US006046998A

United States Patent [(1] Patent Number: 6,046,998
Niehaus et al. [45] Date of Patent: Apr. 4, 2000
[54] ATM REFERENCE TRAFFIC SYSTEM 5,508,415 1/1997 Nuber et al. coooerrrrsrecerererrrns 370/474
5,613,129 3/1997 WAlSh wovoooococerereeeereeeerseeessree 710/262

[75] Inventors: Raymond Douglas Niehaus; Balaji 5,742,649 471998 Muntz et al. woooovvvovviiniiisiisnenns 375/371
Srinivasan, both of Lawrence, Kans.; 2722}%2 2; }ggg ﬁm ‘ft ale s ;;8;423;

Vinai Rajendran Sirkay, Pitisburgh, S764/626 6/1998 VanDervort - . 370232

Pa; W‘!ham Lee Edwards, Overland 5,778,001 7/1998 Nakayama et al. 370/516

Park; Timothy Gene Kelley, Shawnee, 5.822.383 10/1998 Muntz et al. w.oooroocorrroor.. 375362

both of Kans. 5,867,489 2/1999 Hershey ef al. w.oooovoooooorrrrn. 370/324

[73] Assignee: Sprint Communications Co. L.P.))
Primary Examiner—Huy D. Vu

Assistant Examiner—Dung Trinh

[21] Appl. No.: 08/821,983 Attorney, Agent, or Firm—Harley R. Ball
[22] Filed: Mar. 20, 1997 [57] ABSTRACT
[51] Int. CL7 o HO04J 3/00 . .
[52] U.S.CL 370/395 An ATM reference traffic system records packet information
o s f.s. h ... 3 %.(.)./.253 N representative of ATM packets transmitted over an ATM
[58] Field of Search 370/235 395. 2 52’ 39 4; network. The system also creates and transmits ATM packets
i i > from packet information on a schedule representative of
[56] References Cited ATM packet transmission over an ATM network. The pre-
ferred system uses a personal computer with the operating
U.S. PATENT DOCUMENTS system modified to schedule events with microsecond reso-
5007.043 41991 Van Den Dool et al 3701232 lution while providing interrupts to the operating system on
,007, an Den Dool et al. T .
5343463 §/1994 Van Tetering et al. ... 370/253 & periodic basis.
5,457,700 10/1995 Merchant 714/744
5,469,466 11/1995 ChU ..oocveviueerinicirercieereienns 375/354 8 Claims, 27 Drawing Sheets
COMPUTER 20
CLOCK ™
/ 28 ¢ /‘ 18 s 29
NETWORK |q | «—>»l RAM
INTERFACE
CARD CPU
<«—» TIMER
«—»] CHIP
HARD TIME NP
DRIVE STAMP
. COUNTER
30

U.S. Patent Apr. 4, 2000 Sheet 1 of 27 6,046,998

/10

16 ATM
//’ NETWORK
COMPUTER ”
ATM SWITCH
FIGURE 1
/ 10
COMPUTER cLock |20
[N
NETWORK . »| RAM
INTERFACE
CARD CPU
» TIMER
» CHIP
HARD TIME NEPY
DRIVE STAMP
COUNTER
- 26
- 30

FIGURE 2

U.S. Patent

500

Apr. 4, 2000

ONE SHOT
DO_TIMER()

o

KERNEL
MODE

Sheet 2 of 27

6,046,998

300

S

400

PERIODIC /

DO_TIMER()

(o

FIGURE 3

U.S. Patent Apr. 4, 2000

400

Sheet 3 of 27 6,046,998

o

B

402

YES EVENTS IN

404
\

TIMER QUEUE?

/

CALL
TIMER_BH

NO

406

TEN

\

408
AN

YES MILLISECOND
INTERRUPT?

CALL ORIGINAL
DO_TIMER

€

y

NO

)

STOP]

FIGURE 4

U.S. Patent Apr. 4, 2000 Sheet 4 of 27 6,046,998

o

A

CALL ///-502

RELOAD_TIMER

CALL / 504

UPDATE_JIFFIES_U

506

YES EVENTS IN
TIMER QUEUE?

N

508

/

CALL TIMER_BH

510
TEN
YES MILLISECOND
512 INTERRUPT?

CALL ORIGINAL
DO_TIMER

)

/

NO

\ 4

A

STOP J

FIGURE 5

)

U.S. Patent Apr. 4, 2000 Sheet 5 of 27 6,046,998

600

START

¥

GET TIME TO NEXT 502
EVENT AND TIME /
ELAPSED SINCE
LAST UPDATE TO

JIFFIES_U

604

NEXT EVENT IS
YES CLOSE TO NO

606
\ TIMER DELTA? / 608
A

LOAD TIME TO

NEXT EVENT -

TIME ELAPSED
INTO TIMER CHIP

LOAD TIMER_
DELTA INTO THE
TIMER CHIP

e

FIGURE 6

U.S. Patent Apr. 4, 2000 Sheet 6 of 27

o

4

READ CPU TSC, 702
AND TIMER CHIP |
AND CALCULATE

JIFFIES_U
h 4
704
JIFFIES_U
YES GREATER THAN
706 10,000
UPDATE JIFFIES
AND SET TEN
MILLISECOND FLAG
TO TRUE NO

(o

FIGURE 7

6,046,998

700

U.S. Patent Apr. 4, 2000 Sheet 7 of 27 6,046,998

800

o J

/ 802 / 816

SOCKET AND CALL
AND BINDITTO ARTS END
THE GIVEN VCI -
/ 804 s
INFORM THE /
KERNEL THAT IT UNREGISTER
IS AN ARTS THE PROCESS AS
SOCKET USING A REAL TIME
THE IOCTL CALL PROCESS AND CALL
SWITCH_TO_NORMAL

