The University of Kansas ya

: Information and
Telecommunication
Technology Center

Technical Report

Implementation of a Scalable Agent-Based Network
Measurement Infrastructure to Improve the
Performance of Distributed Application

Yulia Wijata
Douglas Niehaus

ITTC-FY99-TR-12161-03
Feburary 1999

Project Sponsor:
Information Technology Office
of the
Defense Advanced Research Projects Agency

Copyright @ 1999:
The University of Kansas Center for Research, Inc.
2291 Irving Hill Road, Lawrence, KS 66045-2969

All rights reserved.

Abstract

The rapid growth of computer networks has made the process of understanding the
interaction among network components more challenging than ever. The increase in
the size of the network is accompanied by more demanding use of the network by dis-
tributed applications that critically rely on the network to function well. Consequently,
monitoring the health and stability of the network has become crucial. Numerous ef-
forts have been devoted to measure the performance of the network for the purpose
of network management or performance evaluation through creation of measurement
tools or network probes. However, there is not yet a standardized "measurement in-
frastructure” which offers the systematic control and management of measurement
efforts and performance data. The Internet is a classic example of an under-measured
and under-instrumented network. This work addresses the issues related to creating a
scalable and extensible network measurement infrastructure. These include an exten-
sion to NetSpec to support continuous network monitoring and the implementation
of an agent-based monitoring system. In particular, the measurement infrastructure
will be used to capture the network state to improve the performance of a distributed
application.

Contents

1 Introduction

2 Related Work

2.1 Network Measurement and MonitoringTools

2.1.1 BasicToolTaxonomy

2.1.2 Integrated Monitoring System

2.1.2.1
2.1.2.2
2.1.2.3
2.1.2.4

Objective Driven Monitoring
Network Analysis Infrastructure (NAI)
National Internet Measurement Infrastructure (NIMI) .

Windmill: Extensible Passive Measurement Tools

2.2 Other Efforts to Capture the State of the Network

2.2.1 Tuning the Performance of Distributed Applications

2.2.2 Network Aware Applications

2.3 Summary . . .

3 Using NetSpec as a Monitoring Tool

3.1 NetSpec Design and Architecture

3.1.1 Motivation e e

3.1.2 NetSpecComponents

3.1.3 NetSpec Daemon Structure and Protocols

3.1.3.1
3.1.3.2

RCIPhandler.
DCLparsert

3.2 Extending NetSpec to Allow Continuous Monitoring

321 DesignCriteria
3.2.2 Modified Architecture 0 L
3.23 Modificationto DCLProtocol
3.24 Modification to the Daemon Framework
3241 RCIPHandler
3242 ACaseforUDP
3243 ReportPDU 0.
3244 ReportAPI oL,
3.2.5 Standalone Reporter Structure

33 Summary e e e e e

Monitoring Daemons Implementation
41 SNMPDaemon,

4.1.1 Simple Network Management Protocol

4.1.2 SNMP Daemon Architecture
413 SNMP Daemon Parameters
42 DataStreamDaemon
4.2.1 Data Stream Kernel Interface (DSKI)
4.2.2 DSKI Daemon Architecture
4.2.3 Data Stream Daemon Parameters.
4.3 Characteristic Experiments.

4.3.1 Monitoring ATM Switch Cell Rate with SNMP Daemon
4.3.2 Studying the TCP Congestion Mechanism with DSKI Daemon . .
44 SUMMATY o e e e e e e

Network Monitoring Efforts in MAGIC-II

5.1 Motivationand Background L oo oo
5.1.1 Application in the MAGIC-II Testbed
5.1.2 Objectives

5.2 Design Criteria for Monitoring System

5.3 Implementation Approach

ii

54 Functional Overview 53
5.5 Implementationof NSAgent 54
5.5.1 NSAgent Architecture L oL 55

5.5.2 Knowledge Representation 56
5521 Resources 57

5522 Database L .. 59

5.5.3 Domain Oriented Monitoring 59

5.5.4 Examples of Domain Implementation 60
554.1 DPSSDomain 60

55.4.2 An ATM Wide Area Network Monitor Domain 61

5.6 VisAgentImplementation 62
561 GenMapPackage L. 63

5.6.2 VisualizationLayers 63

5.6.3 Visual ElementMapping 64

5.7 Example Configuration in MAGIC-II Testbed 66
5.7.1 NSAgent Configuration 67
5.7.1.1 Monitoring Link Quality between DPSS Client and Servers 67

5.7.1.2 Monitoring Connectivity in the Network 69

5.7.1.3 Monitoring Transfer Capacity of the Network 69

5.7.1.4 Monitoring Network Elements Status 69

5.7.1.5 Adapting to Domain Oriented Monitoring 70

5.7.2 VisAgent Configuration 70

58 Summary 73
6 Conclusions and Future Work 78
6.1 FutureWork 79
A KQML Messages Implemented by NSAgent 81
A.1 RegisteringaNew DPSSClient 81
A.2 Unregisteringa DPSSClient 81
A.3 Getting Performance Measurement Resultonalink 82

iii

A4 Getting the Names of Configured DPSS 82
A5 Getting the Names of Known DPSSClients 82
A.6 Getting Detail Information on all Registered DPSS Clients 83
A.7T Getting Information about Active NetSpec Experiments 83
A.8 Getting the Status of Network Monitors 84
A9 RegisteringaVisAgent L L o L. 84
A.10 Unregisteringa VisAgent 84
A.11 Creatinga Network Monitor. 85
A.12 Deletinga NetworkMonitor 85
A.13 Terminating NSAgent 85
A.14 Notification about a New NetSpec Experiment 86
A.15 Notification about the Termination of an Experiment 86
B KQML Messages Implemented by VisAgent 87
B.1 Addinga New DPSSClienttothe View 87
B.2 Removing a DPSS Client fromthe View 87
B.3 Adding Monitoring Agentstothe View 88
B.4 Adding a New NetSpec Experiment to the View 88
B.5 Removing an Existing NetSpec experiment from the View 88
B.6 KQML Messages Sent to ServerMonitor 88
B.6.1 Getting Information abouta DPSSMaster 88
B.6.2 Getting Information aboutaDPSSHost 89

C Mapping Configuration File 90

iv

List of Tables

3.1 RCIP commands and Execution Phases ofa Daemon. 15
4.1 SNMP daemon parameters 36
5.1 Network Monitors 0 e, 58
5.2 Visual Element Mapping Attributes 65

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

41
4.2
4.3
4.4
4.5
4.6
4.7
48
4.9
4.10

4.11

NetSpec High-Level Architecture 13
RCIP Handler Lexer State Machine 17
Distribution of Control Protocol 18
Different Types of Execution Constructs 19
Modified Architecture with Inclusion of Report Channel 21
Modification to the DCL Protocol 24
Modification to the RCIP Handler State Machine 25
Report PDUformat 25
Reporter Algorithm in Decoding ReportPDU 30
SNMP Architecture 33
TheSystemgroup 34
NetSpec SNMP Daemon Architecture 35
DSKI Architecture 38
NetSpec DSKI Daemon Architecture 39
SNMP Experiment Set-up: Monitoring Cell Rates at ATM Switches . . . 41
Cell Rates on the VCs at Two Switches Belonging to the same connection. 42
Instrumented TCP/IPStack 43
DSKI ExperimentSet-up 44
Evolution of Congestion Window and Sequence Number. 1 every 500

packets is dropped by the network interface. 45
Evolution of Congestion Window and Sequence Number. 5 consecutive

packets out of 500 packets are dropped by the network interface. 46

vi

51 The MAGIC-IINetwork 50

52 JATLitelayers e 52
5.3 Functional Overview of Monitoring System 54
5.4 NSAgent Architecture and External Components. 55
5.5 Network Monitoring Process 57
5.6 Demonstration Configuration 66
5.7 Variation in throughput and round trip time between a DPSS client and
SEIVEIS . . v it i i e e e 68
5.8 Screenshot of VisAgent at the ApplicationLayer 7?2
5.9 Screenshot of VisAgent at the Network Topology Sublayer 74
5.10 Screenshot of VisAgent at the Network Connectivity Sublayer 75
5.11 Screenshot of VisAgentatthe AgentLayer 76

vii

List of Programs

3.1 Generic NetSpec Daemon’s Skeleton 16
3.2 Maoadifiedblocksyntax 22
3.3 Modified DCL lexical analyzer 23
3.4 Objectdatastructures. 27
3.5 ReportAPI 28
3.6 ReportAPI 29
4.1 Script format to collect event trace and example 40
5.1 Pseudo-code for the Act() method in NSAgentAction 56

viii

Chapter 1

Introduction

Today’s computer networks are experiencing massive growth in terms of quantity,
quality and complexity of services offered. The components of the network are dis-
tributed by nature and typically comprise many different devices from different ven-
dors, many operating systems, multiple distributed file systems and span many ad-
ministrative domains. This distributed environment makes it harder than ever to man-
age the network and understand the interaction between components in the network.
Researchers have spent considerable effort to analyze and assess the performance
of today’s computer networks. In the early stages, analytical modeling and simulation
are used to study the feasibility and evaluate the performance of various network ar-
chitectures. However, simulation and analysis alone cannot capture every important
aspect of a complex network. This calls for real-time testing and monitoring of opera-
tional networks. Doing so allows the capture of the state and many characteristics of
the network for further study. Knowledge of the state of the network is important in

several aspects:

o Performance assessment — Understand the current level of utilization of the net-

work and service level expectation.
e Problem solving - Detection of bottlenecks, over/under-utilized resources.

e Design and planning - Understand the performance trends and traffic characteris-

tics.

e Network-aware Application - Allow an application to adjust its use of network ser-

vices in response to changes in network state.

Numerous efforts have been devoted to monitor and probe the network for the
purpose of network management or performance evaluation. Many measurement
techniques and tools are widely available and used. However, they are typically dis-
joint from each other and do not allow simultaneous and thorough investigation of
the whole system. Attempting to do so usually results in an ad hoc solution which is
not scalable and extensible. There is yet a need for an integrated framework for net-
work testing, evaluation and monitoring which collects measurement data from vari-
ous places and layers throughout the network.

NetSpec [29] aims to provide the generic solution for network testing in one inte-
grated tool. Its control structure allows scalable, flexible and extensible measurements
and testing to be carried out. However, the current framework lacks the capability of
continuous monitoring and thus, limits the responsiveness of the tool to capture the
network state for real-time execution and analysis. NetSpec’s batch execution of test
and measurement only produces report summaries at the end of the test. Introducing
the ability to gather performance data during the testing will expand the types of data
that we can collect and allow more detailed analysis by looking at the interesting events
from various layers during the test.

This thesis will discuss the modification made to the NetSpec's control structure
and daemon framework to allow continuous data collection. We will also identify and
implement some examples of measurements and analysis which are now possible with
the new framework. A measurement daemon based on the Simple Network Manage-
ment Protocol (SNMP) can be used to continuously monitor network devices. Another
measurement daemon collects data from the operating system kernel for detail analy-
sis of the subsystems in the operating system.

Capturing network state, however, goes beyond carrying out network measure-
ment and collecting the data. It requires specific knowledge about the network el-
ements and topology and systematic placement and control of probes at interesting

places throughout the network and end hosts. The raw data need to be filtered, corre-

lated, organized for storage and finally processed to provide meaningful analysis. In
order to do all this, we need a set of tools to automate the process of controlling net-
work testing and measurement, collection and storage of performance data, and finally
correlation and presentation of performance data.

To demonstrate the capture of network state, we will describe a monitoring system
developed in the MAGIC-II [31] testbed. It consists of a set of monitoring agents which
control NetSpec experiments and process the data collection. The information about
the state of the network captured by the monitoring system is used to improve the per-
formance of a distributed image storage system by allowing dynamic server selection
where a client can dynamically select the server that can deliver the best performance.

The next chapter discusses related work in the areas of network testing and mon-
itoring systems. Chapter 3 discusses the extensions made to NetSpec to allow con-
tinuous monitoring. Chapter 4 provides some examples of measurement daemons
developed under the new framework. Chapter 5 describes the monitoring system to
demonstrate the capture of network state. Finally, Chapter 6 presents our conclusion

and discusses future work.

Chapter 2

Related Work

A considerable amount of work has been done in the area of network monitoring in
general. Various types of monitoring tools and measurement methodologies have been
developed in a quest to gain more information about the networks and eventually un-
derstand the complex behavior of the computer networks. Most of these monitoring
efforts are targeted toward the assessment of performance or resource utilization and
for detecting problem areas or misconfiguration in the network. More recent efforts
show interest in providing the knowledge about the network to the distributed appli-
cations in order to achieve adaptation or dynamic reconfiguration.

No matter what the objectives are, the task of monitoring a large computer network
is difficult, especially with the recent emergence of high speed wide area networks
and distributed applications. This chapter will provide some background concepts
and consider the state-of-the-art of network monitoring systems. Finally, we will also
look at some other research efforts that specifically focus in capturing the state of the

network and different areas of applications where it can be beneficial.

2.1 Network Measurement and Monitoring Tools

Les Cottrell of the Stanford Linear Acceleration Center (SLAC) provides an updated list
of the monitoring tools [11]. Most of these tools are public domain and popular because

they can be easily customized to fit specific monitoring requirement. However, there

is not yet a standardized framework to control and manage the network monitoring
itself. Section 2.1.1 describes some of the basic monitoring tools existing today. Section
2.1.2 presents a more integrated approach that leads to structured and well organized

network monitoring.

2.1.1 Basic Tool Taxonomy

The National Laboratory for Applied Network Research (NLANR) [39], through the
Cooperative Association for Internet Data Analysis (CAIDA) [4] provides a taxonomy
of measurement tools [5]. Basically, the currently available tools can be categorized into
several broad categories based on the measurement methodologies and goals. Here,

we will examine some basic measurement strategies and identify the existing tools.

Ping

All ping based tools take advantage of the Internet Control Mechanism Protocol (ICMP)
function, ICMP_ECHO, to check the availability of remote hosts and assess the latency
in an IP based network. More sophisticated tools were derived from the original and

simple ping, such as Nikhef Ping and fping.

Hop-by-hop Characterization

Van Jacobson utilizes the Time To Live (TTL) field in the IP packet to detect the path
taken by a packet in traceroute [23] and pathchar [24]. A packet is directed to each router
along a path without actually knowing the path, by setting the IP TTL field from 1 to
n until the ultimate destination is reached. Upon receiving a packet with an expired
(0) TTL, the hop generates an ICMP Time Exceeded response back to the source, thus
identifying the hop and its round trip delay.

Packet Pair Analysis

The packet pair effect is described by Van Jacobson in [22]. Essentially, if two packets
are caused to travel together such that they are queued as a pair at the bottleneck
link, with no packets intervening between them, then the inter-packet spacing will

be proportional to the processing time required for the bottleneck router to process

5

the second packet of the pair, thus indicating the speed of the bottleneck link. This
method has been used to measure the bottleneck bandwidth of a link without actually

generating too much traffic (e.g. bcprobe [7]).

Packet Capture

Tools in this category capture packets as they go through a network interface and dump
the headers of the packets for detail analysis that match some filtering condition. The
libpcap [21] library provides some portable packet dumping routines which were origi-
nally used in tcpdump. Some other tools, such as OC3Mon [2], use specialized hardware

to perform the packet capture more efficiently.

SNMP

The Simple Network Management Protocol (SNMP) [8] is a widely accepted protocol
to perform network management functions. This lightweight protocol is mostly useful
to collect status and statistic information from network devices, such as routers and
switches. The emergence of the Remote Network Monitoring (RMON) [45] standard
promotes the use of SNMP in traffic monitoring. Multi Router Traffic Grapher (mrtg)
[40] is a popular tool based on SNMP which collects and graphs vital statistics from a

router.

