
Application Level Congestion
Control Enhancements in High

BDP Networks

Anupama Sundaresan

Department of Electrical Engineering
and Computer Science

2

Organization

• Introduction
• Motivation
• Implementation
• Experiments and Results
• Conclusions

Department of Electrical Engineering
and Computer Science

3

• Developing a “Grid” service
– to provide a monitoring infrastructure
– to provide the current network information to network-aware

applications

• Network-aware applications will be able to obtain information
about resource availability, in particular the network’s
capabilities and status

• Applications will make informed QoS decisions based on the
network monitoring information obtained from the database

• Once the application finds out the amount of network
resources it has, the work in this thesis will help the
application in maximizing the performance with the available
resources

ENABLE Overview

Department of Electrical Engineering
and Computer Science

4

TCP Congestion Control
• Transmission Control Protocol (TCP) uses a set of

Congestion Control algorithms to control the sending
behavior
– Slow Start algorithm - exponential increase in CWND from one
– Congestion Avoidance - when CWND > ssthresh (slow start

threshold) increase in CWND is linear (1/CWND for every ACK)

• With a retransmission timeout, slow start is triggered again

Department of Electrical Engineering
and Computer Science

5

HTTP Overview
• HTTP uses TCP as the transport protocol
• TCP’s slow start phase predominates web flows which are

of short duration
• HTTP 1.0 - A new connection is opened for each request

– connection establishment latency and slow start reduces
performance

• P-HTTP - Multiple requests are pipelined on a persistent
connection
– connection latency for each request is overcome
– slow start on each request overcome

Department of Electrical Engineering
and Computer Science

6

Problems of TCP on high BDP links
• 16 bits of advertised window in TCP header

– overcome by window scaling extensions
• Startup behavior - Slow Start phase at the beginning of a

connection
• Slow start time more than 1second on high latency links
• Short duration flows predominated by slow start and hence

poor bandwidth utilization
• Occurrence of a ‘minor’ congestion event triggers congestion

avoidance or slow start which in turn leads to inefficient
utilization of bandwidth

RTT
RcvBufSizetThroughtpu =max

Department of Electrical Engineering
and Computer Science

7

Motivation and Solution
• Improving the performance of TCP flows especially short

duration flows on high latency links
• Giving control to the application on the amount of bytes it

writes on the network
• Due to the pitfalls of TCP on high bandwidth and high

latency links, idea of experimenting with turning off
congestion control(NOCC) in TCP came up

• NOCC is not limited by the CWND maintained by the TCP
sender and sends up to the receiver’s advertised window

• Pacing in the application along with NOCC gives the
application the control of how much of data it is sending
onto the network

Department of Electrical Engineering
and Computer Science

8

Implementation
• Standard TCP implementation, sender sends a packet on the

network if
• In TCP with NOCC, application turns off congestion control

through a setsockopt with TCP_NO_CONGESTION as a
parameter, so sender sends a packet if

• The setsockopt sets a flag nocc based on which modifications
were made to the sending engine and retransmit engine of TCP
on Linux 2.2.13

• A setsockopt to set the CWND to the initial value specified by
the application with parameter TCP_SET_CWND

• A setsockopt to capture the number of retransmissions occurring
on a connection with parameter TCP_TOTAL_REXMITS

)(CWNDwndadvceiverMinflightinpkts ,__Re__# <

wndadvceiverflightinpkts __Re__# <

Department of Electrical Engineering
and Computer Science

9

Implementation (contd.)
• The /proc interface was modified to display the retransmit

information in /proc/net/tcp
• Pacing was implemented in Apache 1.3.12

• Pacing parameters (burst size and burst period) are
specified in httpd.conf

• Apache was modified to handle modified HTTP Get
requests with burst size and burst period as parameters

Experiments and Results

Department of Electrical Engineering
and Computer Science

11

Experimental Setup

G
ig

 E
th

er
ne

t

G
ig

 E
th

er
ne

t

dpss2.cairn.net

omega.cairn.net

Qwest
OC-48

m40.cairn.net iss-p4.lbl.gov

dpsslx03.lbl.gov

208.44.137.54

208.44.137.33

OC-48 OC-48

OC-12

TCP Transmitter omega.cairn.net with Linux-2.2.13 with NOCC
TCP Receiver iss-p4.lbl.gov
Round Trip Time ~67ms
Link Bandwidth 622Mbps
Web Server Apache 1.3.12 on omega.cairn.net

Department of Electrical Engineering
and Computer Science

12

Tools Used and Test Scenarios
• NetSpec, a traffic generation tool was used to generate Full

and Burst traffic
• Apache for Linux was the web server used
• Web Server benchmarking tool Zeus was used to issue

modified HTTP Get requests
Startup Behavior

NetSpec
Congestion Recovery Behavior
Behavior for different flow durations HTTP1.0

Apache Behavior for different flow durations P-HTTP
Performance during Congestion

Department of Electrical Engineering
and Computer Science

13

Performance Metrics
• Outstanding Bytes

– The number of packets in flight forms a direct measure of the
Congestion Window

• Received Throughput
–

• Offered Load
–

• Response Time
– This is the duration the client which, sends a HTTP Get request to

the Web Server spends waiting before it can produce the requested
web page to the end user.