/ 806
REGISTER THE

PROCESS AS A
REAL TIME [sTop j

PROCESS AND CALL
SWITCH_TO_RT

/ 808

ARTS_INIT WITH
THE REQUIRED
TIMER MODE

RT_SUSPEND TILL 810
SOME PACKETS ||
ARRIVE

/— 814
ARTS_RX_ WRITE THE DATA
EVENTS TO THE FILE
RETURNS>07

NO

FIGURE 8

U.S. Patent Apr. 4, 2000 Sheet 8§ of 27 6,046,998

900
[START j

MARK PROCESS

AS A REAL TIME 902
PROCESS AND ////—
INCREMENT

NUMBER OF REAL
TIME PROCESSES

A

=

FIGURE 9

1000

1002
IS NUMBER
NO OF REAL TIME YES
1004 PROCESSES > I 1006
N o -
SET FLAG

RETURN INDICATING

ERROR KERNEL IS IN

MESSAGE REAL TIME

MODE

FIGURE 10

U.S. Patent Apr. 4, 2000 Sheet 9 of 27 6,046,998

1100

()

INITIALIZE ALL ARTS / 1102
GLOBAL VARIABLES
AND POINTERS

1104
SAVE OLD TIMER /
MODE AND PERIOD

REINITIALIZE THE /’ 1106
TIMER MODE AND
THE NEW PERIOD

(o

FIGURE 11

U.S. Patent Apr. 4, 2000 Sheet 10 of 27 6,046,998

1200
[: START <J ‘////////
1202
CALLING

PROCESS IS NO

A REAL TIME

PROCESS?

s 1206
YES RETURN ERROR

/ 1204

SWITCH STATE
OF PROCESS
TO SUSPENDED

FIGURE 12

U.S. Patent Apr. 4, 2000 Sheet 11 of 27 6,046,998

1300

RECORD THE
TIME OF ARRIVAL 1302
PACKET SIZE AND

VCI ON WHICH THE
PACKET ARRIVED

INCREMENT 1304
THE NUMBER OF |~
PACKETS REGEIVED

NUMBER \ -~ 1306

OF PACKETS

RECEIVED = NO
RECV_BUF_

SIZE?

YES

; 1308
RECEIVE
MODE IS RX YES

_IN_MEM 1312

ALLOCATE
NO MEMORY TO STORE

////_1310 THESE EVENTS
1314
WAKE UP THE a

USER PROCESS COPY FROM THE
KERNEL HALF
BUFFER TO THIS
RX_BUFFER

b

(e

FIGURE 13

U.S. Patent Apr. 4, 2000 Sheet 12 of 27 6,046,998

1400
[START j
GET THE TASK | 1402
POINTER FROM THE
PID OF THE TASK
1404
CURRENT
TASK IS THE YES
INIT TASK?? /
NO 1406 1408
SIGNAL THE WAKE UP THE
CURRENT TASK GIVEN TASK AND
THAT IT SHOULD CALL THE
SUSPEND ITSELF SCHEDULER

A

(o

FIGURE 14

U.S. Patent Apr. 4, 2000 Sheet 13 of 27 6,046,998
1500
(START j
3 1502
OF EVENTS
RECEIVED »>= NO
RECV_BUF_SIZE
1514
VES 1504 '
. # OF EVENTS
OF EVENTS TRANSFERRED =
TRANSFERRED = OF EVENTS
RECV_BUF_SIZE RECEIVED
//1m6 1516
DECREMENT # OF SET # OF EVENTS
EVENTS RECEIVED REGEIVED 10 0
BY RECV_BUV_SIZE
1512
1508 //
RECEIVE YES COPY DATA FROM

MODE
IS RX_IN_MEM
1510
NO
N

COPY DATA
FROM KERNEL
HALF BUFFER

THE RX_BUFFERS

4

‘\
STOP
/

FIGURE 15

U.S. Patent Apr. 4, 2000 Sheet 14 of 27 6,046,998

1600
[START] 4/
1602
INITIALIZE ALL ARTS /
GLOBAL VARIABLES
AND POINTERS
RESTORE THE 1604
OLD TIMER MODE /
AND PERIOD
A
1608

FREE ANY
ALLOCATED /

MEMORY

o

FIGURE 16

U.S. Patent

Apr. 4, 2000

Sheet 15 of 27

1700

o

MARK THE
PROCESS AS
BEING A NORMAL
PROCESS AND
DECREMENT THE #
OF REAL TIME
PROCESSES

/ 1702

IS NUMBER
OF REAL TIME
PROCESSES
=07?

NO

1704

YES

SWITCH KERNEL
TO NORMAL MODE

(o

FIGURE 17

6,046,998

/ 1706

U.S. Patent Apr. 4, 2000 Sheet 16 of 27 6,046,998

1800

)

SET THE FLAG
INDICATING
KERNEL IS IN
REAL TIME

MODE TO FALSE

(o

FIGURE 18

U.S. Patent Apr. 4, 2000 Sheet 17 of 27 6,046,998
1900
[START j $#////
OPEN THE 1902
ATM SOCKET |,
AND BIND IT TO
THE GIVEN VC! l
CLOSE THE 1916
SOCKET AND CALL ////
KERNEL THAT IT IS 1904
AN ARTS SOCKET //// l
USING THE 10CTL
CALL UNREGISTER
THE PROCESS 1918
AS A REAL TIME ///’
3 PROCESS AND CALL
REGISTER SWITCH_TO_NORMAL
THE PROCESS 1906
AS A REAL TIME /
PROCESS AND CALL ‘
SWITCH_TO_RT
STOP
y
1908
ARTS_INIT WITH /
THE REQUIRED
TIMER MODE
1910
WAIT FOR A ///
KEYBOARD OR
NETWORK SIGNAL
1912
ARTS_RX_
EVENTS YES WRITE THE

RETURNS >07?

NO

DATA TO THE FILE

1914 l—

FIGURE 19

U.S. Patent Apr. 4, 2000 Sheet 18 of 27 6,046,998
4 D
START
N J
CLOSE THE
OPEN THE SOCKET AND CALL | — 2018
2002 — ATM SOCKET ARTS_END
AND BIND IT TO
THE GIVEN VCI ‘
UNREGISTER
KERNEL THAT SROGESS AND |~ 2020
2004
TN ITIS AN ARTS CALL SWITCH
SOCKET USING 10 NORMAL
THE 10CTL CALL =——=
I -
REGISTER THE STOP
PROCESS AS A
_
2006 — REAL TIME
PROCESS AND CALL
SWITCH_TO_RT
2008 ARTS_INIT WITH
~ ™ THE REQUIRED
TIMER MODE
READ THE
2010 SCHEDULE FILE
TN AND CALL
ARTS_TX_EVENTS
2012 E%ESES READ THE
YES | SCHEDULE FILE
IN THE AND CALL
SCHEDULE

FILE?