Load Generator

Tools such as ttcp [38], netperf [25] and nettest [44] provide the mechanism to per-
form throughput benchmark by generating some traffic pattern into the network and
measuring the bulk transfer capacity. Note that while the idea of NetSpec originated
from performing similar measurements, the latest development emphasizes creating
a framework for performing distributed network measurement and is not limited to

traffic generation and throughput measurement.

Traffic Flow Profiling
The underlying measurement mechanism in flow analysis is actually the same as in

packet capture analysis. However, tools in this category focus more on characterizing

information on a per flow basis. Cisco’s NetFlow [10] collects flow statistics from Cisco’s
router. NelraMet is a public domain tool to perform flow monitoring for accounting

purpose.

2.1.2 Integrated Monitoring System

While numerous efforts have been focused in the development of individual tools to
assess the performance of the computer network, only few have looked into creating
a large scale network measurement infrastructure which controls the complex process
of doing network measurements and organizing the performance metrics. This section

will explain some recent efforts which are geared toward creating such a framework.

2.1.2.1 Objective Driven Monitoring

Mazumdar and Lazar [33] describe a framework for real-time monitoring of broadband
networks using an objective-driven approach. The basic unit for the monitoring system
is the a system of sensors, a knowledge base, and an inference engine. Objective driven
monitoring allows the activation of sensors for data collection and abstraction based
on a set of objectives. The objectives are derived from the quality of service require-
ments for real-time traffic control and operator submitted queries. The methodology
of objective-driven monitoring for selective activation of sensors is implemented as a

set of rules in the knowledge base of the monitor.

2.1.2.2 Network Analysis Infrastructure (NAI)

The Measurement and Operations Analysis Team of the National Laboratory for Ap-
plied Network Research (NLANR) is working on a Network Analysis Infrastructure
(NAI)[34] which focuses on the integration of measurement activities at various sites
in the vBNS (very high Backbone Network Service) network. The main goal is to de-
fine performance metrics and define analysis objectives in order to gain insights and
knowledge about the inner workings of the Internet.

The infrastructure is currently considering these four areas of measurement data:

¢ Passive workload profile assessments are conducted by OC3Mon/Coral [2] mon-

itors that collect packet header traces and perform flow analysis on the traces.

e Active performance measurements assess host reachability, packet losses, and
throughput measurements. Performance parameters will measured from within

the network, i.e. via probes deployed within the infrastructure itself.
e SNMP/MIB based statistics data are collected from participating routers.

o Stabilities and status of Internet routing are obtained by collecting the Au-

tonomous System (AS) number from the Border Gateway Protocol (BGP) rout-
ing.

The overall analysis infrastructure requires sets of machines and tools with various
layer of functionalities, including: data collection engine, local analysis/abstracting,
data transfer to collation site, central analysis/abstracting, result cataloguing and ag-

gregation and user interface for presentation of data.

2.1.2.3 National Internet Measurement Infrastructure (NIMI)

The NIMI Project [1] is an undergoing project that aims to facilitate the development
of a large-scale measurement infrastructure for the Internet. One of the principle roles
for such an infrastructure is to measure vital signs of the network, such as throughput,
latency, and packet loss rates.

Its architecture is patterned after Paxson Network Probe Daemon (NPD) [42] which
was used to perform the first large-scale measurements of end-to-end Internet behav-
ior. An important aspect of the architecture is that it completely separates the tasks of
making measurements , requesting measurements , analyzing results , and configuring probes.

In keeping with this separation of tasks, NIMI architecture defines several entities:

¢ NIMI daemons (nimid) act as end-points for a set of measurement tools by pro-
viding communication and scheduling interface. Another important feature of
the NIMI daemon is the secure authentication of the measurement delegation

task.

¢ Configuration Point of Contact (CPOC) allows a site to configure a collection of

NIMI daemons in a single place.

e Measurement Point of Contact (MPOC) allows a coordinated set of measure-

ments to be configured at a single location.

Currently, the NIMI probe uses traceroute to perform hop-by-hop measurement,
TReno to measure throughput and Poip to measure latency and packet loss of a given
path. However, the plug-in design of the daemon allows any tool to be included as

part of a measurement suite.

2.1.2.4 Windmill: Extensible Passive Measurement Tools

Unlike other measurement infrastructures that use active monitoring, Windmill [32]

supports passive performance measurement of application-level protocols through the

use of protocol reconstruction and abstraction-breaching protocol event monitoring.
To accommodate performance and extensibility, Windmill’s software is split into

three functional components:

e A dynamically generated protocol filter matches the underlying network traffic

against a dynamically compiled filter.

e A set of abstract protocol modules provide both efficient implementations of tar-

get protocol layers and interfaces for accessing normally hidden protocol events.

¢ An extensible experiment engine provides a mechanism for the loading, modi-
fication and execution of probe experiments and provides the interfaces for the

storage and dissemination of experimental results.

2.2 Other Efforts to Capture the State of the Network

Much of the current network measurement efforts are focused in collecting long term
performance data to assess the performance trend and to identify bottlenecks in the

network. The works described in this section use the knowledge obtained in network

monitoring for different purposes. Section 2.2.1 describes some mechanism to opti-
mize distributed systems by performing event-driven monitoring. Section 2.2.2 ex-
plains some recent works in the area of network-aware application where monitoring
information is used by networked application to adapt to the dynamic condition in
the network. Both categories of monitoring efforts are more oriented toward creating
a snapshot of various events and conditions in the network and producing immediate

analysis.

2.2.1 Tuning the Performance of Distributed Applications

NetLogger The NetLogger methodology [13] allows real-time diagnosis of perfor-
mance problems in complex high-performance distributed system. The package in-
cludes the tools for generating precision event logs that can be used to provide detail
end-to-end application and systems monitoring; a Java agent-based system for manag-
ing large amount of logging data; and tools for visualizing the log data and real-time
state of the distributed systems. These tools are especially used for analyzing the per-
formance of the distributed storage system in transferring large amount of data to a
remote visualization client. The tools have been invaluable for diagnosing problems in

networks and in distributed systems code.

2.2.2 Network Aware Applications

Globus The main objective of the Globus [18] toolkit is to build an Adaptive Wide
Area Resource Environment (AWARE), an integrated and dynamically changing meta-
computing environment. The unified resource information service provides a uniform
mechanism for obtaining real-time information about metasystem structure and sta-
tus. The rule based approach allows application to make late decision binding based

on the current resource property.

Management of Application QoS Florissi and Yemini [16] proposes QUAL (Quality
Assurance Language), a language for describing QoS constraints and monitoring. The

specification is compiled into run time components that monitor the actual QoS de-

10

livered. Communication Monitoring Processes (CMPs) monitor QoS at network and

application levels and maintain a QoS MIB.

Sumatra Sumatra [43] is an extension of Java language that supports resource aware
mobile programs. It is used to built network-aware mobile programs that can use
mobility as a tool to adapt to variation in network characteristics. Experiment with a
distributed latency monitor tool shows that on-line network monitoring and adaptive
placement of shared data structures significantly improve performance of distributed

applications on the Internet.

2.3 Summary

This chapter has described some of the related work in network monitoring. Public
domain monitoring tools exist in great abundance, however there is still no definite
standard in this area, thus making collaboration and comparison of data difficult. Re-
cent efforts in large scale testbeds such as VBNS or by organization such as NLANR
show strong interest in creating a general network measurement infrastructure. This
work described in this thesis particularly uses agent based technology and NetSpec to

achieve a similar goal.

11

Chapter 3

Using NetSpec as a Monitoring Tool

NetSpec is a distributed network performance measurement tool designed and devel-
oped at the Information and Telecommunication Technology Center at the University
of Kansas to provide convenient and sophisticated support for experiments evaluating
the function and performance of wide area network. This chapter will briefly describe
the design, architecture and components of NetSpec. Then it will discuss the mod-
ification made to the current framework to allow continuous monitoring and some

implications caused by the extension.

3.1 NetSpec Design and Architecture

The following design criteria for NetSpec is specified [28]:

e Scalability - The framework must be able to support large scale experiment as

networks generally carry hundreds of flow simultaneously.

¢ Flexibility - The framework must be flexible enough to handle both passive and

active measurements.

e Reproducibility - The results of the experiments need to be reproducible, assum-

ing the state of the network did not change.

e Integration - Measurements and tests need to be integrated in a seamless man-

ner.

12

. o Extensible - Addition of new components should be anticipated.

3.1.1 Motivation

NetSpec was developed mainly because conventional tools for conducting network
performance experiments, such as ttcp [38] and netperf [25], lack the capability to
perform large scale network level experiments involving a set of point-to-point con-
nections. Moreover, the existing tools do not allow the seamless integration of mea-

surement with traffic generations and thus, making extension of test types difficult.

3.1.2 NetSpec Components

NetSpec has undergone several revisions since the first idea was conceived. Here we
will only describe the architecture for the latest and current version of NetSpec, namely

version 3.0.

cluster | serial | parallel {

\ <daemon> <address> { script user report
<test options> interface summary

}]

<daemon> <address> { L
<test options>

report

} service
) multiplexer

Jork

control

daemon

/I

N
’ \

control , *, control
/
’ \\
service \ _service
multiplexer multiplexer
! ok

T
Jork i ! summary

Figure 3.1: NetSpec High-Level Architecture

Figure 3.1 shows the components of the current NetSpec framework. Each of the

. components has to performs the following functions:

13

User Interface

- Read the script and pass it on to the control daemon.
- Generate the protocol commands for the daemon invocation.

- Accept the summaries of the experiments and present them to the user.

Service Multiplexer

Provide a single access point for invocation of all NetSpec daemons

Control Daemon

- Parse control protocol and parameters.

- Control the invocation of other NetSpec daemons.

Measurement/ Test Daemon

Perform specific measurement or testing functions.

All NetSpec experiments are described by the experiment script provided by the

user. The script serves the following purposes:

e Identify the nodes involved in the experiment. A node is a generic term for a

NetSpec daemon which can be a control, test, or measurement daemon.
o Identify the role assumed by each node.
e Define the test parameters for each measurement/test daemon.
e Describe the relationship among nodes and in so doing the topology of the ex-
periment.
3.1.3 NetSpec Daemon Structure and Protocols

Probably the most challenging design aspect of NetSpec is creating a control frame-
work which meets all the design goals described above. In order to achieve those
goals, NetSpec provides a generic structure for a daemon implementation. Both the
controller and measurement/test daemon are equivalent from a connection and proto-

col perspective. The generic structure allows the NetSpec framework to remain flexible

14

and extensible. Adding a new type of test daemon requires no change in the control
structure,

NetSpec uses a text based protocol to control the execution of the nodes involved
in an experiment. The Remote Control and Information Protocol (RCIP) [27] imposes
some sequence of phases that must be undergone by each daemon during execution.
These phases mimic the phases of a typical network connection. In addition, RCIP also
supports some administrative commands for control purposes. Table 3.1 summarizes
the commands supported by RCIP and a brief description of actions taken when the

command is invoked.

Command | Action

setup Allocate resources.

open Establish connection.

run Start data transfer or measurement.
finish Finish data transfer or measurement.
close Close connection.

tear down | Free up resources.

report Send report summary.

reset Reset to initial state.

kill Stop execution of daemon.
parameters | Accept parameters.

config Return configuration information.

Table 3.1: RCIP commands and Execution Phases of a Daemon

A NetSpec daemon generally has two types of parsers :

1. A RCIP parser which parses protocol commands and invokes actions associated

with the command, and
2. A parameter parser which parses test parameters to control test behavior.

The control daemon is an exception to this rule. Since the controller does not have any
test parameters associated with it, it does not need the parameter parser. Moreover,
the control daemon has a custom RCIP handler which is responsible for distributing

control across multiple nodes according to the Distributed Control Language (DCL)

15

specification [26]. Sections 3.1.3.1 and 3.1.3.2 will describe the implementation details
of these two parsers.

Program 3.1 shows the pseudo-code for the generic NetSpec daemon structure.

Program 3.1 Generic NetSpec Daemon'’s Skeleton

/* parses option */

};-set up signals */

};‘setup control connections */

v.vk-lile (no_error) {
rcip_handler () ;

}

/* clean up */

3.1.3.1 RCIP handler

The RCIP handler is implemented as a state-based lexer which receives commands
from the controller and invokes the appropriate action. A daemon’s execution phase
is essentially defined by the state of the lexer as it receives command invocation from
the controller. Figure 3.2 summarizes the structure of the RCIP handler.

Notice that the daemon-specific parameter parser is invoked at the initial phase
before it proceeds with the phases specified in Table 3.1. The parameter parser is re-
sponsible for building the data structures which contain the options describing the

test/measurement being carried out.

3.1.3.2 DCL parser

As a special case of NetSpec daemon, the control daemon has some well-defined ac-
tions in response to RCIP command invocation because it is responsible for ensuring
the synchronous operations of the daemons under its control. The core of the control
daemon is comprised of the DCL parser which accepts the typical RCIP commands as
defined in Table 3.1.

16

upn
[comménd:null]

{spawn tokenl";"}/] (\
1/ @
[initia/ize_com:,V

BEGIN

{parameter block}/
[parameter_parser()]

"Y'/ [invoke_command()};

"Y'/ [invoke_command()]; l

RN
INITIAL
~_

{rcipCommands}/
[command=rcipCommand]

Figure 3.2: RCIP Handler Lexer State Machine

The DCL parser collects the list of the controlled test or measurement daemons and
keeps them in a linked list. As it goes along, it establishes control channel to each
daemon and passes the appropriate section of the experiment script. After the script
is completely parsed, the controller begins to distribute the RCIP commands to each
peer. Figure 3.3 shows the sequence of RCIP commands which the control daemon
distributes to its peer.

The controller accepts three types of execution construct, namely: serial, parallel
and cluster. Each execution type governs the behavior of the controller during its run
phase. The order of RCIP commands sent to peer daemons dictates the phases of the
peers and thus the behavior of the daemon. Figure 3.4 illustrates the behavior of the

controller for each type of execution construct during the controller’s run phase.

3.2 Extending NetSpec to Allow Continuous Monitoring

The flexibility and extensibility of NetSpec makes it a powerful tool to do system/network
testing of any kinds in an integrated manner. However, the batch-execution style

adopted by NetSpec only permits collection and analysis of results at the end of the

controller daemon A daemon B

|—spawn token |

ack

| |

4—-’?£‘k—’—/_

— awn token
&b
%_‘ aram block

e
‘__’_a_gk/___/—
| —setup____|

P— finish

report
Q%

report r—

S teardown

ek L]

Figure 3.3: Distribution of Control Protocol

test. This limitation prohibits NetSpec to be used in a testing environment where more
real-time execution and on-the-fly analysis are needed. Problems can also arise for the
types of measurement which produces a large amount of data during the run phase of
the experiment.

In the current framework, it is difficult to capture the dynamic characteristics of the
system because only the statistical summary of the testing result is presented. Moreover,
it is also difficult to correlate the data collected at various layers of the system without
having a standard way of collecting and interpreting the events from different layers
of the system.

To address this issue, an extension to NetSpec which allow continuous stream of

18

controller daemon A daemon B controller daemon A daemon B controller daemon A daemon B
open open open

I —
ack T 1 open
\\»
% ’*— L—ﬁl’("/ k
ad
ack —_ | open e
close ack L
I —— S run
] un . SN
3k —— ack T ack
|| L |
[—\h open close ack
]
ack R — |t
T | 2] e
[t L |
—‘——/‘—/——_‘
] close RBEE————— close —_— | close
T EE——
IR - [P . | ak
|
(a) serial (b) parallel (¢} cluster

Figure 3.4: Different Types of Execution Constructs

data to flow from the test/measurement daemon during the course of an experiment is
needed. With this extension, we are opening a window of opportunities to use NetSpec
in a more real-time environment and for collecting data with a finer granularity.

