "11001100" => HUFFdout<="11100100011110110X"; HUFFlout<="10001";
when "11001101" => HUFFdout<="011001000010011000"; HUFFlout<="10010";
when "11001110" => HUFFdout<="011001000001011100"; HUFFlout<="10010";
when "11001111" => HUFFdout<="011001000001011101"; HUFFlout<="10010";
when "11010000" => HUFFdout<="011001000001001010"; HUFFlout<="10010";
when "11010001" => HUFFdout<="11100100011110111X"; HUFFlout<="10001";
when "11010010" => HUFFdout<="111001000111110XXX"; HUFFlout<="01111";
when "11010011" => HUFFdout<="011001000001001011"; HUFFlout<="10010";
when "11010100" => HUFFdout<="011001000010010100"; HUFFlout<="10010";
when "11010101" => HUFFdout<="011001000001111XXX"; HUFFlout<="01111";
when "11010110" => HUFFdout<="011001000001000XXX"; HUFFlout<="01111";
when "11010111" => HUFFdout<="011001000010010101"; HUFFlout<="10010";
when "11011000" => HUFFdout<="11100100011111110X"; HUFFlout<="10001";
when "11011001" => HUFFdout<="0110010000111101XX"; HUFFlout<="10000";
when "11011010" => HUFFdout<="0110010000010100XX"; HUFFlout<="10000";
when "11011011" => HUFFdout<="101000100111000XXX"; HUFFlout<="01111";
when "11011100" => HUFFdout<="0110010000111110XX"; HUFFlout<="10000";
when "11011101" => HUFFdout<="1011011001001001XX"; HUFFlout<="10000";
when "11011110" => HUFFdout<="101000100000101000"; HUFFlout<="10010";
when "11011111" => HUFFdout<="101000100000101001"; HUFFlout<="10010";
when "11100000" => HUFFdout<="0110010000111111XX"; HUFFlout<="10000";
when "11100001" => HUFFdout<="11100100011111111X"; HUFFlout<="10001";
when "11100010" => HUFFdout<="101000100000101010"; HUFFlout<="10010";
when "11100011" => HUFFdout<="101000100000101011"; HUFFlout<="10010";
when "11100100" => HUFFdout<="111010001111111XXX"; HUFFlout<="01111";
when "11100101" => HUFFdout<="011001000010010110"; HUFFlout<="10010";
when "11100110" => HUFFdout<="0110010000010110XX"; HUFFlout<="10000";
when "11100111" => HUFFdout<="0110010000100111XX"; HUFFlout<="10000";
when "11101000" => HUFFdout<="011001000010010111"; HUFFlout<="10010";
when "11101001" => HUFFdout<="011001000011100110"; HUFFlout<="10010";
when "11101010" => HUFFdout<="011001000011100111"; HUFFlout<="10010";
when "11101011" => HUFFdout<="011001000011100100"; HUFFlout<="10010";
when "11101100" => HUFFdout<="0110010000100100XX"; HUFFlout<="10000";
when "11101101" => HUFFdout<="011001000011100101"; HUFFlout<="10010";
when "11101110" => HUFFdout<="011001000010011001"; HUFFlout<="10010";
when "11101111" => HUFFdout<="0110010000111000XX"; HUFFlout<="10000";
when "11110000" => HUFFdout<="011001000011110010"; HUFFlout<="10010";
when "11110001" => HUFFdout<="1110010001111000XX"; HUFFlout<="10000";
when "11110010" => HUFFdout<="011001000011110011"; HUFFlout<="10010";
when "11110011" => HUFFdout<="101000100000101100"; HUFFlout<="10010";
when "11110100" => HUFFdout<="101000100000101101"; HUFFlout<="10010";
when "11110101" => HUFFdout<="011001000011110000"; HUFFlout<="10010";
when "11110110" => HUFFdout<="011001000011001111"; HUFFlout<="10010";
when "11110111" => HUFFdout<="011001000011110001"; HUFFlout<="10010";
when "11111000" => HUFFdout<="011001000001011110"; HUFFlout<="10010";
when "11111001" => HUFFdout<="1010001001110010XX"; HUFFlout<="10000";
when "11111010" => HUFFdout<="011001000001011111"; HUFFlout<="10010";
when "11111011" => HUFFdout<="011001000011011100"; HUFFlout<="10010";
when "11111100" => HUFFdout<="11101010100101010X"; HUFFlout<="10001";
when "11111101" => HUFFdout<="011001000011011101"; HUFFlout<="10010";
when "11111110" => HUFFdout<="011001000010001011"; HUFFlout<="10010";
when "11111111" => HUFFdout<="000111100XXXXXXXXX"; HUFFlout<="01001";
when others => HUFFdout <="XXXXXXXXXXXXXXXXXX"; HUFFlout <="XXXXX";

end case;
end if;
end process;

end structural;

B.2.4 shifter.vhd
--
-- WAVELET TRANSFORM IMPLEMENTATION
-- Stage4 - Bit packer in Huffman Encoder
--
-- Author : sarin@ittc.ukans.edu, 04/22/2000
--
-- Input : A stream of variable length data (length varies between 3 and 18)
--
-- Output : A stream of 32 bit WORDS (packed data), to be written to memory.
--
-- Design : The aim is to pack the variable length data (3->18 bits) into
-- 32 bit WORDS. This is done by a 5 (=ln2(32)) stage shifter.
-- When ever we have a full load of 32 bits, we do a MEM_WRITE.
--
-- The shifter is inspired by the ’Xtetris’ computer game and the