NO

2014

2016

ARTS_TX_EVENTS

RT_SUSPEND TILL
THE KERNEL IS
READY TO ACCEPT
MORE EVENTS

FIGURE 20

U.S. Patent

Apr. 4, 2000

Sheet 19 of 27

2100

7

6,046,998

2102

o

LOG TIME
IS SET?

YES

NO

h 4

SET THE LOG
TIME TO THE
CURRENT TIME

RECORD THE
CPU TSC AND
ADD SOME
LATENCY TO IT

2108 N

COPY THE
SCHEDULE TO ONE
HALF OF A KERNEL

DOUBLE BUFFER

MORE
EVENTS
LEFT IN THE
BUFFER?

YES

2110

2112

ADD LOG TIME

TO THE TIME IN

THE SCHEDULE
SET FUNCTION TO

TRANSMIT_AAL5 _PKT

2114

SET THE DATA
TO POINT TO A
STRUCTURE CONT
PKT SIZE AND CPU
TSC VALUE

I P 2116

ADD THE TIMER TO

f 3

THE TIMER QUEUE

FIGURE 21

-

U.S. Patent Apr. 4, 2000 Sheet 20 of 27

2200

)

COPY EVENTS | 2202
FROM USER SPAGE
TO KERNEL BUFFER

2204

IF THERE ARE
MORE EVENTS
IN THE
SCHEDULE

YES 2206

ADD THE
CURRENT TIME TO
THE SCHEDULE TIME
AND SET THE TIMER
SERVICE FUNCTION TO
WAKE_UP RTPROC: {)

2208

A

ADD THE TIMER
TO THE UTIMER
QUEUE USING
ADD UTIMER()

(e

FIGURE 22

6,046,998

U.S. Patent

Apr. 4, 2000 Sheet 21 of 27 6,046,998

2300

WAIT TILL THE 2302
TIME THE PACKET
WAS SUPPOSED TO ////
BE SENT (USING THE
CPU TSC) AND SEND
THE PKT

MORE
EVENTS IN
THE HALF
BUFFER?

WAKE UP
USER PROCESS

o

FIGURE 23

U.S. Patent Apr. 4, 2000 Sheet 22 of 27 6,046,998

2400

[START j/

OPEN THE
2402\ ATM SOCKET CALL ARTS_ / 2416
AND BIND IT TO CYC_TX_EVENTS
THE GIVEN VCI
INFORM THE
2404 KERNEL THAT CLOSE THE 2418
\ IT IS AN ARTS SOCKET AND /
SOCKET USING CALL ARTS_END
THE 10CTL CALL

UNREGISTER
REGISTER
2409 THE PROCESS THE PROCESS |~ 2620
BN AS A REAL TIME
PROCESS AND CALL PROCESS AND CALL
SWITCH_TO_RT SWITCH_TO_NORMAL
2408 ARTS_INIT WITH [STOP J
T\ THE REQUIRED
TIMER MODE
2410 MORE a2
NN READ THE
SCHEDULE SCHEDULE FILE
FILE?
e
NO CALL ARTS._
ADD_TX_EVENTS

FIGURE 24

U.S. Patent Apr. 4, 2000

2502
LOG TIME YES
IS SET?
NO
2504
‘\\ SET THE LOG
TIME TO THE

CURRENT TIME

2506
\\\ RECORD THE

CPU TSC
AND ADD SOME
LATENCY TOIT

©—

MORE

CYCLES

TO GO
THROUGH?

2508

YES

2510

MORE
TX_BUFFERS
IN THIS
CYCLE?

Sheet 23 of 27

2500

6,046,998

COPY THE
SCHEDULE TO ONE
HALF OF A KERNEL

DOUBLE BUFFER

///—2512

MORE
EVENTS
LEFT IN
JHE BUFFER?,

2514

YES /2516

SET FUNCTION TO

ADD LOG TIME TO THE
TIME IN THE SCHEDULE

TRANSMIT_ AAL5_PKT

/2518

y
SET THE DATA
TO POINT TO A
STRUCTURE CONT.

VALUE

PKT. SIZE AND CPU TSC

/2520

ADD THE TIMER

TO THE TIMER QUEUE

FIGURE 25

U.S. Patent Apr. 4, 2000

Sheet 24 of 27

2600

()

KERNEL SPACE

MEMORY

ALLOCATE ////’2602
MEMORY IN THE

2604

COULD BE
ALLOCATED? /

SEND SIGNAL TO
USER PROCESS

2606

COPY SCHEDULE
TO KERNEL SPACE

(

FIGURE 26

6,046,998

2608

U.S. Patent Apr. 4, 2000 Sheet 25 of 27 6,046,998

2700

) e

CHOOSE A TASK CHOOSE A
BASED ON ITS REAL TIME TASK
BASED ON ITS

GOODNESS VALUE GOODNESS VALUE

SWITCH TO SWITCH TO
THE CHOSEN TASK THE CHOSEN TASK
AFTER SAVING THE AFTER SAVING THE
CONTEXT OF THE CONTEXT OF THE

OLD TASK OLD TASK

h 4

(W) (o

ORIGINAL MODIFIED

FIGURE 27

U.S. Patent Apr. 4, 2000 Sheet 26 of 27

o

COPY PAGE
TABLES ETC...

2800

PATENT
PROCESS IS
A REAL TIME
PROCESS?

YES

REGISTER
THE CHILD
PROCESS AS
A REAL TIME
PROCESS

(o

FIGURE 28

6,046,998

U.S. Patent Apr. 4, 2000 Sheet 27 of 27 6,046,998

2900

T

DO ALL THE
NORMAL THINGS
THAT EXIT DOES

PROCESS IS
A REAL TIME
PROCESS?

YES

UNREGISTER
THE CALLING
PROCESS AS
A REAL TIME
PROCESS

(o

FIGURE 29

6,046,998

1
ATM REFERENCE TRAFFIC SYSTEM

RELATED APPLICATIONS
Not applicable.

FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT

Not applicable.

MICROFICHE APPENDIX
Not applicable.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to the field of telecommu-
nications. More particularly, the invention is concerned with
an ATM reference traffic system (ARTS) that records packet
information representative of ATM packets transmitted over
an ATM network. The system also creates and transmits
ATM packets from packet information on a schedule repre-
sentative of ATM packet transmission over an ATM network
using a personal computer with the operating system modi-
fied to schedule events with microsecond resolution while
providing interrupts on the original periodic basis to the
unmodified portions of the operating system.

