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Abstract
The essence of systems-level design is the need to integrate models represent-

ing different system facets to understand the impacts of local decisions on global
requirements. Unfortunately, these models may be defined in disparate semantic
systems making composition and integrated analysis challenging. As a part of
the Rosetta systems-level design effort, a collection of mechanisms based on coal-
gebraic semantics has been defined to transform and compose models. Functors
define mechanisms for moving models between specification domains; coproducts
define mechanisms for composing multiple specifications; and translator functions
define mechanisms for structurally compose specifications. Together these tech-
niques provide specification composition support for integrating formal, systems-
level analysis activities.

1 Introduction
The essence of systems engineering and systems-level design is understanding under-
standing the impacts of local design decisions on global system properties. System-
level requirements represent requirements that must be assessed in the whole system
and cannot be met by simple budgeting across components. Examples of such re-
quirements include power consumption, security, and cost. Designers cannot simply
decompose security and assign elements to system components. Although power can
be budgeted, interactions between components complicate meeting local and global
power requirements. Like power, cost can be budgeted among components, but inte-
gration costs complicate system-level cost calculations.

The distributed and heterogeneous nature of systems-level design complicates sys-
tems engineering. Local design decisions frequently have systems-level impacts be-
cause engineering domains are not orthogonal. For example, how software is written
can significantly impact power consumption in the computer system it runs on. Yet, few
software engineers are taught to think about power consumption. Engineering domains
adopt their own vocabularies and formalisms making communicating information dif-
ficult or impossible. Software representations and power modeling representations use
radically different vocabularies making it difficult to understand their interaction.

It is neither economically feasible or mathematically sensible to represent all re-
quirements models using the same underlying semantics. Engineers looking at dif-
ferent system facets in different domains necessarily use different formalisms and vo-
cabularies. These intellectual tools are adopted due to their utility within the domain,
not the ease of integrating with intellectual tools from other domains. Asking engi-
neers to move their work to a different set of design formalisms will fail for both social
and technical reasons. Thus the challenge of systems engineering – bringing together
intellectually distant information from across multiple domains during systems design.

The Rosetta systems-level design language [1, 2] attempts to address these issues
in providing systems engineers with a systems description language. Sponsored by
the Accellera [3] electronic design automation standards body, Rosetta provides de-
signers with mechanisms for representing systems level requirements using multiple
domains while supporting composition of heterogeneous models and synthesis of hard-
ware components.
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To support the needs of systems-engineers, Rosetta provides explicit support for: (i)
composing models from different domains; (ii) moving models between domains; and
(iii) passing communicated information between models in different domains. Rosetta
uses a co-algebraic semantics for system models. Model composition is achieved us-
ing a pullback over this co-algebra semantics. Moving models between domains is
achieved by defining functors that move a model from one domain type to another. Fi-
nally, moving information between facets is achieved by defining translator functions
used at component interfaces to perform translation.

Having provided a modeling language and semantics for systems level model-
ing, we have accomplished little if we cannot predict behavior from specifications.
Rhaskell [4], the Rosetta support environment provides and integrated collection of
verification tools and a standard means for integrating new tools and semantics. Cur-
rent capabilities include a theorem prover [5], static analysis, advanced type checking,
and evaluation tools [4], and specification composition tools [6]. Raskell tools provide
the beginnings of an integrated formal analysis environment both combining analysis
techniques and transforming models between analysis domains.

2 Background
To understand Rosetta’s model composition and transformation capabilities, it is nec-
essary to understand the semantics of Rosetta models [7, 8, 9] and the domain semi-
lattice [2] central to Rosetta’s modeling paradigm. It is not necessary to understand the
full Rosetta language to make use of its model composition semantics.

A Rosetta model, referred to as a facet, uses a coalgebraic semantics to define ob-
servations on a component’s abstract state. The abstract state is never directly visible,
but observed only through facet declarations. In effect, the declaration i :: integer de-
fines an observation i whose values are restricted to the set integer on its associated
facet’s abstract state.

The Rosetta semi-lattice defines a collection of domains that provide vocabulary
and model-of-computation semantics for facets. All facets formally extend a domain
to define a specific component model. Domains denote facet types by defining the final
algebra of a category constructed using extension. Thus, the type associated with a
domain is the collection of facets written by extending the domain.

2.1 Co-algebraic Facet Semantics
A Rosetta facet’s semantics is defined as a coalgebra over a hidden, abstract state X .
We extend the notation from Jacobs [10] to define a coalgebra:

F = 〈~ι〉 : X → ~τ | T

where ~ι are state observers, X is the hidden abstract state, ~τ are the signatures of
the observers where ιk : τk, and T is the set of terms defining the observers. Facet
semantics introduces the restriction that X cannot appear in ~τ – the abstract state is
observable only through functions listed in ~ι.