61

-- ’Binary search’ algorithm. In stage 1, (SFTRdatin -> stage1),
-- we either shift (actually rotate) by 16 or pass the data straight.
-- In the next 4 stages we shift by 8, 4, 2, 1 respectively or
-- pass on straight.
--
-- The idea is to shift the incoming variable length data into the
-- correct position over the 5 stages of the shifter.
--
-- #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11
-- +-----+------+------+------+------+------+------+------+------+------+------
-- a.....|ba....|c.a...|dc.a..|edc.a.|fedc.a|gfedca|hgfedc|ihgf.c|...gfd|....gd
-- a.....|ba....|c.a...|dc.a..|edc.a.|fedc.a|g.edca|hg.edc|ihg..c|...g.d|....gd
-- a.....|ba....|c.a...|dc.a..|e.c.a.|fe.c.a|g.e.ca|hg.e.c|ihg.ec|...g.e|....ge
-- a.....|ba....|c.a...|dc.a..|e.c.a.|fe.c.a|g.e.ca|hg.e.c|.hg.ec|...g.e|....ge
-- a.....|ba....|c.a...|dc.a..|e.c.a.|fe.c.a|g.e.ca|hg.e.c|.hg.ec|...g.e|....ge
-- a.....|ba....|c.a...|dc.a..|e.c.a.|fe.c.a|g.e.ca|hg.e.c|.hg.ec|...g.e|....ge
-- a.....|ba....|c.a...|dc.a..|e.c.a.|fe.c.a|g.e.ca|hg.e.c|.hg.ec|...g.e|....ge
-- a.....|ba....|c.a...|dc.a..|e.c.a.|fe.c.a|g.e.ca|hg.e.c|.hg.ec|...g.e|....ge
-- a.....|ba....|c.a...|dc.a..|e.c.a.|fe.c.a|g.e.ca|hg.e.c|.hg.ec|..hg.e|....ge
-- a.....|ba....|c.a...|dc.a..|e.c.a.|fe.c.a|g.e.ca|hg.e.c|.hg.ec|..hg.e|....ge
-- a.....|ba....|c.a...|dc.a..|e.c.a.|fe.c.a|g.e.ca|hg.e.c|.hg.ec|..hg.e|....ge
-- a.....|ba....|c.a...|dc.a..|e.c.a.|fe.c.a|..e.ca|h..e.c|.h..ec|..h..e|.....e
-- a.....|ba....|c.a...|dc.a..|e.c.a.|fe.c.a|..e.ca|h..e.c|.h..ec|..h..e|...h.e
-- a.....|ba....|c.a...|dc.a..|e.c.a.|fe.c.a|..e.ca|h..e.c|.h..ec|..h..e|...h.e
-- a.....|.a....|c.a...|dc.a..|..c.a.|f..c.a|....ca|h....c|.h..ec|..h..e|...h.e
-- a.....|.a....|c.a...|dc.a..|..c.a.|f..c.a|....ca|h....c|.h..ec|..h..e|...h.e
-- a.....|.a....|.ba...|d.ba..|.d.ba.|f.d..a|.f.d.a|h.f.d.|.h.f.d|.ih.f.|...h.f
-- a.....|.a....|.ba...|d.ba..|.d.ba.|..d..a|.f.d.a|..f.d.|...f.d|.ih.f.|...h.f
--|......|.b....|..b...|.d.b..|..d.b.|.f.d.b|..f.d.|...f.d|.ih.f.|...h.f
--|......|.b....|..b...|.d.b..|..d.b.|.f.d.b|..f.d.|...f.d|..h.f.|...h.f
--|......|.b....|..b...|.d.b..|..d.b.|.f.d.b|..f.d.|...f.d|..h.f.|...h.f
--|......|.b....|..b...|.d.b..|..d.b.|.f.d.b|..f.d.|...f.d|..h.f.|...h.f
--|......|.b....|..b...|.d.b..|..d.b.|.f.d.b|..f.d.|...f.d|..h.f.|...h.f
--|......|.b....|..b...|.d.b..|..d.b.|.f.d.b|..f.d.|...f.d|..h.f.|...h.f
--|......|.b....|..b...|.d.b..|..d.b.|.f.d.b|..f.d.|...f.d|..h.f.|..ih.f
--|......|.b....|..b...|.d.b..|..d.b.|.f.d.b|..f.d.|...f.d|....f.|..ih.f
--|......|.b....|..b...|.d.b..|..d.b.|.f.d.b|..f.d.|...f.d|....f.|..ih.f
--|......|.b....|..b...|.d.b..|..d.b.|.f.d.b|..f.d.|...f.d|....f.|...h.f
--|......|.b....|..b...|.d.b..|..d.b.|.f.d.b|..f.d.|...f.d|....f.|...h.f
--|......|.b....|..b...|.d.b..|..d.b.|.f.d.b|..f.d.|...f.d|....f.|.....f
--|......|......|......|.d....|..d.b.|.f.d.b|..f.d.|...f.d|....f.|.....f
--|......|......|......|.d....|..d.b.|.f.d.b|..f.d.|...f.d|....f.|.....f
-- ------+------+------+------+------+------+------+------+------+------+------
-- WRITE WRITE WRITE
--
-- Things are not that straight forward, as you can see the problem
-- we face in cycle #8. We want to shift forward ’d’ to complete the
-- 32 bits but we cannot do it for all bits of d. Yeah you guessed
-- it right, part of the last stage is double buffered ...
--
-- [To better understand the action of double buffering, see the
-- detailed transcript in the simulation file, data.shifter.]
--
-- Since (input_flow_rate != output_flow_rate) output will not be
-- available on all clock cycles, ’SFTRoutEn’ is asserted when ever
-- output is available.
--
-- As you can see, we do not have a serial->parallel and
-- parallel->serial convertor and separate clocks.
--
-- As we know the previous stages may not have data ready in every
-- clock cycle, so if they cut off our ’SFTRen’, we would wait
-- till they are ready. The other trick was to AND ’SFTRen’ with
-- ’SFTRclk’, before giving us the ’SFTRclk’, but it was causing
-- excessive clock skew ...
--
-- Note: All signal assingments which gets a latch inferred in synthesis
-- have been annotated with a prop_delay. To get identical
-- simulation and synthesis, define the clock period for
-- simulation as 2*prop_delay.
--
-- Revision history:
--
-- Bug : With RLE ahead, if shifter gets stopped
-- (because RLE is counting) with SFTRoutEn=1 it keeps on writing.
-- Soln: Soft reset SFTRoutEn to 0 after it has been read once.
--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use ieee.std_logic_unsigned.all;

entity SFTR is
port
(SFTRclk : in std_logic;

SFTRen : in std_logic;
SFTRdatin : in std_logic_vector (17 downto 0);

62

SFTRlenIn : in std_logic_vector (4 downto 0);
SFTRout : out std_logic_vector (31 downto 0);
SFTRoutEn : out std_logic

);
end SFTR;

architecture structural of SFTR is

-- A custom comparator!, this comes as part of the double
-- buffering for the last stage.

-- We have 17 registers in which we are going to latch
-- new values. We do not want to latch new values to any
-- registers above the value in c32. For e.g., with c32=5,
-- we only want to load up the first 5 registers,
-- the rest of the 12 registers are ZEROed.

-- The return value of this function is a mask, which is
-- ANDed with the inputs to the registers. Thus with c32=5,
-- the output would look like "11111000000000000".

-- Phew, was it all worth it?
-- A simpler way to code this up would be something like:
--
-- for i in 16 downto 0 loop
-- ret(i) := (c32 > (16 - i));
-- end loop;

function comparator17(c32: std_logic_vector(4 downto 0))
return std_logic_vector is

variable ret : std_logic_vector(16 downto 0);
begin

ret(16) := c32(4) or c32(3) or c32(2) or c32(1) or c32(0);
ret(15) := c32(4) or c32(3) or c32(2) or c32(1);
ret(14) := c32(4) or c32(3) or c32(2) or (c32(1) and c32(0));
ret(13) := c32(4) or c32(3) or c32(2);
ret(12) := c32(4) or c32(3) or (c32(2) and (c32(1) or c32(0)));
ret(11) := c32(4) or c32(3) or (c32(2) and c32(1));
ret(10) := c32(4) or c32(3) or (c32(2) and c32(1) and c32(0));
ret(9) := c32(4) or c32(3);
ret(8) := c32(4) or (c32(3) and (c32(2) or c32(1) or c32(0)));
ret(7) := c32(4) or (c32(3) and c32(2)) or (c32(3) and c32(1));
ret(6) := c32(4) or (c32(3) and c32(2)) or (c32(3) and c32(1) and c32(0));
ret(5) := c32(4) or (c32(3) and c32(2));
ret(4) := c32(4) or (c32(3) and c32(2) and (c32(1) or c32(0)));
ret(3) := c32(4) or (c32(3) and c32(2) and c32(1));
ret(2) := c32(4) or (c32(3) and c32(2) and c32(1) and c32(0));
ret(1) := c32(4);
ret(0) := (c32(4) and c32(3)) or (c32(4) and (c32(2) or c32(1) or c32(0)));
return ret;

end function comparator17;

constant prop_delay : time := 5 ns;
subtype std32 is std_logic_vector (31 downto 0);

signal tmp : std_logic_vector(5 downto 0):="000000";
signal stage0_len : std_logic_vector(4 downto 0):="00000";
signal stage1_len : std_logic_vector(4 downto 0):="00000";
signal stage2_len : std_logic_vector(4 downto 0):="00000";
signal stage3_len : std_logic_vector(4 downto 0):="00000";
signal stage4_len : std_logic_vector(4 downto 0):="00000";

signal timeout : std_logic_vector(1 downto 0):="00";

signal write_ready1 : std_logic := ’0’;
signal write_ready2 : std_logic := ’0’;
signal write_ready3 : std_logic := ’0’;
signal write_ready4 : std_logic := ’0’;
signal write_ready5 : std_logic := ’0’;

-- 5 register stages, last one is partly double buffered ...

signal stage1 : std32 :="00000000000000000000000000000000";
signal stage2 : std32 :="00000000000000000000000000000000";
signal stage3 : std32 :="00000000000000000000000000000000";
signal stage4 : std32 :="00000000000000000000000000000000";
signal stage5 : std32 :="00000000000000000000000000000000";
signal stage5_d: std_logic_vector(31 downto 15):="00000000000000000";

begin

-- Catch the overflow!, we have 5 bits in ’SFTRlenIn’, keep adding to
-- ’stage0_len’. When it overflows, we know we crossed 32 bits,
-- we are ready for a MEM_WRITE.

tmp <= (’0’ & stage0_len) + (’0’ & SFTRlenIn);

63

-- A soft rest for SFTRoutEn
-- SFTRoutEn lasts only for 2 cycles.

