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Abstract: 
 
The goal of this research is to find a method for the reconstruction of the one-dimensional 
dielectric permittivity profile for homogenous layers of dielectric media.  This method 
uses a layer-stripping technique to successively solve for the reflection coefficients 
between dielectric interfaces.  As the reflection coefficient for each interface is found, the 
permittivity values for the dielectric layers that comprise the interface can be solved for 
iteratively.  This method is quite fast, and it provides an excellent approximate 
reconstruction of the permittivity profile without the use of any a priori information 
concerning the layered media. 
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Introduction 
 
Forward modeling of electromagnetic phenomena, in which physical properties are 
transformed into the electromagnetic realm, has been done for over 100 years.  In fact, 
most equations in electromagnetics serve to derive the electric and magnetic fields that 
result from measured physical data.   
 
Only recently has some of the focus turned to the idea of inverse modeling of 
electromagnetic phenomena, a process in which electromagnetic data are translated back 
to the physical realm.  Inverse modeling of data, or data inversion, proves to be very 
useful for the non-destructive characterization of layered media, especially subsurface 
layers, because in this way the physical characteristics of the subsurface layers can be 
measured without having to actually see, touch, or examine the layers themselves. 
 
The difficulty with inverting electromagnetic data is due to the inherent complexity of the 
laws of electromagnetics themselves.  These laws, when put into mathematical equations, 
are in the form of partial differential equations.  Partial differential equations, or PDEs, 
reside in a field of mathematics that has not yet been fully mastered or understood.  In 
other words, solving PDEs can be extremely difficult in almost all but the most simplified 
cases. 
 
Many of the methods for solving inverse scattering problems revolve around the non-
linear Ricatti PDE (1) found below: 
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Where: 
r(ki,x) = Reflection Coefficient as a function of depth (x) and wave number (ki). 
ε(x) = Permittivity Profile as a function of depth (x). 

 
The main problem of interest in inverse scattering is to calculate the permittivity profile, 
ε(x), from the total reflection coefficient, r(ki,0). 
 
Due to the non-linearity of the Ricatti equation (1), exact and unique inverse solutions are 
almost impossible to calculate.  However, many approximate inverse solutions, formed 
from iterative non-linear optimization schemes, have been shown to be quite successful 
(such as Born, Rytov, and Newton solutions) (Hopcraft and Smith, 1992; Mikhnev, 2003; 
Mikhnev and Vainikainen, 2000).  The optimization methods often require multiple 
iterations to develop an adequate approximation, and the number of iterations often 
grows with the complexity of the permittivity profile (Mikhnev and Vainikainen, 2000). 
 
The goal of this research is to develop an approximation method that does not require 
optimization techniques or multiple iterations to develop an adequate approximation of 
the actual permittivity profile of the layered media. 
 
Instead of optimization techniques, the method uses an approximate layer-stripping 
technique that isolates the reflections between dielectric layers, in order to simplify the 
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inversion process to a simple mathematical equation that relates the permittivity of two 
dielectric layers to the reflection coefficient found at the dielectric interface. 
 
Theory 
 
Scattering Matrix Theory: 
 
The equations that govern reflectivity from a layered model are quite easy to solve when 
only two to three layers are present.  However, for a multi-layer model, these equations 
become far too complex, so numerical optimization methods are often used to solve the 
problem.  A remedy for this problem is to represent the multi-layer media as a stack of 
homogenous, isotropic layers with varying thickness and permittivity.  This stack of 
layers is surrounded by two semi-infinite media: ambient, the air above the stack, and the 
substrate, the final layer below the stack of layers (Fig. 1). 
 

 
Figure 1: Layer model for m layers with ambient and substrate 

 
With the assumptions presented above about the layered media, a scattering matrix can be 
used to represent the multi-layer model.  The scattering matrix, S, relates the 
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electromagnetic waves incident on a multi-layer stack to the electromagnetic waves 
reflected from the stack (“Reflection and Transmission,” 1999). 
 
The scattering matrix, S, for an m-layer stack, where layer 0 is the ambient, and layer m 
is the substrate, is described by the following sets of matrix equations (Mikhnev and 
Vainikainen, 2000): 
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The scattering matrix, S, describes the propagation of electromagnetic waves through 
each individual interface and layer of the medium. 
 
The interface matrix, Ii(i+1), 
 









+

=
+

+

+
+ 1

1
1

1
)1(

)1(

)1(
)1(

ii

ii

ii
ii r

r
r

I .                                        (3) 

 
is the matrix that represents the interface between two adjacent layers of number i and 
i+1.  The interface matrix, Ii(i+1), describes the boundary conditions when an 
electromagnetic wave passes from layer number i to layer number i+1. 
 
