Application Level Congestion
Control Enhancements in High
BDP Networks

Anupama Sundaresan

Introduction

Motivation
Implementation
Experiments and Results
Conclusions

— to provide a monitoring infrastructure

— to provide the current network information to network-aware
applications

* Network-aware applications will be able to obtain information
about resource availability, in particular the network’s
capabilities and status

« Applications will make informed QoS decisions based on the
network monitoring information obtained from the database

e Once the application finds out the amount of network
resources it has, the work in this thesis will help the

e Transmission Control Protocol (TCP) uses a set of
Congestion Control algorithms to control the sending
behavior

— Slow Start algorithm - exponential increase in CWND from one

— Congestion Avoidance - when CWND > ssthresh (slow start
threshold) increase in CWND is linear (1/CWND for every ACK)

o With a retransmission timeout, slow start is triggered again

HTTP uses TCP as the transport protocol

TCP’s slow start phase predominates web flows which are
of short duration

HTTP 1.0 - A new connection is opened for each request

— connection establishment latency and slow start reduces
performance

P-HTTP - Multiple requests are pipelined on a persistent
connection

— connection latency for each request is overcome

16 bits of advertised window in TCP header
RcvBufSize

— Throughtpute-===2="— overcome by window scaling extensions

Startup behavior - Slow Start phase at the beginning of a
connection

Slow start time more than 1second on high latency links

Short duration flows predominated by slow start and hence
poor bandwidth utilization

Occurrence of a ‘minor’ congestion event triggers congestion
avoidance or slow start which in turn leads to inefficient
utilization of bandwidth

duration flows on high Iatency links

Giving control to the application on the amount of bytes it
writes on the network

Due to the pitfalls of TCP on high bandwidth and high
latency links, idea of experimenting with turning off
congestion control(NOCC) in TCP came up

NOCC is not limited by the CWND maintained by the TCP
sender and sends up to the receiver’s advertised window

Pacmg |n the appllcatlon along Wlth NOCC glves the

Standard TCP implementation, sender sends a packet on the
network if #pkts_in_ flight <Min(Receiver _adv_wnd,CWND)

In TCP with NOCC, application turns off congestion control
through a setsockopt with TCP_NO_CONGESTION as a
parameter, so sender sends a packet If #pkts_in_ flight <Receiver _adv_wnd

The setsockopt sets a flag nocc based on which modifications
were made to the sending engine and retransmit engine of TCP
on Linux 2.2.13

A setsockopt to set the CWND to the initial value specified by
the application with parameter TCP_SET CWND

Information in /proc/net/tcp
e Pacing was implemented in Apache 1.3.12

Burst Size in Bytes Burst Size in Bytes

r'ifiurst Period =‘i== Burst Period 4T—Burst Pertod ——»
» Pacing parameters (burst size and burst period) are
specified in httpd.conf

Apache was modified to handle modified HTTP Get

Experiments and Results

omega.cairn.net

m40.cairn.net

208.44.137.54

>
_ i
g
33,0012 E
m
o
—0
|
N

dpssIx03.Ibl.gov

TCP Transmitter

omega.cairn.net with Linux-2.2.13 with NOCC

TCP Receiver iss-p4.1bl.gov
Round Trip Time ~67ms
Link Bandwidth 622Mbps

Web Server

Apache 1.3.12 on omega.cairn.net

* NetSpec, a traffic generation tool was used to generate Full
and Burst traffic

e Apache for Linux was the web server used

* Web Server benchmarking tool Zeus was used to issue
modified HTTP Get requests

NetSpec <

Startup Behavior

Congestion Recovery Behavior
Behavior for different flow durations HTTP1.0

utstanding Bytes

— The number of packets in flight forms a direct measure of the
Congestion Window

Received Throughput

Num _bytes rcvd
dur _of _transfer

~— Received _Throughput =

Offered Load

1second

— Offered _Load =Burst_Size*8* Mbps
Response Time

— This is the duration the client which, sends a HTTP Get request to
the Web Server spends waiting before it can produce the requested

Burst _ Period

Outstanding bytes

1000000

00000

600000

400000

200000

CWHD vsTime in TCP with CC

X i;llV

= Instantaneous CWHD
— fAverage CWHD

1.0s

Time

Qutstanding bytes CWHD vs Time in TCP with MOCC

1uuunuu1 j ’ %DMWW

600000
400000
200000
—e Instantaneous CWHD
— Average CWHND
a00ms 1s 1.5s8 Time

 Number of outstanding bytes on the network increases to

Burst Size = 128KB

Comparzon of thiowghpuls with GG and NOGE or Application Wiilas [MNeiSpec)

: R = | Burst Period = 10ms

| » NOCC transmits bursts
- without failed cycles
T + CCis limited by the CWND
A | => drop in transmitted

o | throughput

Iy o |« Throughput rises as CWND

i] 10 12
Tima in Seconds

Throughpu in Mbp=

140

120

100

o
="}

oh
[=")
T

B
L=}
T

£Q

Compareon of throughpuls wilh G2 and NACGS or Applicalion Reads (NealSpach

\

0.5 1 1.5 i 25

Tima in Seconds

Burst Size = 128KB
Burst Period = 10ms

CC shows a prominent
startup phase

NOCC shows steady
behavior throughout the
duration of the flow

=200

B
=1

-
th
=]

Received Throughpul in Mops

th
L]