SFTRoutEn <= write_ready5 and (timeout(1) or timeout(0));

run : process(SFTRclk)
variable stage5_tmp : std_logic_vector (31 downto 0);
variable mask : std_logic_vector (31 downto 15);
variable load_db : std_logic;

begin

if(rising_edge(SFTRclk)) then
if(SFTRen = ’1’) then

timeout <= "11" after prop_delay;

write_ready1 <= tmp(5) after prop_delay;
write_ready2 <= write_ready1 after prop_delay;
write_ready3 <= write_ready2 after prop_delay;
write_ready4 <= write_ready3 after prop_delay;
write_ready5 <= write_ready4 after prop_delay;

stage0_len <= tmp(4 downto 0) after prop_delay;
stage1_len <= stage0_len after prop_delay;
stage2_len <= stage1_len after prop_delay;
stage3_len <= stage2_len after prop_delay;
stage4_len <= stage3_len after prop_delay;

-- Stage 1 (SFTRdatin -> stage1), shift by 16 or pass thru

if(stage0_len(4) = ’1’) then
stage1(31 downto 30) <= SFTRdatin(1 downto 0) after prop_delay;
stage1(29 downto 16) <= (others => ’0’) after prop_delay;
stage1(15 downto 0) <= SFTRdatin(17 downto 2) after prop_delay;

else
stage1(31 downto 14) <= SFTRdatin after prop_delay;
stage1(13 downto 0) <= (others => ’0’) after prop_delay;

end if;

-- Stage 2 (stage1 -> stage2), shift by 8 or pass thru

if(stage1_len(3) = ’1’) then
stage2(31 downto 24) <= stage1(7 downto 0) after prop_delay;
stage2(23 downto 0) <= stage1(31 downto 8) after prop_delay;

else
stage2 <= stage1 after prop_delay;

end if;

-- Stage 3 (stage2 -> stage3), shift by 4 or pass thru

if(stage2_len(2) = ’1’) then
stage3(31 downto 28) <= stage2(3 downto 0) after prop_delay;
stage3(27 downto 0) <= stage2(31 downto 4) after prop_delay;

else
stage3 <= stage2 after prop_delay;

end if;

-- Stage 4 (stage3 -> stage4), shift by 2 or pass thru

if(stage3_len(1) = ’1’) then
stage4(31 downto 30) <= stage3(1 downto 0) after prop_delay;
stage4(29 downto 0) <= stage3(31 downto 2) after prop_delay;

else
stage4 <= stage3 after prop_delay;

end if;

-- Stage 5 (stage4 -> stage5), shift by 1 or pass thru

if(stage4_len(0) = ’1’) then
stage5_tmp(31) := stage4(0);
stage5_tmp(30 downto 0):= stage4(31 downto 1);

else
stage5_tmp := stage4;

end if;

-- How do we detect a scenario like the one in cycle #8?
-- ((current_offset > "00000") AND
-- (prev_offset < "11111") AND
-- (current_offset < prev_offset)) // i.e, it overflowed

if(((stage3_len(4) or stage3_len(3) or stage3_len(2) or
stage3_len(1) or stage3_len(0)) = ’1’)

64

and
((stage2_len(4) and stage2_len(3) and stage2_len(2) and

stage2_len(1) and stage2_len(0)) = ’0’)
and

(write_ready4 = ’1’)) then
load_db := ’1’;

else
load_db := ’0’;

end if;

mask := comparator17(stage3_len);

-- If(load_db)
-- {
-- double_buffer <= overflow_of_stage5_tmp
-- stage5 <= stage5 + (stage5_tmp - overflow_of_stage5_tmp)
-- }
-- else
-- {
-- double_buffer <= 0
-- if(MEM_WRITE)
-- stage5 <= stage5_tmp
-- else
-- stage5 <= stage5 + stage5_tmp + double_buffer
-- }

if(load_db = ’1’) then
stage5_d <= (mask and stage5_tmp(31 downto 15)) after prop_delay;
stage5 <= ((stage5(31 downto 15) or

(not(mask) and stage5_tmp(31 downto 15))) &
(stage5(14 downto 0) or stage5_tmp(14 downto 0)))

after prop_delay;
else

stage5_d <= (others => ’0’) after prop_delay;

if(write_ready5 = ’1’) then
stage5 <= ((stage5_tmp(31 downto 15) or stage5_d(31 downto 15)) &

(stage5_tmp(14 downto 0))) after prop_delay;
else

stage5 <= ((stage5_tmp(31 downto 15) or
stage5(31 downto 15) or
stage5_d(31 downto 15)) &

(stage5(14 downto 0) or
stage5_tmp(14 downto 0))) after prop_delay;

end if;
end if;

else -- (SFTRen=0)

timeout(1) <= timeout(0) after prop_delay;
timeout(0) <= ’0’ after prop_delay;

end if; -- SFTRen

end if; -- rising_edge(SFTRclk)
end process run;

--SFTRout <= stage5;

SFTRout(7 downto 0) <= (stage5(24) & stage5(25) & stage5(26) & stage5(27) &
stage5(28) & stage5(29) & stage5(30) & stage5(31));

SFTRout(15 downto 8) <= (stage5(16) & stage5(17) & stage5(18) & stage5(19) &
stage5(20) & stage5(21) & stage5(22) & stage5(23));

SFTRout(23 downto 16) <= (stage5(8) & stage5(9) & stage5(10) & stage5(11) &
stage5(12) & stage5(13) & stage5(14) & stage5(15));

SFTRout(31 downto 24) <= (stage5(0) & stage5(1) & stage5(2) & stage5(3) &
stage5(4) & stage5(5) & stage5(6) & stage5(7));

end structural;

configuration SFTR_default of SFTR is
for structural
end for;

end SFTR_default;

B.2.5 pe1lca.vhd (top level for stage2)
--
-- Top level for Wavelet based image compression
-- - stage 2 (dynamic quantization, RLE, huffman).
--

65

-- File : pe1lca.vhd
--
-- Author: sarin@ittc.ukans.edu, 06/01/2000
--
-- Description:
--
-- Reads coefficients from lower memory (lower 0.5MB),
-- Reads coeff min/max for each blocks from upper memory (upper 0.5MB),
-- Does dynamic quantizing for each block,
-- Does zero thresholding for each block, and RLEs ZEROs,
-- Entropy encodes based on a static Huffman tree,
-- Packs the bit into 32 bit words and
-- Writes it back to upper memory.
--
-- Writes total number of bytes written in upper memory at location 0.
--

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

architecture Memory_Access of PE1_Logic_Core is

subtype std16 is std_logic_vector (15 downto 0);

component QUANT is
port (QUANTclk : in std_logic;

QUANTen : in std_logic;
QUANTmax : in std_logic_vector (15 downto 0);
QUANTmin : in std_logic_vector (15 downto 0);
QUANTin : in std_logic_vector (15 downto 0);
QUANTout : out std_logic_vector (3 downto 0));

end component;

component RLE is
port (RLEclk : in std_logic;

RLEreset : in std_logic;
RLEen : in std_logic;
RLEflush : in std_logic;
RLEin : in std_logic_vector (15 downto 0);
RLEzeroth : in std_logic_vector (15 downto 0);
RLEout : out std_logic_vector (7 downto 0);
RLErunning : out std_logic;
RLEspellEnd: out std_logic);

end component;

component HUFF is
port (HUFFclk : in std_logic;

HUFFin : in std_logic_vector (7 downto 0);
HUFFlout : out std_logic_vector (4 downto 0);
HUFFdout : out std_logic_vector (17 downto 0));

end component;

component SFTR is
port (SFTRclk : in std_logic;

SFTRen : in std_logic;
SFTRdatin : in std_logic_vector (17 downto 0);
SFTRlenIn : in std_logic_vector (4 downto 0);
SFTRout : out std_logic_vector (31 downto 0);
SFTRoutEn : out std_logic);

end component;

-- We have the problem of (input rate != output rate)
-- Each memory read brings in 2 coefficients from memory.
-- when processed each of these coefficients could expand
-- upto 18 bits, needing 2 memory writes before next read.
--
-- ReadBlockData_001: fire READ
-- ReadBlockData_010: optional WRITE
-- ReadBlockData_100: 32 bit READ arrives, use up upper 16 bits from READ
-- WriteData : optional WRITE, use up lower 16 bits from READ

type MemoryStates is
(WaitforBus,

ReadBlock1MinMax_001,
ReadBlock1MinMax_011,
ReadBlock1MinMax_111, -- got block1 min/max
ReadBlock2MinMax_111, -- got block2 min/max
ReadBlock3MinMax_111, -- got block3 min/max
ReadBlock4MinMax_111, -- got block4 min/max
ReadBlock5MinMax_111, -- got block5 min/max
ReadBlock6MinMax_110, -- got block6 min/max
ReadBlock7MinMax_100, -- got block7 min/max

ReadBlockData_001,
ReadBlockData_010,
ReadBlockData_100,

66

WriteData,
WriteDataCount,
WriteBlock12,
WriteBlock34,
WriteBlock56,
WriteBlock7,
MemInterrupt,
MemDone

);

signal Mem_PState : MemoryStates; -- Present state
signal Mem_NState : MemoryStates; -- Next state