Next, the layer matrix, Li, is the matrix that represents the homogenous layer i. 
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The layer matrix, Li, describes the propagation of an electromagnetic wave as it travels 
through isotropic layer number i. 
 
Also, the interface reflection coefficient, ri(i+1), 
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is the reflection coefficient at the interface between adjacent layers with numbers i and 
i+1 where: 
 

εi :  permittivity of layer number i. 
σi : conductivity of layer number i. 

di : thickness of layer number i. 



 5

 
Also, the ambient medium is assumed to be air, with q0 = 1, and the substrate is assumed 
to be the last layer in the multi-layer stack. 
 
The scattering matrix (2), S, describes the relationship between waves in layer number 0 
(ambient), and waves in layer number m (substrate) by the following equation: 
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However, the substrate (layer m), is semi-infinite, therefore Vm

- = 0.  This leads to the 
following equations by matrix multiplication: 
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Using the equations found above, the total reflection coefficient, or ratio between 
reflected wave and incident wave, is calculated from (7) as: 
 

.// 112100 SSVVR == +−                                           (8) 
 

One can see that if the interface reflection coefficients, ri(i+1), could be found from the 
total reflection coefficient, R, then the permittivity and depth of each layer could be 
found quite easily from the equations describing the interface reflection coefficient (5). 
 
Layer Stripping Theory: 
 
The total reflection coefficient, R, can also be thought of as the frequency response of the 
multi-layer stack.  If the Inverse Fourier Transform of the total reflection coefficient is 
taken, then the result is the impulse response of the multi-layer stack.  By causality, 
reflections will not occur until a dielectric interface has been encountered by an 
electromagnetic wave; therefore, the locations of the reflection peaks in the impulse 
response of the multi-layer stack correspond to the times where an electromagnetic wave 
encounters a dielectric interface in the stack. 
 
If the effects of each reflection could be isolated and transformed back into the frequency 
domain, then the interface reflection coefficients, ri(i+1), would be known for each 
dielectric interface.  However, because isolation of a reflection requires truncation and 
estimation of the actual signal, ripples will be introduced into the interface reflection 
coefficients (frequency domain) by means of the Gibbs Phenomenon.  In order to reduce 
the effects of the ripples introduced by the Gibbs Phenomenon, the interface reflection 
coefficients (frequency response) for a single interface are averaged between the 
frequencies of radar interest; then a new relation between reflection coefficient and 
permittivity values is apparent (9): 
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** Note: ± corresponds to the sign of the interface reflection peak in the impulse response form. ** 
 

Where: 
ri(i+1) : reflection coefficients of isolated interface. 

εx : relative permittivity of layer number x. 
 

One can see that if the reflection peaks can be found in the impulse response of the multi-
layer stack, then the layers can be successively stripped away from the total reflection 
coefficients, and the permittivity of each layer can be solved for by successive solutions 
of (9). 
 
Once the permittivity of each layer is found, the speed of an electromagnetic wave 
through each isotropic layer can be found by (10). 
 

.1

00µεε x
xc =                                               (10) 

Where: 
cx : velocity of electromagnetic wave in layer number x [m/s] 

εx : relative permittivity of  layer number x 
ε0 : permittivity of free space [F/m] 

µ0 : permeability of free space [H/m] 
 

Next, the depth of each layer can be calculated by associating the speed of an 
electromagnetic wave in each layer with the time of interface reflection peaks in the 
impulse response. 
 
By combining the layer-stripping technique with a modified scattering matrix equation 
(9), the permittivity of each layer can easily be approximated.  Furthermore, the depth of 
each layer can be found by using the speed of an electromagnetic wave in each layer (10) 
along with the time of interface reflection peaks in the impulse response of the multi-
layer stack.  This data inversion process does not require any optimization processes or 
multiple iterations to complete.  It works by successive stripping of the layers, while 
iteratively solving for the permittivity and depth of each layer. 
 