2. Description of the Prior Art

In the development of more effective telecommunications
networks operating in the asynchronous transfer mode
(ATM), it is necessary to conduct experiments to evaluate
the performance of such networks and the associated equip-
ment. For this purpose, prior art equipment such as the
Hewlett Packard J2912A ATM test set has the ability to
measure network performance at the ATM cell level. More
particularly, this equipment can measure the arrival times of
ATM cells over a network in order to provide an indication
of delays and missing cells. This information, however, does
not allow for reproduction of actual network traffic at
network speeds in order to evaluate network performance.

Other equipment in the prior art enables the generation of
synthetic ATM traffic generating ATM packets according to
probabilistic models. Synthetically generated traffic,
however, does not reflect the behavior of an actual ATM
network under actual network conditions. In order to over-
come these limitations, traces of actual network traffic have
been recorded using packet sizes and interarrival times and
then used as input to network simulations. Simulations,
however, may not reflect accurately the behavior of actual
networks.

Another difficulty in evaluating ATM performance is that
the test equipment must be able to handle timing with
microsecond resolution. Conventional microcomputers have
operating systems that operate on a time base of ten milli-
seconds for providing periodic interrupts. This is much too
slow for evaluating the high speed of ATM transmissions.
Merely shortening the interrupt interval does not solve the
problem because this increases the interrupt service over-
head to the point where little processing capacity remains for
user processes. As a result, evaluation of ATM networks
requires expensive specialized equipment having high speed
capability. Even the specialized equipment, however, is
primarily for analysis at the ATM cell level and not at the
ATM packet level.

SUMMARY OF THE INVENTION

The present invention solves the prior art problems dis-
cussed above and provides a distinct advance in the state of

10

15

25

30

35

40

45

50

55

60

65

2

the art. More particularly, the preferred ATM reference
traffic system hereof enables the accurate recording and
reproduction of ATM packet traces using a conventional
microcomputer configured for scheduling events with
microsecond resolution while maintaining periodic inter-
rupts to the unmodified portions of the operating system at
ten milliseconds.

One embodiment of the present invention includes a
microcomputer having a modified operating system that
controls the interrupts provided by the timer chip according
to a schedule having microsecond resolution. The modified
operating system loads the timer chip according to the
schedule and also intercepts the interrupts. The schedule is
configured such that the interrupts prompt the occurrence of
events such as ATM packet generation and transmission with
microsecond precision. The modified operating system,
upon receiving a scheduled interrupt, monitors the remain-
ing time to a scheduled event using the instruction clock of
the microprocessor, which provides a time resolution shorter
than one microsecond.

By intercepting the timer chip interrupts, the modified
operating system prevents the unmodified portions of the
operating system from initiating their interrupt-based sub-
routines with every interrupt. The modified operating system
continues to provide the periodic interrupts at ten millisec-
onds resolution to the unmodified portions of the operating
system.

In another embodiment of the invention, the preferred
system can be coupled with an ATM network for receiving
ATM traffic with a specified virtual channel identification
(VCI). The system includes a network interface for produc-
ing packet information representative of ATM packets
included in the ATM traffic. This packet information
includes the arrival time, VCI, and data size. The data size
is the number of bytes of data included in the packet. The
time data is representative of the time of arrival of the packet
as determined by the time stamp unit of the microprocessor.
The microcomputer stores this packet information.

Another embodiment of the invention creates and trans-
mits ATM packets using the stored data size, VCI, and stored
time data. In the preferred embodiment, the stored time data
is used to configure a schedule that has microsecond reso-
lution. Other preferred aspects of the present invention are
disclosed herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic representation of the preferred
computer connected with an ATM network;

FIG. 2 is a schematic representation of the preferred
computer of FIG. 1;

FIG. 3 is a computer program flow chart of the preferred
UTIME subroutine for operating the computer of FIG. 1;

FIG. 4 is a computer program flow chart of the periodic
DO__TIMER subroutine for operating the computer of FIG.
1

FIG. 5 is a computer program flow chart of the one-shot
DO__TIMER subroutine for operating the computer of FIG.
1

FIG. 6 is a computer program flow chart of the
RELOAD_TIMER subroutine for operating the computer
of FIG. 1,

FIG. 7 is a computer program flow chart of the periodic
UPDATE subroutine for operating the computer of FIG. 1;

FIG. 8 is a computer program flow chart of the RX_TO__
DISK process for operating the computer of FIG. 1;

6,046,998

3

FIG. 9 is a computer program flow chart of the REGIS-
TER subroutine for operating the computer of FIG. 1;

FIG. 10 is a computer program flow chart of the
SWITCH__TO__RT subroutine for operating the computer
of FIG. 1;

FIG. 11 is a computer program flow chart of the INI-
TIALIZE subroutine for operating the computer of FIG. 1;

FIG. 12 is a computer program flow chart of the SUS-
PEND subroutine for operating the computer of FIG. 1;

FIG. 13 is a computer program flow chart of the
RX_INTERRUPT interrupt service routine for operating
the computer of FIG. 1;

FIG. 14 is a computer program flow chart of the WAKE
UP subroutine for operating the computer of FIG. 1;

FIG. 15 is a computer program flow chart of the
RX_EVENTS subroutine for operating the computer of
FIG. 1,

FIG. 16 is a computer program flow chart of the END
subroutine for operating the computer of FIG. 1;

FIG. 17 is a computer program flow chart of the UNREG-
ISTER subroutine for operating the computer of FIG. 1;

FIG. 18 is a computer program flow chart of the
SWITCH_TO_NORMAL subroutine for operating the
computer of FIG. 1;

FIG. 19 is a computer program flow chart of the
RX_TO_MEM process for operating the computer of FIG.
1

FIG. 20 is a computer program flow chart of the
SCHEDULE TX_ FROM DISK process for operating the
computer of FIG. 1;

FIG. 21 is a computer program flow chart of the ONE__
TIME TX subroutine for operating the computer of FIG. 1;

FIG. 22 is a computer program flow chart of the
SCHEDULE__RT subroutine for operating the computer of
FIG. 1,