-- For reading coefficient data from memory,
-- we have to read blocks 1, 2, 3, 4, 5, 6, 7.
-- these blocks are interleaved.

signal ReadCntrROW : std_logic_vector(8 downto 0); -- ROW, COL address
signal ReadCntrCOL : std_logic_vector(7 downto 0); -- registers for READ

signal eReadCntrROW : std_logic_vector(8 downto 0); -- effective
signal eReadCntrCOL : std_logic_vector(7 downto 0); --

signal ROW_limit : std_logic_vector(8 downto 0);
signal COL_limit : std_logic_vector(7 downto 0);

signal ROW_skip : std_logic_vector(8 downto 0);
signal COL_skip : std_logic_vector(7 downto 0);

signal ladj : std_logic_vector(6 downto 0); -- latency adjust

-- For writing back the output of this stage,
-- we dump it to the upper memory and increment the
-- write pointer when ever we write.

signal WriteCntr : std_logic_vector(16 downto 0);

signal RLE_Count1 : std_logic_vector(15 downto 0);
signal RLE_Count2 : std_logic_vector(15 downto 0);
signal RLE_Count3 : std_logic_vector(15 downto 0);
signal RLE_Count4 : std_logic_vector(15 downto 0);
signal RLE_Count5 : std_logic_vector(15 downto 0);
signal RLE_Count6 : std_logic_vector(15 downto 0);
signal RLE_Count7 : std_logic_vector(15 downto 0);

-- Coefficient data fits in the lower 0.5MB, the upper 0.5 MB is
-- used for storing block min/max. Before we start using the
-- upper memory, we have to retrieve these...

signal Block1Min : std16;
signal Block1Max : std16;
signal Block2Min : std16;
signal Block2Max : std16;
signal Block3Min : std16;
signal Block3Max : std16;
signal Block4Min : std16;
signal Block4Max : std16;
signal Block5Min : std16;
signal Block5Max : std16;
signal Block6Min : std16;
signal Block6Max : std16;
signal Block7Min : std16;
signal Block7Max : std16;

-- Different blocks are zero thresholded at different levels.
-- These are design constants. To vary the compression ratio,
-- need to adjust these.

-- This is for minimum compression (good quality image)

-- constant Block1Th : std16 := "0000000000000000"; -- 0 x 0
-- constant Block2Th : std16 := "0000000000000000"; -- 27 x 0
-- constant Block3Th : std16 := "0000000000000000"; -- 39 x 0
-- constant Block4Th : std16 := "0000000000000000"; -- 104 x 0
-- constant Block6Th : std16 := "0000000000000000"; -- 50 x 0
-- constant Block5Th : std16 := "0000000000000000"; -- 79 x 0
-- constant Block7Th : std16 := "0000000000000000"; -- 191 x 0

-- This is for moderate compression

-- constant Block1Th : std16 := "0000000000000000"; -- 0 x 1
-- constant Block2Th : std16 := "0000000000011011"; -- 27 x 1
-- constant Block3Th : std16 := "0000000000100111"; -- 39 x 1
-- constant Block4Th : std16 := "0000000001101000"; -- 104 x 1
-- constant Block5Th : std16 := "0000000000110010"; -- 50 x 1

67

-- constant Block6Th : std16 := "0000000001001111"; -- 79 x 1
-- constant Block7Th : std16 := "0000000010111111"; -- 191 x 1

-- This is maximum compression

constant Block1Th : std16 := "0000000000000000"; -- 0 x 2
constant Block3Th : std16 := "0000000000110110"; -- 27 x 2
constant Block2Th : std16 := "0000000001001110"; -- 39 x 2
constant Block4Th : std16 := "0000000011010000"; -- 104 x 2
constant Block6Th : std16 := "0000000001100100"; -- 50 x 2
constant Block5Th : std16 := "0000000010011110"; -- 79 x 2
constant Block7Th : std16 := "0000000101111110"; -- 191 x 2

signal QUANTen : std_logic;
signal QUANTmax : std_logic_vector(15 downto 0);
signal QUANTmin : std_logic_vector(15 downto 0);
signal QUANTin : std_logic_vector(15 downto 0);
signal QUANTin2 : std_logic_vector(15 downto 0);
signal QUANTout : std_logic_vector(3 downto 0);
signal QUANTout2 : std_logic_vector(3 downto 0);

signal RLEflush : std_logic;
signal RLEen : std_logic;
signal RLEin : std_logic_vector(15 downto 0);
signal RLEzeroth : std_logic_vector(15 downto 0);
signal RLEout : std_logic_vector(7 downto 0);
signal RLErunning : std_logic;
signal RLEspellEnd : std_logic;
signal RLErunning1 : std_logic;
signal RLEspellEnd1 : std_logic;
signal RLErunning2 : std_logic;
signal RLEspellEnd2 : std_logic;

signal HUFFin : std_logic_vector(7 downto 0);
signal HUFFlout : std_logic_vector(4 downto 0);
signal HUFFdout : std_logic_vector(17 downto 0);

signal SFTRen : std_logic;
signal SFTRdatin : std_logic_vector(17 downto 0);
signal SFTRlenIn : std_logic_vector(4 downto 0);
signal SFTRout : std_logic_vector(31 downto 0);
signal SFTRoutEn : std_logic;

signal readComplete : std_logic;

signal nStages : std_logic_vector(2 downto 0); -- counts which quadrant we are in
signal nStages1 : std_logic_vector(2 downto 0); -- delayed by one clock

signal nStages_1 : std_logic_vector(2 downto 0); -- delayed by 4 cycles
signal nStages_2 : std_logic_vector(2 downto 0); -- delayed by 8 cycles
signal nStages_3 : std_logic_vector(2 downto 0); -- delayed by 12 cycles

begin

quantizer : QUANT -- Dynamic quantizer
port map (PE_Pclk,

QUANTen,
QUANTmax,
QUANTmin,
QUANTin,
QUANTout);

rle : RLE
port map (PE_Pclk, -- Run length encoder

PE_Reset,
RLEen,
RLEflush,
RLEin,
RLEzeroth,
RLEout,
RLErunning,
RLEspellEnd);

huffman : HUFF
port map (PE_Pclk, -- Huffman encoder

HUFFin,
HUFFlout,
HUFFdout);

bitpacker : SFTR
port map (PE_Pclk, -- Bit packer

SFTRen,
SFTRdatin,
SFTRlenIn,
SFTRout,
SFTRoutEn);

68

quantizer_in : process(Mem_PState, PE_MemData_InReg, QUANTin2)
begin

if (Mem_PState = ReadBlockData_100) then
QUANTin <= PE_MemData_InReg(31 downto 16);

else
QUANTin <= QUANTin2;

end if;
end process quantizer_in;

RLEin <= QUANTin;
RLEen <= QUANTen;

with RLErunning select HUFFin <= -- Input to huffman:
RLEout when ’1’, -- from RLE, when RLE
("0000" & QUANTout) when others; -- from QUANT, else

SFTRdatin <= HUFFdout;
SFTRlenIn <= HUFFlout;

with nStages1 select QUANTmax <=
Block1Max when "000",
Block2Max when "001",
Block3Max when "010",
Block4Max when "011",
Block5Max when "101",
Block6Max when "110",
Block7Max when "111",
(others => ’X’) when others;

with nStages1 select QUANTmin <=
Block1Min when "000",
Block2Min when "001",
Block3Min when "010",
Block4Min when "011",
Block5Min when "101",
Block6Min when "110",
Block7Min when "111",
(others => ’X’) when others;

with nStages1 select RLEzeroth <=
Block1Th when "000",
Block2Th when "001",
Block3Th when "010",
Block4Th when "011",
Block5Th when "101",
Block6Th when "110",
Block7Th when "111",
(others => ’0’) when others;

st_update : process (PE_Pclk, PE_Reset)
begin

if (PE_Reset = ’1’) then
Mem_PState <= WaitforBus;

readComplete <= ’0’;
nStages <= "000";
nStages1 <= "000";
nStages_1 <= "100";
nStages_2 <= "100";
nStages_3 <= "100";

QUANTin2 <= (others => ’0’);
QUANTout2 <= (others => ’0’);

ReadCntrROW <= "000000000";
ReadCntrCOL <= "00000000";
eReadCntrROW <= "000000000";
eReadCntrCOL <= "00000000";

ladj <= (others => ’0’);
RLErunning1 <= ’0’;
RLEspellEnd1 <= ’0’;
RLErunning2 <= ’0’;
RLEspellEnd2 <= ’0’;