Data Inversion Process 
 
The data inversion technique described above is implemented in conjunction with the 
RSL MATLAB Radar Simulation Package written by Vijaya Ramasami (2003).  This 
simulation package computes the forward modeling of radar returns from layered 
surfaces, while the data inversion functions invert the forward modeled data to calculate 
the permittivity and depth of each isotropic layer. 
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The forward modeling used in the radar simulation package takes a geophysical 
description of the layers and transforms this information into permittivity values using 
empirical formulas.  Once the permittivity values for each layer are calculated, the total 
reflection coefficient is calculated by the use of scattering matrices.  Next, the radar 
return response is calculated by convolution of the transmitted radar signal with the total 
reflection coefficient.  To complete the forward modeling, the return response is sent 
through a function that simulates the response of an actual receiving antenna.  This entire 
process is described in the following diagram: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Block Diagram for the Simulation Software (Forward Modeling). 
 

The data inversion process begins by calculating the total reflection coefficient (R↔Γ, 
Gamma) by frequency domain deconvolution of the transmitted radar signal and the 
return response (10). 
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The total reflection coefficients, Γfreq(f), represent the frequency response of the multi-
layer stack.  Next, the impulse response of the multi-layer stack, Γtime(t), is calculated by 
Inverse Fast Fourier Transform (IFFT).  This impulse response represents a range profile 
of the multi-layer stack that determines the positions of the reflecting interfaces.  The 
major peaks in the real part of the impulse response represent dielectric interfaces in the 
multi-layer stack.  If a peak has negative polarity, then the interface has increasing 
permittivity (Figure 3) (Mikhnev, 2003).  If a peak has positive polarity, then the 
interface has decreasing permittivity (Figure 4) (Mikhnev, 2003). 
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Figure 3: Negative Polarity Interfaces. 

 

 
Figure 4: Positive and Negative Polarity Interfaces. 

 
Once the total reflection coefficients are found, the locations of the interface reflections 
are found using a function called findInterfaceIndeces.m.  This function finds the maxima 
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in Γtime(t) by taking the derivative with respect to time, and locating points at which the 
slope goes from positive to negative. 
 

 
Figure 5: Example Γtime(t) of 3-layer medium with results from findIndecesOfInterfaces.m. 

 
Next, the permittivity values of each layer are calculated by a function called 
erCalcFromLayerSubtraction.m.  This function successively strips reflections from 
subsequent layers away from the total reflection coefficient, and calculates the 
permittivity using a modified interface reflection equation (9). 
 
Each reflection is “stripped” by separating the reflection in the time domain by using the 
indeces from indecesOfStart and indecesOfStop provided by findInterfaceIndeces.m.  
Next, the reflection is padded with zeros to make the reflection the same length as 
Γtime(t).  Then the FFT of the reflection is taken and it is averaged between the 
frequencies of radar interest found in the radarParams vector.  This mean value is the 
average reflection coefficient for the reflection, and is used in the modified interface 
reflection equation (9).  Finally the reflection is subtracted from the total reflection 
coefficient in the time domain, and the process is repeated until all average reflection 
coefficients have been calculated.  The final step in this function is to calculate the 
permittivity of each layer by using the average reflection coefficients and the modified 
interface reflection equation (9). 
 
Once the permittivity values of all detected layers are calculated, a distance profile can be 
calculated by a function called calcDistanceProfile.m.  This function calculates the speed 
of an electromagnetic wave in each layer using (10), and then generates a distance profile 
based on these calculated speeds and the times of interface reflections found in the 
impulse response of the multi-layer stack.  The distance profile reveals the thickness and 
depth of each layer in the multi-layer stack. 
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Next, continuous permittivity profiles can be created for plotting purposes with a function 
called calcPermittivityProfiles.m.  This function takes the actual (forward modeled) and 
calculated (inverted) permittivity values, and creates a continuous, step-like profile that 
can be plotted.  This function allows the permittivity profiles of the actual and calculated 
data to be compared to each other in graphical form. 
 
The data inversion process is described in the following diagram: 
 

 
Figure 6: Block Diagram of Data Inversion. 
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Data Inversion Example 
 
The following example is contained in fullTestInvert.m.  It contains the following multi-
layer model: 
 

Layer Number Composition Thickness (m) Temperature (°C) Density (kg/m3) ε r  
1 (Ambient) Air 1.00 -1.0 n/a 1.0000 

2 Ice 0.80 -10.0 600.0 1.8427 
3 Ice 0.75 -12.0 550.0 1.5637 

4 (Substrate) Ice 0.70 -15.0 680.0 2.2345 
Table 1: Geophysical Model For fullTestInvert.m. 

 

N (Number of Samples) Ts (Sampling Time) Frequency Range
2000 1.00E-10 600-900 MHz 

Table 2: Radar Parameters For fullTestInvert.m. 

 

This profile is first forward modeled, and then the data inversion process begins with a  
calculation of the total reflection coefficient, which is then transformed into time domain 
by IFFT.  The resulting impulse response, Γtime(t), is shown in the figure below. 
 