FIG. 23 is a computer program flow chart of the
TX__INTERRUPT interrupt service routine for operating
the computer of FIG. 1;

FIG. 24 is a computer program flow chart of the
CYCLIC__TX process for operating the computer of FIG. 1;

FIG. 25 is a computer program flow chart of the
TX_ PACKETS subroutine for operating the computer of
FIG. 1,

FIG. 26 is a computer program flow chart of the ADD__
TX_ EVENTS subroutine for operating the computer of
FIG. 1,

FIG. 27 is a computer program flow chart of the SCHED-
ULER subroutine for operating the computer of FIG. 1;

FIG. 28 is a computer program flow chart of the
RT__FORK subroutine for operating the computer of FIG. 1;
and

FIG. 29 is a computer program flow chart of the EXIT
RT subroutine for operating the computer of FIG. 1.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The invention comprises a method for providing ATM
traffic from a computer controlled by a modified operating
system. Since the unmodified operating system tracks time
at a particular time resolution, the operating system is
modified to track time at a greater time resolution than the
particular time resolution of the unmodified operating sys-
tem. The computer receives ATM packets and stores time

10

15

20

25

30

35

40

45

50

55

60

65

4

data for the ATM packets using the greater time resolution
of the modified operating system. The computer also trans-
mits ATM packets using the stored time data and the greater
time resolution of the modified operating system.

In various other embodiments, the particular time reso-
lution of the unmodified operating system is ten
miliseconds, and the greater time resolution of the modified
operating system is at least one microsecond. In addition, the
computer may also store data sizes for the ATM packets it
receives, and transmit ATM packets using the stored data
sizes. The computer may also store virtual connection infor-
mation for the ATM packets it receives, and transmit ATM
packets using the stored virtual connection information. The
modified operating system may also track time at the par-
ticular time resolution of the unmodified operating system.

FIG. 1 illustrates preferred computer 10 coupled with
ATM network 12 and, in particular, with ATM switch 14 by
way of connection 16 for exchange of ATM traffic therebe-
tween. FIG. 2 illustrates selected components of computer
10 which is preferably a conventional microcomputer, also
known as a personal computer. Other components not
depicted are included as part of a typical personal computer
and are well known to those of ordinary skill in the art.

Computer 10 includes microprocessor 18 such as a 100
MHZ PENTIUM brand microprocessor, 100 MHZ clock 20,
random access memory (RAM) 22 preferably with 128 MB
capacity, timer chip 24, hard disk drive 26 and network
interface 28. Microprocessor 18 conventionally includes an
internal instruction clock, i.e., time stamp counter (TSC) 30,
that increments with each cycle of clock 20 providing the
ability for nanosecond accuracy.

Conventional network interface 28 is preferably an ENI
ATM Network Interface Card (NIC). Interface 28 has the
ability to interrupt the CPU when a packet arrives on a
specified VCI from ATM switch 14. Interface 28 provides
packet information to microprocessor 18. This packet infor-
mation includes the VCI and size data in terms of the number
of data bits contained in the packet. In addition to the VCI
and size data, Clock 20 provides packet arrival times to
microprocessor 18. As a result, the VCI, the size data, and
the arrival time are collected for each packet.

In order to transmit packets that emulate the traffic
received in the manner described above, timer chip 24
provides interrupts to microprocessor 18 at the scheduled
packet transmission times. The scheduled transmission
times are based on the previously collected arrival times.
Microprocessor 18 generates packets based on the size data.
Based on the interupt from timer chip 24, microprocessor 18
instructs interface 28 to transmit the generated packets on
the associated VCI. In the present invention, the packets are
preferably at the ATM Adaptation Layer 5 (AALS).

Atypical personal computer is provided with an operating
system loaded from the hard drive when the computer boots.
In the present invention, the preferred operating system is
the Linux operating system. As with most operating systems,
Linux schedules events using timers placed in a timer queue
made up of a doubly linked list of timers. Each timer is
characterized by the time at which it should expire, the
function that should be called when the timer expires, and
the data that should be passed to the called function. Thus,
whenever the expiration time of the timer is less than the
present time, the associated timer function is called and
executed. With Linux, as with many other operating systems
the timers have a maximum resolution of 10 milliseconds
(msec.). This resolution is provided by timer chip 24, which
usually generates an interrupt every 10 milliseconds. This is

6,046,998

5

the shortest resolution with which events can be scheduled
in the Linux kernel.

It will be appreciated, however, that 10 msec. is insuffi-
cient resolution for dealing with high speed ATM networks.
In such networks, packets may occur as frequently as every
500 microseconds (usec.). Thus, an effective test device
must be able to receive and store packet information with
microsecond resolution and also must be able to transmit
packets on a schedule with a resolution to the nearest
microsecond.

Accordingly, the present invention includes a modified
operating system illustrated in FIGS. 3-7 that enables com-
puter 10 to handle events such as receipt and transmission of
ATM packets with microsecond resolution. Moreover, this is
accomplished without increasing the frequency of interrupt
processing by the Linux operating system.

FIG. 3 is a computer program flow chart illustrating the
UTIME subroutine 300 that modifies the timer interrupt
handler of the Linux operating system. In the unmodified
Linux system, all that the timer interrupt does is maintain the
global time with 10 ms. resolution and call a do-timer
function that initiates execution of timer events that have
already expired. The UTIME subroutine provides two
modes of operation selectable by the user: periodic
DO_TIMER 400 (FIG. 4) and one-shot DO TIMER 500
(FIG. 5).

Referring to FIG. 4, periodic DO__TIMER 400 updates
the time sense of the Linux kernel and checks to determine
whether any events in the timer queue have expired. In the
periodic mode, timer chip 24 is reloaded with the same value
after each expiration and thereby generates interrupts on a
periodic basis according to the value loaded into the chip.
With the present invention, this timer chip value typically
provides interrupts more frequently than every 10 msec,
which is the operating system time base. For example,
interrupts might be generated every 500 usec., which is a
time base shorter than the operating system time base and
having microsecond resolution. In FIG. 4, step 402 asks
whether there are any expired events in the timer queue. If
yes, step 404 calls the Linux module TIMER BH which in
turn calls the timer service routine for the expired timer.