ROW_limit <= "111111000"; -- 504 [0, 8, 16, ..., 504] = 64 cells
COL_limit <= "11111000"; -- 248 [0, 8, 16, ..., 248] = 32 cells

ROW_skip <= "000001000"; -- 8
COL_skip <= "00001000"; -- 8

WriteCntr <= "00000000000000000";
RLE_Count1 <= "0000000000000000";

69

RLE_Count2 <= "0000000000000000";
RLE_Count3 <= "0000000000000000";
RLE_Count4 <= "0000000000000000";
RLE_Count5 <= "0000000000000000";
RLE_Count6 <= "0000000000000000";
RLE_Count7 <= "0000000000000000";

Block1Min <= (others => ’0’);
Block1Max <= (others => ’0’);
Block2Min <= (others => ’0’);
Block2Max <= (others => ’0’);
Block3Min <= (others => ’0’);
Block3Max <= (others => ’0’);
Block4Min <= (others => ’0’);
Block4Max <= (others => ’0’);
Block5Min <= (others => ’0’);
Block5Max <= (others => ’0’);
Block6Min <= (others => ’0’);
Block6Max <= (others => ’0’);
Block7Min <= (others => ’0’);
Block7Max <= (others => ’0’);

elsif (rising_edge(PE_Pclk)) then

Mem_PState <= Mem_NState;
nStages1 <= nStages;

RLErunning1 <= RLErunning;
RLEspellEnd1 <= RLEspellEnd;

RLErunning2 <= RLErunning1;
RLEspellEnd2 <= RLEspellEnd1;

if (Mem_PState = ReadBlock1MinMax_111) then
Block1Max <= PE_MemData_InReg(31 downto 16);
Block1Min <= PE_MemData_InReg(15 downto 0);

end if;
if (Mem_PState = ReadBlock2MinMax_111) then

Block2Max <= PE_MemData_InReg(31 downto 16);
Block2Min <= PE_MemData_InReg(15 downto 0);

end if;
if (Mem_PState = ReadBlock3MinMax_111) then

Block3Max <= PE_MemData_InReg(31 downto 16);
Block3Min <= PE_MemData_InReg(15 downto 0);

end if;
if (Mem_PState = ReadBlock4MinMax_111) then

Block4Max <= PE_MemData_InReg(31 downto 16);
Block4Min <= PE_MemData_InReg(15 downto 0);

end if;
if (Mem_PState = ReadBlock5MinMax_111) then

Block5Max <= PE_MemData_InReg(31 downto 16);
Block5Min <= PE_MemData_InReg(15 downto 0);

end if;
if (Mem_PState = ReadBlock6MinMax_110) then

Block6Max <= PE_MemData_InReg(31 downto 16);
Block6Min <= PE_MemData_InReg(15 downto 0);

end if;
if (Mem_PState = ReadBlock7MinMax_100) then

Block7Max <= PE_MemData_InReg(31 downto 16);
Block7Min <= PE_MemData_InReg(15 downto 0);

end if;

-- Quantizer works on 16 bit data, in each
-- memory read we get two 16 bit data, so store
-- one for next cycle.

if (Mem_PState = ReadBlockData_100) then
QUANTin2 <= PE_MemData_InReg(15 downto 0);
QUANTout2 <= QUANTout; -- DEBUG

end if;

if (Mem_PState = ReadBlockData_001) then
ladj(6) <= not(readComplete);
ladj(5) <= ladj(6);
ladj(4) <= ladj(5);
ladj(3) <= ladj(4);
ladj(2) <= ladj(3);
ladj(1) <= ladj(2);
ladj(0) <= ladj(1);

end if;

if (((Mem_PState = WriteData) or (Mem_PState = ReadBlockData_010)) and
(SFTRoutEn = ’1’)) then

WriteCntr <= WriteCntr + 1;
end if;

if (((Mem_PState = WriteData) or (Mem_PState = ReadBlockData_010)) and
((RLErunning = ’0’) or (RLEspellEnd = ’1’))) then

70

if(nStages_3="000") then
RLE_Count1 <= RLE_Count1 + 1;

end if;
if(nStages_3="001") then

RLE_Count2 <= RLE_Count2 + 1;
end if;
if(nStages_3="010") then

RLE_Count3 <= RLE_Count3 + 1;
end if;
if(nStages_3="011") then

RLE_Count4 <= RLE_Count4 + 1;
end if;

if(nStages_3="101") then
RLE_Count5 <= RLE_Count5 + 1;

end if;
if(nStages_3="110") then

RLE_Count6 <= RLE_Count6 + 1;
end if;
if(nStages_3="111") then

RLE_Count7 <= RLE_Count7 + 1;
end if;

end if;

-- +----+----+---------+
-- | 0 | 2 | |
-- | | | 5 |
-- +----+----| |
-- | 1 | 3 | |
-- | | | |
-- +----+----+---------+
-- | | |
-- | 4 | 6 |
-- | | |
-- | | |
-- +---------+---------+

-- ROW/COL address registers for reading.
--
-- Block 0: ROW start: 00000 0000 COL start: 0000 0000
-- inc : 00000 1000 inc : 0000 1000
-- end : 11111 1000 end : 1111 1000
-- Block 1: ROW start: 00000 0100 COL start: 0000 0000
-- inc : 00000 1000 inc : 0000 1000
-- end : 11111 1100 end : 1111 1000
-- Block 2: ROW start: 00000 0000 COL start: 0000 0100
-- inc : 00000 1000 inc : 0000 1000
-- end : 11111 1000 end : 1111 1100
-- Block 3: ROW start: 00000 0100 COL start: 0000 0100
-- inc : 00000 1000 inc : 0000 1000
-- end : 11111 1100 end : 1111 1100
-- Block 4: ROW start: 00000 0010 COL start: 0000 0000
-- inc : 00000 0100 inc : 0000 0100
-- end : 11111 1110 end : 1111 1100
-- Block 5: ROW start: 00000 0000 COL start: 0000 0010
-- inc : 00000 0100 inc : 0000 0100
-- end : 11111 1100 end : 1111 1110
-- Block 6: ROW start: 00000 0010 COL start: 0000 0010
-- inc : 00000 0100 inc : 0000 0100
-- end : 11111 1110 end : 1111 1110
--
-- ReadCntrCOL and ReadCntrROW are our main
-- ROW and COL address registers. We also maintain
-- a pair of effective address regs, as in some cases
-- the effective addresses would be normal address +inc/2
--

if(nStages(1) = ’1’) then
eReadCntrCOL <= ReadCntrCOL + (’0’ & COL_skip(7 downto 1));

else
eReadCntrCOL <= ReadCntrCOL;

end if;

if(nStages(0) = ’1’) then
eReadCntrROW <= ReadCntrROW + (’0’ & ROW_skip(8 downto 1));

else
eReadCntrROW <= ReadCntrROW;

end if;

if (Mem_PState = ReadBlockData_100) then

nStages_1 <= nStages;
nStages_2 <= nStages_1;
nStages_3 <= nStages_2;

71

ReadCntrCOL <= ReadCntrCOL + COL_skip;
if (ReadCntrCOL = COL_limit) then

ReadCntrROW <= ReadCntrROW + ROW_skip;
end if;

if((ReadCntrROW = ROW_limit) and -- End of current
(ReadCntrCOL = COL_limit)) then -- block

-- Update nStages as :(000 001 010 011) (101 110 111)
-- Whenever nStages(0)=1, eRowAddr = RowAddr + RowInc/2
-- Whenever nStages(1)=1, eColAddr = ColAddr + ColInc/2

if (nStages = "011") then
nStages <= "101";

elsif (nStages = "111") then
nStages <= "100";

else
nStages <= nStages + 1;

end if;

if (nStages(1 downto 0) = "11") then
ROW_skip <= (’0’ & ROW_skip(8 downto 1));
COL_skip <= (’0’ & COL_skip(7 downto 1));

ROW_limit <= (’1’ & ROW_limit(8 downto 1));
COL_limit <= (’1’ & COL_limit(7 downto 1));

end if;

if (nStages = "111") then
readComplete <= ’1’;

end if;

end if;
end if;

end if;
end process st_update;