The following sections will describe the modification and extension made to the

current NetSpec framework to allow such a capability.

3.2.1 Design Criteria

The following design criteria have been set as a guideline in designing the modifica-
tion to NetSpec. In addition, the design should always conform to NetSpec’s design

philosophy listed in Section 3.1 above.

¢ Integrated with NetSpec

The framework should fit seamlessly with the rest of NetSpec'’s structure.

e Optional
This continuous data generation should be an optional feature of a NetSpec dae-
mon and should not impose any change to the current NetSpec daemon imple-

mentation.

e Generic

The method should be applicable to a larger class of applications outside Net-

19

Spec.

o Unobtrusive
Generation of events or intermediate reports should not interfere with the testing

at hand.

¢ Standard format
The framework should produce data in a standard format, hence, allowing fair

comparison and interpretation of flows from multiple data streams.

3.2.2 Modified Architecture

To incorporate the continuous report generation at the daemon level, we will mini-

mally need two additional entities in the NetSpec framework:

Report Collector Server (Daemon) which collects data from NetSpec test/measurement

daemons.
Report Channel which connects a NetSpec daemon to the report collector server.

Note that the report collector server needs not be within the NetSpec framework.
Any server which conforms to the protocol used by the NetSpec daemon should be
able to read data from the report channel. For conciseness, the report collector server
will also be referred to as a report daemon. On the other hand, the report channel
is closely integrated with the NetSpec framework. It must be set up by the NetSpec
control structure and becomes an integral part of a NetSpec daemon.

There are two options to handle the reporting capability of the daemon depending

upon the entity who controls the report channel’s setup.

Option 1: The reporting feature is part of the DCL protocol understood by the con-

troller and hence, the report channel setup is invoked by the controller.

Option 2: The reporting feature is a standard NetSpec daemon parameter. In this case,

the controller is not aware of the existence of such a report channel.

20

Note that in both options, the report channel is integrated with the daemon framework
and is managed by each daemon. The first option requires modification of the DCL and
RCIP protocols while the second option requires almost no change at all to the NetSpec
protocol. However, making the reporting feature a daemon’s parameter implies that
each daemon must be able to parse the option and hence, reduces the generality of the
NetSpec daemon’s framework. With careful design and investigation of the current
framework, the modification of DCL and RCIP protocols can be implemented with
minimal effort while maintaining the generic nature of the daemon'’s framework.
Figure 3.5 shows the modified architecture. If we compare this figure with the old
NetSpec architecture shown in Figure 3.1, we will notice the two additional entities
mentioned above. NetSpec daemon can send report Protocol Data Unit (PDU) via
the report channel to the report daemon. The report daemon accepts these PDUs and

presents them to the user space in a human readable format.

cluster {
<daemon> <address> reporter <address> { script user

R ——

<test options> interface summary

}
<daemon> <address> reporter <address> {

‘ report
<test options>

}

} control
daemon

N
. control
A}

event/measurement data
Figure 3.5: Modified Architecture with Inclusion of Report Channel

Figure 3.5 also shows the modification made to NetSpec script’s format. Basically
the script now includes the address of the reporter daemon with which a particular
NetSpec daemons can interact. Since the continuous data generation is an optional
feature of a NetSpec daemon, omission of the reporter address implies that the daemon

will not generate any intermediate report during the course of the test or measurement.

21

Program 3.2 outlines the modified syntax for the block structure. NetSpec’s block
structure separates the parts which need to be understood by the controller and parts

which are meaningful only to the test/ measurement daemon:

[controller’s semantics] {
[daemon’s semantics]

Since it is already argued above that the controller must be responsible for invoking
the creation of the report channel, the reporting option should be placed outside the
daemon parameter block. The following sections will describe the modifications made
to the DCL and RCIP protocols and the process involved in the report channel creation

and the report daemon structure.

Program 3.2 Modified block syntax

<daemon> <daemon_address> [reporter <reporter address>] {
<parameter block>

3.2.3 Modification to DCL Protocol

As mentioned in section 3.1.3.2 above, the controller invokes the creation of NetSpec
daemons and establishes the control channels to its peers. To incorporate the reporting
capability discussed in the modified architecture above, the DCL parser in the con-
troller must parse the information about the reporter and pass the address of the re-
porter to the daemon so that a report channel can be created by the daemon to the
specified reporter. Program 3.3 shows the modification made to DCL lexical analyzer
and parser.

The report channel needs to be established as early as possible in the lifetime of a
daemon so that report PDUs can be generated in the early phases of daemon execution.
Although most of the time, report PDUs will be generated during the run phase of the

daemon execution, the design should not limit itself to only that particular phase.

22

Program 3.3 Modified DCL lexical analyzer

dcl.1:
"reporter" return REPORTER;

decl.y:
peer
IDENTIFIER peerIpAddress reporterIpAddress

/* send spawn token */

/* send replicate spawn token */

/* send reporter token */

writeLine ("reporter”, ¤tPeer);

/* send reporter address */
writeLine($3, ¤tPeer);

}
reporterIpAddress
REPORTER IPADDRESS ':’ INTEGER
{
*$$ = '\0;
strncat ($S, ipAddr2NumStr(str2IpAddr(S$2)), 255);
strncat ($$, ":", 255-strlen($$));
strncat ($$, $4, 255-strlen($$)):
}

To achieve this effect, the report channel needs to be established in the initial phase
of the daemon execution. By looking at Figure 3.3, the ideal place to set up the report
channel is before the controller sends the parameters block to the its peer daemon. This
is done by sending the keyword "reporter" followed by the address of reporter
in the form of HOST: PORT. Figure 3.6 shows the addition of these messages to the
protocol. Note that if the reporter option is omitted, no additional protocol message

will be sent to the peer daemon, and thus the controller behaves like a normal NetSpec

execution without the reporting feature.

What will happen at the other end of the control channel as a response to the new

protocol messages will be described in the following section.

23

controller daemon A daemon B

—spawn token |
reporter
host:port
ack
param block
«—E’CL/’
——————— | spawntoken |
reporter
—R1 host:port
R ———
—
|
“—“—M‘M‘»
Lack L
—setup
4——%/’
—_] setup
kL

Figure 3.6: Modification to the DCL Protocol

3.2.4 Modification to the Daemon Framework
3.2.4.1 RCIP Handler

A daemon knows that it needs to establish a connection to a reporter when it receives
the keyword "reporter" during the initial phase. This requires a slight change to
the original RCIP parser shown in Figure 3.2. Basically, the handler must capture the
keyword and set up the socket to the reporter. This can be achieved by adding a new
state in the lexer in which the reporter address is collected and the report channel is

setup. Figure 3.7 shows the modification.

3.2.4.2 A Case for UDP

The report channel can be implemented as either a TCP or UDP socket. While TCP is
reliable in delivering the messages, the end-to-end control and the 3-way handshake
during connection establishment and termination adds a considerable amount of over-
head and thus can be obtrusive to the test being conducted. Since the reporting facility

only requires a very lightweight protocol, UDP is much more suitable in this case be-

24

npuy
[comménd:null]

{spawn tokenl!";"}/[]

1/
[initialize_command]

o—»
BEGIN

{parameter block)/
[parameter_parser()]

“reporter/ []

CREPORT
HOST:PORT/

[setup_report_channel()]

] e

[invoke_command()];

"Y't finvoke_command()];

{rcipCommands})/
[command=rcipCommand]

Figure 3.7: Modification to the RCIP Handler State Machine

cause the connectionless datagram service offered by UDP provides a really fast way

to deliver message without incurring too much overhead.

3.2.43 Report PDU

PDU | time- | daemon| daemon | object | object
length | stamp | D address type

type

value | object Obljgcﬂ value | ... l

header content

Figure 3.8: Report PDU format

Every intermediate report generated by the daemon is encapsulated in the report
PDU as shown in Figure 3.8. Each PDU consists of the header fields and content fields.
The fields in the header of the PDU can be explained as follows:

PDU length: the length of the PDU in bytes.
Timestamp: the timestamp of the creation of the PDU in
struct timeval ({
int sec;

25

int usec;

format, where sec and usec are the number of seconds and milliseconds since

epoch, respectively.
Daemon ID: the name of the daemon which generates this PDU.

Daemon Address: the address of the daemon in form of host :port

The content of the PDU consists of one or more objects which are defined as a data
unit generated by a NetSpec daemon. An object has a name and value of a supported
type. An object is described in the object_t data structure shown in Program 3.4

where:

Object type is the type of the object. There are five basic types supported by the frame-
work:
e An integer is a 4-bytes signed integer in the range [-23',23! — 1]
e Anunsigned integer is a 4-bytes unsigned integer in the range [0, 232].

¢ A boolean has the same representation as an integer but can only have a

value of O or 1.

A double is a 8-bytes double-precision floating point.

A stringis a null-terminated array of characters.
Object ID is a string representing the name of the measured object, and

Value is the value for this particular object corresponding to the specified type.

3.244 Report API

To ensure standard format of reporting facility, we need to provide a reporting Appli-
cation Programming Interface (API) for the daemon. In our case, the API can be as

simple as providing a function which handles the creation of report PDU and fills it

26

Program 3.4 Object data structures

#define INT T 0
#define U_INT T 1
#define BOOLEAN T 3
#define DOUBLE_T 5
#define STRING_ T 6

tyvpedef union {
int intval;
unsigned int uintval;
double doubleval;
char *strval;

} objectval_t;

typedef struct {
int type;
char objId[MAXOBJIDLEN];
int len;
objectval_t wval;
} object_t;

with the user’s data and writes it to the report channel. The structure of the report
PDU will be described in the following section.

Program 3.5 shows the pseudo-code of function nsLogWrite (). The logging func-
tion can accept an arbitrary number of objects to be packed in one report PDU. The rea-
son behind this scheme is to reduce the number of report PDUs sent by allowing more
than one object to share the same timestamp. The function creates an empty PDU and
fills it with the header fields which consist of a timestamp and daemon identifier. Then
it encodes or serializes the objects and writes it to the socket.

A NetSpec daemon must first create the objects before passing them to the nsLogWrite ()
function. We provide a function to create an object of each supported types. Program
3.6 shows the example functions to create an object of type integer and string.
Each of these function create an object and fill in the name, value and type.

Since the data representation can vary from one computer architecture to the next,

the eXternal Data Representation (XDR) [35] has been used for transporting the report

27

‘ Program 3.5 Report API

void nsLogWrite (int numObjects, ...) {
/* allocate space for PDU */

/* create timestamp */

/* £ill PDU header with timestamp, own id */
/* serialize each object into PDU */

/* write the header of the PDU to socket */

/* write the content of PDU to socket */

PDU to the reporter. XDR provides a mechanism to describe and encodes data for
transfer between machines in a heterogeneous environment. It has been used in Re-

‘ mote Procedure Call (RPC) and Network File System (NFS) to ensure portability and
data sharing across multiple machines. Our framework only uses some standard data
types of all the data formats supported by XDR. These data types have been described
in Section 3.2.4.3.

3.2.5 Standalone Reporter Structure

In order to meet the design criteria which mandates that the reporting facility should
be generic enough, the new framework does not strictly dictate where the reporter
server resides. Applications other than NetSpec can create a custom reporter server
which could do processing specific to the applications’ needs. For example, a reporter
server can simply do post-processing of the reports into a format which can be used
by other tools such as NetLogger [13] or NetAlyze [41]. This section describes the
general structure and requirements of a standalone reporter which desires to collect
NetSpec continuous data stream. To avoid confusion, the terms used in this section are

. as seen from the point of view of the reporter server. The terms server and daenion are

28

. Program 3.6 Report API

ptr20bject_t createIntObject (char *id, int val) {

ptr20bject_t ptr20bject = (ptr20bject_t) malloc(sizeof (ocbject_t));
ptr20bject->type = INT_T;

memset (ptr20bject->0bjId, 0, MAXOBJIDLEN) ;

strncpy (ptr20bject->0bjId, id, MAXOBJIDLEN) ;

ptr20bject->len = sizeof (int);

ptr20bject->val.intval = val;

return ptr20bject;

ptr20bject_t createStringObject (char *id, char *str) {

ptr20bject_t ptr20bject = (ptr20bject_t) malloc(sizeof (object_t));
ptr20bject->type = STRING_T;
memset (ptr20bject->0bjId, 0, MAXOBJIDLEN) ;
strncpy (ptr20bject->0bjId, id, MAXOBJIDLEN) ;
. ptr20bject->len = strlen(str);
ptr20bject->val.strval = str;

return ptr20bject;

used interchangably when referring to the reporter, while NetSpec's test/measurement
daemons which generate the performance data are referred to as clients.

The basic functions of the reporter server are fairly simple. The reporter binds it-
self to a certain address and waits for connection from one or more clients. Once a
connection is establish, the reporter server accepts report PDUs, decodes the header,
deserialize the objects, performs the necessary post-processing, and produces a suit-
able format of the report.

Since the NetSpec daemon uses XDR format to transfer data, the reporter must
decode or deserialize the content of the PDU by following the XDR mechanism as
well. When a report PDU arrives, the reporter first decodes the header and determine

. the number of objects in the PDU. Then for each object, it determines the type and

29

accept connection

i

create XDR stream

!

read header:
timestamp, 1D, numObjs

loop for
numObjs

read type, 1D of object

!

decode value
according to type

i

format for post processing

Figure 3.9: Reporter Algorithm in Decoding Report PDU

decodes the value accordingly. This algorithm is shown in Figure 3.9

3.3 Summary

This chapter has briefly described the design philosophy of NetSpec, a distributed net-
work performance evaluation tool. It then describes the extension made to NetSpec to
allow continuous or long term monitoring which permit test or measurement daemon

to generate data during the course of the test itself.

30

Chapter 4

Monitoring Daemons

Implementation

Several kinds of NetSpec test or measurement daemons have been developed recently

for different purposes. Among the notable ones are:

e Test Daemon [28] generates various kind of traffic and measures the bulk transfer

rate at the transmitting and receiving end.

ATM Call Generator Daemon [37] is used to evaluate the performance of ATM

switches.

CORBA Daemon [19] is used in performance benchmarking of CORBA objects.

SNMP Daemon [47] queries SNMP agents to collect SNMP variables from a MIB.

DSKI Daemon [46] collects data from the operating system through the Data

Stream Kernel Interface [3].

The continuous monitoring feature discussed in this thesis can be useful in support
of some types of the daemons described above since it allows daemon to collect data
in a more detailed manner and be able to communicate this information with other
entity in the system in real time. Particularly, we will describe the implementation and

examples scenarios for the SNMP and DSKI daemons.

31

4.1 SNMP Daemon

The Simple Network Management Protocol (SNMP) [8] has been widely accepted as
the standard protocol in network management. Most network devices and end hosts
comply with the SNMP standard and provide network managers a standard way to
monitor many aspects of a network. Because of this, we were motivated to implement
a NetSpec measurement daemon that is capable of communicating with network el-
ements by using SNMP. Monitoring a set of objects in a network device can then be
described conveniently through a NetSpec script.

Before going further with the implementation details, Section 4.1.1 will briefly de-
scribe the fundamentals concepts in SNMP. Then, Section 4.1.2 will describe the archi-
tecture and implementation of the NetSpec SNMP daemon. Section 4.1.3 will define

the parameters of the daemon and the format of the NetSpec script.

4.1.1 Simple Network Management Protocol

As specified in RFC 1157, the SNMP architecture consists of a collection of network
management stations and network elements. Network management stations execute
management applications which monitor and control network elements. Network ele-
ments are devices such as hosts, gateways, terminal servers, and the like, which have
management agents responsible for performing the network management functions re-
quested by the network management stations. The Simple Network Management
Protocol (SNMP) is used to communicate management information between the net-
work management stations and the agents in the network elements. To achieve its
goal of being simple, SNMP includes a limited set of management commands and re-
sponses. The network management stations issue GetRequest, GetNextRequest
and SetRequest messages to retrieve single or multiple object variables or to estab-
lish the value of a single variable*. Figure 4.1, taken from IEEE Network Management
Architecture [36], illustrates this concept.