Mbps
transferofdur

rcvdbytesNumThroughputceived
__

___Re =

Mbps
PeriodBurst
ondSizeBurstLoadOffered

_
sec1*8*__ =

Department of Electrical Engineering
and Computer Science

14

NetSpec Results - Startup Phase
Slow Start phase in TCP with CC

• Detrimental for short duration flows as the CWND takes more
than a second to open out

Department of Electrical Engineering
and Computer Science

15

TCP with NOCC - Startup Behavior

• Number of outstanding bytes on the network increases to
the receiver’s advertised window as soon as the sender
starts sending

Department of Electrical Engineering
and Computer Science

16

Instantaneous Transmitted Throughputs

Burst Size = 128KB
Burst Period = 10ms

• NOCC transmits bursts
without failed cycles

• CC is limited by the CWND
=> drop in transmitted
throughput

• Throughput rises as CWND
increases

Department of Electrical Engineering
and Computer Science

17

Instantaneous Received Throughputs

Burst Size = 128KB
Burst Period = 10ms

• CC shows a prominent
startup phase

• NOCC shows steady
behavior throughout the
duration of the flow

Department of Electrical Engineering
and Computer Science

18

Received Throughputs for Short Duration flows

Burst Size=8KB,16KB,…256KB
Burst Period = 10ms

Duration = 2s
• NOCC performs significantly

better than CC
• In CC, flow is mostly in slow

start => under utilization of
available resources

Department of Electrical Engineering
and Computer Science

19

Received Throughputs for Long Duration flows

Burst Size=8KB,16KB,…256KB
Burst Period = 10ms

Duration = 10s

• As offered load increases,
NOCC performs better than
CC

• CC is limited by CWND

Department of Electrical Engineering
and Computer Science

20

NetSpec Results - Congestion Recovery
CC and NOCC flows with ‘minor’ Congestion Event

• A minor congestion event
simulating a single bit
error was introduced

• CC halves CWND and
goes into Congestion
Avoidance => halves
sending rate

• NOCC is able to maintain
the throughput at the same
level

Department of Electrical Engineering
and Computer Science

21

CWND in CC flow in Congestion

• tcptrace plot with tcpdump output showing CWND
halving and Congestion Avoidance taking over

Department of Electrical Engineering
and Computer Science

22

CWND in NOCC flow in Congestion

• A congestion event affects a NOCC flow but the CWND is
not halved and the sender sends up to the receiver’s
advertised window at any instant

Department of Electrical Engineering
and Computer Science

23

CC and NOCC with periodic congestion

• UDP flow congests every 3
seconds

• CC halves sending rate =>
effectively achieves very
little throughput

• NOCC achieves significantly
better throughputs

Department of Electrical Engineering
and Computer Science

24

CC flow with periodic congestion

• CWND halves at every congestion event => average
number of packets in flight decreases

Department of Electrical Engineering
and Computer Science

25

NOCC flow with periodic congestion

• NOCC has a constant number of packets in flight

Department of Electrical Engineering
and Computer Science

26

CC and NOCC flows

• NOCC is aggressive due
to the lack of the CWND
parameter

• CC flow is throttled and
performs very poorly

Department of Electrical Engineering
and Computer Science

27

Apache Tests

Burst tests with multiple connections HTTP1.0

File Size in KB=7,10,30,100,422
Burst Size = 32KB, 64KB, 128KB

Burst Period = 5ms
• NOCC does not wait for ACKs

to increase CWND and so
performs significantly better
than CC

• The effectiveness of NOCC
for short term flows is seen
here

Department of Electrical Engineering
and Computer Science

28

Burst Tests with HTTP 1.0 (contd…)

• The duration of transfer
shows a significant reduction
in NOCC case

Department of Electrical Engineering
and Computer Science

29

Burst Tests with Persistent HTTP

File Size in KB=7,10,30,100,422
Burst Size = 32KB, 64KB, 128KB

Burst Period = 5ms

• P-HTTP was developed to
overcome the connection
request latency

• NOCC performs better than
CC

Department of Electrical Engineering
and Computer Science

30

Burst Tests with P-HTTP (contd.)

• The duration of transfer of
NOCC is again seen to be
significantly better than
CC

• All requests sent on a
single connection

Department of Electrical Engineering
and Computer Science

31

CC and NOCC with Congestion

• Reduction in throughput
in NOCC but performs
significantly better than
CC

Department of Electrical Engineering
and Computer Science

32

Conclusions
• TCP’s congestion control algorithms were designed for

low bandwidth links prone to frequent congestion
• Slow Start causes an incredible startup phase problem

which leads to poor utilization of the abundant bandwidth
in high bandwidth links

• NOCC is advantageous to short term flows since it is not
inhibited by the startup phase problem

• TCP reacts to single bit error losses adversely (Satellite
links)

• NOCC does not halve the sending rate => gives better
performance for random losses

Department of Electrical Engineering
and Computer Science

33

Conclusions (contd…)

• In web flows NOCC gives considerable improvement in
user perceived latency

• NOCC performs significantly better than CC in both
HTTP 1.0 and P-HTTP cases

Department of Electrical Engineering
and Computer Science

34