PE_MemAddr_OutReg(21 downto 18) <= (others => ’0’);

mem_state: process(Mem_PState, ladj,
PE_MemBusGrant_n,
eReadCntrROW, eReadCntrCOL,
WriteCntr,
nStages, nStages1,
RLE_Count1, RLE_Count2, RLE_Count3, RLE_Count4,
RLE_Count5, RLE_Count6, RLE_Count7,
RLErunning2, RLEspellEnd2,
SFTRoutEn, SFTRout,
PE_InterruptAck_n)

begin
PE_InterruptReq_n <= ’1’; -- Default, do not interrupt host
PE_MemWriteSel_n <= ’1’; -- read/write, default read
PE_MemStrobe_n <= ’1’; -- No strobe, later
PE_MemBusReq_n <= ’0’; -- Always request bus
QUANTen <= ’0’; --
SFTRen <= ’0’; --
RLEflush <= ’0’; --
PE_MemAddr_OutReg(17 downto 0) <= (others => ’0’);

PE_MemData_OutReg(31 downto 0) <= (others => ’0’);

case Mem_PState is

when WaitforBus =>
if(PE_MemBusGrant_n = ’0’) then

Mem_NState <= ReadBlock1MinMax_001;
else

Mem_NState <= WaitforBus;
end if;

when ReadBlock1MinMax_001 =>
PE_MemStrobe_n <= ’0’;
Mem_NState <= ReadBlock1MinMax_011;
PE_MemAddr_OutReg(17 downto 0) <= "100000000000001000";

when ReadBlock1MinMax_011 =>
PE_MemStrobe_n <= ’0’;
Mem_NState <= ReadBlock1MinMax_111;
PE_MemAddr_OutReg(17 downto 0) <= "100000000000001001";

when ReadBlock1MinMax_111 =>
PE_MemStrobe_n <= ’0’;
Mem_NState <= ReadBlock2MinMax_111;
PE_MemAddr_OutReg(17 downto 0) <= "100000000000001010";

when ReadBlock2MinMax_111 =>
PE_MemStrobe_n <= ’0’;

72

Mem_NState <= ReadBlock3MinMax_111;
PE_MemAddr_OutReg(17 downto 0) <= "100000000000001011";

when ReadBlock3MinMax_111 =>
PE_MemStrobe_n <= ’0’;
Mem_NState <= ReadBlock4MinMax_111;
PE_MemAddr_OutReg(17 downto 0) <= "100000000000000101";

when ReadBlock4MinMax_111 =>
PE_MemStrobe_n <= ’0’;
Mem_NState <= ReadBlock5MinMax_111;
PE_MemAddr_OutReg(17 downto 0) <= "100000000000000110";

when ReadBlock5MinMax_111 =>
PE_MemStrobe_n <= ’0’;
Mem_NState <= ReadBlock6MinMax_110;
PE_MemAddr_OutReg(17 downto 0) <= "100000000000000111";

when ReadBlock6MinMax_110 =>
Mem_NState <= ReadBlock7MinMax_100;

when ReadBlock7MinMax_100 =>
Mem_NState <= ReadBlockData_001;

--
-- State Mem QNT QNT RLE RLE HUF SFT SFT ladj
-- RD en out en out out en out 6543 210
---------------+---------------+---+--------------------
-- R_001 | | | 0000 000
-- R_010 | | | 1000 000
-- R_100 a.b | 1 1 | | 1000 000
-- W | 1 1 | | 1000 000
-- R_001 | | | 1000 000
-- R_010 | | | 1100 000 "ladj" is a shift
-- R_100 c.d | 1 1 | | 1100 000 reg used to manage
-- W | 1 1 | | 1100 000 the latencies...
-- R_001 | | | 1100 000
-- R_010 | | | 1110 000 ladj is updated in
-- R_100 e.f | 1 1 | | 1110 000 every ’R_001’.
-- W | 1 a 1 a | | 1110 000
-- R_001 | b b | | 1110 000
-- R_010 | b b | a | 1 1111 000
-- R_100 g.h | 1 b 1 b | b | 1111 000
-- W | 1 c 1 c | b | 1 1111 000
-- R_001 | d d | b | 1111 000 SHFTen is enabled
-- R_010 | d d | c | 1 1111 100 in ’R_010’ and ’W’
-- R_100 i.j | 1 d 1 d | d | 1111 100 if ladj(3)=1 OR
-- W | 1 e 1 e | d | 1 1111 100 ladj(1)=1
-- R_001 | f f | d | 1111 100
-- R_010 | f f | e | 1 0111 110
-- R_100 | 1 f 1 f | f | 0111 110
-- W | 1 g 1 g | f | 1 a? 0111 110
-- R_001 | h h | f | 0111 110
-- R_010 | h h | g | 1 b? 0011 111
-- R_100 | 1 h 1 h | h | 0011 111
-- W | 1 i 1 i | h | 1 c? 0011 111
-- R_001 | j j | h | 0011 111
-- R_010 | j j | i | 1 d? 0001 111
-- R_100 | 1 j 1 j | j | 0001 111
-- W | 1 1 | j | 1 e? 0001 111
-- R_001 | | j | 0001 111
-- R_010 | | | 1 f? 0000 111
-- R_100 | 1 1 | | 0000 111
-- W | 1 1 | | 1 g? 0000 111
-- R_001 | | | 0000 111
-- R_010 | | | 1 h? 0000 011
-- R_100 | 1 1 | | 0000 011
-- W | 1 1 | | 1 i? 0000 011 From ’W’, break
-- R_001 | | | 0000 011 the loop
-- R_010 | | | 1 j? 0000 001 if ladj(6)=0 and
-- R_100 | 1 1 | | 0000 001 ladj(1)=0
-- W | 1 1 | | 1 0000 001

when ReadBlockData_001 =>
PE_MemStrobe_n <= ’0’;
Mem_NState <= ReadBlockData_010;

PE_MemAddr_OutReg(17) <= ’0’;
PE_MemAddr_OutReg(16 downto 8) <= eReadCntrROW;
PE_MemAddr_OutReg(7 downto 0) <= eReadCntrCOL;

when ReadBlockData_010 =>
Mem_NState <= ReadBlockData_100;
PE_MemWriteSel_n <= ’0’; -- for writing
SFTRen <= ((ladj(3) or ladj(0)) and

(not(RLErunning2) or RLEspellEnd2));

73

PE_MemStrobe_n <= not(SFTRoutEn);
PE_MemData_OutReg(31 downto 0) <= SFTRout;

PE_MemAddr_OutReg(17) <= ’1’;
PE_MemAddr_OutReg(16 downto 0) <= WriteCntr;

when ReadBlockData_100 =>
Mem_NState <= WriteData;
QUANTen <= ’1’;

when WriteData =>
PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= not(SFTRoutEn);
QUANTen <= ’1’;
SFTRen <= ((ladj(3) or ladj(0)) and

(not(RLErunning2) or RLEspellEnd2));
if(nStages /= nStages1) then

RLEflush <= ’1’;
end if;

PE_MemAddr_OutReg(17) <= ’1’;
PE_MemAddr_OutReg(16 downto 0) <= WriteCntr;

if ((ladj(6) = ’0’) and (ladj(0) = ’0’)) then
Mem_NState <= WriteDataCount;

else
Mem_NState <= ReadBlockData_001;

end if;

PE_MemData_OutReg(31 downto 0) <= SFTRout;

when WriteDataCount =>
PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;
Mem_NState <= WriteBlock12;
PE_MemData_OutReg(31 downto 17) <= (others => ’0’);
PE_MemData_OutReg(16 downto 0) <= WriteCntr;
PE_MemAddr_OutReg(17 downto 0) <= "000000000000000000";

when WriteBlock12 =>
PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;
Mem_NState <= WriteBlock34;
PE_MemData_OutReg(31 downto 16) <= RLE_Count1;
PE_MemData_OutReg(15 downto 0) <= RLE_Count2;
PE_MemAddr_OutReg(17 downto 0) <= "000000000000000001";

when WriteBlock34 =>
PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;
Mem_NState <= WriteBlock56;
PE_MemData_OutReg(31 downto 16) <= RLE_Count3;
PE_MemData_OutReg(15 downto 0) <= RLE_Count4;
PE_MemAddr_OutReg(17 downto 0) <= "000000000000000010";

when WriteBlock56 =>
PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;
Mem_NState <= WriteBlock7;
PE_MemData_OutReg(31 downto 16) <= RLE_Count5;
PE_MemData_OutReg(15 downto 0) <= RLE_Count6;
PE_MemAddr_OutReg(17 downto 0) <= "000000000000000011";

when WriteBlock7 =>
PE_MemWriteSel_n <= ’0’; -- for writing
PE_MemStrobe_n <= ’0’;
Mem_NState <= MemInterrupt;
PE_MemData_OutReg(31 downto 16) <= "0000000000000000";
PE_MemData_OutReg(15 downto 0) <= RLE_Count7;
PE_MemAddr_OutReg(17 downto 0) <= "000000000000000100";

when MemInterrupt =>
PE_MemBusReq_n <= ’1’; -- Give up bus
PE_InterruptReq_n <= ’0’; -- Interrupt host
if(PE_InterruptAck_n = ’0’) then