Each SNMP agent maintains a database of network management information, called

* A variable is a unit of managed information in the agent.

32

SNMP SNMP
Management System Managed Systems
Managed
Resources
Management 1_ Application ‘(SNMP Managed
Application J - Managed Objects - L Objects
ob i
o B o %r b % 8.
2 8 B S - wl =5
o5 A o8 g 8§28 832
TS o 0] ay v
SNMP
SNMP Manager SNMP Agent
Messages
UDP uUbP
IP P
Link Link

Communications Network

Figure 4.1: SNMP Architecture

the Management Information Base (MIB). The logical organization of the MIB is called
the structure of management information (SMI), which is organized in a tree structure
beginning at the root, with branches that organize the managed objects by logical cat-
egories. The MIB represents the managed objects as leaves on the branches. Figure 4.2
shows an example of the SMI for the system group. Each node in the tree is assigned a
numeric value. A managed object is identified by its object identifier (OID) that is ob-
tained by listing the numeric values of the traversed nodes in a string, separated by pe-

riods. For example, the variable sysDescr will haveanOIDof1.3.6.1.2.1.1.1.

4.1.2 SNMP Daemon Architecture

The function of the NetSpec SNMP daemon is to act as an SNMP manager that collects
a set of managed information from an SNMP agent of a network device. The SNMP
daemon establishes a communication channel with a SNMP agent through which it
can send and receive SNMP PDU. Many of the management and monitoring opera-
tions involve a periodic collection of SNMP variables, which is why the continuous

monitoring feature proves to be very beneficial for the operation of this daemon. We

33

root

l mib-2(1.3.6.1.2.1}
iso(1)

identified-organization(3) system(1) interfaces(2) address ip(4) icmp(5)
\ translation(3)
dod(6) \
internet(1) sysDescr(1)
sysObjectID(2}
sysUpTime(3)
directory(1) mgmt(2) experimental{3) private(4) security(5) snmpV2(6) mail(7) sysContact(4)
sysName(5)
sysLocation(6)
mib-2(1) enterprises(1) sysServices(7)

Figure 4.2: The System group

can set up the daemon so that it periodically polls the SNMP agent of a specific network
device and generates the collected information on the fly. A report collector server can
then use the information to monitor the latest state of that network device.

Figure 4.3 shows the architecture of the SNMP daemon and other entities it commu-
nicates with. The NetSpec script defines the network device and the managed objects
to monitor. The SNMP daemon then sends the SNMP PDU(s) to the SNMP agent for
that particular network device and waits for the response. If a reporter channel is spec-
ified for this daemon, it directly sends the data to the reporter for further processing.
Otherwise, the daemon will store the data in a local buffer until it enters the report
phase in which it will send the data to the user.

The SNMP daemon uses CMU-SNMP-v1 library from Carnegie Melon University.
The library provides a basic AP1 to create and interpret SNMP PDU as well as for creat-
ing a communication channel with an external SNMP agent. The library also requires
an SMI which includes the descriptions of the managed objects. The SMI provides the
mapping between a variable name and its OID. For objects that are not included in the
SM], the full path OID needs to be specified in the script.

The SNMP daemon implements the following NetSpec’s daemon phases:
e Setup phase

1. Initialize SMI

2. Allocate buffers if necessary

34

NetSpec f NetSpec 5
script L Common Modules »
Daemon = MIB
Parameter Parser % g
Z 5
@3 SNMP
reports Buffer 4 2 [~ = SNMP Agent
Management |~ | ©
;r_._./
t
i
| reports

report
collector
Figure 4.3: NetSpec SNMP Daemon Architecture

e Open phase

1. Set up and establish SNMP connection with remote SNMP agent

e Run phase

1. Send and receive SNMP PDU(s)

2. If report channel exists, send data to report collector; else save in local buffer

e Close phase

1. Close SNMP connection
o Finish phase

1. Free SNMP PDU(s)

e Report phase

1. If report channel exists, send summary; else, send the content of buffer to

user
e Teardown phase
1. Free buffer

35

4.1.3 SNMP Daemon Parameters

Table 4.1 describes the parameters for the SNMP daemon.

Parameter | Description Value Syntax
device Network device to be moni- | IPADDRESS
| tored
| mibfile The absolute path to the SMI | STRING
type The type of collection oneshot
periodic(duration=INT,period=INT)
version SNMP version to use vl (community= STRING)
operation | SNMP operation to perform | get([var=STRING]*)
and variable names

Table 4.1: SNMP daemon parameters

For example, we want to poll the number of packets transmitted and received at
the TCP layers every 10 seconds for 5 minutes and send the data to a report collector.

We can describe that experiment in the following script:

snmp plato reporter plato:43813 {
device = mauchly.ittc.ukans.edu;
mibfile = "/usr/local/lib/mib.txt";
type = periodic (duration = 300, period = 10);
version = vl (community = public);
operation = get (var="tcp.tcpInSegs",
var="tcp.tcpOutSegs");

4.2 Data Stream Daemon

The function of the NetSpec Data Stream daemon is to collect data from the operating
system kernel through the Data Stream Kernel Interface (DSKI). Since the nature of
the information collected from the kernel are usually continuous, the provision for
continuous monitoring in NetSpec is very relevant for the DSKI daemon.

Section 4.2.1 will provide a brief overview of the Data Stream Kernel Interface.
Section 4.2.2 will describe the architecture and design of the NetSpec DSKI daemon

and finally, Section 4.2.3 will describe the parameters and script format of the daemon.

36

4.2.1 Data Stream Kernel Interface (DSKI)

The main goal of the DSKI is to provide a standard and effective way of collecting data
from the operating system kernel. The collections of data flowing from the operating
system are generally referred to as data streams. The DSKI defines three types of data

streams:

Active Data Stream allows us to record and later read a sequence of data items called
events. This data stream provides a logging function which is called from selected

points within the code of the kernel to log the occurrence of events of interest.

Passive Data Stream does not accumulate events. It stores a specific set of state in-
formation associated with an object within the system which the kernel updates

with changes in the kernel state.

Cumulative Data Stream provides a way to gather statistics data related to events
happening in the kernel in term of a counter. This type of data stream is useful

for long term data collection where the detail of event traces is not required.

Figure 4.4 shows the architecture of the DSKI. In the kernel, related events, objects
and counters are grouped in a family that is registered with the kernel. When an event
occurs inside the kernel code, a timestamped event is created and added to the event
queue of each user. A function that updates the counter can also be added to the kernel
code for a cumulative data stream. The interface to the user is provided through the
standard pseudo device driver interface. User can specify the type of data stream and

read from the pseudo device.

4.2.2 DSKI Daemon Architecture

The DSKI daemon allows the collection of event traces and counter values from an
instrumented operating system kernel. It provides a mechanism to describe the set of
events and counters that a user wants to gather, as well as the duration and frequency
of data collection. Figure 4.5 shows the structure of the DSKI daemon. As with the
SNMP daemon, the presence of report channel causes data to flow to the report collec-

tor.

37

(\

[*=------ - Object: ip_stat
=== ~ 7 Counter: Num_of_pkts ~

Event: ip_output

]
i
1
1
1
i
)
I
|
]
t
[}
]
1
]
]
1
)
1
1
]
)
]
1
'
1
]
1
'
|

data stream

User
Process

User data stream | FAMIP
Process Ve Update Counter
5 L
i R
=
]
User § data stream ! 8 Kernel Code
Process R
«»
a
2
73
o

FAM_PROC

g |
=~ I '

[----- "Fﬂ_ﬂ—l_ﬂ_ﬂ_rrm
B aNA RN AR AR

Event Queues

User Kernel

Figure 4.4: DSKI Architecture

The execution phases of the daemon are quite simple. It implements three of the

NetSpec daemon’s phases:

e Setup phase

1. Open the pseudo device /dev/dstream
2. Specify the type of data stream (ACTIVE or PASSIVE)
3. Get event and counter names in each family for future mapping

4. Select desired events
e Run phase

1. Set collection duration or number of events to be logged

38

NetSpec 7(NetSpec
script LCommon Modules
Daemon >
Parameter Parser s
o]
i}
¥ —.t pseudo device
EEOHS_ Buffer - - - - 8 /dev/dstream
Management
1
'I;
; reports
report
collector

Figure 4.5: NetSpec DSKI Daemon Architecture

2. Start event logging in the kernel
3. Read event trace
4. If report channel exists, send data to report collector; else store in local buffer

5. Close pseudo device
e Report phase

1. If report channel exists, print summary; else print event traces

4.2.3 Data Stream Daemon Parameters

There are two types of scripts for the DSKI daemon, one for the active data stream and
another for the cumulative data stream. A DSKI daemon can only gather data of one
type of data stream. If more than one type of data stream flowing from an operating
system kernel is desired, another DSKI daemon must be started on that machine.

The format of the script to collect event traces is shown in Program 4.1. The nu-
mevents parameter specifies the maximum number of events to collect. The optional
parameter duration indicates the length of experiment in seconds. If a duration is not
specified, the experiment will continue until the maximum count is reached. The user

can filter out events from the trace by specifying the param value, which is a qualifier

39

unique to a data stream family. For example, in the ds_tcpip family, param refers to
the destination port of a packet. Only events generated by packets whose destination
port matches the specified value of param will be included in the data stream. If the
param option is not specified, the event trace comes unfiltered. For each family, a sub-
set of events must be specified. If all events are to be collected, the keyword all can
be used instead. Finally, eventnames is a coma-separated list of valid event names in a
family.

The example shows an experiment to collect five event types from a ds_tcpip
family at a machine called plato for 15 seconds or until 500 events are collected. In this

family, param indicate the source port of a TCP packet.

Program 4.1 Script format to collect event trace and example

Script syntax:

dstream
type = active (numevents = x,
familyl = set (eventnames) | a
family2 = set (eventnames) | a

duration = y, param = z);
11;
11;
Example:

dstream plato {
type = active (numevents=500, duration=15, param=42015);
ds_tcpip = set (writeSocket, tcpOutStart, tcpOutEnd,
ipoutStart, ipOutEnd);

4.3 Characteristic Experiments

This section will provide an example for each NetSpec measurement daemon described
in this chapter to demonstrate the benefits of having the continuous monitoring feature

in NetSpec.

4.3.1 Monitoring ATM Switch Cell Rate with SNMP Daemon

This section demonstrates the application of the SNMP daemon to perform cell level

measurements in an ATM network. Particularly, we would like to monitor the cell

40

counts on the equivalent Virtual Circuits (VC) at the ATM switches belonging to the
same connection.

SNMP is a convenient mechanism to perform such measurement because most net-
working devices support SNMP and maintain a MIB for network management pur-
pose. Performance data are collected by querying the SNMP agent at each ATM switch.

Figure 4.6 shows the experiment set up in the MAGIC-II network. NetSpec test dae-
mon generates a full blast traffic from host A, armstrong.ukans.magic.net to host B, black-
stone.tioc.magic.net. A virtual circuit connection has been established between the two
machines through switches X, spork.ukans.magic.net and Y, hertzl.tioc.magic.net, which
are both FORE switches. Two NetSpec SNMP daemons poll the SNMP agent at the
ATM switches for the cell count on a specific virtual circuit channel by specifying its
port, VPI and VCI numbers. Cell counts at every second are sent to the report collectors
for further analysis.

spork.ukans.magic.net hentz.tioc.magic.net

armstrong.ukans.magic.net X v blackstone.tioc.magic.net
\ traffic N/

Test Test
daemon| | ycj 433 VCI 355 VCl 468 | |daemon
analysis A B
SNMP SNMP
t '
) '
: ----- E a-l£ ----- : :
_-~""|daemon |
report |~ cell H
collector |~ counts '
T~ same | poN] :
daemon

Figure 4.6: SNMP Experiment Set-up: Monitoring Cell Rates at ATM Switches

Figure 4.7 shows the cell rates at switches X and Y, respectively. As expected, we see
a strong correlation between the rates at the two switches since they support the same
connection. Both of the plots follow the same general pattern although not identical
which may be caused by different cell delay variation at the two switches.

This experiment can be extended to include measurements at various levels such as
at the network interface or TCP level by querying SNMP variables at different network
devices. It demonstrates the strength of NetSpec in providing integrated control over

different types of traffic generation and measurement. The following section will give

41

x 10 Cell Rates at spork.ukans.magic.net
12 — — T T

Cell Rates (bps)

1 | |

0 |] 1
0 50 100 150 200 250
Time(sec)
x 107 Cell Rates at hertz1.tioc.magic.net
12 —T —T T T

Cell Rates (bps)

0 | I | I 1 1
0 50 100 150 200 250
Time(sec)

Figure 4.7: Cell Rates on the VCs at Two Switches Belonging to the same connection.

another example of measurement done at the operating system level which, when put
under NetSpec control, can provide arich set of performance data in addition to a more

traditional performance data collection method.

4.3.2 Studying the TCP Congestion Mechanism with DSKI Daemon

Collecting detail event traces from an operating system kernel usually results in a large
amount of data. By having the continuous data generation feature in NetSpec, we are
saving system resources by immediately processing the event trace without having to
store them in the system memory.

The experiment described in this section involves a performance evaluation of the
TCP congestion mechanism, especially the evolution of the congestion window dur-
ing adverse conditions. The traditional approach for this kind of experiment requires

several independent processes to generate the traffic, collect and filter packet traces

42

and analyze each packet’s header. The NetSpec Test and DSKI daemons provide an
integrated mechanism to describe and control the experiment.

Two DSKI families to collect event traces from an instrumented TCP/IP kernel
module have been defined: a family for events related to sending out a packet and
another for receiving a packet. Logging points have been inserted at crucial points in

the stack as shown in Figure 4.8.

data written to socket data read from socket
Socket Socket
TCP_OUT_ST
CONG_WINDOW -1 TCP_IN_END
TCP_OUT_END TCP TCP TCP_IN_ST
IP_OUT_ST IP_IN_ST
P P
TP_OUT_END —™| IP_IN_ST
DEV_QXMIT_ST ~* DEV_RCV_END
Ethemet Ethernet
DEV_QXMIT_END ~—*| DEV_QRCV._ST

Figure 4.8: Instrumented TCP/IP Stack

We can obtain various kinds of detailed timing analysis by collecting event traces
from an instrumented kernel such as this. For our purposes, we are interested in
collecting events particularly at the TCP layer during transmission of a packet. Be-
fore the TCP layer passes a packet to the IP layer to be sent out to the network, the
TCP congestion mechanism determines the effective congestion window size used. In
our study here, we collect three events: EV_.TCPOUT_ST, EV.CONG_.WINDOW, and
EV_TCPOUT_END.

The experiment set up is shown in Figure 4.9. The sender and receiver belong to the
same ethernet segment in a LAN environment. The sender’s kernel has DSKI config-
ured and its protocol stack instrumented. The NetSpec Test daemon generates full blast
traffic from the sender to the receiver. The NetSpec DSKI daemon collects event traces
at the sender and sends the trace to the report collector located at another machine. In
order to study the congestion mechanism, we must reinforce packet retransmission at
the sender. The device driver for the physical interface at the sender has been modi-
fied to drop one in every 500 packets belonging to the test flow. Since the dropped packets

never reached the receiver, the sender will not receive the ACK packets and this causes

43

testbed3.ittc.ukans.edu testbed2.ittc.ukans.edu

Test traffic Test
Daemon Daemon
1

DSKi
Daemon

1 event traces

Report .
4@

plato.ittc.ukans.edu

Figure 4.9: DSKI Experiment Set-up

retransmission.

