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Abstract

The introduction of fiber optics and Gigabit Ethernets is resulting in ever-
higher transmission speeds, and these paths are moving out of the domain for
which TCP was originally engineered. TCP has some basic performance problem-
s on high Bandwidth Delay Product network enviroments, some of which were
solved by the window scaling extensions provided. But, the Slow Start algorithm
which TCP employs, forms one major performance bottleneck for short term flows
on high latency links because of its inefficient bandwidth utilization. The Con-
gestion Avoidance Algorithm which TCP resorts to in the event of any loss also
reduces the throughputs obtained because of its slow increase in the Congestion
Window over a period of several RTTs. Due to these problems, the idea of turn-
ing off Congestion Control (NOCC) in the TCP Stack was explored and this work
presents the results obtained by testing NOCC on a cross-country WAN network.
NOCC was tested with a traffic generating tool called NetSpec and the number of
packets in flight, throughputs received and reaction to congestion were seen to be
significantly better when compared with normal TCP.

NOCC was also tested with a real world application i.e., the Apache Web
Server and the improvements in response times are significant. By using NOCC
an application which uses TCP is not inhibited by the Congestion Window and
so can write any amount of data upto the receiver’s advertised window onto the
network. To give the application more control over what it is writing onto the
network, pacing is done at the application. Pacing was implemented in Apache
and tested along with NOCC and NetSpec with Pacing was also tested with NOCC.
The results validate that NOCC can be used along with pacing to make use of the
abundant bandwidth available in high BDP networks.
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Chapter 1

Introduction

Over the years, Transmission Control Protocol (TCP) in the Internet protocol (IP)

suite has become the most widely used form of networking between computer-

s. With recent developments in high-speed networking and applications that use

TCP, performance issues in TCP are of increasing interest and importance.

The Transmission Control Protocol [32] is the reliable connection-oriented

transport protocol that a number of major Internet services use to communicate

(e.g., HTTP [1], FTP [34], SMTP [33]). TCP performs well on low latency links but

on huge Round Trip Time links, TCP does not make full use of the available band-

width. A good representative example of such networks is an OC-3c(155Mbps) or

OC-12c (622Mbps) Asynchronous Transfer Mode Network or a Gigabit Ethernet

Network. Also, TCP as the transport protocol for a protocol like HTTP, which has

very short duration flows, yields very poor response time and throughput.

This thesis outlines a mechanism that will help the Transmission Control

Protocol (TCP) better utilize the bandwidth provided by huge bandwidth, long

delay links. It also presents results to show the advantages and disadvantages of

implementing this mechanism.
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1.1 TCP overview

TCP provides reliable segment delivery through a positive acknowledgement mech-

anism. Each data segment transmitted contains a sequence number indicating the

position of the data in the transmission. It is a full duplex protocol, meaning that

each TCP connection supports a pair of byte streams, one flowing in each direc-

tion. It also includes a flow control mechanism for each of the byte streams that

allows the receiver to limit how much data the sender can transmit at a given time.

TCP also supports a de-multiplexing mechanism that allows multiple application

programs on any given host to simultaneously carry on a conversation with their

peers. In addition to the above features, TCP also implements a highly tuned con-

gestion control mechanism. The idea of this mechanism is to throttle how fast TCP

sends data, not for the sake of keeping the sender from overrunning the receiver,

but so as to keep the sender from overloading the network.

TCP is a sliding window protocol. A sliding window protocol allows the

sender to transmit a given number of segments before receiving an ACK. When

an ACK is received by the sender, the window ’slides’ to allow one more segment

to be transmitted. Each TCP segment sent (data segments and ACKs) contains a

”window advertisement”. The size of the window advertised by the receiver is the

upper bound for the sender’s sliding window. Generally, standard TCP advertises

a window of 65,535 bytes due to the 16 bits allocated for the advertisement in

the TCP header. On high BDP links extensions are proposed to this which are

discussed later in this thesis.

1.2 Motivation for Congestion Control in TCP

TCP uses a set of congestion control algorithms [3, 15] that further control TCP’s

sending behavior. These algorithms are important because they ensure that TCP

will not transmit data at a rate that is inappropriate for the network resources avail-
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able. If TCP’s transmission rate is too high, the intermediate routers in the network

can be overwhelmed. If segments arrive at an intermediate router faster than the

router can forward the segments, the segments will be queued for later processing.

If a segment arrives at a router that has no memory to queue the segment, the seg-

ment will be discarded. Therefore, it is important for TCP to be able to adapt its

sending rate to the network conditions to avoid segment loss.

When too many TCP connections are sending at an inappropriately high

rate the network can suffer from ”congestive collapse” [16]. Congestive collapse is a

state when segments are being injected into the network but very little useful work

is being accomplished, most of the data segments or their corresponding ACKs are

discarded by one of the intermediate routers in the network before reaching their

destination. This causes the sender to retransmit the data, further aggravating the

problem. Congestive collapse is discussed in more detail in [17]

TCP’s congestion control algorithms attempt to prevent congestive collapse

by detecting congestion and reducing the transmission rate accordingly. While

these algorithms are very important they can also have a negative impact on the

performance of TCP over long RTT or high latency links and satellite links [18].

TCP’s four congestion control algorithms are slow start, congestion avoidance, fast

retransmit and fast recovery [15, 3]. The following is a brief outline of slow start

and congestion avoidance. Fast recovery and fast recovery will be explained in

later chapters.

1.3 Slow Start and Congestion Avoidance

The slow start and congestion avoidance algorithms [15, 3] allow TCP to increase

the data transmission rate without overwhelming the intermediate routers. To

accomplish this, TCP senders use a variable called ”congestion window” (CWND).

TCP’s congestion window is the size of the sliding window used by the sender

3



and CWND cannot exceed the size of the receiver’s advertised window. Therefore,

TCP cannot inject more than CWND segments of unacknowledged data into the

network.

The slow start algorithm is used to gradually increase the amount of unac-

knowledged data TCP injects into the network, by gradually increasing the size of

the sliding window. Slow start is used at the beginning of a TCP connection and in

certain instances after congestion is detected. The algorithm begins by initializing

CWND to one segment. For each ACK received, TCP increases the value of CWND

by one segment. For example, after the first ACK arrives, CWND is incremented

to two segments and TCP is able to transmit two new data segments. This algo-

rithm provides exponential increase in the size of the sliding window. Slow start

continues until either the size of CWND reaches the ”slow start threshold” (ssthresh)

or when a segment loss is detected. The value of ssthresh is initialized to the size

of the receiver’s advertised window at the beginning of the connection. If TCP’s

retransmission timer expires for a given segment, TCP retransmits the segment but

also uses this as an indication of network congestion. In response to a retransmis-

sion timeout, TCP reduces its sending rate by setting ssthresh to half of CWND’s

value and then setting CWND to one segment. This triggers the slow start algo-

rithm, which will stop when values of CWND meets or exceeds ssthresh or another

loss is detected. The new value of ssthresh places an upper bound on the slow start

algorithm of half the sending rate when the loss was detected.

Congestion Avoidance is the phase, which follows slow start. In this phase

the value of CWND is greater than or equal to ssthresh. This algorithm increases

CWND at a slower rate than during slow start. For each segment ACKed during

congestion avoidance, the congestion window is increased by 1/CWND (unless

this would make the value of CWND greater than the receiver’s advertised win-

dow). This adds roughly one segment to the value of CWND every RTT. The con-

gestion avoidance algorithm provides a linear increase in the size of TCP’s sliding
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window. This mechanism is used to probe the network for additional capacity in

a conservative manner.

1.4 ENABLE Overview

Emerging Next Generation Internet (NGI) applications will push the limits of avail-

able network bandwidth. There are two critical services required to guarantee

maximum efficient use of the network resources. The first is a system for moni-

toring the performance of each component in the system, enabling detailed per-

formance analysis of the complete end-to-end system. The second is a system

for monitoring current network characteristics, and providing this information to

network-aware applications, which can effectively adapt to the current network

conditions.

These capabilities require a very similar set of services. Both require an

adaptive monitoring infrastructure, a monitor data publishing mechanism, and

monitor data analysis tools. We propose to develop a ”Grid” service that will pro-

vide both of these capabilities. The overall goal of this project is to address these

issues in order to provide manageability, reliability, and adaptability for high per-

formance applications running over wide-area networks.

The next generation of high-speed networks will allow DOE scientists un-

precedented levels of collaboration. Large data archives will be easily accessed

from anywhere on the network. However, diagnosing performance problems in

high-speed wide-area distributed systems is difficult because the components are

geographically and administratively dispersed, and problems in one element of

the system may manifest itself elsewhere in the network. Problems may be tran-

sient, and may be due to activity in the infrastructure. Also, a large volume of

monitoring data may be needed for diagnosis and the type of monitoring data and

its analysis depends on the nature of the problem, and the necessary monitoring
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data may not be available when it is needed.

In addition to the ability to locate performance problems, in order to effi-

ciently use NGI networks this new class of applications will need to be ”network-

aware”. Network-aware applications attempt to adjust their resource demands in

response to changes in resource availability. Emerging QoS services will allow the

application to participate in resource management, so that network resources are

applied in a way that is most effective for the application. Network-aware appli-

cations will require a general-purpose service that provides information about the

past, current, and future state of all the network links that it wishes to use. This

service is called ENABLE (Enhancing of Network-aware Applications and BottLe-

neck Elimination). This service will include monitoring tools, visualization tool-

s, archival tools, problem detection tools, and monitoring data summary and re-

trieval tools. The monitoring tools will be capable of monitoring the entire end-to-

end system, and will include tools for monitoring network components (switch-

es, routers, and links), system components (hosts, disks, etc.), and applications.

The results of the monitoring will then be published in directory services via the

Lightweight Directory Access Protocol (LDAP) [19], allowing network-aware ap-

plications to obtain the information needed to adapt to current conditions.

Presently, the archival tools and the monitoring tools to store per session

data in the database are being put together. The work in this thesis will be used by

an application when this infrastructure is in place. The application before setting

the Congestion Window (CWND) to a certain value or before turning off Conges-

tion Control in the kernel checks with the database of monitored data to see if the

link to the destination is uncongested and capable of supporting NOCC. The work

in this thesis is an effort to validate the turning off of Congestion Control in TCP

and analyzing the performance benefits of NOCC over long latency links to see if

it can be deployed.
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1.5 Motivation for No Congestion Control

TCP has a fundamental performance bottleneck for one transmission regime: path-

s with high bandwidth and long round-trip delays. The significant parameter is

the product of bandwidth (bits per second) and round-trip delay (RTT in seconds);

this product is the number of bits it takes to ”fill the pipe”, i.e., the amount of un-

acknowledged data that TCP must handle in order to keep the pipeline full. TCP

performance problems arise when this product is large, e.g., significantly exceeds

105 bits.

There is no one-line answer to the question: ”How fast can TCP go?” The

issues are reliability and performance, and these depend upon the round-trip delay

and the maximum time that segments may be queued in the Internet, as well as

upon the transmission speed.

When the RTT of a link is very high, the time TCP spends in the slow start

phase is high and so effectively TCP doesn’t yield good throughput results in that

phase. For a protocol like HTTP which uses TCP as the transport protocol and

which has very short duration flows, the response times because of TCP’s slow

start phase is disastrous over a high RTT link. For HTTP flows, the entire duration

of the flow is predominated by TCP’s slow start behavior and this has bad effects

on the response time of the web server.

To overcome this startup behavior of TCP especially for HTTP flows and

other short duration flows and to make full use of the bandwidth available in the

DOE-NGI testbed, the idea of turning off Congestion Control in the kernel came

up. The application uses a setsockopt() interface to turn off the congestion control

in the kernel. All the kernel modifications were made to a linux 2.2.13 kernel.

Once the congestion control has been turned off in the TCP stack, the transmission

control block maintained for each session is unaware of the congestion window

(CWND). At any point the advertised window advertised by the receiver in ACKs

forms the sender’s limit on the number of packets it can have outstanding in the
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network. In essence the slow start behavior of TCP is overcome by turning off

congestion control in the kernel. This thesis explains the implementation of the No

Congestion Control (NOCC) in Linux. It also describes the testing of TCP with No

Congestion Control on a cross-country WAN link and compares the performance

statistics obtained with TCP with and without Congestion Control.