Mem_NState <= MemDone;
else

Mem_NState <= MemInterrupt;
end if;

when MemDone =>
PE_MemBusReq_n <= ’1’; -- Give up bus, host program
Mem_NState <= MemDone; -- to READ memory now...

end case;

end process mem_state;

74

--
-- "Inactive" output port signal assignments
--

PE_MemHoldReq_n <= ’1’; -- Disable memory hold requests

PE_Left_OE <= (others => ’0’); -- Disable left port output

PE_Right_OE <= (others => ’0’); -- Disable right port output

PE_FifoSelect <= "00"; -- Deselect fifo
-- "00" selects none
-- "01" selects External I/O Fifo
-- "10" selects On-Board Fifo
-- "11" selects On-Board Mailbox

PE_Fifo_WE_n <= ’1’; -- Disable fifo write mode
PE_FifoPtrIncr_EN <= ’0’; -- Disable fifo pointer increment

end Memory_Access;

B.3 Control software - C source code listing

B.3.1 pgm.h
/*

* PGM image file format APIs
*
* File : pgm.h
*
* Author: sarin@ittc.ukans.edu, 01/11/2000
*/

#include<stdio.h>
#include<stdlib.h>

// These are the data files.
#define LENA "/users/sarin/wildforce/Wavelet/c.given/data/lena.pgm"
#define GOLDHILL "/users/sarin/wildforce/Wavelet/c.given/data/goldhill.pgm"
#define BARBARA "/users/sarin/wildforce/Wavelet/c.given/data/barbara.pgm"

#define DATA LENA

#define IMG_SIZE 262146

int load_PGM_block(char *fname, DWORD *pBuffer)
{

FILE *fp;
int i, j, k;
char p5[10];
int num_cols,num_rows,num_bits;
unsigned char char_buff[IMG_SIZE];
int a, b;

fp = fopen(fname,"rb");
if(fp == NULL)
{

fprintf(stderr, "E: pgm.h, fopen(%s) failed\n", fname);
exit -1;

}

/* Skip .pgm image file header */
fscanf(fp,"%s\n %d %d\n %d\n",p5,&num_rows,&num_cols,&num_bits);
k=fread(char_buff, 1, IMG_SIZE, fp);
fclose(fp);
fprintf(stderr, "N: Read %d bytes from %s\n", k, fname);

for(i=0,j=0; i<(512*256); j+=2, ++i)
{

a = char_buff[j];
b = char_buff[j+1];

a = a << 16;

pBuffer[i] = (a & 0xffff0000) | (0x0000ffff & b);
}
return 1;

}

75

B.3.2 wlt.h
/*

* WLT file format APIs
*
* File : wlt.h
*
* Author: sarin@ittc.ukans.edu, 07/10/2000
*/

int write_wlt(DWORD *pBuffer, char * fname)
{

int i;
FILE *outFp;

int rle_size[7];
int blockminval[7];
int nBytes;

outFp = fopen(fname, "w");
if(outFp == NULL)
{

fprintf(stderr, "E: wlt.h, fopen(%s) failed\n", fname);
exit(-1);

}

nBytes = pBuffer[0]*4;

rle_size[0] = (pBuffer[1] >> 16);
rle_size[1] = (pBuffer[1] & 0x0000ffff);
rle_size[2] = (pBuffer[2] >> 16);
rle_size[3] = (pBuffer[2] & 0x0000ffff);
rle_size[4] = (pBuffer[3] >> 16);
rle_size[5] = (pBuffer[3] & 0x0000ffff);
rle_size[6] = (pBuffer[4] & 0x0000ffff);

fprintf(stderr, "N: Writing file %s\n", fname);

fwrite(blockminval, sizeof(int) ,7 , outFp);
fwrite(blockmaxval, sizeof(int) ,7 , outFp);
fwrite(rle_size , sizeof(int) ,7 , outFp);
fwrite(&nBytes , sizeof(int) ,1 , outFp);
i=fwrite(pBuffer+131072, sizeof(DWORD),nBytes/4, outFp);

fprintf(stderr, "N: rle_size: %d %d %d %d %d %d %d\n",
rle_size[0], rle_size[1], rle_size[2], rle_size[3],
rle_size[4], rle_size[5], rle_size[6], rle_size[7]);

fprintf(stderr, "N: nBytes: %d (%d DWORDs)\n", nBytes, nBytes/4);
fprintf(stderr, "N: Wrote %d DWORDs to %s\n", i, fname);

fclose(outFp);
}

B.3.3 stage1.c
/*

* Wavelet Transform - WF4 host program for stage 1
*
* File : stage1.c
*
* Author: sarin@ittc.ukans.edu, 01/11/2000
*
* Description: - Programs the FPGA with the stage1 bit file,
* - Loads a PGM file to PE memory
* - Starts up the PE and waits for it to interrupt the
* host on completion
* - On being interrupted, reads back the PE memory,
* and dumps the output in "image.st1".
*/

#include <stdio.h>
#include <signal.h>
#include <time.h>
#include "wf4errs.h"
#include "wf4api.h"
#include "pgm.h"
#include "utils.h"

#define BIT_FILE "/users/sarin/wildforce/Wavelet/vhdl.stage1/pe1.bin"

76

#define MEM_IN_DWORDS 262144

#define OUT_FILE "image.st1"

WF4_BoardNum board = 0;
DWORD *pBuffer;

#define CHECK_ERROR(fn, ret) \
if(ret != WF4_SUCCESS) \
{ \

fprintf(stderr,"E: mem.c, %s()=>%d, %s\n",fn,ret, \
WF4_ErrorString(rc)); \

WF4_DmaFree(board, pBuffer); \
WF4_Close(board); \
return -1; \

}

void printbin(DWORD i)
{

int j;
for(j=31; j>=0; --j)
{

if(i & (1 << j))
fprintf(stderr, "1");

else
fprintf(stderr,"0");

}
}

int main()
{

int i, j;
DWORD penum = 1, timeout=10000, count;
double time1, time2;
FILE *outFp;
WF4_RetCode rc;

rc= WF4_Open(board, WF4_INIT_FIFO_FLAG | WF4_INIT_CLK_FLAG |
WF4_INIT_PE_EVENTS_FLAG);

rc= WF4_ClkInitLocal(board, FALSE, 24.0f);
CHECK_ERROR("WF4_ClkInitLocal", rc);

rc= WF4_PeResetInterrupts(board, WF4_PE(penum));
CHECK_ERROR("WF4_PeResetInterrupts", rc);

rc= WF4_PeDisableInterrupts(board, WF4_PE(penum));
CHECK_ERROR("WF4_PeDisableInterrupts", rc);

rc= WF4_PeProgram(board, WF4_PE(penum), BIT_FILE);
CHECK_ERROR("WF4_PeProgram", rc);
fprintf(stderr, "N: PE programmed with %s\n", BIT_FILE);

rc= WF4_PeEnableInterrupts(board, WF4_PE(penum));
CHECK_ERROR("WF4_PeDisableInterrupts", rc);

pBuffer = (DWORD *)WF4_DmaAllocate(board, MEM_IN_DWORDS);
if(pBuffer == NULL)
{

fprintf(stderr, "E: stage1.c , WF4_DmaAllocate() failed\n");
WF4_Close(board);
return;

}

load_PGM_block(DATA, pBuffer);

outFp = fopen(OUT_FILE, "w");
if(outFp ==NULL)
{

fprintf(stderr, "E: stage1.c, fopen(%s) failed\n", OUT_FILE);
exit(-1);

}

rc= WF4_MemBlockPe(board, WF4_PE(penum), TRUE);
CHECK_ERROR("WF4_MemBlockPe", rc);
time1=timer();
rc = WF4_DmaMemWrite(board, penum, 0, MEM_IN_DWORDS/2, pBuffer, &count, timeout);
CHECK_ERROR("WF4_DmaMemWrite", rc);
time2=timer();
rc= WF4_MemBlockPe(board, WF4_PE(penum), FALSE);
CHECK_ERROR("WF4_MemBlockPe", rc);
fprintf(stderr, "N: Embedded memory written to in %f ms\n", (time2-time1)*1000);

time1=timer();
WF4_ClkSuspend(board,FALSE); // resume clock
WF4_PeWaitInterrupt(board, penum, 10000);
WF4_ClkSuspend(board,TRUE); // suspend clock
time2=timer();