Figure 4.10(a) shows the evolution of the congestion window with time and Figure
4.10(b) shows the sequence numbers of the packets generated by TCP as time increases.
These figures show the congestion avoidance mechanism used in TCP. At the begin-
ning of the connection, the congestion window is increased linearly until it reaches
the advertised receiver window. Retransmission is interpreted as an indication of con-
gestion in the network. TCP attempts to avoid further congestion by slowing down
its rate by reducing the congestion window size by half (this strategy is better known
as multiplicative decrease). The slow start mechanism in TCP carries this idea one step
further by reducing the congestion window to the size of MTU (1460 bytes for ether-
net), and slowly increases it linearly until it reaches the threshold that has been set by
multiplicative decrease.

In the next experiment, the rate of packet dropping at the device driver is increased
to emulate a more adverse congestion situation. The network interface drops five con-
secutive packets for every 500 packets in the test flow. Figure 4.11(a) and Figure 4.11(b)
show the evolution of congestion window and sequence number with time. Figure
4.11(a) particularly shows how slow start mechanism perpetuates the low transmis-
sion rate if loss keeps occurring in the connection. The congestion window is reset

back to 1 MTU whenever retransmission occurs.

44

Congestion Window vs Time
250 — T T T T T T T

2001

o
(=]
T

Congestion Window (segments})
<}
o

50

R) \
0 0.5 1 1.5 2 25 3 35 4 45 5
Time (microsec) x 10°

(a) Congestion Window

Sequence Number vs Time

2.4805 — T T — T T — T T
248[/ E
& 24795 e
E
3
=z
[
(5]
<
[
3
o
& 24791 4
24785 4
2478 1 1. 1 L 1 | I— L L 1
0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time {microssc) X 10°

{b) Sequence Number

Figure 4.10: Evolution of Congestion Window and Sequence Number. 1 every 500
packets is dropped by the network interface.

45

Congestion Window vs Time

T L T 1 T T T
120l + + Congestion Window
¢ ¢ Retransmit events W
¢ ¢ ¢ ¢ o [4 ¢ ¢ o]
100+ ﬂ
T
2]
& sof
8
z
3
£
2 60 4
[=4
k]
%
5
5
O 40 4
20 E
0“ + 1 1 [L f f’x f
0 1000 2000 3000 4000 5000 6000 7000 8000
Time {msec)

(a) Congestion Window

x10° Sequence Number vs Time
4.0984 — R . ; . ~

40082}
4.098 | / -
40978} / i
o 0 o o

]
€
E a.0976} W
c
(]
3
f=4
3 409741 E
@
w
4.0972 % i
4.097 (/ J
4.0968 + + data 4
[¢ retransmit
4.0966 L I L | ;
0 1000 2000 3000 4000 5000 6000 7000 8000
Time({ms)

(b) Sequence Number

Figure 4.11: Evolution of Congestion Window and Sequence Number. 5 consecutive
packets out of 500 packets are dropped by the network interface.

46

4.4 Summary

This chapter has described the implementation of two types of measurement daemons
which benefit from the new continuous monitoring feature of NetSpec: the SNMP dae-
mon and the DSKI daemon. Two characteristic experiments have been presented for
each type of daemon to demonstrate the usefulness of the continuous monitoring fea-

ture.

47

Chapter 5

Network Monitoring Efforts in
MAGIC-II

5.1 Motivation and Background

The Internet is growing at such an overwhelming rate that understanding the inter-
action among the many Internet components has become more challenging than ever.
Monitoring the network becomes a crucial task, especially with the emergence of dis-
tributed applications that critically rely on the network to function and which con-
tribute to pushing the network to its limit while demanding a good quality of service.

Network monitoring provides important information to allow performance tuning
of network operation by identifying hot spots and measuring the perceived quality of
service from the user perspective. It can also be used to troubleshoot faults in the
network by continuously keeping track of the status of the components in the network.
Long term network monitoring has proven to be useful in understanding the trends
in performance for future planning. Monitoring can also identify security problems
or reinforce security mechanisms in the network. Recently, network monitoring has
been taken to another level and challenge by using the knowledge about the network
state to allow application level adaptation, more popularly known as network-aware
applications.

Numerous efforts have been devoted to measure the performance of the network

48

for the purpose of network management or performance evaluation through creation
of measurement tools or network probes. However, there is not yet a standard "mea-
surement infrastructure” which offers the systematic control and management of mea-
surement efforts and performance data.

We approach this problem by treating the network as a distributed system and
applying one of the common solutions to monitor a distributed system. We define
a collection of software agents to provide integrated control of monitoring elements
and collected information. Essentially, an agent is an autonomous entity that operates
around a knowledge base (KB). In the context of this thesis, the responsibility of an

agent is to automate one or more of the following tasks:

Continuous monitoring of the components of distributed applications and rele-

vant network characteristics

Creation and control of network testing and measurement

Collection and storage of performance data

Correlation and presentation of performance data to application and/or user

In particular, the agent technology allows one to "wrap” legacy tools - in this case,
network monitoring and measurement tools — with software and enable them to com-
municate via a common agent protocol such as the Knowledge and Query Manipu-
lation Language (KQML) [15]. With this approach, the complex task of monitoring a
large, distributed system can be decomposed structurally into some domain-specific

tasks while maintaining the common goals.

5.1.1 Application in the MAGIC-II Testbed

The monitoring system discussed in this section is particularly developed for the MAGIC-
IT (Multidimensional Applications and Gigabit Interconnect Consortium) project [31].
MAGIC-II is the second phase of a national ATM WAN sponsored by the Informa-
tion Technology Office of the Defense Advanced Research Projects Agency. Figure 5.1

49

. shows the graphical information of the topology and participants of the MAGIC-II

project.

Figure 5.1: The MAGIC-II Network

The MAGIC testbed consists of three components:
¢ An interactive real-time, terrain visualization application, Terravision [30].

e A distributed paraliel storage system (DPSS) [14] with performance sufficient to

support the terrain visualization application

e A high-speed ATM network to link the computing resources required for real-

time rendering of the terrain.

The monitoring system is intended to provide valuable information to dynamically
configure the DPSS and to monitor the health of the MAGIC-II network in general. Par-
ticularly, the DPSS depends on the monitoring system to collect knowledge about some
network characteristics to perform dynamic server selection, i.e. select a server from a
number of servers which will give the best service. The network management aspect

involves status and connectivity monitoring and network performance monitoring.

50

. 5.1.2 Objectives

The objectives of the work described in this chapter are twofold:

¢ To develop a monitoring agent which collects and maintains data about network

state by doing testing and measurement on network elements

o To develop a tool that provides geographical display of application and network
components and measurement data in a wide-area distributed application and

network

5.2 Design Criteria for Monitoring System

The following design guidelines have been adopted to achieve the design objectives:

e Modularity:
The monitoring agent framework must promote modular design which clearly

. separates the policy from the mechanism in doing network measurement.

e Portability:
Since a distributed system most likely comprises heterogeneous components and
systems, the agents should be easily portable and applicable to different architec-

tures.

e Distributed:
The system must be capable of monitoring network elements in more than one

administrative domain.

e Extensibility:
The capabilities of the agents in the system should be easily extended to support

new types of measurement or testing.

5.3 Implementation Approach

NetSpec will be used as the main control entity of network testing and measurement

‘ because of its capabilities to perform distributed network testing in an integrated and

51

extensible manner. This allows the system to be distributed and extensible at the same
time. Moreover, since NetSpec has been ported to several major platforms, portability
is not an issue.

For the agent implementation, we use the JATLite (Java Agent Template, Lite) [9]
package which is written in Java language that allows users to quickly create new soft-
ware agents that communicate robustly over the Internet. JATLite provides a basic in-
frastructure for agents’ communication based upon TCP/IP and KQML messages. The
use of the Java language allows the agents to be run on heterogeneous platforms and
thus, ensures portability. Its modular construction consists of a hierarchy of increas-
ingly specialized layers which may be customized to fit the specific requirements of a

given system. Figure 5.2 shows how the hierarchy of layers are organized in JATLite.

User Access

Basel.ayer

AbstractLayer

Figure 5.2: JATLite layers

The Abstract Layer provides the collection of abstract classes necessary for JATLite
implementation. The Base Layer is built on top of the abstract layer and provides basic
communication based on TCP/IP. The KQML Layer provides storage and parsing rou-
tines for KQML messages. The Router Layer provides name registration and message
routing and queuing for agents. Finally, the Protocol Layer supports diverse standard
internet services such as SMTP, FTP or HTTP.

One important concept in JATLite framework is the Agent Message Router (AMR)
(also referred to as a router). It provides name registration and message routing or

queuing for agents. In this scheme, agents can operate in disconnected mode and still

52

receive the messages addressed for them. Another advantage is that the existence of
an agent is transparent to the other agents in the system. An agent can send a message
to another agent in the system by indicating the registered name of that agent in the
destination field of the message and then sending the message to the router. The router
then will forward the message to its intended recipient as long as it has registered itself

with the router.

5.4 Functional Overview

This section provides the high level architecture of the monitoring system developed
in the MAGIC-II testbed. In particular, it will define the different types of monitoring
agents which exist in the system and how they relate to each other. The two main
organizations involved in developing the distributed monitoring system are KU and
LBNL. KU’s contribution mainly involves monitoring at the network level while LBNL
is particularly interested in monitoring at the application level. Both efforts are aimed
at dynamic reconfiguration of the DPSS and also performance tuning and optimization
of the distributed application.

Figure 5.3 shows the functional overview of the components existing in the sys-
tem. The MAGIC-II testbed cloud represents the wide-area ATM network and also
distributed application being monitored by the agents. There are four types of agents

that we can identify from the picture:

NSAgent is a JATLite agent which creates and schedules NetSpec experiments and
organizes the performance reports. The type and parameters of the experiment
can be loaded dynamically. NSAgent collects the information about the DPSS

system from the ServerMonitor.

VisAgent is a JATLite agent with a front-end applet which visualizes the state of the
network and distributed application and the agents configuration. The informa-

tion is collected from the NSAgent and ServerMonitor.

ServerMonitor is a JATLite agent which monitors the status and configuration of a
DPSS system.

53

JATLite
Router

AN

VisAgent [<T| NsAgent [Sve| Sener KoMﬁ Montor }
monitor{} monitor {} monitor{}
(N
o p m&3
4P P
=ik P
s s -
MAGIC-Il Testbed
= p &3
= P L=
@ S —8 J
L [

Figure 5.3: Functional Overview of Monitoring System

HostMonitor is also a JATLite agent which keeps track of the status of the currently

connected DPSS clients.

Each of these agents registers itself with the router when it starts up. It exchanges

KOML messages with other agents in the system via the router.

5.5 Implementation of NSAgent

The main responsibility of the NSAgent is to capture the state of some of the network
characteristics and by doing so monitor the network. It does that by performing the
appropriate test and measurement in the network. The result of monitoring and mea-
suring the network characteristics can be used for different purposes. In the MAGIC-II
testbed, the main objective is to use the knowledge about the current condition in the
network to dynamically select the best server in the DPSS system. The characteristics
of particular interest are the load of the network which can be represented by the avail-
able link bandwidth and round trip time. The NSAgent is also used to perform general

network monitoring such as connectivity or throughput test.

54

Thus, the main focus of the NSAgent implementation is to design an extensible
framework which can accommodate future types of network measurement or testing.
Although the main objective in this project is to support the dynamic reconfiguration
of the DPSS system, NSAgent should fulfill the ultimate goal of capturing the network

State.

5.5.1 NSAgent Architecture

SRS

Network Monitor

] Y
|InterpreteT, |Task1 |
’ Action] ’ Dataw /(})
| O
DOMAIN

NetSpec Experiments

g RESOURCES -
3]
5 NetSpec Scripts Database
€ NetSpec Reports
= NetSpec Experiments

other KQML - -%

agents € monitored

= entities
£
£
O
&)

Figure 5.4: NSAgent Architecture and External Components

Figure 5.4 shows the architecture of the NSAgent. The JATLite’sRouterClientAction
class provides the basic communication interface based on TCP /1P socket via the router
for receiving and sending KQML messages. The NSAgent has a collection of templates
for NetSpec scripts and reports and for creating NetSpec experiments. It usually re-
ceives a monitoring task from other agents and creates the appropriate network mon-
itor. The results of the NetSpec experiments can be stored in a database or the filesys-
tem.

NSAgent also defines an abstraction called a domain which consists of an inter-
preter, an action, data structures and monitoring tasks. This abstraction allows NSAgent’s

capabilities to be extended dynamically. A domain can be loaded into NSAgent to han-

55

dle a specific monitoring task at hand.

The message handling of a RouterClientAction agent is quite simple. When a
KQML message destined for an agent arrives at the router, it stores the message in
the incoming message box for that agent and then it will notify the agent. The agent is
responsible for retrieving its own message and deleting them afterward. Program 5.1

shows the pseudo-code of the Act () method in the NSAgentAction class.

Program 5.1 Pseudo-code for the Act() method in NSAgentAction

class NSAgentAction extends RouterClientAction {
public boolean Act {(Object o) {
// create KQMLmail
KQMLmail mail = new KQMLmail ((String)0, 0);

// extract KQMLmessage
KQOMLmessage kgml = mail.getKQMLmessage() ;

// parse and interpret message

// delete message
addToDeleteBuffer(0);

5.5.2 Knowledge Representation

One of the main components in a software agent is its knowledge base (KB). It provides
the context of agent execution and the knowledge about its environment. The repre-
sentation of knowledge can vary according to its purpose. NSAgent has two types
of knowledge representation. The procedural representation uses program functions or
methods to represent the data and the operation associated with an object. This type of
representation is particularly useful in defining the capabilities of an agent. The second
type of knowledge representation used in NSAgent is a relational data base. It usually

serves as a back-end storage of static or run-time data. Relational data base provides a

56

convenient and structured access and manipulation of data.
In NSAgent, the procedural representation is also called a resource. Section 5.5.2.1
will explain the types of resources which have been defined in NSAgent. Section 5.5.2.2

will describe the structure and configuration of the database.

5.5.2.1 Resources

NSAgent mainly uses resources to store the knowledge needed for running network
experiments. Figure 5.5 shows the conceptual process of creating a network experi-
ment. Given a task to monitor a specific network characteristic, NSAgent will create
the appropriate network monitor object. The monitor object will create the NetSpec
script that will invoke the proper NetSpec measurement daemon for the task. Then
it will need to parse the performance report generated by the NetSpec daemon and

interpret the result.

E—

monitored
entities

Raw
Report
NetSpec NetSpec
Script Experiment
Network
::. :
monitoring

task NSAgent

Figure 5.5: Network Monitoring Process

NSAgent defines the following resource abstractions:

e Network Monitor
It represents the object that controls NetSpec experiment. Every network mon-
itor object encodes the type and topology of NetSpec experiment. The type is
associated with the kind of NetSpec measurement daemon which needs to be ex-
ecuted. The topology defines the execution construct and the participants of the
experiment. A monitoring task must specify the type of monitor object to create.

It can also specify the duration of the experiment and storage method.

57

For example, we can define a monitor object which performs a full mesh through-
put experiment among N nodes. In this case, the type of the experiment (i.e.
throughput) indicates that we have to use NetSpec Test Daemons. The full mesh
topology will creates a script of 2 pair of end to end experiment between each

two nodes in the set of N given nodes.

Table 5.1 gives some examples of the types of network monitors that have been

implemented so far.