TCP with NOCC starts off by essentially transmitting an advertised win-

dow’s worth of packets to the receiver. In cases where the advertised window

is high say � 65,535 bytes, the probability of an intermediate router being over-

whelmed is pretty high. A retransmission event in a short duration flow because

of an intermediate router being overrun can be pretty expensive on the perfor-

mance of TCP and so to avoid this it was decided to experiment with burst traffic

or paced traffic over NOCC. This thesis also analyses the effect of pacing on NOCC.

It describes the implementation of pacing in Apache Web Server [42] and describes

the performance benefits obtained with pacing over TCP with NOCC.

1.6 Organization of this Thesis

This thesis is divided into the following chapters:

Chapter 2 briefly describes related work done in TCP congestion control

algorithms to get better performance from TCP on long RTT links.

Chapter 3 provides background information before dealing with the imple-

mentation aspects of No Congestion Control in TCP in the Linux kernel. It also

briefly describes the HTTP protocol before discussing the implementation of the

pacing algorithm in Apache.

Chapter 4 describes the methodology used to run tests and discusses the

results obtained. Tests run with NetSpec and with Apache to validate the use of

No Congestion Control on high delay links are presented here.

Chapter 5 states the conclusions of the results and future work that could

8



be done in this area.
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Chapter 2

Related Work

Related work can be categorized in three main areas:

� Evolution of TCP and TCP Extensions for high performance networks

� Research on TCP slow start

2.1 Evolution of TCP

TCP [32] is the reliable, connection-oriented, end-to-end error, flow and congestion

control protocol in the transport layer of the TCP/IP reference model. It is the most

widely used protocol in the Internet, providing reliable transfer of data packets. Its

basic implementation is unsuitable for high speed and high delay networks, and

therefore modifications and additions were added to enhance the performance of

the protocol over such networks [5, 6, 28]

W. Richard Stevens in [3] lists the four basic congestion control algorithms

that should be included in any modern implementation of TCP. These algorithms

are Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery. The

last two algorithms were developed to overcome the shortcomings of earlier im-

plementations, like TCP Tahoe [8]. TCP Tahoe was getting into the slow start phase

every time a packet was lost and thus valuable bandwidth was wasted. A mod-
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ern TCP implementation that includes the above four algorithms is now known as

TCP Reno.

Janey C. Hoe in [4] modified the Reno version of TCP to improve the start-

up behavior of the TCP congestion control scheme. These improvements include

finding the appropriate initial threshold window ssthresh value to minimize the

number of packets lost during the start-up period and creating a more aggressive

Fast Retransmit algorithm to recover from multiple packet losses without waiting

unnecessarily for the retransmission timer to expire. The latter is the congestion

algorithm that TCP New Reno is using.

Matthew Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow in

[30] proposed the Selective Acknowledgment (SACK) option to enhance the TCP

performance over high speed and high delay networks. With this option, the

sender can get enough information from the receiver on the state of the correct-

ly received packets and thus it is able to retransmit in one round trip time multiple

lost segments. Simulation based performance results of TCP SACK over low and

high delay paths were documented in [2, 20] and showed that TCP SACK can

significantly improve the network performance when compared with earlier TCP

implementations.

Matthew Mathis and Jamshid Mahdavi in [31] proposed the Forward Ac-

knowledgment (FACK) algorithm to reinforce TCP SACK for higher performance.

FACK improves TCP congestion control during recovery.

2.1.1 TCP Extensions for High Performance Networks

Ever since Slow Start and the Congestion Control Algorithms were first proposed,

there have been constant modifications to TCP and to the congestion control algo-

rithms to get better performance. A lot of research has been done on improving

TCP performance on Satellite links [23, 2, 27].

The original TCP standard limits the TCP receive window to 65535 bytes.
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Without the large windows extension proposed to TCP, the maximum throughput

of a TCP connection is bounded by the round trip time [32].

Throughputmax =
Receive Buffer Size

Round Trip Time

Without TCP large windows, then a TCP connection on a typical cross-

country WAN link on which the RTT is about 70ms is limited to a throughput

of

Throughputmax =
64Kbytes

70ms

Throughputmax = 7:314Mbps

Note that this upper bound on TCP throughput is independent of the band-

width of the channel. As specified by Van Jacobson in [6], large windows (win-

dow scaling) can allow TCP to fully utilize higher bandwidth links over long-delay

channels.

2.1.1.1 Bandwidth Delay Product

Network performance is measured in two fundamental ways:

Delay in Networks is the two-way latency for information to propagate from the

sending node to the receiving node. It is also known as Round Trip Time (RTT).

Bandwidth is the number of bits that can be transmitted in a certain period of time.

BDP is the product of the above two-performance metrics, i.e. the number of bits

the network can hold.

As shown in the Figure 2.1, if we imagine a pipe, with its length represent-

ing the two way network latency and its width representing the bandwidth of the

connection (specified by the line rate of the underlying transport technology), then
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BANDWIDTH

DELAY

Figure 2.1: Representation of the BDP as given in [37].

the BDP is the volume of the pipe.

In transport/data link layers, the BDP represents the maximum amount of

allowed unacknowledged data outstanding at any moment on the network, keep-

ing the link or pipeline full.

TCP performance depends not upon the transfer rate itself, but rather upon

the product of the transfer rate and the round-trip delay. This bandwidth*delay

product measures the amount of data that would ”fill the pipe”. It is the buffer

space required at sender and receiver to obtain maximum throughput on the TCP

connection over the path, i.e., the amount of unacknowledged data that TCP must

handle in order to keep the pipeline full. TCP performance problems arise when

the bandwidth*delay product is large. We refer to an Internet path operating in

this region as a ”long, fat pipe” and a network containing this path as an ”LFN”

Van Jacobson, Robert Braden, and David Borman in [5] describe extension-

s to be included in TCP implementations to make the protocol suitable for high

speed and high delay networks. The proposed extensions are:

� Large sliding window sizes for the protocol to be able to accommodate the

high BDP value of high speed and high delay networks;

� TCP time-stamps for more precise estimations of the round trip time;

� Protection Against Wrapped Sequences (PAWS) for preventing the TCP se-

quence number to wrap around after some transfer time depending on the

transport network speed.
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2.2 Research on TCP Slow Start

TCP Slow Start Phase has been an area of active research. An internet draft by

the Internet Engineering Task Force (IETF) TCP SAT working group [24] states a

proposal for an increment of the initial window size (i.e., ”slow-start” by releas-

ing more than one segment to the network). By increasing the initial window,

more packets are released to the network immediately and thus triggering more

acknowledgments allowing the window to open more rapidly. This will be also

beneficial for World Wide Web (WWW) transfers, which on average are very smal-

l, since data will be transferred immediately in certain cases.

Also, [24] suggests a scheme for deactivating delayed acknowledgments

during slow start. By doing that and acknowledging every packet received, the

time needed to complete slow start will be less than that needed when delayed

acknowledgments are enabled in modern TCP implementations, and the window

will be increasing more rapidly. Another alternative for trying to increase the win-

dow more rapidly and still having delayed acknowledgments during slow start

is the use of ”byte counting” [24] Using this mechanism, the window increase is

based on the number of previously unacknowledged bytes ACKed and not on

the number of ACKs received. Mark Allman in [2] carried out experiments with

the above three slow start modifications and observed significant performance im-

provements over regular TCP Reno.

Sally Floyd also proposed [22] an increase in the permitted upper bound

for TCP’s initial window from one segment to between two and four segments. In

most cases, this change results in an upper bound on the initial window of roughly

4K bytes (although given a large segment size, the permitted initial window of two

segments could be significantly larger than 4K bytes). A discussion of advantages

and disadvantages of such a change, outlining experimental results that indicate

the costs and benefits of such a change to TCP can be found in [22].

In just a few years since its inception, the World Wide Web has grown to be
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the most dominant application in the Internet and there has been a lot of research

in this area to maximize web performance. In large measure, this rapid growth is

due to the Web’s convenient point-and-click interface and its appealing graphical

content. Since Web browsing is an interactive activity, minimizing user-perceived

latency is an important goal. However, layering Web data transport on top of the

TCP protocol poses several challenges to achieving this goal.

First, the transmission of a Web page from a server to a client involves the

transfer of multiple distinct components, each in itself of some value to the user.

To minimize user- perceived latency, it is desirable to transfer the components con-

currently. TCP provides an ordered byte-stream abstraction with no mechanism to

demarcate sub-streams. If a separate TCP connection is used for each component,

as with HTTP/1.0 [12], uncoordinated competition among the connections could

exacerbate congestion, packet loss, unfairness, and latency.

Second, Web data transfers happen in relatively short bursts, with interven-

ing idle periods. It is difficult to utilize bandwidth effectively during a short burst

because discovering how much bandwidth is available requires time. Latency suf-

fers as a consequence.

To address these problems, a new connection abstraction for HTTP, called

persistent- connection HTTP (P-HTTP)[11] was developed by Venkata Padbhanab-

han and Jeffrey Mogul. The key ideas are to share a persistent TCP connection for

multiple Web page components and to pipeline the transfers of these components

to reduce latency. The main drawback of P- HTTP, though, is that the persistent

TCP connection imposes a linear ordering on the Web page components, which

are inherently independent. The analysis of the interactions between P-HTTP and

TCP are given in [14].

This drawback of P-HTTP led to the development of a comprehensive so-

lution, which has two components. The first component, TCP session, de-couples

TCP’s ordered byte- stream service abstraction from its congestion control and loss
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recovery mechanisms.

The second component of the solution, TCP fast start [13], improves band-

width utilization for short transfers by reusing information about the network con-

ditions cached in the recent past instead of initiating the Slow Start discovery pro-

cedure each time. To avoid adverse effects in case the cached information is stale,

TCP fast start exploits priority dropping at routers, and augments TCP’s loss re-

covery mechanisms to quickly detect and abort a failed fast start attempt.

TCP is not optimized for multiple request/responses over a single connec-

tion. This is the common case with HTTP/1.1 [1]. When a new request/response

occurs after the connection has been idle, how should TCP on the server behave?

Some TCP implementations force slow-start again (for example 4.4 BSD and Linux

2.x). Other implementations (SunOS) do not even detect this idle time and thus use

the old value of the congestion window. The latter approach can overrun queues

at intermediate routers, leading to packet loss. Though restarting with slow-start

avoids this risk, it means added delay for each time we slow-start and get to steady

state. This can degrade the performance of layers that TCP provides service to, a

strong example being P-HTTP.

So, to overcome the ”slow start restart” problem, Vikram Visweswaraiah and

John Heidemann suggested Rate Based Pacing (RBP) [10]. It requires the following

changes to TCP:

� Idle time detection and indication that RBP needs to be started

� Bandwidth estimation

� Calculation of the window that we expect to send in RBP and the timing

between segments in that window

� A mechanism that clocks the segments sent in RBP.
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Chapter 3

Background and Implementation

3.1 Transmission Control Protocol (TCP)

TCP [32] is a sophisticated transport protocol that offers connection-oriented and

reliable-byte stream service. It is also extremely flexible in that almost any underly-

ing technology can be used to transfer TCP/IP traffic. It is an end-to-end protocol

with error, flow, and congestion control functions.

Error control is achieved by having the receiver sending cumulative acknowledg-

ments (ACK) for successful transmissions. By using ACKs to pace the transmission

of packets, TCP is said to be self-clocking. In case of a segment loss, the lost seg-

ment will not get acknowledged and therefore it will be transmitted again. In cases

where the ACK is lost, a retransmission timer (RTO) will expire and the segment

will be retransmitted. In order for TCP to avoid duplication of segments, it applies

a unique sequence number to every segment released to the network. The retrans-

mission timeout is not a fixed value but it is adaptively calculated according to the

network topology using the network round trip times and their variance estimates

from the mean. More detailed information about the TCP RTO can be obtained in

[35, 38]. It is appropriate to note here that TCP systems use a coarse-grained timer
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with a granularity of 500 ms, which is well known as ”tick”. This means that, the

sending node has to wait for one ”tick” in most cases to retransmit a segment.