77

fprintf(stderr, "N: PE ran for %f ms\n", (time2-time1)*1000);

rc= WF4_MemBlockPe(board, WF4_PE(penum), TRUE);
CHECK_ERROR("WF4_MemBlockPe", rc);
time1=timer();
rc= WF4_DmaMemRead(board, penum, 0, MEM_IN_DWORDS, pBuffer, &count, timeout);
CHECK_ERROR("WF4_DmaMemRead", rc);
time2=timer();
rc= WF4_MemBlockPe(board, WF4_PE(penum), FALSE);
CHECK_ERROR("WF4_MemBlockPe", rc);
fprintf(stderr, "N: Embedded memory read in %f ms\n", (time2-time1)*1000);

for(i=0; i<0; ++i)
{

fprintf(stderr,"\n%3d:",2*i); printbin(pBuffer[i]);
}
fprintf(stderr,"\n");

i=fwrite(pBuffer, 4, MEM_IN_DWORDS, outFp);
fprintf(stderr, "N: Wrote %d DWORDs %s\n", i, OUT_FILE);

fclose(outFp);

WF4_DmaFree(board, pBuffer);
WF4_Close(board);
fprintf(stderr, "N: Board closed\n");

}

B.3.4 stage2.c
/*

* Wavelet Transform, WF4 host program for stage 2
*
* File : stage2.c
*
* Author: sarin@ittc.ukans.edu, 06/11/2000
*
* Description: - Programs the FPGA with the stage 2 bit file,
* - Loads the memory dump from stage1
* - Starts up the PE and waits for it to interrupt the
* host on completion
* - On being interrupted, reads back the PE memory,
* and dumps the output in "image.st2".
*/

#include <stdio.h>
#include <signal.h>
#include <time.h>
#include "wf4errs.h"
#include "wf4api.h"
#include "utils.h"
#include "wlt.h"

#define BIT_FILE "/users/sarin/wildforce/Wavelet/vhdl.stage2/pe1.bin.0"
// #define BIT_FILE "/users/sarin/wildforce/Wavelet/vhdl.stage2/pe1.bin.128"
// #define BIT_FILE "/users/sarin/wildforce/Wavelet/vhdl.stage2/pe1.bin.256"

#define MEM_IN_DWORDS 262144

#define STAGE1_OUT_FILE "image.st1"
#define STAGE2_OUT_FILE "image.st2"

WF4_BoardNum board = 0;
DWORD *pBuffer;

#define CHECK_ERROR(fn, ret) \
if(ret != WF4_SUCCESS) \
{ \

fprintf(stderr,"E: mem.c, %s()=>%d, %s\n",fn,ret, \
WF4_ErrorString(rc)); \

WF4_DmaFree(board, pBuffer); \
WF4_Close(board); \
return -1; \

}

void printbin(DWORD i)
{

int j;
for(j=31; j>=0; --j)
{

if(i & (1 << j))
fprintf(stderr, "1");

else

78

fprintf(stderr,"0");
}

}

int main()
{

int i, j, tmp;
DWORD penum = 1, count, timeout=5000;
double time1, time2;
char a, b;

FILE *outFp, *inFp;
WF4_RetCode rc;

rc= WF4_Open(board, WF4_INIT_FIFO_FLAG | WF4_INIT_CLK_FLAG |
WF4_INIT_PE_EVENTS_FLAG);

rc= WF4_ClkInitLocal(board, FALSE, 8.0f);
CHECK_ERROR("WF4_ClkInitLocal", rc);

rc= WF4_PeResetInterrupts(board, WF4_PE(penum));
CHECK_ERROR("WF4_PeResetInterrupts", rc);

rc= WF4_PeDisableInterrupts(board, WF4_PE(penum));
CHECK_ERROR("WF4_PeDisableInterrupts", rc);

rc= WF4_PeProgram(board, WF4_PE(penum), BIT_FILE);
CHECK_ERROR("WF4_PeProgram", rc);
fprintf(stderr, "N: PE programmed with %s\n", BIT_FILE);

rc= WF4_PeEnableInterrupts(board, WF4_PE(penum));
CHECK_ERROR("WF4_PeDisableInterrupts", rc);

pBuffer = (DWORD *)WF4_DmaAllocate(board, MEM_IN_DWORDS);
if(pBuffer == NULL)
{

fprintf(stderr, "E: stage2.c , WF4_DmaAllocate() failed\n");
WF4_Close(board);
return;

}

inFp = fopen(STAGE1_OUT_FILE, "r");
outFp = fopen(STAGE2_OUT_FILE, "w");

if((inFp == NULL) || (outFp ==NULL))
{

fprintf(stderr, "E: fpga_QRH.c, fopen(%s)\n", STAGE1_OUT_FILE);
exit(-1);

}
i=fread(pBuffer, 4, MEM_IN_DWORDS, inFp);
fprintf(stderr, "N: Read %d DWORDs from %s\n", i, STAGE1_OUT_FILE);

rc= WF4_MemBlockPe(board, WF4_PE(penum), TRUE);
CHECK_ERROR("WF4_MemBlockPe", rc);
time1=timer();
rc = WF4_DmaMemWrite(board, penum, 0, MEM_IN_DWORDS, pBuffer, &count, timeout);
CHECK_ERROR("WF4_DmaMemWrite", rc);
time2=timer();
rc= WF4_MemBlockPe(board, WF4_PE(penum), FALSE);
CHECK_ERROR("WF4_MemBlockPe", rc);
fprintf(stderr, "N: Embedded memory written to in %f ms\n", (time2-time1)*1000);

time1=timer();
WF4_ClkSuspend(board,FALSE); // resume clock
WF4_PeWaitInterrupt(board, penum, 10000);
WF4_ClkSuspend(board,TRUE); // suspend clock
time2=timer();
fprintf(stderr, "N: PE ran for %f ms\n", (time2-time1)*1000);

rc= WF4_MemBlockPe(board, WF4_PE(penum), TRUE);
CHECK_ERROR("WF4_MemBlockPe", rc);
time1=timer();
rc= WF4_DmaMemRead(board, penum, 0, MEM_IN_DWORDS, pBuffer, &count, timeout);
CHECK_ERROR("WF4_DmaMemRead", rc);
time2=timer();
rc= WF4_MemBlockPe(board, WF4_PE(penum), FALSE);
CHECK_ERROR("WF4_MemBlockPe", rc);
fprintf(stderr, "N: Embedded memory read in %f ms\n", (time2-time1)*1000);

for(i=0; i<6; i+=2)
{

fprintf(stderr,"\n%7d:",i); printbin(pBuffer[i]);
fprintf(stderr," "); printbin(pBuffer[i+1]);

}
fprintf(stderr,"\n");

i = 131072;
i=fwrite(pBuffer+i, 4, i, outFp);

79

fprintf(stderr, "N: Wrote %d DWORDs to %s\n", i, STAGE2_OUT_FILE);
fclose(outFp);

write_wlt(pBuffer, "lena.wlt");

WF4_DmaFree(board, pBuffer);
WF4_Close(board);

}

80

Bibliography

[BRIAN] Brian Schoner, John Villasenor, Steve Molloy and, Rajeev Jain, Tech-

niques for FPGA Implementation of Video Compression Systems, ACM/SIGBA

International Symposium on Field-Programmable Gate Arrays, 1995.

[CALDERBANK] R. Calderbank and I. Daubechies and W. Sweldens and B.-

L. Yeo, Losless Image Compression using Integer to Integer Wavelet Transforms,

International Conference on Image Processing (ICIP), Vol. I, 1997.

[COHEN] A. Cohen, I. Daubechies, J. Feauveau, Biorthogonal Bases of Compactly

Supported Wavelets, Communications of Pure Applied Math, vol 45, 1992.

[GEOFF] Geoff Davis, Wavelet Image Compression Construction Kit Version 0.3

(1/29/97), http://www.cs.dartmouth.edu/ gdavis/wavelet/wavelet.html.

[SHA] Sarin Mathen, Secure Hashing Implementation on FPGA, ITTC Technical

Report.

[STRANG] Gilbert Strang, Wavelets and Dialation Equations: A Brief Introduction,

SIAM Review, vol 31, no. 4, December 1989, pp. 614-627.

[WILDFORCE] Annapolis Micro Systems Inc., Wildforce Reference Mannual,

1999, revision 3.4.

[XC4000] Xilinx 4000 series FPGAs, The Programmable Logic Data Book, 1996.

81