Name Topology Daemon type
FullMeshThroughput N-to-N (full mesh) nstestd
PointToMultiPointThroughput 1-to-N (star) nstestd
EndToEndThroughput 1-to-1 nstestd
FullMeshDelay N-to-N nspingd
PointToMultiPointDelay 1-to-N nspingd
EndToEndDelay 1-to-1 nspingd
HostMonitor 1-to-N nssnmpd

Table 5.1: Network Monitors

NetSpec Script A NetSpec script object contains the parameters and options of a
NetSpec daemon and the methods to generate the script. A class must be defined
for each NetSpec daemon since each NetSpec daemon has different parameters
and format. For example, a NetSpec script class of the NetSpec Test Daemon
defines the test parameters such as type of traffic, protocol and end-nodes. It also
needs to implement the method that generates a block structure describing a this

test.

NetSpec Report Since there is no standard report format defined in NetSpec,
each daemon generates varying types of report which makes parsing and inter-
pretation of the report particularly difficult. To handle this problem, NSAgent
defines a NetSpec report class for each type of daemon. Each class provides

methods to parse and store the result.

58

5.5.2.2 Database

For this project, we have decided to use the msql (mini SQL) [20], a light-weight rela-
tional database based on SQL as the back-end storage. The NSAgent uses the database
to store static configuration of the network (such as names and addresses of end hosts
or switches) and the configuration of the distributed application being monitored, in
this case, the DPSS. The results of network experiments can also be optionally stored in
the database for further retrieval by other agents. Since the goal is to capture the state
of the network, only the most recent result is kept in the database. Historical results

can optionally be cached in the filesystem.

5.5.3 Domain Oriented Monitoring

As mentioned in Section 5.1, the knowledge about some characteristics of a computer
network obtained from some network monitoring efforts can be applicable to different
areas of application. Therefore, the architecture of a monitoring agent must be generic
enough to cater to a broad range of monitoring aspect. To achieve this, the knowl-
edge representation and the action of the agent must be abstracted away from domain
specific information and goals.

NSAgent defines a procedural abstraction for a domain that encodes specific in-
formation defining the behavior of the monitoring agent in a domain's environment.
A domain can be viewed as a client who is using monitoring services offered by the
NSAgent and tailoring those services to its requirements. For example, a wide area
network needs a monitor to check network connectivity and collect statistics from net-
work elements. This network has its own network topology, measurement strategy
and performance report format. Another network probably has different topology and
monitoring goals. However, the underlying mechanisms of performing network mea-
surement and data collection are essentially the same.

Each domain has a set of attributes to define its monitoring requirements:

e Monitoring Task

A task defines the type of network monitor, the frequency of data collection, stor-

59

age method and other parameters pertaining to the network measurement.

e Message Interpreter
The definition of a domain should also include an interpreter for KQML mes-
sages related to this particular domain. The ontology field in a KQOML message
is used by the NSAgent to determine how to interpret this message. There is
a one-to-one mapping between an ontology and a domain. NSAgent will pass
the message for ontology A into the interpreter for domain A. This eliminates
the need to create a separate agent to handle each type of monitoring domain

existing in the system.

e Initial Action

A domain also defines a set of initial actions to be taken after the domain defini-

tion is loaded into the NSAgent. Typical action includes database configuration

and creation of monitoring tasks.

5.5.4 Examples of Domain Implementation

This section will give two examples of domain implementation in the context of MAGIC-
II testbed. These two domains differ in the goals of monitoring. The DPSS domain
mainly uses the monitoring information for dynamic reconfiguration of distributed
application. The WAN monitor domain collects status information and perform active

measurements to test a wide area network like the MAGIC-1I testbed.

5.5.4.1 DPSS Domain

Goal

The objective of network monitoring in this domain is to obtain knowledge about the
network link between a DPSS client and some DPSS servers. A client will select the
server with the best connection (high throughput, low delay). This scheme is also

called the dynamic server selection problem and has shown promising results [6].

60

Monitoring Tasks

Given the name and location of the DPSS servers in the system, NSAgent must perform
network measurements to test the link quality between a given set of DPSS clients
and the servers. Specifically, NSAgent creates a throughput experiment and a delay

experiment with star topology for every registered DPSS client.

Interpreter

The KQML messages in this domain mainly deal with the configuration of the DPSS
system, for example to register a new DPSS client. Other agents in the DPSS system
can also send query to find out about the current link condition between a client and a

server.

Initial Action

When the DPSS domain is loaded, it will instruct NSAgent to find out more about the
DPSS configuration. After the information is available, NSAgent can start the monitor-
ing tasks described above.

5.5.4.2 An ATM Wide Area Network Monitor Domain

Goal
The objective is to collect statistics from network elements, monitor the connectivity in
the network and perform periodic throughput measurement and some other general

network monitoring activities.

Monitoring Tasks

Several monitoring tasks can be defined:
¢ Full mesh connectivity test among all sites in the network
¢ Full mesh throughput test among all sites

e Status of network elements and end hosts in each site

61

Interpreter
The interpreter for this domain can handle queries about the status of network moni-
tors and a customized performance report. There should also be provisions for adding

a new set of monitoring capabilities or removing existing monitors.

Initial Action

The information about each network elements and network configuration is loaded.
Basically, an ATM wide area network can be hierarchically organized into a collection
of sites connected by ATM switches. Each site consists of a collection of end hosts and

switches.

5.6 VisAgent Implementation

VisAgent is a front-end interface to the monitoring systems described in this chapter.
It aims at providing geographical display of the state of a distributed application and
its underlying wide-area network. The logical approach is to make the visualization
tool itself an agent that communicates with the monitoring agents and hence, the name
VisAgent.

VisAgent is implemented as a Java applet which can be loaded from a web browser
or launched as a Java application. This approach provides the convenient access for
a thin client to access the visualization tool from various location or environment.
JATLite’s router mechanism plays an important role especially for this type of agent
because the only information needed by the VisAgent to communicate with the rest
of the system is the address of the router. It also solves the security problem imposed
by web browser on Java applet which only permits an applet to create sockets to pro-
cesses on the same host where the web server resides. As long as the JATLite’s router
and the web server are configured to run on the same hosts, the applet can be loaded
from anywhere.

VisAgent uses both polling and event-driven mechanism in updating the display.
Polling is mainly used to collect information which are supplied by other agents, while

event driven is used to collect information from the database. This strategy is used

62

to achieve the reactiveness of the visualization tool. Query to an agent usually takes
significantly more time than query to a database. Therefore, user’s actions usually only

trigger query to a database and an update of the view.

5.6.1 GenMap Package

The main goal of VisAgent is to display information based on their geographical po-
sition. Therefore, we need a user interface with a map overlaid with visual symbols
to represent state of the system. The GenMap package [17] provides a starting point
to achieve this goal. The package consists of a set of Java classes which provides the
basic functionality for geographical network visualization. It implements the classes to
draw the background map, nodes and lines and methods to zoom in and out the map.

Considerable amount of effort has been devoted to adapt the GenMap package to
do the type of visualization that is required for MAGIC-II. GenMap is really specific
as to the format and size of background map used. The original package uses a flat
map of the whole world which then can be zoomed in to a particular continent. If
the resolution of the base map is not good enough, the zoomed version of a continent
will be of very poor quality. Since this project is particularly interested in providing
visualization for the United States region, we want to start with a US map as the base
map. The solution is to modify the ImageProducer class which supplies the pixels to
be drawn on the screen so that we can start with a map of a particular region bounded
by a rectangle of the given latitude-longitude pairs.

Another addition to the GenMap package is the thumbnail map which shows a
rectangle bounding the current display on the base map. This feature is particularly
useful if the base map does not have details such as state lines or city names. Users
can always refer to the thumbnail image to figure out which part of the map they are

looking at.

5.6.2 Visualization Layers

The VisAgent collects information from various sources and tries to aggregate them to

form a unified view of a distributed application and its underlying wide-area network.

63

The best way to organize the data is to group them by the source of information. Vi-
sually, we can provide the display as viewed from a specific layer. By separating the
information in layers, we can potentially display many characteristics of the applica-
tion and the network in one convenient visualization tool.

VisAgent provides three layers of visualization. The first layer is for the distributed
application, the second for the network and the third is for the monitoring agents. The
next few paragraphs will describe each layer in detail and shows the screen shot.

Application layer shows the location of the components of the distributed appli-
cation and the status of each component. In the MAGIC-II context, each node repre-
sents either a DPSS master, server or client. The lines represent the active connection
from a client to the server(s). This layer provides the information about the number of
servers, the location and conﬁguration of each and identifies the location and status of
the client.

Network layer shows the configuration of the network and the results of the mea-
surement done on the network. Each node represents a site in the testbed. Lines rep-
resent the physical connection or the network characteristics. The width of the lines
usually reflects the value of the network characteristics they represent. This layer also
provides the detail configuration of network elements (e.g. switch) and end-hosts in
each site.

Agent layer shows the configuration of the monitoring system, i.e. the geographi-
cal location and the address of the agents. It also shows the topology and status of the
active network experiments. This layer can provide useful information to understand

the components and interaction between elements in the monitoring system.

5.6.3 Visual Element Mapping

For each visualization layer, each node and line can represent different entity and
value. A node representation can be varied in terms of shape, size and color. Line
can only vary in size and color. The mapping of the attributes of the nodes and lines to
measured parameters can either be hard coded in the program or dynamically recon-

figurable at run time. To make our tool as general and flexible as possible, we choose

64

the second approach.

For each layer we define a set of mappings for the nodes and lines and provide
an efficient API for the programmer. The GenMap's base class for node and line have
been modified so that the attribute binding is done as late as possible, for example just
before the node and line are displayed on the screen. The mapping can be defined
in a configuration file which is loaded initially. The attributes of a node or a line are
assigned by consulting the rules defined in the configuration. The configuration is also
used to create legend for each visualization layer that is updated every time the view
changes to another layer.

For each layer, two lines describing the node and line’s attributes, respectively,

must be specified in the configuration file. Table 5.2 summarizes the attributes for

the node and line and acceptable values for each attribute.

Element | Attribute | Value Syntax Description
LABEL Name The type of entity this node/line repre-
sents
UNIT Name The unit for the value represented by this
node/line
FIX(color The hex value of the color for all
nodes/lines
Node/ COLOR | RANGE(min,max) The color of this node/line can vary ac-
cording to the value which lies between
min and max
line LIST((Jabell, colorl), (Ia- | Node/line with labell is colored colorl,
bel2, color?) ...) and so on
FIX(size All nodes/lines have the same size
SIZE RANGE(min,max) The size of this node/line can vary ac-
cording to the value which lies between
min and max
LIST((Iabell, sizel), (Ia- | Node/line with labell is of size sizel, and
bel2, size2) ...) so on
FIX(shape) All nodes have the same shape
Node SHAPE LIST((labell, shapel), (la- | Node/line with labell is of shape shapel,
bel2, shape?) ...) and so on

Table 5.2: Visual Element Mapping Attributes

65

Upon receiving this message, the NSAgent instantiates two types of network mon-

itors (see Table 5.1:

1. A PointToMultiPoint Throughput monitor measures the transfer capacity (through-
put) of the links between the client and the servers. If either the client or the
server has more than one network interface, each interface needs to be tested.
This experiment is done once every 30 minutes. The results of the experiment is
stored in the database. Figure 5.7(a) shows the variation in the throughput from
tv-client to the eight servers in the demonstration as reflected in the database at

one point in time.

2. A PointToMultiPointDelay monitor measures the round trip time between the
client and the servers. Since this type of experiment does not produce a great
disturbance to the network, it can be done more frequently (once every 15 min-
utes) without consuming too much network resources. An example result of the

b).

—_

measurement is shown in Figure 5.7

34.062

i
i

Ibl-server3 Ibl-server3

20.600

Ibl-serverd Ibl-server4

27.006

i

sri-serveri sri-servert

73.536
edc-serveri

edc-server2

i
i

edc-serveri

edc-server2

i
i

36.235

i
i

tioc-servert tioc-serveri

35.394

i
i

tioc-server2 tioc-server2

36.226

ku-server2 ku-server2

i
|

(a) Throughput (in Mbps) (b) RTT (in msec)

Figure 5.7: Variation in throughput and round trip time between a DPSS client and
servers

5.7.1.2 Monitoring Connectivity in the Network

The objective of this task is to monitor the connectivity in the network. Sometimes
it is difficult to identify the cause of the problem when an 'Unreachable destination’
message is received because of the network has many potential points of failure. This
is especially true in an experimental testbed such as MAGIC-II where the configura-
tion of the network may change frequently. Many times we found that the reachable
machines/sites varied greatly from one machine to the next in the network.

The objective of the measurement activity described in this section is to provide a
better understanding about how the sites in the network are connected to each other
and what kind of connectivity exists currently. Every 15 minutes, NSAgent sched-
ules a FullMeshDelay experiment among the major hosts in each site in the network.
Since FullMeshDelay network monitor uses the ICMP_ECHO mechanism to measure
the round trip time, it can be utilized to test the connectivity from one point it the

network to several other points.

5.7.1.3 Monitoring Transfer Capacity of the Network

Besides monitoring the connectivity, another important metrics in assessing the gen-
eral health of a network is to test the transfer capacity (throughput) of the links in the
network. Variation in the throughput is generally affected by the amount of traffic and
the presence of bottleneck links in the network. For this purpose, NSAgent creates a
FullMeshThroughput experiment among the major hosts in each site. Since this type of
experiment introduces a large amount of test traffic to the network, it should not be
done too frequently. However, to study the variation in the throughput during the
course of a day, it should be done at different times during the day. In the demonstra-

tion, NSAgent schedules this experiment once every 3 hours.

5.7.1.4 Monitoring Network Elements Status

While the measurement activity described in Section 5.7.1.2 is aimed at providing in-
formation about connectivity between sites in the network, it does not provide detail

information about each machine or other network element within a site. This type of

69

5.7 Example Configuration in MAGIC-II Testbed

This section will describe the configuration and capabilities of the monitoring sys-
tem described above demonstrated during the MAGIC-II quarterly meeting on July
14, 1998 at the University of Kansas. Figure 5.6 shows the configuration of the demo.

= © =
8 8 \\ g 8
s | & =8| S

LBNL, Berkeley, CA EDC, Sioux Falls, SD

=
8 g
= S

SRI, Menlo Park, CA | .7 TIOC, Kansas City, KS

= =
S St - ..
VisAgent TerraVision ServerMonitor NetSpec

Agent Agent
University of Kansas, Lawrence, KS

~

Figure 5.6: Demonstration Configuration

We had 8 DPSS servers distributed across the MAGIC sites. The agents, the JATLite
router, the database server and the web server were running on a machine at KU (fara-
day.ukans.magic.net, a Sun Ultra Sparc running Solaris 2.6). NetSpec was installed at
all DPSS hosts and at least in one machine at each site. The domain oriented monitor-
ing described in section 5.5.3 was implemented after the demonstration date to make
the monitoring system more applicable to areas other than the DPSS. Prior to that,
the configuration of NSAgent described in this section contained specific information
about the DPSS (for the description of the previous version, see the document in [48].
Adapting the configuration described in the following sections to the new framework

requires only minimal changes which will be noted clearly in each section.

66

5.7.1 NSAgent Configuration

For the demonstration, NSAgent was configured to schedule and run a number of net-
work experiments by using NetSpec. Each network measurement was encapsulated
in a monitoring task presented to the NSAgent during its initialization. By default,
NSAgent loads a series of KQML messages from an initialization file which defines the
agent’s initial behavior. Appendix A describes the KQML messages implemented by
the NSAgent.

The following subsections will describe each monitoring task and its significance

as well as some example results obtained from the measurement when appropriate.

5.7.1.1 Monitoring Link Quality between DPSS Client and Servers

The objective of this activity is to determine the link quality between a DPSS client
and the servers configured in the system in order to select the server with the best
connectivity to the client. The link quality is defined in term of round trip delay and
transfer capacity of the link.