Flow control is achieved by implementing a sliding window scheme and it is used

to prevent the sender from overflowing the receiver when there are no available

buffers in its system. Having the receiver advertising with every acknowledgmen-

t segment a receiving window (RCV WND) value does this. The sender is then

limited to having no more than RCV WND bytes of unacknowledged data in the

network at any time. The receiver selects a RCV WND to advertise based on the

amount of memory allocated to the connection for the purpose of buffering data.

Congestion control is achieved by a variety of algorithms as described in ([3, 16]).

The purpose of the congestion algorithms is to reduce the rate by which the send-

ing nodes insert data into the network when congestion is detected or at the be-

ginning of a TCP connection to slowly probe for the network capacity. Since the

performance results from our experiments are affected greatly by the congestion

algorithms, a description of those (slow start, congestion avoidance, fast retrans-

mit, fast recovery) as well as a description of the large windows extension and

delayed acknowledgments follow.

3.1.1 Slow Start and Congestion Avoidance [3]

TCP uses slow start whenever it establishes a new connection, in order to avoid

these connections instantaneously contributing to congestion. TCP also uses the

slow start technique to recover from congestion. It is an algorithm for controlling

the rate at which the sender transmits data into the network. This algorithm leads

to an exponential growth of the window size and the time needed to fully utilize

the bandwidth (i.e. to reach the receiver’s advertised window) is given by equation
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(3.1).

Slow Start Time = RTT � log2W; where:

RTT is the round trip time between the two hosts,

W is the number of segments fit in the receiver window size.

(3.1)

When a lost segment is detected, the CWND size is set to one segment, and

the slow start algorithm starts over until the sender reaches half of the original

CWND . From thereafter, TCP enters the congestion avoidance phase and slows

down the rate of increment. During this phase, the sender transmits to the network

one additional segment for each round trip time, until the receiver’s advertised

window is reached.

Generally speaking, TCP involves decreasing the congestion window when

the level of congestion goes up and increasing the congestion window when the

level of congestion goes down. Taken together, the mechanism is commonly called

additive increase/multiplicative decrease [37]. In summary:

� When the congestion window is below the slow start threshold (ssthresh)

threshold, the congestion window grows exponentially.

� When the congestion window is above the threshold, the congestion window

grows linearly.

� Whenever there is a timeout, the threshold (ssthresh) is set to one half of the

current congestion window and the congestion window is then set to one.

3.1.2 Delayed Acknowledgments [21]

Recent TCP implementations, use delayed acknowledgments in order to reduce

operating system and processing overheads. Therefore, the receiver is sending

cumulative ACKs back to the sender after it receives a predefined number of seg-

ments instead of acknowledging every segment. In BSD Unix implementations
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the ACK cannot get delayed over 200 ms or over the reception of two segments. In

Linux implementations, the delayed ACK timeout period is 500ms and these im-

plementations do not use delayed ACK in the start of a connection. Thus, the time

needed to fully fill in the pipe with slow start, i.e. equation (3.1), now becomes

equation (3.2) [25].

Slow Start Time = RTT � (1 + log1:5W) (3.2)

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4
 Slow Start Time vs RTT of Link

 RTT in ms

S
lo

w
 S

ta
rt

 T
im

e 
(T

im
e 

to
 fi

ll 
th

e 
pi

pe
) 

in
 s

ec
on

ds

slow start   
sstart delack

Figure 3.1: Slow Start Time with and without Delayed ACKs.

The Figure 3.1 shows how the slow start time increases for increasing RTTs.

It plots normal slow start and slow start with delayed ACKs to show how delayed

ACKs increase the slow start time even more than normal slow start.
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3.1.3 Fast Retransmit and Fast Recovery [3]

Modern TCP systems generate duplicate acknowledgments for every out-of-order

segment received. The TCP fast retransmit algorithm detects a segment loss quick-

ly by counting three duplicate ACKs, and then immediately retransmits the lost

segment without waiting for the retransmission timer to expire. The value of

ssthresh is set to one-half the current CWND . The CWND now gets the value of

ssthresh plus three times the segment size. From now on each time another dupli-

cate ACK arrives, the CWND increases by one segment size and a new packet is

released to the network, if of course allowed by the current new value of CWND.

When an ACK arrives that acknowledges new data, fast recovery is used, where

the CWND is set to ssthresh and congestion avoidance begins. If for any reason

there is a retransmission timeout, the sender will get into slow start.

3.1.4 Large Sliding Windows [5, 6]

The bandwidth-delay product is the amount of unacknowledged data outstanding

at any moment on the network, keeping the link or pipeline full, and it corresponds

to the minimum buffer size or window size on the receiver host as given by equa-

tion (3.3).

Window(Buffer size) = (Round Trip Time) � (Throughput) (3.3)

The upper limit of the TCP window is determined by the socket buffer space

in the source and sink UNIX operating system kernels. For larger RTT connections,

and thus larger BDP values, the window needed is bigger. So, for high BDP net-

works the end hosts must have enough buffers to be able to accommodate the BDP

and consequently to achieve high performance.

The initial implementation of the TCP protocol had the capability to provide

only 65535 bytes of window sizes, by using 16 bits in the TCP header. According
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to equation (3.3), this was inappropriate for high bandwidth, high delay networks,

like cross-country WAN links and satellite links. Therefore extensions were added

([5]) to increase the window option to 32 bits in the TCP header. This enhancement

is included in modern TCP systems.

3.2 Implementation of No Congestion Control

In this thesis, an attempt was made to make the Linux TCP stack unaware of a state

variable called CWND . All the modifications were done to a Linux 2.2.13 kernel.

To aid the application in turning off congestion control in the kernel, a setsockopt()

interface was provided to the application. So, if the application desires to turn off

congestion control, it invokes the setsockopt() with TCP NO CONGESTION. This

automatically makes the upper bound of the CWND equal to the window adver-

tised by the receiver. The application also has the provision of setting the CWND

to some initial value greater than the default with another setsockopt() invoked

through TCP SET CWND. This provision is made to aid the application in making

informed decisions after tracking the network behavior in the past few minutes,

seeing the trend in the values of CWND and then setting the CWND to the opti-

mum value. When the application turns off congestion control in the kernel it sets

a flag called nocc which is part of the TCP control block.

When the application does a write on a TCP socket, it gets translated into

a systemcall called sys write(). This in turn invokes tcp do sendmsg(), which copies

the data to be sent from user space to kernel skbuffs. It allocates space for all the

headers and eventually calls tcp send skb(). This is the main buffer sending rou-

tine, which decides whether to queue or transmit now. This is where the function

tcp snd test() is called which checks to see if a transmission can be made now. It

checks the number of packets in flight and sees if the CWND allows for any more

packets to be on the network and if yes, returns a TRUE to tcp send skb() which in
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turn sends a packet down to the lower layers for transmission. This is where the

hooks for NOCC have been provided. If the flag nocc in the TCP control block has

been set, tcp snd test() returns a TRUE irrespective of whether the number of pack-

ets in flight have hit the CWND limit. The only limitation on the upper limit on the

number of packets in flight is the receiver’s advertised window. The tcp snd test()

returns a TRUE until that limit has been reached. By doing this we have TCP’s

flow control mechanism in place but TCP is unaware of the CWND parameter,

thus disbling congestion control in effect.

In the transmitter, when a packet is received from the receiving end the

tcp rcv established() is called. When the incoming segment is an ACK from the

receiver, acknowledging data sent by the transmitter, the transmitter sees if the

received ACK opens up the sliding window and in normal TCP, for each ACK

received, two more segments can be sent out. Here, tcp data snd check() is called

which in turn checks if data can be written on the wire. So, the same procedure of

checking if the receiver’s advertised window has been hit is done in tcp data snd check()

and the segments are pumped out.

So far the behavior of TCP under normal circumstances has been explored.

Now, let us consider what happens when a retransmission timeout occurs because

of congestion in the network. Under the normal operation of TCP, it halves the

current CWND and stores it in ssthresh and sets CWND to one and starts the slow

start procedure until ssthresh is reached after which Congestion Avoidance takes

over. Since we don’t want TCP to do a slow start when a retransmission timeout

occurs, modifications had to be made to how TCP handles retransmission timeout-

s. TCP calls a function called tcp xmit retransmit queue() which in turn pumps out

the retransmissions. When TCP is about to do a retransmission it again checks if

the number of packets in flight has already hit the CWND limit because it doesn’t

want to create further congestion in the network. This check is bypassed if the nocc

flag is set.
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dev_queue_xmit()

ip_queue_xmit()

     if (nocc == TRUE)

{

}

{

}

tcp_send_skb()

     tcp_snd_test()

sys_write()

tcp_do_sendmsg()tcp_rcv_established()

{

{
    tcp_ack()

if window opens 

     if (nocc == TRUE)
if(#pkts_in_flight
   < rcv_adv_wndw)
return TRUE;

}

{

}

tcp_data_snd_check()

When ACKs arrive

Application Write

if (#pkts_in_flight

               return TRUE;
}

<rcv_adv_wndw)

Writes on the Wire

Figure 3.2: Flow of Control through the Protocol Stack on an Application Write.
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In the present Linux protocol stack, there is no way to get the number of

retransmissions occurring at the TCP layer. Though the /proc interface has a field

which keeps track of the number of retransmissions occurring on a particular con-

nection, it does not grab the correct value since the TCP control block does not

maintain correct statistics to count the number of retransmissions. The retrans-

mission variables maintained in the TCP control block are decremented and reset

to zero as and when retransmissions occur. So, to count the number of retrans-

missions and to help the application retrieve the number of retransmissions on a

particular socket connection, a setsockopt() interface with TCP TOTAL REXMITS

was provided. Also, a parameter to keep track of the total number of retransmis-

sions on a socket was added. This variable was incremented when a retransmis-

sion occurred as signified by the calling of tcp retransmit skb(). The /proc interface

was modified to grab this correct value and print it out in /proc/net/tcp. This will

be used when the entire monitoring infrastructure is in place and when an appli-

cation wants to store the number of retransmissions that occurred on a particular

connection in the database of monitored information.

3.3 HTTP Overview

The transmission of a web page from a server to a client involves the transfer of

multiple distinct components, each in itself of some value to the user. To mini-

mize user-perceived latency, it is desirable to transfer the components concurrent-

ly. TCP provides an ordered byte-stream abstraction with no mechanism to de-

marcate sub-streams. If a separate TCP connection is used for each component,

as with HTTP/1.0 [12], uncoordinated competition among the connections could

exacerbate congestion, packet loss, unfairness, and latency.

Second, web data transfers happen in relatively short bursts, with interven-

ing idle periods. It is difficult to utilize bandwidth effectively during a short burst
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because discovering how much bandwidth is available requires time. Latency suf-

fers as a consequence.

To address these problems, a new connection abstraction for HTTP, called

persistent-connection HTTP (P-HTTP) [11] was developed. The key ideas are to

share a persistent TCP connection for multiple web page components and to pipeline

the transfers of these components to reduce latency. The main drawback of P-

HTTP, though, is that the persistent TCP connection imposes a linear ordering on

the web page components, which are inherently independent.

The two key elements of HTTP performance are latency and throughput:

1. Latency is measured by the RTT and is independent of the object size.

� Connection latency is the time it takes to establish a connection.

� Request latency is the time it takes to complete the data transfer once

the connection has been established.

� Network latency is determined by the bandwidth and the physical lim-

itation on how quickly electrons can travel down a wire. The distance

between the client and server is again an important factor determining

this latency. The speed of the transmission of electrons is a physical lim-

itation, a function of the speed of light and not subject to amendment.

� End-user latency is the sum of all latencies including connection and

request latencies, network latency due to routers, gateways, etc.

2. Throughput is a measure of how long it takes to send data, up to the carrying

capacity of the data pipe. Improving throughput is simply a matter of em-

ploying faster, higher bandwidth networks and a transport protocol which

can transmit to those speeds.