Thus, the Rosetta facet model:
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facet andGate(x,y::input bit ; z :: output bit ):: state based is
begin

driver : z’ = x ∗ y;
end facet andGate;

is represented by the coalgebra:

〈x, y, z, s, at〉 : X → bit,bit,bit,state,<∗[T1,T2::type ](i::T1; s::state)::T2∗> |
z’at(next(s)) = x’at(s) ∗ y’at(s );

The transformation from facet specification to coalgebra involves: (i) introducing
the abstract state; (ii) expanding the facet domain; and (iii) elaborating definitions.
Introducing the abstract state simply defines the abstract state associated with the re-
sulting coalgebra. Expanding the facet domain imports vocabulary and definitions from
the facet’s domain into the coalgebra as observations of the abstract state. Finally, elab-
orating definitions reduces abstract definitions to kernel Rosetta using definitions from
the domain and other included facets.

The abstract state, X , is the hidden abstract state of the coalgebra. Although its
value cannot be observed directly, the value of every item defined in a facet is defined
with respect to a particular abstract state. Thus, specific properties of the abstract state
can be directly observed through variables and functions. Observing the abstract state
rather than making it concrete is essential to mechanisms used to compose specifica-
tions and build specific definitions from domains.

The domain defines the specification vocabulary define for the facet. Domains
define everything from the model-of-computation to engineering vocabulary used to
define a specification. When writing a specification, the domain is extended to define
a specific model embodying properties of interest. This example uses the state based
domain that defines a vocabulary including the concrete state type (state), the current
concrete state (s), the next state (next(s)) and how symbols are dereferenced with re-
spect to to concrete state ( ’ at(s)).

Elaboration translates the high-level Rosetta specification into an equivalent kernel
Rosetta specification. We will not show the full elaboration here, but simply the first
step that involves translating common shorthands into full definitions using the domain.
The result of elaborating the single term driver is:

z’at(next(s)) = x’at(s) and y’at(s)

x’at(s) refers to the value of x in the current state, s, and is written in the specifi-
cation simply as x. Similarly for y. z’at(next(s)) refers to the value of z in the state
following x and can be written using the shorthand z’next(s) or simply z’ as in the orig-
inal specification. The state value, s, is an observation of X just like any other symbol.
This is critical to our composition and refinement mechanisms because it allows the
same hidden state to be observed by different concrete state types. Making X concrete
would complicate defining heterogeneous, interacting observations difficult.

2.2 The Domain Semi-Lattice
Critical to Rosetta specifications is the concept of a domain that provides vocabulary
and model-of-computation information to a model. Figure 1 defines a semi-lattice
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of domains where arrows represent extension. An domain lower in the lattice is a
sub-domain while the domain higher is a super-domain. The set of facets written by
extending a domain defines the type associated with that domain. Kong and Alexan-
der [9, 11] have shown that each domain’s associated type is a category of facets with
extensions as arrows. Furthermore, the category of facets associated with a domain is a
sub-category of its super-domain’s category defining a subtype/super-type relationship.

Figure 1 The domain semi-lattice with arrows representing extensions.

static

state_based event_based

finite_state infinite_state

continuous_timediscrete time

null

When we write:

facet lowpassFilter
( i :: in real ; o ::out real ; frequence::design real)::continuous time is

begin
...

end facet lowpassFilter;

we are defining a facet that extends continuous time. Thus, it is of type continuous time
and takes its vocabulary and model-of-computation from the continuous time domain
model.

3 Transforming and Composing Semantics
To achieve our goal of systems engineering support it is not sufficient to simply allow
specifications to use different semantics within the same language. To support predic-
tive modeling, we must support model composition and transformation of information
from one modeling domain to another.

Rosetta supports composition and transformation using an interaction construct
that defines functors, translators, and algebra combinators and indirectly product and
coproduct operations for composing models. Functors move a facet model from one
domain to another. Such operations are simply functions whose signatures specify facet
types as domain and range values. Translators enable moving data through facet inter-
faces between domains. Such operations allow facet models defined in one domain to
communicate with facets defined in another. Products and coproducts compose specifi-
cations by finding the limit or colimit of two specifications in the domain semi-lattice.
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Pullback and pushout constructs are used to construct new models. Finally, Algebra
combinators generate new specifications from products and coproducts. They are used
to convert products into specifications that can be used for analysis or synthesis.x

3.1 Functors
A functor between categories is an operation that maps arrows to arrows and object
to objects in different categories. Because objects in the domain semi-lattice are facet
types, Rosetta functors transform facets of one type into facets of another. Each domain
defines a category of facets that in turn defines a facet type. Associating a functor with
two domains provides a function that transforms facets from one type into facets of
another.