When a new DPSS client comes up in the system, the NSAgent must be notified
about its existence (please refer to the KQML message A.1 which performs this in Ap-
pendix A). The entity that must register the client to the NSAgent can be the client
itself or a DPSS monitor agent which continually keeps track of the emergence of a
new client. Since this had not been implemented by the demonstration date, a static
configuration was used instead. The following KQML message was included in the ini-
tialization file to register a DPSS client named tv-client with only one network in-
terface, terravision.ukans.magic.net, which will potentially talks to one of the eight DPSS

servers.

(evaluate :sender NSAgent :receiver NSAgent
:content (tell-resource :type client
:name ku-clientl
:pos (38.963 -95.233)
:interface (terravision.ukans.magic.net 198.207.143.157)
:server (1lbl-serverd sri-serverl tioc-serverl tioc-server2
1bl-server3 ku-serverl edc-serverl edc-server2)))

67

monitoring can be achieved by doing a PointToMultiPointDelay between a host in a site
to the remaining hosts and switches in each site. The database contains the static infor-
mation about the configuration in each site. NSAgent uses this information to create
experiment which sends ICMP_ECHO message every 15 minutes from a designated

host to the rest of the network element in each site.

5.7.1.5 Adapting to Domain Oriented Monitoring

In the new framework which uses domain oriented monitoring, the rﬁonitoring tasks
are encapsulated in a domain module. The measurements related to the DPSS de-
scribed in Section 5.7.1.1 is in one domain called DPSSDomain and the measurements
in Sections 5.7.1.2, 5.7.1.3 and 5.7.1.4 are encoded in a separate domain, NetMonDomain.
Instead of loading the network monitors during the NSAgent initialization, both
of these domains are loaded instead. From that point on, NSAgent works in the same

way as in the old approach with a freedom to load or unload domains during runtime.

5.7.2 VisAgent Configuration

In the demonstration, the VisAgent is started by loading the Java applet for the visual-
ization from a Java capable browser. VisAgent collects the performance data and static
configuration from three sources: the NSAgent, the database server and the Server-
Monitor agent. KQML messages are used in communicating with the agents, while
standard SQL messages are used to interact with the database server. Appendix B de-
scribes the KQML messages which are used by the VisAgent to interact to the other
agents in the system. As described in Section 5.6.2, VisAgent provides three layered

views:

1. Application Layer
Color-coded nodes represent the DPSS master, server and clients. The placement
of the nodes indicates the geographical location of the corresponding DPSS com-
ponents. Lines represent the active connection between a client and some DPSS
servers. Figure 5.8 shows the screen capture of the visualization tool displaying

the status of the DPSS. In this figure, a DPSS client, ku_clientl, is accessing

70

data set from two DPSS servers as shown by the lines connecting the client and
the servers. The data panel at the bottom left corner shows the detail information
about ku_clientl such as its network interfaces and the results of the through-
put measurements. The panel on the right side displays the names of the DPSS
master(s), server(s), and client(s) that are currently registered with the monitor-

ing systems.

Actions on this layers include:

e Clicking on a DPSS master or server’s node will send a GetHostInformation

query about that node to the ServerMonitor agent.

e Clicking on a client’s node will send a LinkInformation query to the NSAgent

about the latest throughput and delay numbers from that client to the servers.

e VisAgent periodically polls the ServerMonitor to collect the information
about the currently connected client by sending the GetMasterInformation
query. The information typically includes the user name, the program name
and the data sets accessed by the client. When a new user is detected, the
view is updated with lines representing connection from the user to the cor-

responding DPSS servers.

2. Network Layer
Each node at the network layer represents a site in the MAGIC-II testbed. The

network layer is further divided into three sublayers:

¢ The topology sublayer shows the physical configuration of the testbed. The
color of the lines represent the physical link’s capacity (i.e. DS-3, OC-3, OC-
12). Clicking on a node will bring up another window which shows the
detail configuration and status of the network elements in each site (see Sec-
tion 5.7.1.4. Elements which are down are colored differently from elements
which are up. Figure 5.9 shows the screenshot of the VisAgent displaying
the topology sublayer. The smaller window shows the detail configuration
at KU site. The panel on the right displays the names of the network ele-

ments and hosts at each site. Green color is used for network elements and

71

3653 LI TT1CG!KE L8 1nr 3Nl

BEGT 10D E5E90:P0 4@ 7T ey sd 5L07: ro€ - q| “pem
866! 1) TTICEIIO L0 I ont sdal BEBRE 3ouD: Bew: |G * 1uN-p-35t
8661 JA) ITICOMO LO I°r onL sdoy BT SE Fouo:bew 1ozt yun-1-55¢

=day 526°c01 3321 Bow 2015 * 1un- IUERDR | s
10} $3u9: |37y wouy ycdibroay |

166 "SZT°LET GZT PA AWM TTYY | *ARpeIey

(OTT "CHT "28T "36E) 3PurD: Bom sueNn *Aupe.Io)
15308 J A3}
WS SEdT A
TS 1D

TRIUB =T
DD -
(B
A5V} &
ZN3NADS-OPd
T B AR08
PUONAES =t S
ISHIIE.TO 1}
£40.438-19]
Ppudnias-|q)
1 HaALEE_ DO}

OIS &

“121037, 13idlthy

Figure 5.8: Screenshot of VisAgent at the Application Layer. Nodes represent DPSS mas-
ter, servers and clients. Lines represent active connection between a DPSS client and servers.

72

blue color is used for hosts. Any element or host which is not responding to

a PING message is indicated by a red color.

e The connectivity sublayer shows the result of the connectivity test (see Sec-
tion 5.7.1.2 from a point of view of a site. The color of the lines coming out
from a site to another site represents the round-trip-time in millisecond. Un-
reachable site will not be connected by a line. Figure 5.10 shows the screen-
shot of the VisAgent displaying the connectivity as seen from EDC site. The
color of the lines represent the round-trip time values as indicated by the
color spectrum in the legend window. The round-trip time information is

also displayed in the data panel.

e The maximum bandwidth sublayer shows the result of the throughput test
from a point of view of a site (see Section 5.7.1.3). The color of the lines

represents the achievable throughput in Mbps.

3. Agent Layer
Each node in this layer represents either a JATLite agent or a NetSpec daemon.
The color of the node indicates the types of agent or NetSpec daemon. Lines con-
necting NetSpec daemon’s nodes indicate the topology of the experiment. The
view of the agent display is automatically updated when a new experiment be-
gins or an existing experiment terminates. For example, figure 5.11 shows the vi-
sualization at the agent layer when a full mesh delay experiment is taking place.
The blue nodes represent the NetSpec Ping Daemons involved in the experiment.

The lines between the nodes represent the topology of the experiment.

The script used to configure the visual element mapping is given in Appendix C.

5.8 Summary

This chapter has discussed the design and implementation of the monitoring system
developed in the MAGIC-II network. The system consists of monitoring agents which
communicate with each other using KQML. NSAgent schedules network experiment

and organizes the performance data. VisAgent aggregates data collected by the agents

73

@ 3beur gy v—SS]
loufewr gy £ —sst
o fiewr gy 210
U abewsr g £3i0j
e 3w qy Fsioy
PusIfeL |qf (010}

) NG -
Jou BP0 IBh
1eubew o desu
ouberwrnon 1pnoy
19U DI6RW DGR UIPAIS
uwc,u_mmﬁ_.uo,mm:o; .Hm_m
1w bewron psh

Jouwoibeulnon 2oy

Aettrnon ¢ 7118
leu Jibewt 300 ¢ Zuey
ouibewryon | Zyuey

uudg -
Jeu ifeur sueyn-addoy
1ou sibew SUBM T AjUINEW
ouibewr suey Aepeiej
Js U el sueNn As|m
usBewr suesrr Buogsulie
pubewrsuenTcds

B3 DRl e unDrg

v~}

. ISK
Jeu dibew Ls jo oy
JauDBewy nsajadAazer)
JeuDIDewWr IS | —SSt

120 BT LS S

1w heur pg | SO8Ip9
Jeu D 1BeUr»po ¢ —Ssi
RuDIbew IpY + SSI
Budidewr dpa ¢ —Ss|
U ew 3p9 ¢ ~5s|
Jeunbewrapo | -Ss|
e ype uijiaul

- |
RS - f

a3 - |

0 Wikimpusy

a5 &

ites.

. Nodes represent
ion between s

ical connect

idth of the phys

ines represent the bandw

tions). L

Screenshot of VisAgent at the Network Topology Sublaye

iza

9

tes (organ

igure 5

F
si

74

1w 3beus g1 551
wuDifeur|qy £—s
wufiewr gr o)
U sitewr gy cainj ;
By aewrqy £y ; (swirgnuuds
uifeuriqy _m:o,.mJ ‘ {(swoz DSt
1su-NBeLL G Jabi) (SwseIN
uwamu. few 01} desu ‘ (S Z LYINGT
U DIDEUIIO N IUIPTIOL : : LI0LJ D)qISIA SOISE
uu:.u_mmE.uon._:_uzm ‘ — ; - J(H 4 o191 .
TBu 31HEW 0] 3U0LS um_m
leudibewr ooy psh
1urbeur o) F21eyY
1BUaiBRIITI0N €7118Y
Jeus|feLd Jon ¢ 21y
wUDIbewrson | FBY]
uuds ~ |

Tauberr sueyiaddoy
Jeudibewr sued T Ajynew
rubewr suey Aepriey
iatroBewr sueyn Aajim
LU DfHeLr suesit Buoagseue
e ibewrsueyn-yods

_ i = [

JaLr D Be LY e u0DR]]

NS

JSKW
U oifiewr us e boy
Jau dbewr usajadazers
PuIbeur us | —Ss) i
o b s snid
RIS »~ |
jou bW Hpo | SOS3pa
U nbeurapo —ssi
12U dIBeUr 2P 551
RuUDIfeLu dIpa £ —ssi
U sbhewr ape -S|
Jeu dIBeW IpY | ~SSI
jeursibewrops uipaul

sserryand

Nodes rep-
ir color represent the

T.

ity Sublaye

1V
ity and the

iv

ing connect

isti
75

tex

1nes represen

ions). Li

t

1Za

Screenshot of VisAgent at the Network Connect

ites (organ
round trip time between sites.

10

igure 5
resent s

F

BUIETEN 353) WU STSN 3581 . 35O17SNISEL e

IN siusby @ dwusTSN SUdby & JseLTSN siueby @ 3Lyl sjusky @

FEC]

[HIWIURBYSIA
NBAYCN

WRBY 3LVl odAL
1w bBYSN

S

*

NetSpec daemons. Lines connecting NetSpec daemon nodes represent NetSpec experiment

Figure 5.11: Screenshot of VisAgent at the Agent Layer. Nodes represent JATLite agents or
topology.

76

. and provides the visualization for performance data in three layered views. The con-
figuration and example agents demonstrated during the MAGIC-II quarterly meeting

has been described.

77

Chapter 6

Conclusions and Future Work

The rapid growth of computer networks has made the process of understanding the
interaction among network components more challenging than ever. The increase in
the size of the network is accompanied by more demanding use of the network by dis-
tributed applications that critically rely on the network to function well. Consequently,
monitoring the health and stability of the network has become crucial.

Numerous efforts have been devoted to measure the performance of the network
for the purpose of network management or performance evaluation through creation
of measurement tools or network probes. However, there is yet a standardized "mea-
surement infrastructure” which offers the systematic control and management of mea-
surement efforts and performance data. The Internet is a classic example of an under-
measured and under-instrumented network. As a result, the quality of service over the
Internet has dramatically worsened in the past years, creating an Internet gridlock [12].

The work described in this thesis has addressed the issues of creating a scalable and
extensible network measurement infrastructure. Because of its extensible and flexible
architecture, NetSpec has been used as the main control structure to create measure-
ment daemons in the network. An important extension to support continuous collec-
tion of performance data has been added to the NetSpec framework. The extension
allows NetSpec to be used in a more real-time environment and for collecting data
with a finer granularity.

Two examples of the implementation of monitoring daemons that utilize the con-

78

tinuous monitoring feature have been presented: (1) the SNMP daemon collects per-
formance data from network devices by using SNMP and (2) the Data Stream daemon
collects data from an operating system kernel through the Data Stream Kernel Inter-
face.

This thesis also describes the implementation of a monitoring agent system as an
approach to creating a network measurement infrastructure. The role of the agents
in the system is to automate the process of (1) the continuous monitoring of applica-
tion components and network characteristics, (2) the creation and control of network
testing and measurement, (3) the collection and storage of performance data, and (4)
the correlation and presentation of performance data to application and/of network
manager.

In the MAGIC-II testbed where this monitoring system was developed and tested,
its main purpose is to capture some characteristics of the network state to support dy-
namic reconfiguration of the DPSS. In addition, the monitoring system is also used to
monitor the general health of the MAGIC-II network by measuring some vital metrics
of the network, such as connectivity, latency and throughput. The monitoring system
also includes a visualization tool that serves as a front end interface to the performance
data and more importantly, provides an integrated view of distributed application and

the underlying network.

6.1 Future Work

The work of creating the ultimate network measurement infrastructure is an ongoing
research. The approach described in this report provides several opportunities for fur-

ther work:

e Extend the NetSpec protocol to allow disconnected operation of NetSpec dae-
mon. This feature can be useful for long term monitoring in which it is not desir-
able for the NetSpec controller to linger for a long period of time. The collected

data can be sent through the report channel to a stand-by report collector server.
¢ The architecture of the monitoring agent described in Chapter 5 can be improved

79

by including rule-based approach in creating network experiments as done in
[33]. In such a scheme, a network monitoring action is defined by a set of rules.
Instead of programming monitoring tasks for each domain, a script for the rules

can be specified.

The implementation of network monitors can be simplified if the topology in-
formation is separated from daemon-specific parameters/information. Since the
topology of an experiment is usually applicable to different type of NetSpec dae-

mons, most of the topological abstraction can be reused.

The organization of configuration and historical data should be improved and
standardized by creating a more structured data base for storing performance

data.

80

Appendix A

KQML Messages Implemented by
NSAgent

A.1 Registering a New DPSS Client

(evaluate :sender xxx :receiver NSAgent
:content (tell-resource :type client :name clientName
:pos (lat long)

:interface (ifacel ipaddrl iface2 ipaddr2 ...

:server (serverl server2 ...)}))

Description:
Register a new DPSS client. NSAgent will monitor the links connecting to the given set

of servers for each network interfaces and store the information in the database.

A.2 Unregistering a DPSS Client

(evaluate :sender xxx :receiver NSAgent
:content (invalidate-resource :type client :name clientName))

Description:
Unregister a DPSS client. NSAgent will stop monitoring the links connected to this

client and remove information from the database.

81

A3 Getting Performance Measurement Result on a Link

(ask-one :sender xxX :receiver NSAgent
:content (GetLinkInformation ClientName client ServerName server))

Description:

Get the throughput and delay values for the link(s) between client and server.

(reply :sender NSAgent :receiver XXX
:content (LinkInformation ClientName client ServerName server
(Interface ifacel Throughput tl Delay dl)
(Interface iface2 Throughput t2 Delay d2)

Description:

Reply for the GetLinkInformation query. Throughput and delay values for every net-

work interface are returned.

A.4 Getting the Names of Configured DPSS

* (ask-one :sender xxx :receiver NSAgent
:content (GetKnownDPSS)

{\bf Description:} \\

Get the names of all DPSS servers and clients known to NSAgent.
\begin{singlespace}

\begin{small}

\begin{verbatim}

(reply :sender NSAgent :receiver XXX

:content (KnownDPSS ClientNames clientl client2 ...
ServerNames serverl server2...))

Description:

Return the names of DPSS clients and servers known to NSAgent.