With the present invention, timer chip 24 is loaded with
values that generate interrupts much more frequently than
the conventional 10 ms. interrupts. The modified operating
system of the present invention intercepts the interrupts
provided by timer chip 24 in order to prevent initiation of the
Linux system interrupt routines more frequently than
needed. However, the present invention maintains the sched-
uled operating system level interrupts every 10 ms. to the
unmodified portions of the Linux operating system with step
406. If the answer in step 402 is no, or after step 404, step
406 asks whether 10 ms. have passed since the last time the
Linux do-timer was called. If yes, step 408 calls the do-timer
module of the Linux operating system which prompts ini-
tiation of the 10 ms. interrupt modules. In this way, the time
sense of the unmodifies portions of the Linux operating
system are unaffected by the modified portion of the oper-
ating system. If the answer in step 406 is no, or after step
408, subroutine 400 stops.

FIG. 5 illustrates one-shot DO TIMER 500 which loads
timer chip 24 with a new value after each interrupt.
Specifically, step 502 calls RELOAD_TIMER subroutine
600 (FIG. 6), explained below, to load timer chip 24 with a
new value. Next, step 504 calls UPDATE subroutine 700
(FIG. 7), also explained below, which updates the
JIFFIES__ U microsecond variable. JIFFIES is a variable that

10

15

20

25

30

35

40

45

50

55

60

65

6

provides a time reference to the operating system. (For the
Linux operating system, this resolution is at 10 miliseconds.)
Steps 506, 508, 510 and 512 are the same as steps 402—408
explained above in connection with FIG. 4.

FIG. 6 illustrates RELOAD TIMER subroutine 600
which starts at step 602 called in response to step 502. Step
602 determines the time to the next scheduled event and also
determines the time elapsed since the last update to the
variable JIFFIES U. Step 604 then asks whether the differ-
ence between these values is less than a specified threshold
value called TIMER _DELTA which is equal to the time for
processing an interrupt routine. That is, if the time to the next
event is close to or less than the threshold, the answer in step
604 is yes and step 606 loads the value TIMER DELTA into
timer chip 24. If the time to the next event is greater than
TIMER __DELTA, then the answer in step 604 is no and step
608 loads the time to the next event into timer chip 24. This
is determined by subtracting the time elapsed since the last
update to JIFFIES U from the scheduled time to the next
event. Subroutine 600 then stops.

FIG. 7 illustrates UPDATE subroutine 700 for updating
the variable JIFFIES_U. This subroutine is called with
every interrupt provided by timer chip 24 in order to update
the Linux variable JIFFIES (the 10 msec. counter) and the
microsecond variable JIFFIES U. Step 702 calculates
JIFFIES_U by determining the difference (in
microseconds) between the present value of the micropro-
cessor time stamp counter (TSC) and the TSC value at the
previous update and adding this difference to the previous
JIFFIES_ U value. To determine the difference in TSC
values in microseconds, the difference in TSC values is
divided by the number of cycles in one usec., which is 100
for a clock speed of 100 MHZ. Each time the remainder is
above the number of cycles in one microsecond,
JIFFIES_ U is incremented by one. Step 704 asks whether
JIFFIES_ U is greater than 10,000 indicating an accumu-
lated time of 10 ms. If JIFFIES U goes above 10,000 (ten
milliseconds), the Linux variable JIFFIES is incremented by
one and JIFFIES U is decremented by 10,000 in step 706.
In particular, this step sets a 10 ms. flag as true to provide a
yes answer in steps 406 and 510 discussed above. Execution
of the Linux do-timer subroutine for 10 ms. interrupts resets
this flag to false.

With the description above, it will now be appreciated that
the variable JIFFIES_ U enables a time resolution to one
microsecond for scheduling events such as transmission of
ATM packets. Moreover, this is accomplished without
increasing the frequency of routine non-event related inter-
rupt subroutine processing by the operating system while
still maintaining these periodic interrupts on a time base
such as 10 msec. for most operating systems.

FIGS. 8-19 arc computer program flow charts illustrating
the subroutines for receiving, processing and storing ATM
packets received from network 12. In particular, the packets
are received from network 12 by way of ATM switch 14 into
computer 10 by way of interface 28.

FIG. 8 illustrates RX__TO_ DISK process 800 for receiv-
ing and storing packet information on hard drive 26. Step
802 instructs interface 28 to open an ATM socket with
switch 14 and to bind that socket to a specified VCI. This is
the VCI about which the operating system kernel will collect
data. Data can be collected about packets on several VCI’s
by opening multiple sockets. Step 804 then informs the
operating system that the socket is an ARTS socket using the
ioctl call. Next, step 806 registers the current subroutine
(subroutine 800) by calling REGISTER subroutine 900

6,046,998

7

(FIG. 9) which marks the current subroutine as a real time
(RT) subroutine and increments a counter indicating the
number of real time subroutines so marked.

Step 806 next calls SWITCH__TO__RT subroutine 1000
(FIG. 10) which switches the operating system kernel to the
real time mode so that only user processes designated as real
time subroutines are run. Other user processes such as word
processing and spreadsheets are not designated as real time
processes are suspended. In subroutine 1000, step 1002 asks
whether the number of real time processes is greater than
zero. If the answer is no, an error message is sent in step
1004. This is so that the kernel does not go into real time
mode without any processes being marked as real time. If
the answer in step 1002 is yes, step 1006 sets a flag
indicating that the operating system kernel is in a real time
mode.

Step 808 then calls INITIALIZE subroutine 1100 (FIG.
11) which begins at step 1102 by initializing all of the global
variables and pointers. Step 1104 then saves the old timer
mode and period and 1106 reinitializes the timer mode and
new period.

Step 810 then suspends process 800 until packets have
been received by calling SUSPEND subroutine 1200 (FIG.
12). This subroutine enters at step 1202 which asks whether
the calling subroutine is a real time subroutine. Normally
this is true because the current subroutine has been so
designated in step 902. If the answer is yes, step 1204
switches the state of the current process to suspended. If the
answer is no, step 1206 sends an error message.

FIG. 13 illustrates RX_INTERRUPT throughout subrou-
tine 1300 which responds to the arrival of a packet by way
of interface 28. When the packet is received, interface 28
determines the packet size and the VCI and provides this
information as packet information in step 1302. This step
also records the time of arrival by marking the TSC time
from microprocessor 18 as time data for inclusion with the
packet information. Step 1304 then increments a counter
designating the number of packets that have been received.