Unfortunately, TCP does not fully utilize the available network bandwidth

for the first few round-trips of a connection. This is because modern TCP im-
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plementations use slow-start [6] to avoid network congestion. The slow-start ap-

proach requires the TCP sender to open its ”congestion window” gradually, dou-

bling the number of packets each round-trip time. TCP does not reach full through-

put until the effective window size is at least the product of the round-trip delay

and the available network bandwidth. This means that slow-start restricts TCP

throughput, which is good for congestion avoidance but bad for short-connection

completion latency. A long distance TCP connection may have to transfer tens of

thousands of bytes before achieving full bandwidth. So, with the TCP NOCC im-

plementation, the request latency is the one which can be improved considerably.

3.3.1 Description of Apache

The Apache [42] httpd server is a powerful, flexible, HTTP/1.1 compliant web

server which implements the latest protocols, including HTTP/1.1 [1] and is highly

configurable and extensible with third-party modules. All the changes to Apache

were done to the Apache 1.3.12 and it was run over Linux 2.2.13

3.4 Implementation of Pacing in Apache

The Apache Server is configured as a Web Server by using a configuration file

called httpd.conf. For the convenience of the system administrator, if he wants

the web server to turn off congestion control in the kernel, there is an option that

has been provided in the httpd.conf file. Another option has been provided in the

configuration file to enable pacing in Apache. Pacing has been implemented in

Apache with UNIX timers. Essentially a burst size and burst period are defined

and the data retrieved by the web server is chunked out into bursts and written in

specific burst periods. A provision has been made to specify the Burst Size and the

Burst Period in the httpd.conf file.

An example of the httpd.conf file which shows the options available in A-
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Figure 3.3: The parameters involved in Implementing Pacing in Apache

pache with Pacing.

#Pacing enabled

ExplicitRate On

#NOCC enabled

NoCongestionCntrl On

#Burst Size

ExplicitRateSize 128000

#Burst Period

ExplicitRatePeriod 10000

# To disable NOCC

NoCongestionCntrl Off

Once the web server has done the directory walk and found the document

requested for in the HTTP Get request, it starts a timer for a certain burst period

(explicit rate period). It then starts transmitting the first burst of burstsize (explic-

it rate size) bytes. Once it is done with the transmission it waits for the timer to

go off and hand it a SIGALRM. When the timer expires, it is programmed to s-

tart again for the same burst period. When the SIGALRM is delivered, the thread

waiting to do the transmission captures it and the next burst of bytes is written.

This procedure is repeated for the size of the document retrieved by the web serv-

er. The important thing to be taken care of here is the possibility of a burst period
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being too small. Since the timer is being armed automatically when a write call is

being performed, the possibility of a write() on write() call occurs. To avoid this

we redirect the signal catcher to count the number of failed cycles.

Apache was also modified to accept the burst parameters namely, the burst

size and burst period from the HTTP Get request. The benchmarking tool Zeus

was modified to accept a few options for the burst size and burst period from the

user and send the following modified HTTP Get request to Apache.

Request GET /size100K.txt HTTP/1.1

User-Agent: ApacheBench/1.1

Rate = 64000

Period = 10000

Host: 140.173.170.11

Accept: */*

Two parameters were added to the Get request

1. Rate: which is the burst size specified in bytes

2. Period: which is the burst period which is specified in milliseconds

Apache was modified to parse the rate and period parameters and set the

explicit rate size and explicit rate period parameters used in the pacing algorithm. In

this way the parameters for the burst algorithm can be set by the application con-

necting to the web server and so the parameters are specific for a particular con-

nection. In the ENABLE context, the application which wants to download a web

page, checks the network status by sending queries to the monitoring database

and then decides on the burst algorithm parameters. It then sends the HTTP Get

request with those parameters. If the parameters are not specified in the Get re-

quest then the default parameters as specified in the httpd.conf file are used for

the pacing algorithm.
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3.5 NetSpec Overview

NetSpec [7] is a tool that was designed to simplify the process of doing network

testing, as opposed to doing point to point testing. NetSpec provides a fairly gener-

ic framework that allows a user to control multiple processes across multiple hosts

from a central point of control. NetSpec consists of daemons that implement traffic

sources/sinks and various passive measurement tools.

NetSpec is a network-level end-to-end performance evaluation tool devel-

oped in the University of Kansas, to help in the collection of results delivered by

performance experiments on the ACTS Satellite ATM Internetwork (AAI) project.

The NetSpec system provides support for large-scale data communication network

performance tests with a variety of traffic source types and modes. This software

tool provides a simple block structured language for specifying experimental pa-

rameters. It also provides support for controlling performance experiments con-

taining an arbitrary number of connections across a LAN or WAN. NetSpec ex-

hibits many features that are not supported by the most often used performance

tools like (ttcp, Netperf). Some of the features are parallel and serial multiple con-

nections, a range of emulated traffic types (FTP, HTTP, MPEG, etc.) on the higher

levels, three different traffic modes, scalability, and the ability to collect system lev-

el information from the communicating systems as well as intermediate network

nodes. All the tests can be run on the two most widely used transport protocols

namely TCP and UDP.

The basic NetSpec architecture consists of several pieces. The controller is a

process that supports the user interface, which is currently a file containing a de-

scription of an experiment using a simple block structured language in which the

connection is the basic unit for an experiment and via the control daemon controls

the daemons implementing the test. For every connection in the experiment, the

corresponding test daemons are created. These test daemons concentrate on per-

forming the traffic related tasks (send or receive data transferred across the connec-

30



tion). Each daemon is responsible for its own report generation after experiment

execution is complete, and measurement daemons concentrate on collecting data

as accurately as possible, without having to worry about performing traffic func-

tions. The output report is delivered to the controller via the control daemon and

this is in turn displayed to the user. The communication between the controller and

the daemons is achieved using an ASCII based language, which enhances porta-

bility and extensibility.

NetSpec supports three basic traffic modes: full blast mode, burst mode,

and queued burst mode. These basic traffic types provide the basis for a variety of

system evaluation and debugging approaches.

NetSpec has the potential to emulate [29] FTP, telnet, VBR video traffic (M-

PEG, video- teleconferencing), CBR voice traffic, and HTTP (World Wide Web traf-

fic) on the application layer. This feature makes NetSpec a unique network per-

formance evaluation tool with the ability to test system performance under traffic

conditions that would be experienced in operation.

In this thesis, NetSpec was used as an application, which would turn off

congestion control in the TCP stack and transmits traffic in both full blast mode

and in burst mode. A comparison of the performance obtained with TCP traffic

run with NetSpec with and without Congestion Control was done.

NetSpec was modified to accept a nocc setting from the application as part

of the script. The user can specify when he wants congestion control turned off

in the Linux kernel by modifying the script and that in turn helps NetSpec invoke

the setsockopt() with the TCP NO CONGESTION as the parameter. In this way,

we could test the performance of the NOCC implementation by using NetSpec as

one of the applications.
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Chapter 4

Evaluation

4.1 Experimental Environment and Tools Used

The transmitter omega.cairn.net is an Alpha processor with a Linux 2.2.13 kernel

with the NOCC modifications. Both the transmitter and the receiver have a Gigabit

Ethernet Acenic Card[43] capable of delivering over 950 Mbps of TCP-level data.

The memory capacity on the transmitter is 1.033GB and on the receiver it is 64MB.

Module Machine Name Description
TCP Transmitter omega.cairn.net Alpha(DEC XXP1000) with the Linux-2.2.13

TCP Receiver iss-p4.lbl.gov Pentium Pro 200MHz
UDP Transmitter dpss2.cairn.net Celeron 500Mhz

UDP Receiver dpsslx03.lbl.gov Pentium III 450MHz

Table 4.1: Workstations used and their specifications.

Therefore, the memory bandwidth on the receiver and other host consider-

ations like the I/O bus bandwidth (how fast the bus can read/write data from/to

the network adapter) and operating system kernel issues [37] limit the maximum

achievable TCP throughput to 130Mbps.

NetSpec was used for burst and full traffic generation. The Apache Web Serv-

er with the pacing module implemented was installed on omega.cairn.net and iss-
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p4.lbl.gov was made to issue HTTP GET requests by using a tool called zeus.

Module Version Description
TCP/IP stack Linux-2.2.13 With the NOCC modifications

NetSpec NetSpec 3.1 Full Blast and Burst Tests
Web Server Apache 1.3.12 With pacing module

TCP analyzing Tool Tcptrace 5.1.0 To analyze tcpdump
Web Server Benchmarking Tools Zeus and httperf-0.6 Measure performance of Apache

Table 4.2: Tools used and their specifications.

Tcpdump [39] was used to monitor the interface and the TCP flow’s packets

were captured. The dump output was analyzed later with a tool called tcptrace

[40]. The output produced by tcptrace was analyzed with a plotting tool called

xplot [41].

4.2 Experimental Parameters

The Network Connectivity of the testbeds in Lawrence Berkeley Labs (LBL) and

Information Sciences Institute, East (ISIe) is as shown in the Figure 4.1.

Figure 4.1: Network Topology Diagram
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A traceroute from omega.cairn.net to iss-p4.lbl.gov shows the path which the pack-

ets take from the source to the destination.

[dartku@omega burst]$ /usr/sbin/traceroute iss-p4.lbl.gov

traceroute to iss-p4.lbl.gov (131.243.2.29), 30 hops max, 46 byte packets

1 m40.cairn.net (140.173.170.1) 0.531 ms 0.726 ms 0.932 ms

2 205.171.40.61 (205.171.40.61) 0.917 ms 0.662 ms 0.938 ms

3 wdc-core-02.inet.qwest.net (205.171.24.85) 0.926 ms 0.889 ms 0.939 ms

4 wdc-core-03.inet.qwest.net (205.171.24.6) 0.926 ms 0.378 ms 0.938 ms

5 hou-core-01.inet.qwest.net (205.171.5.187) 24.379 ms 24.248 ms 24.387 ms

6 hou-core-03.inet.qwest.net (205.171.23.9) 24.378 ms 24.511 ms 24.391 ms

7 lax-core-02.inet.qwest.net (205.171.5.163) 55.647 ms 55.983 ms 55.661 ms

8 lax-brdr-01.inet.qwest.net (205.171.19.42) 55.652 ms 56.354 ms 55.661 ms

9 205.171.40.58 (205.171.40.58) 57.631 ms 57.709 ms 56.641 ms

10 208.44.137.33 (208.44.137.33) 67.376 ms 68.288 ms 67.386 ms

11 208.44.137.54 (208.44.137.54) 66.401 ms 66.841 ms 66.413 ms

12 iss-p4.lbl.gov (131.243.2.29) 69.328 ms 67.406 ms 67.390 ms

In the path from LBL to ISIe, the maximum bandwidth that can be attained is that

of an OC-12 link which forms the bottleneck between the two networks. The RTT

on this link is � 67ms as seen by the ping shown below.

[dartku@omega burst]$ ping iss-p4.lbl.gov

PING iss-p4.lbl.gov (131.243.2.29) from 140.173.170.11 : 56(84) bytes of da-

ta.

64 bytes from 131.243.2.29: icmp seq=0 ttl=244 time=66.9 ms

64 bytes from 131.243.2.29: icmp seq=1 ttl=244 time=67.0 ms

64 bytes from 131.243.2.29: icmp seq=2 ttl=244 time=66.7 ms

64 bytes from 131.243.2.29: icmp seq=3 ttl=244 time=66.5 ms
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So, the BDP is,

Bandwidth Delay Product = 622Mbps � 67ms = 5:2093MB

The single most important aspect when dealing with TCP performance is

socket buffer settings (SO RCVBUF and SO SNDBUF). In particular, it is impor-

tant to notice that the default maximum settings of 64KB in a standard kernel are

far from sufficient for a gigabit network. We have to increase these before trying to

set the above mentioned socket buffer sizes or the limits will be truncated silently

to the default. For all experiments the socket buffer sizes in the transmitter and the

receiver were set to the Bandwidth Delay Product

echo 5209300 > /proc/sys/net/core/rmem max

echo 5209300 > /proc/sys/net/core/wmem max

Once the socket buffers have been set to the maximum value, NetSpec uses

setsockopts for SO SNDBUF and SO RCVBUF to set it to any value within the

maximum. NetSpec is the traffic generation tool which generates

� Full Blast Tests

� Burst Tests

In Full blast tests, the transmitter transmits data as fast as possible. It pumps

out the specified blocksize worth of bytes and goes on to pump the next block out.