A.5 Getting the Names of Known DPSS Clients

(ask-one :sender xxxX :receiver NSAgent

82

:content (GetKnownClients)

{\bf Description:} \\
Get the names and addresses of all DPSS clients known to NSAgent.

\begin{singlespace}
\begin{small}
\begin{verbatim}
(reply :sender NSAgent :receiver xxx
:content (KnownClients (ClientName clientl Interfaces ifacel
(ClientName client2 Interfaces ifacel

Description:

Returns the names and addresses of all DPSS clients known.

A.6 Getting Detail Information on all Registered DPSS Clients

(ask-about :sender VisAgent :receiver NSAgent
:content (dpss-clients))

Description:

Get the information about the DPSS clients registered with NSAgent: name, position,

Servers.

(reply :sender NSAgent :receiver xXxx
:content (dpss-clients :value (’(name lat long (serverl server?l
' {name lat long (sexrverl server?2

Description:

Returns the information about registered clients.
A.7T Getting Information about Active NetSpec Experiments

(ask-about :sender VisAgent :receiver NSAgent
:content (netspec-experiments))

Description:

Get the information about active NetSpec experiments.

83

(netspec-experiments :sender NSAgent :receiver xxx
:content ((NetMonName NetmonType NumHosts hostl host2
(NetMonName NetmonType NumHosts hostl host2

Description:

Returns the information about active NetSpec experiments.
A.8 Getting the Status of Network Monitors

(ask-about :sender VisAgent :receiver NSAgent
:content (network-monitors))

Get the information about the status of network monitors created by NSAgent.

(netspec-experiments :sender NSAgent :receiver VisAgent
:content ((NetmonName status)
{(NetmonName status) ...)

Description:

Returns the names and status (idle or running) of network monitors.

A.9 Registering a VisAgent

(register-visagent :sender VisAgent :receiver NSAgent
:name VisAgentName)

Description:
Register a VisAgent with NSAgent. A registered VisAgent will get updates about ex-

periment results and status.

A.10 Unregistering a VisAgent

(unregister-visagent :sender VisAgent :receiver NSAgent
:name VisAgentName)

84

Description:

Unregister a VisAgent.

A.11 Creating a Network Monitor

(create-experiment :sender xxx :receiver NSAgent
:type NetMonType
:param (NetMonName :keyl valuel :key2 :value2 ...)
:period timeInSec :saveData boolean)

Description:
Create a network monitor with the given type, parameters, frequency and storage op-

tions.

A.12 Deleting a Network Monitor

(delete-experiment :sender NSAgent :receiver xxx
:name NetMonName)

Description:

Delete a network monitor named NetMonName

A.13 Terminating NSAgent

(terminate-agent :sender xxx :receiver NSAgent)

Description:
Terminate NSAgent. It will stop all network monitors and send an acknowledgement

message to the sender.

(agent-terminated :sender NSAgent :receiver xxx)

Description:

Notify sender that NSAgent has terminated.

85

A.14 Notification about a New NetSpec Experiment

(new-netspec-experiments :sender NSAgent :receiver VisAgent

:content (NetMonName NetMonType NumHosts hostl host2 ...

Description:

Notify VisAgent that a new NetSpec experiment is just started.
A.15 Notification about the Termination of an Experiment
(remove-netspec-experiments :sender NSAgent :receiver VisAgent

:content (NetMonName)

Description:

Notify VisAgent that a NetSpec experiment has terminated.

86

Appendix B

KQML Messages Implemented by
VisAgent

B.1 Adding a New DPSS Client to the View

(new-client :sender xxx :receiver VisAgent
:name ClientName :pos (lat long)
:servers (serverl server2 ...))

Description:
Tell VisAgent that a new DPSS client is connected. VisAgent will update the view by

adding the client node and connections to the specified servers.
B.2 Removing a DPSS Client from the View

(remove-client :sender xxx :receiver VisAgent
:name ClientName)

Description:

Remove a DPSS client from the view.

87

B.3 Adding Monitoring Agents to the View

(registered-agents :sender router :receiver VisAgent
:content ((AgentName host port status)
(AgentName host port status) ...)

Description:

Tell VisAgent about the names and status of all agents registered with the router.

B.4 Adding a New NetSpec Experiment to the View

{(new-netspec-experiments :sender NSAgent :receiver VisAgent
:content (NetMonName NetMonType
NumHosts hostl host2 ...))

Description:

Notify VisAgent that a new NetSpec experiment is just started.

B.5 Removing an Existing NetSpec experiment from the View

(remove-netspec-experiments :sender NSAgent :receiver VisgAgent
:content (NetMonName)

Description:

Notify VisAgent that a NetSpec experiment has terminated.

B.6 KQML Messages Sent to ServerMonitor

In addition, VisAgent also sends KQML messages to the ServerMonitor to collect in-

formation about a DPSS host and the whole DPSS systems.

B.6.1 Getting Information about a DPSS Master

(ask-one :sender xxX :receiver ServerMonitor

88

:content (GetMasterInformation SystemName systemName))

Description:

Get information about the DPSS master and servers in a system.

(reply :sender ServerMonitor: receiver XxxX
:content (MasterInformation SystemName systemName isUp
NumberOfUsers numUser NumberOfDataSets numDataSet
TotalMemory totalMem TotalMemoryUsed totalMemUsed
(ServerName serverl TotalMemory serverMem
TotalMemoryUsed serverMemUsed)
(UserName userName ProgramName progName
IP_Address ipAddr HostName host
SessionID session
DataSetID dataSetID DataSetName dataSetName
NumberOfServersUsed numServer
NamesOfServersUsed serverl ...)...})

Description:
Information about the DPSS hosts in the system. VisAgent uses the information about

the users/clients to keep an updated view.

B.6.2 Getting Information about a DPSS Host

(ask-one :sender xxx :receiver ServerMonitor :content (GetHostInformation System-
Name systemName NodeName nodeName))
Description:

Get information about a DPSS host.

(reply :sender ServerMonitor :receiver XXX
:content (HostInformation SystemName systemName NodeName nodeName
HostIsUp UpTime upTime
NumberOfUsers numUsers Load load
Pages pages DiskActivity dl d2 d3 d4
UserCPU usexrCPU SystemCPU systemCPU))

Description:

Information about a DPSS host. VisAgent displays this information when user clicks

on a DPSS node.

89

Appendix C

Mapping Configuration File

The following mapping configuration file was used to configure the visual element

mapping in the VisAgent (see Section 5.6.3).

#
#Mapping Configuration for VisAgent during MAGIC-II demonstration
#on July 14, 1998.
#For each layer, there should be 2 lines defined: first one for node,
#second one for lines.
#
#AppLayer
LABEL = DPSS;
COLOR = LIST((MASTER, f£0000),
(SERVER, 00ff00),
(CLIENT, f£££f00), (END));
SIZE = FIX(3):;
SHAPE = FIX(1):
LABEL = Connection;
COLOR = RANGE(0,4) ;
SIZE = FIX(2):;
#NetTopLayer
LABEL = Site;
COLOR = FIX(f£f00)
SIZE = FIX(3);
SHAPE = FIX(1);
LABEL = Bandwidth;
UNIT = Mbps;
COLOR = RANGE(0,622) ;
SIZE = FIX(2);
#NetConnLayer
LABEL = Site;
COLOR = FIX(ff00) ;
SIZE = FIX(3);

90

SHAPE = FIX(1);
LABEL = RTT;

UNIT = ms;

COLOR = RANGE(0,300) ; 1

SIZE = FIX(2);
#NetBwLayer

LABEL = Site;
COLOR = FIX(f£00) ;
SIZE = FIX(3);
SHAPE = FIX(1l);
LABEL = Throughput;
UNIT = Mbps;
COLOR = RANGE(10,155) ;
SIZE = FIX(2);
#AgentLayer
LABEL = Agents;
COLOR = LIST((JATLite, ££f0000),
(NS_Test, 00££00),
(NS_Snmp, f££££00),
(NS_Ping, 0000ff), (END));
SIZE = FIX(3);
SHAPE = FIX(1);
LABEL = Test;
COLOR = LIST((NS_Test, 00f££f00),
(NS_sSnmp, ££££00),
(NS_Ping, 0000ff), (END));
SIZE = FIX(2);

91

Bibliography

[1] Andrew Adams, Jamshid Mahdavi, Matthew Mathis, and Vern Paxson and.
Creating a Scalable Architecture for Internet Measurement.

http:/ /www.psc.edu/networking/papers/nimi.html.

[2] Joel Apisdorf, Kevin Thompson, and Rick Wilder. Oc3mon: Flexible, Affordable,
High Performance Statistic Collection. http://www.nlanr.net/NA/Oc3mon.

[3] Brian Buchanan, Douglas Niehaus, Raghavan Menon, Sachin Sheth, Yulia Wijata,
and Sean House. The Data Stream Kernel Interface. Technical Report
ITTC-FY98-TR11510-04, Information and Telecommunication Technology Center,
June 1998.

[4] CAIDA. Cooperative Association for Internet Data Analysis (caida).
http://www.caida.org.

[5] CAIDA and NLANR. Caida Measurement Tool Taxonomy:.

http://www.caida.org/Tools/taxonomy.html.

[6] Robert L. Carter and Mark E. Crovella. Dynamic Server Selection using
Bandwidth Probing in Wide-Area Networks. Technical Report BU-CS-96-007,
Boston University, Boston, MA, March 1996.

[7]1 Robert L. Carter and Mark E. Crovella. Measuring Bottleneck Link Speed in
Packet-Switched Networks. Technical Report BU-CS-96-006, Boston University,
Boston, MA, March 1996.

[8] J. Case, M. Fedor, M. Schoffstall, and]. Davin. A Simple Network Management
Protocol (SNMP). RFC 1157, 1990.

92

[9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

[18]

University of Stanford Center for Design Research. JATLite: The Java Agent
Template. http://java.stanford.edu.

Cisco. Netflow Interface. ftp://ftp-
eng.cisco.com/pub/NetFlow/FlowCollector_2.0/demo/NFC2_0.README, July
1998.

Les Cotrell. Network Monitoring Tools.
http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html. Network

Monitoring Force Group of Stanford Linear Access Control.

Les Cottrell and Connie Logg. Network Monitoring for the LAN and WAN. Talk
given at ORNL,
http://www.slac.stanford.edu/grp/scs/net/talk/ornl-96/ornl.htm, June 1996.

Stanford Linear Accelarator Center Computing Services Group.

Brian Tierney et al. The Netlogger Methodology for High Performance
Distributed Systems Performance Analysis.
http://www-itg.lbl.gov/DPSS/logging/. Future Technologies Group, Lawrence
Berkeley National Laboratory.

Brian Tierney et al. An Overview of the Distributed Parallel Storage System

(DPSS). http://www-didc.lbl.gov/DPSS/Overview/DPSS.handout.fm.htmil.

T. Finin et al. DRAFT Specification of the KQML Agent Communication
Language. unpublished draft, 1993.

Patricia Gomes Soares Florissi and Yechiam Yemini. Management of Application

Quality of Service.

The Cooperative Assocation for Internet Data Analysis (CAIDA). The Genmap
Package. http://www.caida.org/Tools/Genmap/.

Ian Foster and Carl Kesselman. Globus: A Metacomputing Infrastructure

Toolkit.

93

[19] Anil Gopinath. Performance Measurement ans Analysis of Real-time CORBA

Endsystems. Master’s thesis, University of Kansas, Lawrence, Kansas, June 1998.

[20] D. Hughes. Mini SQL: A Lightweight Database Server.
http://www.hughes.com.au/library/msqll/manual. Bond University,

Australia.

[21] Van Jacobson. libpcap: the Packet Capture Library.
ftp://ftp.ee.lbl.gov/libpcap.tar.Z.

[22] Van Jacobson. Congestion Avoidance and Control. In Proceedings SIGCOMM'88
Symposium on Communications Architectures and Protocols, pages 314-329,

Stanford, CA, August 1988.
[23] Van Jacobson. traceroute. ftp://ftp.ee.lbl.gov/traceroute.tar.Z, 1988.

[24] Van Jacobson. pathchar: A Tool to Infer Characteristics on Internet Paths.

ftp://ftp.ee.lbl.gov/pathchar/msri-talk.pdf, 1997.
[25] Rick Jones. Netperf. http://www.cup.hp.com/netperf/NetPerfPage.html.

[26] Roel Jonkman. The Design and Implementation of Netspec. Internal Documents,

May 1995.

[27] Roel Jonkman. Remote Control and Information Protocol. Technical report,
Telecommunication and Information Sciences Laboratory, University of Kansas,

December 1995.

[28] Roel Jonkman and Joseph Evans. Netspec: Philosophy, Design and
Implementation. Master s thesis, University of Kansas, Lawrence, Kansas,

February 1998.

[29] Roel Jonkman, Douglas Niehaus, Joseph Evans, and Victor Frost. Netspec: A
Network Performance Evaluation Tool. submitted to SIGCOMM'96, February
1996.

94

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Y.G. Leclerc and S.Q. Lau. Terravision: A Terrain Visualization System. Technical

Report Technical Note 540, SRI International, Menlo Park, CA, March 1994.
MAGIC-IL http://www.magic.net.

G. Robert Malan and Farnam Jahanian. An extensible probe architecture for
network protocol performance measurement. In Proceedings ACM SIGCOMM’98,
1998.

Subrata Mazumdar and Aurel Lazar. Objective-driven Monitoring for
Broadband Networks. IEEE Transactions on Knowledge and Data Engineering,
8(3):391-402, June 1996.

Measurement and Operation Analysis Team. Towards a Systemic Understanding
of the Internet Organism: A Framework for the Creation of a Network Analysis
Infrastructure. http://moat.nlanr.net/NAI/, April 1998. National Laboratory
for Applied Network Research.

Sun Microsystems. XDR: External Data Representation Standard. RFC 1014,
1987.

Mark E. Miller. Managing Internetworks with SNMP. M&T Books, New York, 2nd
edition, 1997.

Shyam Murthy. A Software Emulation and Evaluation of Available Bit Rate

Service. Master’s thesis, University of Kansas, Lawrence, Kansas, August 1998.

Mike Muuss and Terry Slatery. Ttcp. http://ftp.arl.mil/pub/ttcp, October 1985.
Modified at Silicon Graphics in 1989.

NLANR. The National Laboratory of Applied Network Research (nlanr).

http://www.nlanr.net.

Tobias Oetiker. Multi Router Traffic Grapher.
http://www.ee.ethz.ch/ oetiker/webtools/mrtg/mrtg.html.

95

[41] Shyamalan Pather, Aaron Hoyt, and Douglas Niehaus. Netalyze.
http:/ /hegel.ittc.ukans.edu/ projects/netalyze/. Information and

Telecommunication Technology Center, University of Kansas.

[42] Vern Paxson. End-to-end routing behavior in the internet. In Proceedings of

SIGCOMM'96, Stanford, CA, August 1996.

[43] Mudumbai Ranganathan, Anurag Acharya, Shamik Sharma, and Joel Saltz.
Network-aware Mobile Programs. In Proceedings of Usenix 1997 Technical

Conference, Anaheim, CA, June 1996.
[44] Cray Research. nettest. ftp://ftp.sgi.com/pub/src/nettest.

[45] S. Waldbusser. Remote Network Monitoring Management Information Base.

RFC 1757, February 1995.

[46] Yulia Wijata. Netspec DSKI Daemon.
http://www.ittc.ukans.edu/ ywijata/projects/nsdstrd/ .

[47] Yulia Wijata. Netspec SNMP Daemon.
http://www.ittc.ukans.edu/ ywijata/projects/nssnmpd/.

[48] Yulia I. Wijata. Capturing Network/Host State in MAGIC-II. Technical report,
Information and Telecommunication Technology Center, University of Kansas,

Lawrence, KS, November 1998.

96