Next, step 1306 asks whether the number of packets
received exceeds the kernel buffer size. The kernel space is
divided into two half buffers to allow receipt of packet
information into one buffer while the other buffer is being
emptied. If the answer in step 1306 is no, then space remains
in the buffer and subroutine 1300 stops and waits for the
arrival of additional packet information. If, however, the
received buffer is full, the answer in step 1306 is yes and step
1308 asks whether the receiving subroutine is RX TO__
MEM (FIG. 19), which is the subroutine for storing packet
information in RAM 22. The current subroutine, however, is
for receipt to disk and thus, the answer in step 1308 is no.

Step 1310 then wakes up the current subroutine
(subroutine 800) at step 812 which asks whether the number
of receive events is greater than zero indicating that data is
available to be stored. If yes, step 814 writes to disk the data
in the receive buffer thereby emptying this buffer by calling
RX_EVENTS subroutine 1500 (FIG. 15).

In subroutine 1500, step 1502 asks whether the number of
events received is greater than or equal to receive buffer size.
If yes, step 1504 sets the number of events transferred equal
to the receive buffer size and step 1506 decrements the
number of events received by this same number. Step 1508
then asks whether the receive mode is RX TO—MEM. The
current subroutine 800 is for disk storage and so the answer
is no. Step 510 then copies the data from the kernel half
buffer to disk. If the receive mode is RX_TO_MEM
(discussed in connection with FIG. 19), the answer in step

10

15

20

25

30

35

40

45

50

55

60

8

1508 is yes and step 1512 copies the data from the kernel
half buffer to user space in RAM 22.

In step 1502, the answer is no if the user enters a stop
command by way of the keyboard. If such occurs, step 1514
sets the number of events transferred equal to the number of
events received and then, step 1516 sets the number of
events received to zero. After storing to disk in subroutine
1500, process 800 then returns to step 810 for suspension
until the receive buffer is again full.

Steps 810—814 continue to repeat and store packet infor-
mation on disk (hard drive 26) until an interrupt signal is
received from the user by way of the keyboard. In this event,
one more loop through steps 810-814 usually will occur to
empty the receive buffer after which the answer in step 812
is no.

Step 816 then closes the ATM socket and calls END
subroutine 1600 (FIG. 16) which re-initializes the global
variables and pointers in step 1602. Step 1604 then restores
the old timer mode and period previously saved in step 1104
and frees any allocated memory in step 1608.

Next, step 818 calls UNREGISTER subroutine 1700
(FIG. 17), which marks the current subroutine as normal and
decrements the number of real time subroutines in step 1702.
Step 1704 then asks whether the number of real time
subroutines equal zero. Normally only one real time sub-
routine will have been so designated, and the answer in step
1704 is yes. Step 1706 then switches the operating system
kernel to the normal mode allowing it to resume conven-
tional operation. Step 818 then calls SWITCH TO
NORMAL subroutine 1800 (FIG. 18) which sets the real
time flag to false. Subroutine 800 then stops.

FIG. 19 illustrates RX__TO_MEM process 1900 which is
the subroutine for storing packet information in memory
rather than to disk. This process is selected when sufficient
memory is available and to avoid the delay of storing
information to disk. Steps 1902—1918 of subroutine 1900 are
the same as steps 802-818 in subroutine 800 (FIG. 8) except
that the packet information is stored to memory instead of to
disk. More specifically, when running process 1900, the
answer in step 1308 (FIG. 13) is yes. Step 1312 then
allocates memory in RAM 32 to store data in memory
instead of waking up the user subroutine. Step 1314 then
copies the packet information from the full half buffer to the
allocated memory. In other words, packet information is
continually transferred to the allocated space in RAM 22
instead of waking up the user process for storing to disk.
Also, with process 1900, the answer in step 1508 (FIG. 15)
is yes and step 1512 is executed instead of step 1510.

The subroutines illustrated in FIGS. 20-26 are for trans-
mitting packets using stored packet information. The pre-
ferred packet information includes size data indicating the
number of data bytes to be included in the packet, time data
indicating when the packet should be transmitted, and chan-
nel data indicating the VCI for the packet. Upon receipt of
the size and channel data, interface 28 creates a packet
according to the size data and transmits it with the VCI as
indicated by the channel data to switch 14.

As discussed further herein, the packets can be transmit-
ted on a schedule configured in accordance with the time
data. In the preferred embodiment, the packet information is
derived from actual packets received from network 12, such
as the packet information stored as a result of the receive
packet subroutines described above. It will also be appreci-
ated that the packet information could be synthetically
generated as well.

FIG. 20 illustrates SCHEDULE_TX_FROM_DISK
process 2000 which retrieves packet information from hard

6,046,998

9

drive 26 and transmits the packets on a schedule configured
according to the time data. Steps 2002, 2004, 2006 and 2008
are the same as steps 802-808 discussed above in connec-
tion with FIG. 8.

Step 2010 reads the transmission schedule in hard drive
26 and calls ONE__TIME_ TX subroutine 2100 (FIG. 21).
This is the subroutine to transmit the schedule of packets one
time. In the cyclic mode, the present invention allows the
schedule to be repeated as described in connection with FIG.
24.

Subroutine 2100 enters at step 2102 which asks whether
the log time is set. The log time is the starting time for
beginning the packet transmissions. That is, the scheduled
transmission is expressed relative to this log time and needs
to be set only once per schedule. If this is the first time
through subroutine 2100, the answer in step 2102 is no and
step 2104 sets the log time equal to the current time as
indicated by the TSC of microprocessor 18. Step 2106 reads
the TSC and adds a predetermined amount of latency time
to allow for program processing time before the first packet
is ready for sending.

Step 2108 then copies as much of the packet transmission
schedule to the kernel half buffer as will fit, which is the
information for about 146 packets. Step 2110 then asks
whether there are any more packets in the buffer to be added
to the timer queue. If the answer is no, all events scheduled
in step 2018 have been added to the timer queue.

If the answer in step 2110 is yes, however, step 2112 adds
the log time (starting time as indicated by the TSC) to the
schedule. Step 2116 then adds the timer configured in steps
2114 to the timer queue. The process then returns to step
2110 to determine whether there are any more timers to be
configured and continues to loop through steps 21102116
until all the timers have been configured for the packet
information in the current buffer. The answer in step 2110 is
then no and the process returns to step 2012 (FIG. 20).