This can be used to test the maximum achievable throughput on the WAN.

In burst tests, the burst size and the burst period are specified and the trans-

mitter can be programmed to send data at a particular rate. The Figure 4.2 shows

how the transmitter actually pumps out the packets. The burst size and the burst

period and the duration of the test are parameters which were changed to observe

the behavior of TCP with CC and NOCC.

35



Figure 4.2: A Transmitter pumping out packets in Bursts

4.3 Performance Metrics

Slow start is the main performance bottleneck for TCP on high latency links. The

slow start phase occurs in the beginning of a connection and also when there is

severe congestion in the network. So, the two important phases to concentrate on

are the

� Startup behavior of a TCP connection with Congestion Control (CC) and

without Congestion Control (NOCC) and the

� Congestion Recovery Behavior with CC and NOCC

4.3.1 Number of Outstanding Bytes

The number of outstanding bytes in the network or the number of packets in flight

form a direct measure of the Congestion Window. The transmitter of a TCP con-

nection checks to see the CWND and when the outstanding bytes on the network

is less than CWND, it pumps out more packets onto the network. In the slow start

phase of TCP with CC, the number of outstanding data on the network increases

exponentially as and when the receiver acknowledges data received. In the TCP

with NOCC case, the transmitter is not limited by the CWND and so the number of

bytes outstanding in the network increases from zero to the receiver’s advertised

window . This metric is analyzed in the start up phase of the TCP connection and
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also in the Congestion Recovery region of long duration flows.

4.3.2 Received Throughput

In a TCP connection, the received throughput is given by

Received Throughput =
Number of Bytes Received

Duration of Transfer
(4.1)

This is a direct measure of the performance the receiver gets from the Net-

work. If there is congestion in the network, this parameter observed at the receiver

is reduced and is thus a measure of the congestion in the network to the receiving

application. This parameter obtained in the TCP with CC case is compared with

that obtained from the TCP with NOCC case in both long and short duration flows.

In the short duration TCP with CC flow, the entire flow’s duration is dominated by

TCP’s slow start behavior and so the transmitter and receiver never get to utilize

the network to its maximum capacity.

4.3.3 Offered Load

When we perform burst tests with NetSpec, the transmitter sends bursts of packets

into the network. A flow’s duration is divided into many seconds and each second

is in turn divided into a certain number of burst periods. In each burst period, a

Burst Size worth of bytes is written onto the network. So, effectively the transmitter

is made to pump out packets at a certain designed rate and this is called the offered

load on the network and it is given by:

Number of Burst Cycles=second =
1 second

Burst Period
(4.2)
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Offered Load in bps = Burst Size � 8 �Number of Burst Cycles=second

(4.3)

4.3.4 Response Time

In the Apache Web Server, an important metric to be minimised is the response

time. This is the duration of time the client which sends a HTTP Get request to the

Web Server spends waiting before it can produce the requested web page to the

end user. This metric is analyzed in the TCP with NOCC case and is compared with

the TCP with CC case, which is what all current implementations of web servers

use. In this way we can see if the current implementation would fare better than

what is already existing on long latency links.

4.4 Experiment Scenarios

NetSpec was used to create both long and short duration flows. The first scenario

to be tested is the startup behavior of TCP with CC and with NOCC and this can

be tested with the transmitter as omega.cairn.net and the receiver as iss-p4.lbl.gov

and with all the intermediate routers. This is a congestion-free test scenario.

Figure 4.3: Congestion-Free Test Scenario with Two testbeds

The second scenario is to test the Congestion Recovery behavior of TCP with CC
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and with NOCC. For this we need to have a TCP flow between two machines and

also a UDP flow between two other machines to congest the Network.

Figure 4.4: Four Testbed Scenario to evaluate Performance during Congestion

The maximum buffer size is set to the Bandwidth Delay Product on all these ma-

chines.

4.5 Scenarios and Results with NetSpec

4.5.1 Congestion-free Performance and Results

These tests were run in a congestion-free environment to analyze the startup be-

havior of TCP with CC and to observe the performance benefits which can be ob-

tained through TCP with NOCC due to the lack of a startup phase.

4.5.1.1 Start up behavior of TCP with CC for Full Blast Traffic

In this test case, NetSpec was run in full blast mode. The interface was put in

promiscuous mode and all the packets belonging to this flow are captured by tcp-
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dump. It was later analyzed with tcptrace. The plot of the CWND or the number of

bytes outstanding on the network with regard to the time is obtained with xplot.

Figure 4.5: CWND vs Time in TCP with CC - Slow Start Phase

The first 2 seconds have been magnified here to show how many round trip

times it takes for the CWND to ramp up to the steady state value in the TCP with

CC case. We can see that for the first one second, the CWND grows slowly with

each RTT and if the duration of a flow is small (of the order of 2-3s) then the flow
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never utilizes the available bandwidth from the network.

4.5.1.2 Start up behavior of TCP with NOCC with Full Blast Traffic

In this test, we can see with Full Blast NetSpec traffic, that the maximum limit on

the congestion window is the receiver’s advertised window. The transmitter is

able to send an entire CWND (receiver’s advertised window) worth of packets as

soon as the connection is active.

The Figure 4.6 shows how the instantaneous CWND shoots up to the maxi-

mum as soon as the transmitting application starts writing.
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Figure 4.6: CWND vs Time in TCP with NOCC
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4.5.1.3 Long Duration Paced Traffic (Burst Period = 10ms)

This test was conducted with NetSpec running in paced mode. All the tests were

conducted with a Burst Period = 10ms. The burst sizes were varied through a

range of values and the transmitted and received throughputs were observed.

Burst Sizes = 8KB, 16KB, 32KB, 64KB, 128KB, 512KB

Offered Load = 6.4Mbps, 12.8Mbps, 25.6Mbps, 51.2Mbps, 102.4Mbps, 204.8Mbps

Burst Period = 10ms

Duration = 10s
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Figure 4.7: Transmitted Throughput for Different Burst Sizes for a Long Duration
Flow with BP=10ms, RTT=67ms, BW=622Mbps

For each burst size the ideal or required throughput or the offered load is

calculated as given by Equation 4.3 and plotted. The first set of experiments were

conducted with TCP with CC and with all the above mentioned burst sizes. The
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aim of this experiment is to prove that as long as the burst sizes are small, TCP with

CC is able to send a burst worth of packets in a single burst period. As the burst

size increases, the number of failed burst cycles� increase because of the inherent

limitation of the CWND and so the transmitter is not able to transmit more than

the CWND worth of bytes and because of this limitation, there is a reduction in the

throughput.

0 50 100 150 200 250 300 350 400 450
0

50

100

150

200

250

300

350

400

450

 Offered Load in Mbps

 R
ec

ei
ve

d 
T

hr
ou

gh
pu

t i
n 

M
bp

s 

 Offered Load vs Received Throughput for BP=10ms and 10s duration

Ideal
cc   
nocc 

Figure 4.8: Offered Load vs Received Throughput for a Long Duration Flow with
BP=10ms, RTT=67ms, BW=622Mbps

The same set of experiments were conducted with TCP with congestion con-

trol turned off (NOCC) and with the same set of burst sizes. In the case of TCP with

NOCC, the application is not limited by the CWND maintained by TCP and so it

is able to handle huge burst sizes with more ease and so the effective throughput

�When the current burst period times out and the transmitter hasn’t yet transmitted the burst
size of bytes in that burst cycle
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observed with TCP with NOCC is more than TCP with CC. This is also plotted in

the same graph.

From the Figure 4.7 it is seen that TCP with CC and NOCC perform in a

similar way for small burst sizes. As the burst size increases, the throughput from

TCP with NOCC is better.

For the same set of tests, the received throughput is plotted against the Of-

fered Load and the performance of TCP with NOCC is observed to be better than

TCP with CC in the high burst size region.

4.5.1.4 Short Duration Paced Traffic (Burst Period = 10ms)

This test is carried out in a similar way as the previous test but for a short duration.

The duration is set to 2s.

Burst Sizes = 8KB, 16KB, 32KB, 64KB, 128KB, 512KB

Burst Period = 10ms

Duration = 2s

On a cross-country WAN link which has an RTT of nearly 70ms, the CWND

takes more than a second to open out and reach a steady state value. In this case,

the performance benefits of TCP with NOCC is pretty marked because an appli-

cation which turns off congestion control in the kernel can start off by sending

up to the receiver’s advertised window worth of packets and this is a significant

performance boost in terms of throughput.
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Figure 4.9: Transmitted Throughput for Different Burst Sizes for a Short Duration
Flow with BP=10ms, RTT=67ms, BW=622Mbps
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Figure 4.10: Offered Load vs Received Throughput for a Short Duration Flow with
BP=10ms, RTT=67ms, BW=622Mbps

So, the same tests as the previous test case are performed for different burst

sizes. The ideal throughput, throughput with TCP with CC and throughput with

TCP with NOCC are plotted and it is seen than for a short duration flow, the per-

formance of TCP with NOCC is much better than TCP with CC. The results are

significant for TCP with NOCC in a short duration flow.

As in the previous test case, the received throughput is plotted against of-

fered load as shown is Figure 4.10 and the performance of NOCC is seen to be

better than CC. This is more pronounced in the case of short duration flows be-

cause in the TCP with CC case, the CWND does not even reach the steady state

value for the application to achieve good throughputs.
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4.5.1.5 Comparison of Throughputs for Short and Long Duration Flows

This is a summary of the previous two test cases. This Figure 4.11 plots the through-

puts obtained for short and long duration flows in the CC and NOCC case. In the

long duration flow, the performance of the TCP with CC flow stabilizes because

the CWND grows out of the slow start ramping period and reaches a steady state

value. Once TCP reaches this steady state, it yields good throughput results.
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Figure 4.11: Comparison of Transmitted Throughput for Different Burst Sizes for
Short and Long Duration Flows with BP=10ms, RTT=67ms, BW=622Mbps

So, if the flow’s duration is more, TCP moves out of the slow start phase and

makes up for the less throughput yielded in the start of the connection. Though

TCP with NOCC performs better than CC in the long duration flow especially in

the high burst size region, its performance benefits are marked in the short dura-

tion flow.
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Figure 4.12: Offered Load vs Received Throughput for Long and Short Duration
Flows with BP=10ms, RTT=67ms, BW=622Mbps

This is seen clearly in Figure 4.12 where the received throughputs are plot-

ted. The performance of a short duration NOCC flow is similar in performance to

a long duration NOCC flow. But a short duration CC flow performs badly when

compared to a long duration CC flow. This is because TCP reaches steady state in

a long duration flow and yields good performance benefits. So, the performance

of NOCC is significantly better than a short duration CC flow. So, in effect over a

short duration, NOCC can be very effective when compared to CC.
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4.5.1.6 Long Duration Paced Traffic (Burst Period = 5ms)

The next set of experiments were conducted with a smaller burst period than the

previous test case. In effect we are trying to increase the amount of data sent out

per second. Since the BP is less, failed burst cycles start occurring early in the burst

size region.

Burst Sizes = 8KB, 16KB, 32KB, 64KB, 128KB

Offered Load = 12.8Mbps, 25.6Mbps, 51.2Mbps, 102.4Mbps, 204.8Mbps

Burst Period = 5ms

Duration = 10s
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Figure 4.13: Transmitted Throughput for Different Burst Sizes for a Long Duration
Flow with BP=5ms, RTT=67ms, BW=622Mbps

This Figure 4.13 plots the transmitted throughputs obtained for a long dura-

tion flow with a burst period of 5ms. The test is performed for various burst sizes
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and the throughput for TCP with NOCC is plotted along with the throughput for

TCP with CC. It is seen that TCP with NOCC performs better than TCP with CC

especially for large burst sizes.
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Figure 4.14: Offered Load vs Received Throughput for a Long Duration Flow with
BP=5ms, RTT=67ms, BW=622Mbps

Figure 4.14 plots the received throughputs against offered load and the

same effect as all the previous test cases is seen here and NOCC performs better

for large burst sizes.
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4.5.1.7 Short Duration Paced Traffic (Burst Period = 5ms)

These experiments were conducted with a burst period = 5ms and a duration of

2s.