 
Figure 7: Impulse response of multi-layer stack 

 
The large peaks in Figure 7 correspond to the dielectric interfaces in the multi-layer 
model.  The model for fullTestInvert.m has four layers, therefore three interface 
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reflections will occur, and thus, there are only three major peaks in the impulse response 
of the multi-layer stack. 
 
Next, the locations of dielectric interfaces are found by findInterfaceIndeces.m.  The 
output of this function is the following: 
 

indecesOfInterfaces  = [ 68 140 203] 
indecesOfStart          = [ 1 105 173] 
indecesOfStop          = [ 104 172 1999] 
 

The next step in the data inversion process is to calculate the permittivity values for each 
layer in the model.  The output from erCalcFromLayerSubtraction.m is the following: 
 

erCalc = [ 1 1.8429     1.5699 2.2221] 
 

Each separated reflection is plotted in both the frequency and time domains below:  
 

 
Figure 8: First Interface Reflection for fullTestInvert.m. 
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Figure 9: Second Interface Reflection for fullTestInvert.m. 

 

 
Figure 10: Third Interface Reflection for fullTestInvert.m. 
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Next, the distance profile and continuous permittivity profiles are calculated using 
calcDistanceProfile.m and calcPermittivityProfiles.m respectively.  The continuous 
permittivity profiles can be seen in the figure below. 
 

 
Figure 11: Continuous Permittivity Profiles for fullTestInvert.m. 

 
From Figure 11, one can see that reconstructed permittivity profile from the data 
inversion process is an excellent approximation of the actual permittivity profile.  It is 
also important to note that this reconstruction uses no a priori information.  The only 
information required for the data inversion process is the reflectivity data, sampling 
parameters, and the radar parameters of the system. 
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Discussion 
 
The data inversion process described in this paper depends on dielectric interface 
detection in the impulse response of the multi-layer stack (Γtime(t)).  If interfaces are not 
detected correctly -- i.e., false interfaces are detected -- then error is introduced into the 
permittivity reconstruction.  The error is magnified because every permittivity calculation 
is based on the calculated permittivity of the previous layer.  Therefore, an improvement 
in the automated interface detection scheme would make the data inversion process more 
accurate and reliable. 
 
Possible ways of accomplishing better interface detection would involve the de-noising 
of Γtime(t), and then a piece-wise linear approximation of the waveform.  Thresholding 
could also be used to only allow reflections of a certain amplitude to be used in the 
permittivity reconstruction process.  Another solution would allow the program user to 
select dielectric interface points from a graph, or from a finite set of points provided by 
the program itself. 
 
More work will be devoted to advanced dielectric interface detection in the future.  
Signal processing techniques to improve resolution of interface peaks in Γtime(t) will be 
investigated, along with methods of de-noising, and waveform approximation.  
 
Conclusion 
 
The permittivity reconstruction process described in this paper transforms simple radar 
parameters and reflectivity data into a meaningful characterization of layers in a multi-
layer stack.  In the past, taking samples of layered structures and examining each layer 
separately was the only way to find the permittivity data provided by the data inversion 
process.  Examining layered structures often involves some type of destructive measures 
to extract samples of the layers.  With new and emerging ground-penetrating radar (GPR) 
technology, radar reflectivity data can be collected over a layered structure in a totally 
non-destructive manner.  Data inversion algorithms can process this radar reflectivity 
data and produce characterizations of the layered structure without any a priori 
information about the layered media.  Now, layered structures can be characterized 
without ever having to actually examine the layered structure itself. 
 
The data inversion process presented here allows for this characterization without the use 
of any a priori information.  The process allows for a fast and accurate approximation of 
the permittivity profile of the stratified, or layered, structure.  The combination of layer 
stripping with scattering matrix theory allows for a permittivity reconstruction process 
that is quite easy to understand and implement. 
 
The permittivity profiles for layered structures can be reconstructed with extremely high 
precision and accuracy.  The process works very well for low- to medium-contrast 
permittivity profiles.  In the case of extremely high-contrast permittivity profiles (huge 
jumps in permittivity), the permittivity reconstruction provided by this process will not be 
as accurate, due to false interface detection.  However, the permittivity profile generated 
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provides an excellent starting point for use in optimization algorithms involving the 
Ricatti Equation (1). 
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MATLAB Function Documentation 
 
 
findInterfaceIndeces.m: 
The findInterfaceIndeces function operates on the reflection coefficients in the time 
domain (AKA gamma_time).  The large peaks, or spikes, in the gamma_time waveform 
represent dielectric interfaces in the stratified medium, as shown in Figure 12. 
 