The process then returns to step 2012 which asks whether
there are more events to be processed in the schedule file on
hard drive 26. If yes, step 2014 reads the file and again calls
subroutine 2100 in order to add more events to the kernel
buffer. Step 2016 then calls SUSPEND subroutine 1200
(FIG. 12) which suspends subroutine 2000 until the kernel
is ready to accept more events. When there are no more
events to be processed, the answer in step 2012 is no, and
steps 2018 and 2020 are executed the same as steps 816 and
818 discussed above.

FIG. 23 illustrates TX_INTERRUPT subroutine 2300
which is the subroutine for transmitting the packets from the
kernel half buffer. Step 2302 monitors the packet timers in
the queue using the variables JIFFIES and JIFFIES U to
determine timer expiration to the nearest microsecond as
discussed above in accordance with the TSC of micropro-
cessor 18. When the timer expires, step 2302 sends the size
data and channel data to interface 28 which creates and
launches the packet.

Step 2304 then asks whether there are more events in the
half buffer, that is, asks whether there are more timers in the
timer queue. If yes, the subroutine stops and waits for
another timer to expire. If the answer in step 2304 is no, this
indicates that the buffer is empty and more data is needed.
Step 2306 then calls WAKE__UP subroutine 1400 (FIG. 14)
in order to resume subroutine 2000.

WAKE_ _UP subroutine 1400 enters at step 1402 which
retrieves the task pointer from the subroutine identification
of the task, which, in this case, identifies process 2000. Step
1404 then asks whether the current task is the “init” task. If

10

15

20

25

30

40

45

50

55

60

65

10

no, step 1406 suspends the current task. Then step 1408
wakes up the retrieved task which is subroutine 2000.

Process 2000 continues to loop through steps 2012-2016
until all of the packets have been sent according to the
schedule on hard drive 26. Steps 2014 and 2016 close the
subroutine and return the operating system to the normal
mode the same as steps 816—818 described in connection
with FIG. 8.

FIG. 24 illustrates CYCLIC__TX process 2400 which is
similar to subroutine 2000 except that the packet schedule
can be repeated any number of times as designated by the
user in order to provide a greater packet output. Additionally,
this subroutine reads events from memory instead of disk.
Steps 2402, 2404, 2406 and 2408 are the same as steps
2002-2010 described above in connection with FIG. 20.

Step 2410 asks whether there are events in the schedule
file stored in memory (RAM 22). If yes, step 2412 reads the
schedule file and then step 2414 calls ADD__TX _EVENTS
subroutine 2600 (FIG. 26). Step 2602 allocates space in the
kernel memory for the packet events. Step 2604 then asks
whether the memory could be allocated. If no, step 2606
signals an error message to the user subroutine. If yes, step
2608 copies as much of the schedule as will fit in the
allocated space which is typically 146 packet transmission
events.

Subroutine 2600 then stops and returns to process 2400
which continues to loop through steps 2410-2414 until all
the packets in the schedule have been transmitted. When this
occurs, the answer in step 2410 is no.

Step 2416 then calls ADD_TX_ EVENTS subroutine
2500 (FIG. 25) in order to cycle through the event schedule
again. In subroutine 2500, steps 2502, 2504 and 2506 are the
same as steps 2102-2106 described in connection with FIG.
21.

Step 2508 asks whether the schedule events is to be cycled
again. If no, subroutine 2500 stops. If yes, step 2510 asks
whether there are more transmit buffers in the current cycle.
If no, the subroutine returns to step 2508.

If the answer in step 2510 is yes, the subroutine executes
steps 2512, 2514, 2516, 2518 and 2520 which are the same
as steps 2202—2208 described above in connection with FIG.
22. Subroutine 2500 then stops and returns to process 2400
to execute steps 2418 and 2420, which are the same as steps
2014 and 2016 described above in connection with FIG. 20.

FIG. 27 illustrates modifications to the Linux operating
system so that only processes designated as real time sub-
routines are executed. Normally the Linux system chooses
tasks based on a priority basis. As illustrated in FIG. 27, the
operating system is modified to choose only “real time”
processes on a priority basis, but in the preferred embodi-
ment only one process at a time is designated as a real time
process. In this way, only the designated real time user
subroutines are operated in order to achieve the precision
scheduling of packet transmissions.

FIG. 28 illustrates RT_FORK subroutine 2800 which is
used to register a subroutine as real time when the parent
subroutine has already been designated as a real time
subroutine. Thus, when a given process creates other
processes, these called processes are also designated as real
time processes.

FIG. 29 illustrates EXIT__RT subroutine 2900, which is
executed when exiting any of the real time processes
described above. This ensures that the Linux operating
system is restored to its normal operating mode upon
completion of the real time processes described above.

6,046,998

11

Having thus described the preferred embodiment of the
preferred invention, the following is claimed as new and
desired to be secured by Letters Patent:

1. A method for providing ATM traffic from a computer
controlled by an operating system, wherein the operating
system tracks time at a particular time resolution when it is
unmodified, the method comprising:

modifying the operating system to track time at a greater
time resolution than the particular time resolution of the
unmodified operating system;

receiving ATM packets into the computer and storing time
data for the ATM packets using the greater time reso-
lution of the modified operating system; and

transmitting ATM packets from the computer using the
stored time data and the greater time resolution of the
modified operating system.

2. The method of claim 1 wherein the greater time
resolution of the modified operating system is at least one
microsecond.

3. The method of claim 1 wherein the particular time
resolution of the unmodified operating system is ten mili-
seconds.

10

15

20

12

4. The method of claim 1 further comprising storing data
sizes for the ATM packets received into the computer and
wherein transmitting the ATM packets further comprises
using the stored data sizes.

5. The method of claim 1 further comprising storing
virtual connection information for the ATM packets received
into the computer and wherein transmitting the ATM packets
further comprises using the stored virtual connection infor-
mation.

6. The method of claim 1 wherein the modified operating
system also tracks time at the particular time resolution of
the unmodified operating system.

7. The method of claim 1 further comprising restricting
subroutines executed by the computer when the ATM pack-
ets are received into the computer.

8. The method of claim 1 further comprising restricting
subroutines executed by the computer when the ATM pack-
ets are transmitted from the computer.