Ofared Load v= Recaived Throughpul for EF=10m=and 2= duralion

lelal s

._O "

ldaal
O oo

- pooo

100 160
Jfared Load in Mo

Burst Size=8KB,16KB,...256KB
Burst Period = 10ms

Duration = 2s

e NOCC performs significantly
better than CC

o In CC, flow is mostly in slow
start => under utilization of
available resources

Burst Size=8KB,16KB,...256KB

Otared Load ve Raceived Throughpul for EP=10msand 10s dualion

g

=

Burst Period = 10ms
Duration = 10s

As offered load Increases,
NOCC performs better than

g

Received Throughpul in Mops
&

CC is limited by CWND

20 100 1m0 200 200 300 3|0 400 460
Oftarad Load in Mope

Racaivad Thr-:nLgI'pu’s with 23 and WOZZ and a corrpeﬂlng U DF 1w [Nmspacj

180

160

140

Throughpui in Mops
o 5 F
o o [=]

o
Cil

B
=
T

20

! 1
1
|

%
‘l i

v

plule)

A minor congestion event
simulating a single bit
error was introduced

CC halves CWND and
goes into Congestion
Avoidance => halves
sending rate

NOCC is able to maintain

Outstanding Bytes in ‘CC halving at the onset of Congestion

L00C00D — CWHD al that Instant
— Avy CWHD

200000

2000 & 4000 & 6000 & 00 & Toifis i S I!PL":D i

20000

CWRID in NOCC with Congestion Bvent Magnified

u R

— CUWHD &t thak lnst-ant
- Ay CWTD

4000 &

5.000 & S000 =

Time in secongs A0 =

Comparson ol Received Throughpulswilh G5 and NOCS (elSpec) with Pariodic Congasiion
T T T T T T T I

IR .
yedism, i

UDP flow congests every 3
seconds

CC halves sending rate =>
effectively achieves very
little throughput

NOCC achieves significantly
better throughputs

Outstanding Bytes CWHD ws Time with TCP with CC and Competing UDP Stream

[liakiail

wng CWHD at Uhat Instant
— ﬁl! CWHD

00000

5000 = 0000 = Time in seconds

ng Bytes CWMD vs Time in TCP with NOCC with competing UDP Traffic

o CWHD al that Instant
— Awy CWHD

1000 2 10.000 & Time in seconds

Throughpul in Mops

Comparzon of Recaived Throughpute with S and NOCC compeling wilh each ofher [MNel Spec)
T T T T T T T I

r:l'..1|-1r'.rt
HIE r W
K

I
10

15

NOCC is aggressive due
to the lack of the CWND

parameter

CC flow is throttled and
performs very poorly

Throughpui in Kbyles=

Throughpu with 10 requesi=on 10 conneclionswilh diteram bursl szax EF=5m=

1200

1000

o
54

m
B

I
o]

=200

o
—— es !
o
!
%
.-"'ﬂ
_.f ____d-ﬂ“'#
o T
f ___-'"-;
&

a0 WMo 180 =200 2RO 300 A0 400 480
Cate Ralraval Sze=s in Kbyvles

File Size in KB=7,10,30,100,422
Burst Size = 32KB, 64KB, 128KB
Burst Period = 5ms

e NOCC does not wait for ACKSs
to increase CWND and so
performs significantly better

than CC
e The effectiveness of NOCC

o)
5 B

o
=]

B
2

Duralion ol TAm=lar in mili=econds
X L)
= B

)
=

e The duration of transfer
shows a significant reduction

Duation o Tanarior HTTF 1.0 conneclions BP=5m=

oo
A= =]

= | | In NOCC case

—a

@0 -

100 150 200 2H0 300 3m0 400 460
C=ia Relrieval Size= in Kbylas

File Size in KB=7,10,30,100,422
== Burst Size = 32KB, 64KB, 128KB

Thraughpul wilh 10 requesis o

npar=sisian conneclion with diterani bu

=k
—
=]
=]
[=]

ughpul in Kbyle

Thra

100 B0 200 280 300 |0 400 450
Cat Ralrieval Szes in Kbyles

Burst Period = 5ms

P-HTTP was developed to
overcome the connection
request latency

NOCC performs better than

e The duration of transfer of
NOCC is again seen to be
significantly better than
CC

Dualionol TAndar lor Paselan connacliions BP=6m=

A
(2]

ah
=]

P
8

o All requests senton a
single connection

Duralion of Tran=ler in mill=eeconds
- X
Ll =

100 160 =200 260 300 350 400 440
D=l Relrieval Szas in kbyles

e Reduction in throughput
;:;mr;parimn?rrhmulghpms?o:arludmc:al:inmlmmmlcﬂrga-lsnnn[ﬁ.pacm) in NOCC but performs

=
—&— oo L

| = i significantly better than
CC

o
=]

Throughpul in KBp=E
o
=

-h
(=]

100 160 =200 280 500 3R0 400 480
D=ia Ralrieval Sizex in Kilo Byle=

TCP’s congestion control algorithms were designed for
low bandwidth links prone to frequent congestion

Slow Start causes an incredible startup phase problem
which leads to poor utilization of the abundant bandwidth
In high bandwidth links

NOCC iIs advantageous to short term flows since it is not
Inhibited by the startup phase problem

TCP reacts to single bit error losses adversely (Satellite
links)

NOCC does not halve the sending rate => gives better

* In web flows NOCC gives considerable improvement in
user perceived latency

 NOCC performs significantly better than CC in both
HTTP 1.0 and P-HTTP cases