Figure 12:  Three-layer medium. 
 

The function returns three different vectors after it has completed: 
 

• indecesOfInterfaces: indeces in gamma_time of the center of each interface peak 
• indecesOfStart: indeces of “beginning” of each interface peak 
• indecesOfStop: indeces of “end” of each interface peak 

 
The index values returned can later be converted into time values or distance values by 
converting with the formulas based on sampling time and electromagnetic wave speed. 
 
The findInterfaceIndeces function works by taking the derivative of the gamma_time 
waveform and finding the local maxima that correspond to interface peaks.  This process 
is implemented by taking the derivative of the absolute value of gamma_time using the 
built-in diff and abs functions.  Once the derivative has been calculated, a small positive 
offset on the order of 10-3 is added to the derivative in order to get rid of the extremely 
small maxima that occur due to the high-frequency oscillations in gamma_time.  Next, 
maxima are detected by recording the indeces in which the slope goes from positive to 
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negative.  After the indecesOfInterfaces have been found, the indecesOfStart and 
indecesOfStop are found by calculating midpoints between the interfaces and rounding to 
the nearest integer for the use of that number as an array index. 
 
erCalcFromLayerSubtraction.m: 
The erCalcFromLayerSubtraction function operates on the reflection coefficients in both 
the time and frequency domains, in order to calculate the electric permittivity of each 
layer. 
 
Using a looping structure, the function iteratively separates each reflection and subtracts 
it from the total reflection coefficient.  As each reflection is separated, its FFT is 
calculated and then averaged between the frequencies of radar interest (Figure 13).  This 
mean value corresponds to the reflection coefficient, ± r(i,i+1), between dielectric layer (i) 
and dielectric layer (i+1).  Once the reflection coefficient has been calculated for all of 
the dielectric interfaces, another iterative loop calculates the electric permittivity of each 
layer using the following simple formula: 
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Note #1: ± sign corresponds to the sign of gamma_time at the interface 
Note #2: ε0 = 1, because the radar antenna begins in air 
 

 
The erCalcFromLayerSubtraction function returns two parameters: a matrix of reflection 
coefficients for each separated interface (the R matrix, R(:,x) are the reflection 
coefficients for the xth interface), and a row vector of permittivity values corresponding to 
each dielectric layer (the newErCalc vector). 
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Figure 13: Isolated Reflection Coefficient, Radar Range: 600-900 MHz 

 
calcDistanceProfile.m: 
The calcDistanceProfile function creates a distance axis that relates sampling points to 
distance by electromagnetic wave speed in a dielectric medium.  The distance 
information returned by this function can be used to find the depth of each of the 
subsurface dielectric layers. 
 
The speed of an electromagnetic wave in each dielectric layer is calculated using the 
following formula: 
 

00

1
µεε r

c =  

Where: 
c = wave speed [m/s] 

εr = relative permittivity 
ε0 = permittivity of free-space [F/m] 

µ0 = permeability of free-space [H/m] 
 

Next, the distance traveled per unit time (tS) is calculated in each layer and a distance 
axis is created by the following formula relating wave travel time to distance: 
 

c
dt 2

=  

Where: 
t = time [s] 

c = wave speed [m/s] 
d = distance to target [m] 

 
The distance axis that is returned can be used to plot gamma_time against actual depth 
instead of by time or sampling points. 
 
The depth, relative to transmitter, of each dielectric layer can be found by the following 
piece of MATLAB code: 
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>> [speeds,distanceSteps,distanceAxis]=calcDistanceProfile(…) 
>> distanceAxis(indecesOfInterfaces) 
 
calcPermittivityProfiles.m: 
The calcPermittivityProfiles function creates a continuous permittivity profile of both the 
actual and calculated permittivity values.  This function assumes each dielectric layer is 
homogenous; therefore, the resulting permittivity profiles will be piecewise linear 
functions, in which permittivity can be seen versus depth. 
 
Here is an example permittivity profile calculated using “testDeepInvert.m”: 
 
Program Output: 
 
erCalc    = 1.0000    1.8426    2.0878    2.2220    1.7357    2.9509  [Permittivity profile from data inversion] 
erActual = 1.0000    1.8427    2.0947    2.2345    1.7346    3.0000  [Actual permittivity profile] 
 

 
Figure 14: Continuous Permittivity Profiles For “testDeepInvert.m” 

 
 

 
 