Burst Sizes = 8KB, 16KB, 32KB, 64KB, 128KB

Burst Period = 5ms

Duration = 2s
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Figure 4.15: Transmitted Throughput for Different Burst Sizes for a Short Duration
Flow with BP=5ms, RTT=67ms, BW=622Mbps
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The Figure 4.15 shows that the transmitted throughputs for NOCC is again

better than TCP with CC. The Figure 4.16 shows the received throughputs plotted

against offered load. As observed in the previous test cases, the performance of

NOCC is better than CC on a short duration flow.
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Figure 4.16: Offered Load vs Received Throughput for a Short Duration Flow with
BP=5ms, RTT=67ms, BW=622Mbps
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4.5.1.8 Comparison of Throughputs for Short and Long Duration Flows

As in the case where the burst period was 10ms, the short duration NOCC flow

performs much better than TCP with CC flows.
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Figure 4.17: Comparison of Transmitted Throughput for Different Burst Sizes for
Short and Long Duration Flows with BP=5ms, RTT=67ms, BW=622Mbps
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Figure 4.18: Offered Load vs Received Throughput for Short and Long Duration
Flows with BP=5ms, RTT=67ms, BW=622Mbps

The above Figure 4.18 plots the received throughputs for long and short

duration CC and NOCC flows. As before, the performance of NOCC short duration

flow is significantly better than a short duration CC flow.

4.5.1.9 Conclusions

It is seen that TCP with NOCC performs similarly for short and long duration

flows. This is as expected because TCP with NOCC does not need to reach any

steady state to produce good results. It starts off by transmitting upto the receiv-

er’s advertised window and so performs well consistently irrespective of short

and long duration flows. TCP with CC performs comparable to NOCC when the

flow’s duration is long enough for CWND to reach the receiver’s advertised win-

dow (steady state value). On a short duration flow, TCP with CC does not have
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sufficient time to let the CWND open up fully and so does not yield good through-

puts.

4.5.1.10 Long Duration Instantaneous Transmitted Throughputs

This experiment is run by using NetSpec to generate burst traffic with a burst size

of 128Kbytes.
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Figure 4.19: Instantaneous Tranmitted Throughputs for Long Duration Flow with
BP=10ms and BS=128Kbytes, RTT=67ms, BW=622Mbps

The write durations are instrumented in NetSpec and so, NetSpec stores

timestamp information when it does a write. So, in order to avoid unrealistic
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spikes in the throughput graph, the throughput was sampled at 50ms durations

and the number of bytes transmitted in each burst cycle is plotted against time. It

is seen in Figure 4.19 that in the NOCC case, NetSpec is able to write the data onto

the network without any failed cycles and so the transmitter is able to achieve the

expected throughput. A failed burst cycle is one in which the current burst period

times out and it hasn’t yet transmitted the burst size of bytes in that burst cycle

and to prevent a write() on write() we associate the signalhandler with a function

that counts the number of failed burst periods.
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Figure 4.20: Instantaneous Tranmitted Throughputs for Long Duration Flow with
BP=10ms and BS=128Kbytes (Magnified)

In the TCP with CC case, initially because of the huge socket buffer alloca-

tion, NetSpec’s writes succeed and all the data is copied onto the socket buffers

but eventually due to the gradual or rather slow increase in the CWND (which in

turn implies that the number of bytes actually sent out on the network is small),
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the socket buffers get filled and so NetSpec’s writes fail and this leads to failed

burst cycles. So, during the ramp up of the CWND in the slow start phase, as seen

in Figure 4.20 there is a dip in the throughput and it gradually increases and the

throughput steady states.

4.5.1.11 Long Duration Instantaneous Received Throughputs

This experiment is the same as the previous test case but the instantaneous re-

ceived throughputs are plotted.
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Figure 4.21: Instantaneous Received Throughputs for Long Duration Flow with
BP=10ms and BS=128Kbytes, RTT=67ms, BW=622Mbps
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The startup behavior in the TCP with CC case is very prominent and it is

easily seen that NOCC has no such phase and it succeeds in getting over the startup

phase as experienced by TCP with CC.
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Figure 4.22: Instantaneous Received Throughputs for Long Duration Flow with
BP=10ms and BS=128Kbytes (Magnified)

Figure 4.22 is a magnified plot to emphasize the performance reduction due

to the startup phase exhibited by TCP with CC and this graph also shows how

TCP with NOCC overcomes it.

4.5.1.12 Conclusions

Analyzing the transmitted and received throughputs in both CC and NOCC, we

can clearly see that NOCC is able to get over the startup phase problem which

we experience with CC. This could go a long way in improving the performance

that we can achieve from short duration flows which are dominated by the startup
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phase of CC.

4.5.2 Congestion Recovery Behavior

In the case of TCP with CC, the congestion recovery behavior is either the Con-

gestion Avoidance phase or slow start behavior. In normal TCP, as the CWND is

doubling every RTT in the slow start phase, there might be a packet loss detected

in a particular RTT. The lost segment is taken as an indication of congestion in the

network. If this lost segment is retransmitted with the Fast Retransmit Algorithm

kicking in at the transmitter due to the reception of three duplicate ACKs, then

once the loss has been recovered the congestion avoidance phase sets in. In this

phase, the ssthresh is set to half the value of CWND at the time the loss occurred

and the CWND starts to grow by 1/CWND with every ACK it receives. Eventually,

this adds roughly one segment to the value of CWND every RTT.

If there are multiple losses and the Fast Retransmit Algorithm is unable to

recover from the loss, then a retransmission timeout occurs and the lost segment is

retransmitted. When a retransmission timeout occurs, TCP does a slow start with

the ssthresh set to half the value of CWND at the time the loss occurred.

An important aspect to be considered on long delay networks is that the

transport protocol must handle retransmissions gracefully and not drain the entire

pipe as there may be several hundred packets in transit. TCP handles retransmis-

sions better with the Selective Acknowledgement provision.

4.5.2.1 UDP Congestion Scenario with Four Testbeds

To test the congestion recovery behavior of NOCC as compared to TCP with C-

C, the second test scenario as shown in Figure 4.4 is used. Here, four machines

were used to run the experiment. A UDP flow was run between two machines

(dpss2.cairn.net and dpsslx01.lbl.gov) and the TCP flow was run between

omega.cairn.net and iss-p4.lbl.gov. This experiment was conducted to simulate
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the event of a single bit error occurring with a ”very” small congestion event. The

congestion event is created with a UDP flow. Multiple trials of this experiment

was done to find a burst size and burst period which could induce the ”minimum”

congestion event to analyze how TCP with CC reacts adversely in the event of the

most minimum congestion. The burst size was varied and the number of bytes in

a single burst period was manipulated with another parameter called repeats� in

NetSpec. The NetSpec scripts are produced in the Appendix.
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Figure 4.23: Comparison of Received Throughputs for CC and NOCC competing
with a UDP flow, RTT=67ms, BW=622Mbps

The number of retransmissions occurring in each connection is printed out

along with the NetSpec report using the setsockopt() with the parameter

TCP TOTAL REXMITS. The burst size and the number of repeats to get zero re-

�This is a parameter in NetSpec which can be used to send multiple burst sized packets in one
burst period.
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transmits was found out and the number of repeats is increased slowly to increase

the number of bytes sent out in the burst period and the point where it starts pro-

ducing retransmissions was noted. Thus after multiple trials a single burst of UDP

packets was injected to cause a minor congestion event. The experiment was per-

formed with a TCP with CC flow competing with a UDP flow and a TCP with

NOCC flow competing with the same UDP flow to compare the behavior of the

two under the event of congestion.

Figure 4.23 shows the instantaneous received throughputs sampled at 60ms

intervals. A congestion event occurs at about 5-6 seconds and we can see that TCP

with CC recovers from a loss and halves the CWND and does congestion avoidance

and the throughput rises slowly after halving. On the other hand we can see that

though TCP with NOCC is affected it does not do congestion avoidance and so

it is able to achieve good throughputs. This shows that even the most minimal

congestion event triggers the congestion avoidance phase in TCP with CC. If the

loss in a segment occurs because of reasons other than congestion like bit errors

caused due to the link like in Satellite links, TCP assumes that it is an indication

of congestion and kicks in the congestion avoidance phase, which significantly

reduces performance.
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Figure 4.24: CWND vs Time in CC case when affected by a UDP flow

Figure 4.24 shows the CWND halving at the onset of congestion and from

the point of congestion, congestion avoidance takes over with the halved CWND.
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Figure 4.25: CWND vs Time in NOCC case when affected by a UDP flow

Figure 4.25 shows TCP with NOCC reacting to a ’minor’ congestion event

simulating a single bit error loss.

64



4.5.2.2 UDP Congestion Scenario with Periodic Congestion

For this experiment the test scenario as shown in Figure 4.3 is used. A UDP flow

was run along with a TCP flow. The UDP flow was made to produce bursts of

UDP packets at regular intervals (in our case 3 seconds). The burst size and burst

period were experimented with to produce congestion in the other competing TCP

flow.
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Figure 4.26: Variation of Received Throughputs in the event of Periodic Congestion

The Figure 4.26 shows the received throughputs plotted against time for

TCP with CC and NOCC. The TCP with CC flow backs off with the first conges-

tion event and does congestion avoidance from the point of loss. When the next

congestion event occurs, (the congestion event occurs in multiples of 3 seconds) it

again halves and starts doing congestion avoidance. This goes on for the duration

of the UDP flow.
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We can see NOCC behaving in a more steady manner with the throughputs

decreasing at the point of congestion but the flow is able to recover quickly from

congestion and yield steady throughputs.

Figure 4.27: CWND vs Time in TCP with CC in the event of Periodic Congestion

Figure 4.27 shows how CWND gets halved at each point of congestion and

how congestion avoidance occurs after each congestion event for TCP with CC.
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Figure 4.28: CWND vs Time in TCP with NOCC in the event of Periodic Congestion

Figure 4.28 shows how NOCC though affected by congestion maintains a

constant Average CWND and is thus able to yield significant throughput advan-

tages over TCP with CC.
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4.5.2.3 TCP with NOCC competing with TCP with CC

This experiment was run with the second test scenario which has 2 machines each

having a TCP connection between them as shown in Figure 4.4. So, in effect TCP

with CC flow runs between a pair of testbeds and TCP with NOCC flow runs be-

tween another pair of testbeds.
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Figure 4.29: Received Throughputs with TCP with CC and NOCC competing with
each other

We can see that NOCC is very aggressive and it penalizes the TCP with CC

flow. So, it would not be advisable to deploy CC and NOCC together in a network

because, TCP with NOCC is not tcp-friendly.

4.5.2.4 Conclusions

The above sections have analyzed the behavior of TCP with CC when a minimum

congestion event occurred and when multiple congestion events occurred. TCP
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with CC does aggressive congestion control by either going into slow start or con-

gestion avoidance and this has dire effects on a high latency link. Therefore, the

performance obtained from CC flows is drastically reduced. On the other hand

NOCC does not employ aggressive congestion control strategies and so is able to

achieve good performance benefits. In effect it is clear that TCP with CC is not well

suited for huge BDP links, firstly because of the initial startup phase and secondly

due to its backing off of the CWND when a congestion event occurs.

4.6 Scenarios and Results with Apache

The Apache Web Server with the pacing module introduced was installed on omega.cairn.net.

iss-p4.lbl.gov was made to issue HTTP Get requests with a web server benchmark-

ing tool called Zeus. httperf was also used to carry out some experiments.

The httpd.conf was incorporated with the NOCC configuration and the pac-

ing configuration with the burst size and the burst period. Example of a portion of

the httpd.conf with the configuration for the NOCC and the pacing.

#Pacing enabled

ExplicitRate On

#NOCC enabled

NoCongestionCntrl On

#Burst Size

ExplicitRateSize 128000

#Burst Period

ExplicitRatePeriod 10000

4.6.1 Burst Tests with Multiple Connections

This experiment was conducted by making Zeus request for files of different sizes

from the Web Server.
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File Sizes = 2KB, 7KB, 10KB, 30KB, 100KB, 422KB.

Burst Sizes = 32KB, 64KB, 128KB.

Burst Period = 10ms and 5ms

The modified Zeus was used to make queries with the burst size and the

burst period specified in the HTTP Get request. Multiple requests were sent and

for each request a TCP connection was opened. The resulting throughputs were

plotted and Figure 4.30 shows the throughputs obtained with NOCC with pacing

plotted against the normal behavior of web servers which employ HTTP 1.0 over

TCP with CC.
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Figure 4.30: Received Throughputs with multiple connections for different Burst
Sizes and BP=10ms
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The Figure 4.31 shows the received throughputs for a burst period of 5ms.

Zeus was made to issue modified HTTP Get requests and multiple requests were

sent and the received throughputs were plotted .
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Figure 4.31: Received Throughputs with multiple connections for different Burst
Sizes and BP=5ms

The received throughputs obtained in the NOCC case with pacing is seen to

be significantly better than TCP with CC case.
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Figure 4.32: Received Throughputs with multiple connections for different Burst
Sizes and BP=5ms

Figure 4.32 shows the duration of tranfer for the above conducted tests.

There is a significant improvement in the latency since the duration of transfer is

considerably reduced in the NOCC case.

4.6.2 Burst Tests with Persistent Connection

Zeus was made to retrieve files of varying sizes from the web server.

File Sizes = 2KB, 7KB, 10KB, 30KB, 100KB, 422KB.

Burst Sizes = 32KB, 64KB, 128KB.

Burst Period = 10ms and 5ms
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Figure 4.33: Received Throughputs for Persistent connection for different Burst
Sizes and BP=10ms

For different burst sizes we observe a difference in throughputs in the high-

er file size region. This is seen from Figure 4.33.
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Figure 4.34: Received Throughputs for Persistent connection for different Burst
Sizes and BP=5ms

Figure 4.34 shows the received throughputs obtained with a BP=5ms. The

received throughputs show a significant improvement in the NOCC case.
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Figure 4.35: Received Throughputs for persistent and non-persistent connection
HTTP

The throughputs obtained as seen in Figure 4.35 in both the CC and the

NOCC case in P-HTTP or HTTP 1.1 is significantly better than those obtained from

HTTP 1.0. This difference in the throughputs is because of the absence of connec-

tion establishment phase in each request’s case. Since it takes a full RTT of about

67ms to establish a connection, it brings a significant performance boost.
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Figure 4.36: Duration of Transfer for persistent and non-persistent connection
HTTP

The duration of transfer in NOCC is considerably reduced when compared

with the TCP with CC case in both the persistent and non-persistent cases. The

TCP with CC in P-HTTP case is able to get a significant performance improve-

ment when compared to HTTP 1.0 because of the absence of the overhead of the

connection establishment phase for each request. Also since NOCC does not have

the CWND as a limiting factor, it is able to perform well for web data retrievals

and so the duration of transfer is further reduced (when compared with CC) in the

P-HTTP case.

4.6.3 Burst Tests with a Congestion Event

These tests were conducted with a UDP flow causing congestion in the network.

The received throughputs when Zeus issued 50 requests was noted with no com-
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peting UDP flows. Then a small burst of UDP packets was injected into the net-

work and the burst size, burst period and the repeats were manipulated to make

the smallest UDP burst cause congestion in the network.
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Figure 4.37: Duration of Transfer with Apache for different Burst Sizes and
BP=10ms

In effect the performance of web flows in the presence of ’minimum’ con-

gestion was observed. Zeus was made to issue HTTP Get requests and received

throughputs were noted in that case too. The two throughputs were plotted to see

how congestion affects TCP with CC web flows and how it affects TCP with NOCC

flows.

Figure 4.37 shows how TCP with CC is affected by congestion and how

NOCC performs better because of its aggressiveness when it comes to the CWND.
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4.6.4 Conclusions

The user perceived latency is one factor which web users would definitely like

reduced. With NOCC, we can see that the latency which the user perceives can

be reduced significantly in the HTTP 1.0 case. NOCC also helps to get better per-

formance from P-HTTP. The difference in performance for different burst sizes is

because of the more number of burst cycles required to tranfer the entire data. So,

its seen that a 128Kbyte burst performs better than a 32KB burst size. Moreover,

NOCC in its actual form does not give the user any control over what is being

transmitted, but NOCC with pacing, gives the user the additional luxury of con-

trolling the burst size and burst period and hence controlling the amount of data

actually going out on the network. So, in the ENABLE infrastructure, where the

aim is to aid the application in making intelligent QoS decisions and to give full

control to the application, NOCC with pacing is an excellent mechanism for the

application to control the amount of data sent onto the network.
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Chapter 5

Conclusions and Future Work

5.1 Effect of Slow Start and Congestion Avoidance

The Slow Start and Congestion Avoidance algorithms have a negative effect on

throughput, especially for long delay links. When one thinks about the topic un-

der consideration, i.e., TCP No Congestion Control, it is but natural to wonder

’why at all did they come up with Congestion Control in the first place?’ Congestion

Control Algorithms were devised for low bandwidth links which were prone to

frequent congestion and often led to congestion collapse, thereby not utilizing the

link bandwidth at all. TCP’s Congestion Control algorithms were not devised for

high bandwidth, high latency links. Infact it is quite the contrary, slow start causes

an incredible startup phase problem which leads to poor utilization of the abun-

dant bandwidth in high bandwidth links.

Congestion Avoidance is too conservative and with a single loss halves the

CWND and increases it linearly and tries to reach the maximum CWND again. If a

loss occurs early in slow start, then it takes a very long time to recover using this

algorithm. This harms TCP performance on high BDP networks since it takes so

much time to ramp up and fill the pipe, hence wasting valuable bandwidth which

results in low channel utilization and performance degradation. This algorithm
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has more dire effects in high delay connections than on low delay connections.

5.2 Effect of NOCC on TCP

Due to the above stated pitfalls in TCP, Congestion Control Algorithms are gen-

erally not seen as a useful phenomenon on high BDP links. Thus came the idea

of experimenting with turning off Congestion Control in TCP and performing an

evaluation of the same on high latency links. From the results, we can see that

NOCC can be advantageous to short term flows because it is not inhibited by the

start up phase problem faced by TCP with CC. This could prove very useful for

web transfers which are of short duration and which are traditionally dominated

by TCP’s slow start phase. This can be deployed on the high performance DOE-

NGI networks to have maximum utilization of the available bandwidth.

Also, as we saw, TCP can react adversely to even a single bit error loss. It

goes into the Congestion Avoidance phase and causes a reduction in throughput

under the surmise that all losses are caused by congestion. This can be detrimen-

tal in high BDP links. We saw that NOCC deals with this also in a better fashion.

Though affected by congestion, it doesn’t halve its sending rate and cause a reduc-

tion in the performance. It gives a better performance than TCP for random losses

incurred.

The results obtained from this research can be summarized as follows:

� Throughputs obtained from NOCC are better than TCP with CC for short

duration flows. The improvement in performance is because of a lack of a

start up phase or building up phase in NOCC.

� NOCC also gives good response times in web flows when compared with

TCP with CC.

� When traffic sources are competing for the same link, throughput drops dra-
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matically because TCP retransmissions occur. This is worse in high BDP en-

vironments as expected, because of the longer time needed to recover from

losses. NOCC is more aggressive than CC and so succeeds in achieving better

performance.

� In flows where a ”small” congestion event could simulate the occurrence of

a single bit error, we could see TCP with CC going into Congestion Avoid-

ance and having reduced performance. On the other hand we saw NOCC

handling single bit error losses with ease and performing much better than

CC in this scenario.

� In short duration flows, the bandwidth utilization is high because the num-

ber of packets in flight is more in NOCC.

� NOCC gives very good performance benefits on HTTP 1.0 over CC. In the

case of P-HTTP also, NOCC performs better and so validates our solution for

short term flows.

� NOCC is better suited for high latency, high bandwidth links. It should be

deployed with care on low bandwidth links because it can basically lead to a

congestion situation.

� NOCC has been comprehensively tested on a WAN and it has been tested

with a real world application like the Apache Web Server. We have seen that

it gives good response time improvements in Apache. The user perceived

latency can be considerably reduced by deploying NOCC.

5.3 Future Work

One possible extension to this would be to disable just the slow start phase of TCP

and let TCP still do the Congestion Avoidance phase because that would help us
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to have NOCC in a low bandwidth environment too by setting the initial win-

dow size to something bigger than what TCP sets it to. When Congestion occurs,

Congestion Avoidance could take over and hence prevent NOCC from leading to

Congestion collapse. This could prove useful because, if we want to get over the

slow start phase of TCP but still want TCP’s congestion control algorithms to take

over when a congestion event occurs, this would help us do just that.
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Appendix A

Appendix

A.1 tcpdump Output showing TCP with CC

PF = Number of Packets in Flight

CWND = Congestion Window

16:59:56.681503 iss-p4.lbl.gov omega.cairn.net: 811846348:811846348(0) win

32767 1460,sackOK,timestamp

16:59:56.681503 omega.cairn.net iss-p4.lbl.gov: 1258749515:1258749515(0)

ack 811846349 32767

16:59:56.748885 iss-p4.lbl.gov omega.cairn.net: 1:1(0) ack 1 65431

16:59:56.748885 omega.cairn.net iss-p4.lbl.gov: 1:1449(1448)

16:59:56.748885 omega.cairn.net iss-p4.lbl.gov: 1449:2897(1448)

16:59:56.817245 iss-p4.lbl.gov omega.cairn.net: 1:1(0) ack 1449 65431

PF=1, CWND=3

16:59:56.817245 omega.cairn.net iss-p4.lbl.gov: 2897:4345(1448)

16:59:56.817245 omega.cairn.net iss-p4.lbl.gov: 4345:5793(1448)

16:59:56.825057 iss-p4.lbl.gov omega.cairn.net: 1:1(0) ack 2897 65522

PF=2, CWND=4
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16:59:56.825057 omega.cairn.net iss-p4.lbl.gov: 5793:7241(1448)

16:59:56.825057 omega.cairn.net iss-p4.lbl.gov: 7241:8689(1448)

16:59:56.884628 iss-p4.lbl.gov omega.cairn.net: 1:1(0) ack 5793 65431

PF=2, CWND=5

16:59:56.884628 omega.cairn.net iss-p4.lbl.gov: 8689:10137(1448)

16:59:56.884628 omega.cairn.net iss-p4.lbl.gov: 10137:11585(1448)

16:59:56.884628 omega.cairn.net iss-p4.lbl.gov: 11585:13033(1448)

16:59:56.892440 iss-p4.lbl.gov omega.cairn.net: 1:1(0) ack 8689 65431

PF=3, CWND=6

16:59:56.892440 omega.cairn.net iss-p4.lbl.gov: 13033:14481(1448)

16:59:56.892440 omega.cairn.net iss-p4.lbl.gov: 14481:15929(1448)

16:59:56.892440 omega.cairn.net iss-p4.lbl.gov: 15929:17377(1448)

16:59:56.952010 iss-p4.lbl.gov omega.cairn.net: 1:1(0) ack 11585 65431

PF=4, CWND=7

16:59:56.952010 omega.cairn.net iss-p4.lbl.gov: 17377:18825(1448)

16:59:56.952010 omega.cairn.net iss-p4.lbl.gov: 18825:20273(1448)

16:59:56.952010 omega.cairn.net iss-p4.lbl.gov: 20273:21721(1448)

16:59:56.959823 iss-p4.lbl.gov omega.cairn.net: 1:1(0) ack 14481 65431

PF=5, CWND=8

16:59:56.959823 omega.cairn.net iss-p4.lbl.gov: 21721:23169(1448)

16:59:56.959823 omega.cairn.net iss-p4.lbl.gov: 23169:24617(1448)

16:59:56.959823 omega.cairn.net iss-p4.lbl.gov: 24617:26065(1448)

16:59:56.959823 iss-p4.lbl.gov omega.cairn.net: 1:1(0) ack 17377 65341

PF=6, CWND=9

16:59:56.959823 omega.cairn.net iss-p4.lbl.gov: 26065:27513(1448)

16:59:56.959823 omega.cairn.net iss-p4.lbl.gov: 27513:28961(1448)

16:59:56.959823 omega.cairn.net iss-p4.lbl.gov: 28961:30409(1448)

16:59:57.020370 iss-p4.lbl.gov omega.cairn.net: 1:1(0) ack 20273 65431
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PF=7, CWND=10

16:59:57.020370 omega.cairn.net iss-p4.lbl.gov: 30409:31857(1448)

16:59:57.020370 omega.cairn.net iss-p4.lbl.gov: 31857:33305(1448)

16:59:57.020370 omega.cairn.net iss-p4.lbl.gov: 33305:34753(1448)

16:59:57.027206 iss-p4.lbl.gov omega.cairn.net: 1:1(0) ack 23169 65431

PF=8, CWND=11

16:59:57.027206 omega.cairn.net iss-p4.lbl.gov: 34753:36201(1448)

16:59:57.027206 omega.cairn.net iss-p4.lbl.gov: 36201:37649(1448)

16:59:57.027206 omega.cairn.net iss-p4.lbl.gov: 37649:39097(1448)

16:59:57.027206 iss-p4.lbl.gov omega.cairn.net: 1:1(0) ack 26065 65341

PF=9, CWND=12

16:59:57.027206 omega.cairn.net iss-p4.lbl.gov: 39097:40545(1448)

16:59:57.027206 omega.cairn.net iss-p4.lbl.gov: 40545:41993(1448)

16:59:57.027206 omega.cairn.net iss-p4.lbl.gov: 41993:43441(1448)

A.2 tcptrace Output for TCP with CC

The trace is for the test with burst size=128KB, BP=5ms and duration=2s. The

initial window is 2 pkts in CC case

Ostermann’s tcptrace -- version 5.2.1 -- Wed Sep 15, 1999

49011 packets seen, 49011 TCP packets traced

elapsed wallclock time: 0:00:00.818008, 59915 pkts/sec analyzed

trace file elapsed time: 0:00:14.297852

TCP connection info:

1 TCP connection traced:

*** 31 packets were too short to process at some point
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(use -w option to show details) 10

TCP connection 1:

host a: iss-p4.lbl.gov:42015

host b: omega.cairn.net:42015

complete conn: yes

first packet: Fri May 19 13:00:47.338729 2000

last packet: Fri May 19 13:01:01.636581 2000

elapsed time: 0:00:14.297852

total packets: 49011

filename: . ./. ./. ./tcpdump_bin/cc/burst/iss_128K_5ms_2s_1

a->b: b->a: 20

total packets: 16377 total packets: 32634

ack pkts sent: 16376 ack pkts sent: 32634

pure acks sent: 16375 pure acks sent: 1

unique bytes sent: 0 unique bytes sent: 46779831

actual data pkts: 0 actual data pkts: 32631

actual data bytes: 0 actual data bytes: 47248984

rexmt data pkts: 0 rexmt data pkts: 325

rexmt data bytes: 0 rexmt data bytes: 469153

outoforder pkts: 0 outoforder pkts: 112

pushed data pkts: 0 pushed data pkts: 21650 30

SYN/FIN pkts sent: 1/1 SYN/FIN pkts sent: 1/1

req 1323 ws/ts: Y/Y req 1323 ws/ts: Y/Y

adv wind scale: 4 adv wind scale: 4

req sack: Y req sack: Y

sacks sent: 0 sacks sent: 0

mss requested: 1460 bytes mss requested: 1460 bytes

max segm size: 0 bytes max segm size: 1448 bytes

min segm size: 0 bytes min segm size: 744 bytes

avg segm size: 0 bytes avg segm size: 1447 bytes

max win adv: 1048352 bytes max win adv: 1048352 bytes 40

min win adv: 32767 bytes min win adv: 32767 bytes

zero win adv: 0 times zero win adv: 0 times

avg win adv: 1029639 bytes avg win adv: 1048320 bytes
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max cwin: 0 bytes max cwin: 1045456 bytes

min cwin: 0 bytes min cwin: 1448 bytes

avg cwin: 0 bytes avg cwin: 503370 bytes

initial window: 0 bytes initial window: 2896 bytes

initial window: 0 pkts INITIAL WINDOW: 2 pkts

ttl stream length: 0 bytes ttl stream length: 51328000 bytes

missed data: 0 bytes missed data: 4548169 bytes 50

truncated data: 0 bytes truncated data: 44703766 bytes

truncated packets: 0 pkts truncated packets: 32631 pkts

data xmit time: 0.000 secs data xmit time: 9.229 secs

idletime max: 2911.1 ms idletime max: 2924.8 ms

throughput: 0 Bps throughput: 3271808 Bps

RTT samples: 2 RTT samples: 14223

RTT min: 0.0 ms RTT min: 66.4 ms

RTT max: 0.0 ms RTT max: 89.8 ms

RTT avg: 0.0 ms RTT avg: 68.4 ms 60

RTT stdev: 0.0 ms RTT stdev: 1.4 ms

post-loss acks: 0 post-loss acks: 525

A.3 tcpdump Output showing TCP with NOCC

The dump output shows that NOCC does not wait for an ACK to arrive from the

receiver and pumps packets out without being inhibited by the CWND.

17:03:53.044784 iss-p4.lbl.gov omega.cairn.net: 1072731545:1072731545(0)

win 32767 1460,sackOK,timestamp

17:03:53.044784 omega.cairn.net iss-p4.lbl.gov: 1504904118:1504904118(0)

ack 1072731546 32767

17:03:53.112167 iss-p4.lbl.gov omega.cairn.net: 1:1(0) ack 1 65431

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 1:1449(1448) ack 1 65522

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 1449:2897(1448)
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17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 2897:4345(1448)

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 4345:5793(1448)

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 5793:7241(1448)

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 7241:8689(1448)

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 8689:10137(1448)

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 10137:11585(1448)

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 11585:13033(1448)

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 13033:14481(1448)

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 14481:15929(1448)

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 15929:17377(1448)

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 17377:18825(1448)

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 18825:20273(1448)

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 20273:21721(1448)

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 21721:23169(1448)

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 23169:24617(1448)

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 24617:26065(1448)

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 26065:27513(1448)

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 27513:28961(1448)

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 28961:30409(1448)

17:03:53.112167 omega.cairn.net iss-p4.lbl.gov: 30409:31857(1448)

17:03:53.113143 omega.cairn.net iss-p4.lbl.gov: 31857:33305(1448)

17:03:53.113143 omega.cairn.net iss-p4.lbl.gov: 33305:34753(1448)

17:03:53.113143 omega.cairn.net iss-p4.lbl.gov: 34753:36201(1448)

17:03:53.113143 omega.cairn.net iss-p4.lbl.gov: 36201:37649(1448)

17:03:53.113143 omega.cairn.net iss-p4.lbl.gov: 37649:39097(1448)

17:03:53.113143 omega.cairn.net iss-p4.lbl.gov: 39097:40545(1448)

17:03:53.113143 omega.cairn.net iss-p4.lbl.gov: 40545:41993(1448)

17:03:53.113143 omega.cairn.net iss-p4.lbl.gov: 41993:43441(1448)
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A.4 tcptrace Output for TCP with NOCC

The trace is for the test with burst size=128KB, BP=5ms and duration=2s. The

initial window is 327 pkts in NOCC case

Ostermann’s tcptrace -- version 5.2.1 -- Wed Sep 15, 1999

40662 packets seen, 40662 TCP packets traced

elapsed wallclock time: 0:00:01.216116, 33435 pkts/sec analyzed

trace file elapsed time: 0:00:08.983399

TCP connection info:

1 TCP connection traced:

TCP connection 1:

host a: iss-p4.lbl.gov:42015 10

host b: omega.cairn.net:42015

complete conn: yes

first packet: Fri May 19 12:59:23.706893 2000

last packet: Fri May 19 12:59:32.690292 2000

elapsed time: 0:00:08.983399

total packets: 40662

filename: . ./. ./. ./tcpdump_bin/nocc/burst/iss_128K_5ms_2s_1

a->b: b->a:

total packets: 13328 total packets: 27334

ack pkts sent: 13327 ack pkts sent: 27334 20

pure acks sent: 13326 pure acks sent: 1

unique bytes sent: 0 unique bytes sent: 39574320

actual data pkts: 0 actual data pkts: 27331

actual data bytes: 0 actual data bytes: 39574320

rexmt data pkts: 0 rexmt data pkts: 0

rexmt data bytes: 0 rexmt data bytes: 0

outoforder pkts: 0 outoforder pkts: 0
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pushed data pkts: 0 pushed data pkts: 488

SYN/FIN pkts sent: 1/1 SYN/FIN pkts sent: 1/1

req 1323 ws/ts: Y/Y req 1323 ws/ts: Y/Y 30

adv wind scale: 4 adv wind scale: 4

req sack: Y req sack: Y

sacks sent: 0 sacks sent: 0

mss requested: 1460 bytes mss requested: 1460 bytes

max segm size: 0 bytes max segm size: 1448 bytes

min segm size: 0 bytes min segm size: 480 bytes

avg segm size: 0 bytes avg segm size: 1447 bytes

max win adv: 1048352 bytes max win adv: 1048352 bytes

min win adv: 32767 bytes min win adv: 32767 bytes

zero win adv: 0 times zero win adv: 0 times 40

avg win adv: 1007124 bytes avg win adv: 1048314 bytes

max cwin: 0 bytes max cwin: 1045720 bytes

min cwin: 0 bytes min cwin: 480 bytes

avg cwin: 0 bytes avg cwin: 997157 bytes

initial window: 0 bytes initial window: 473496 bytes

initial window: 0 pkts INITIAL WINDOW: 327 pkts

ttl stream length: 0 bytes ttl stream length: 51328000 bytes

missed data: 0 bytes missed data: 11753680 bytes

truncated data: 0 bytes truncated data: 37442502 bytes

truncated packets: 0 pkts truncated packets: 27331 pkts 50

data xmit time: 0.000 secs data xmit time: 3.737 secs

idletime max: 3090.8 ms idletime max: 3103.5 ms

throughput: 0 Bps throughput: 4405272 Bps
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A.5 NetSpec Scripts

NetSpec full blast script

cluster {

test omega.cairn.net{

type = full (blocksize=32000, duration=10, stamps=50000);

protocol = tcp (window=1048576);

own = omega.cairn.net:42015;

peer = iss-p4.lbl.gov:42015;

}

test iss-p4.lbl.gov{

type = sink (blocksize=32000, duration=10, stamps=100000);

protocol = tcp (window=1048576);

own = iss-p4.lbl.gov:42015;

peer = omega.cairn.net:42015;

}

}
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NetSpec burst test script for NOCC

cluster {

test omega.cairn.net{

type = burst (blocksize=128000, period=10000, duration=10, stamps=50 0

protocol = tcp (window=1048576, nocc=1);

own = omega.cairn.net:42015;

peer = iss-p4.lbl.gov:42015;

}

test iss-p4.lbl.gov{

type = sink (blocksize=128000, duration=10, stamps=100000);

protocol = tcp (window=1048576);

own = iss-p4.lbl.gov:42015;

peer = omega.cairn.net:42015;

}

}
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NetSpec UDP script

cluster {

test dpss2.cairn.net{

type = burst (blocksize=32000, duration=3, repeats=50000, pe-

riod=3000000, stamps=50000);

protocol = udp;

own = dpss2.cairn.net:42060;

peer = dpsslx03.lbl.gov:42060;

}

test dpsslx03.lbl.gov:42030{

type = sink (blocksize=32000, duration=3, stamps=100000);

protocol = udp;

own = dpsslx03.lbl.gov:42060;

peer = dpss2.cairn.net:42060;

}

}
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