An excellent example of a functor between facet types corresponding with a com-
mon mathematical transformation is using a Fourier transform to move a model from
the time domain to the frequency domain. Figure 2 graphically shows a fourier transfer
functor and two instances of the transformation. The dashed arrow labeled F between
domains frequency and continuous time defines the functor. Explicit instances of the
functor between facets comprise the functor and define fourier transforms on specific
models. In this case, fourier transforms exist between time and frequency models of
highpass and lowpass filters.

Figure 2 A functor representing fourier transform and two specific instances of fourier
transform between models in the time and frequency domain.

infinite_state

continuous_time

discrete time

frequency F

lowPass lowPassF
highPass highPassF

Functor definitions play two important roles in Rosetta modeling. First, they are
used to move information between domains to perform analysis. If a domain exists
for discrete event simulation, a functor could be written to transform a time-based
specification to the simulation domain. The new model can then be simulated to predict
behavior. This functor corresponds to the types of analysis performed in engineering
design.

Second, functors are used to move information between domains to switch mod-
eling abstractions. The fourier transform is an example of this functor type. We take
fourier transforms of time-based models to use a different set of abstractions for model-
ing and analysis. Examining a filter’s transfer function in the frequency domain reveals
information about the filter’s behavior that is difficult to directly address in the time
domain. Such transformations are exceptionally common in engineering design.
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Note that all the arrows between domains in the domain semi-lattice are functors.
These arrows represent extensions that form more detailed modeling domains from
less detailed domains. Because they are defined only over domains and every facet in
a domain’s category is an extension of that domain, they equally apply to facet’s in the
domain. These functors are constructed when the semi-lattice is extended, but are no
less functors than those written by hand or automatically generated.

3.2 Translator Functions
Translator functions or simply translators are special operations that move data across
facet boundaries. Functors transform entire facets into new facets in new domains.
Translators enable communication by transforming data in one domain into data in an-
other while accounting for differences in computation models. Consider the translator
function for moving an analog signal into the digital domain:

a2bit () from x::real in continuous time to bit in discrete time is
let dt be floor (continuous time.t) in

if x@dt =< 2.5 then 0 else 1 end if;

The a2bit translator is used to transform analog signals into digital signals in dis-
crete time. The following facet instance transforms analog signals into digital signals
using the a2bit translator function.

l1 : and(x’a2bit,y’a2bit ,z’a2bit );

It may seem odd that the translator is applied to input parameters as well as output
parameters. However, the direction of the parameter is not material. As long as the
signal satisfies constraints specified by the translator on both side of the facet interface,
the model is consistent. Facet inputs are independent variables that can be driven to
any value. Facet outputs are dependent variables that must satisfy constraints placed
on them by their associate translator functions.

3.3 Specification Products and Coproducts
Products and coproducts are among the most common mechanisms for defining com-
position in language semantics. Specifically, defining record and variant structures
using these primitives is a standard approach in many semantic systems. The sum op-
eration defines a disjoint union while the product defines a record. By making these
first-class operations over models in Rosetta, we provide a mechanism for composing
specifications in a similar manner. Facet sum provides a mechanism for defining dif-
ferent specification scenarios while facet product provides a mechanism for defining
simultaneous aspects.

The Rosetta product operation corresponds with forming a limit using a pullback.
Likewise, the sum operation corresponds with forming a colimit using a pushout. The
notation F1 ∗ F2 signifies a product forming a limit while the notation F1 + F2 signi-
fies a coproduct forming a colimit. Rosetta forms each construction using the domain
semi-lattice and the types of the facets being composed. For illustration, assume the
following definitions:
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facet addFn(x,y,cin:: input bit ; z :: output bit ):: state based is begin
update: z’ = x xor y xor cin; end facet addFn;

facet carryFn(x,y,cin :: input bit ; cout ::output bit ):: state based is
begin

update: c’ = (x ∗ y) + (x ∗ cin) + (y ∗ cout);
end facet carryFn;

If we wish to define a new model, adder, that embodies properties of both addFn
and carryFn we use the product operator:

adder :: state based is addFn ∗ carryFn;

The new component, adder, is of type state based and combines the original mod-
els to form a full adder. Specifically, the adder is both an add function and a carry
function in precisely the same way that a tuple is the collection of its fields. Both are
examples of product constructions.

The pullback is formed with the least common facet type involved in the operation
as the operation’s shared part. Both facets forming adder are from the state based
domain, thus finding the least common type is trivial. The pullback is graphically
represented in Figure 3.

Figure 3 Pullback formed from two specifications from the same domain. The shared
part defining a common vocabulary between specifications is the domain itself.

D'

D

F2 F1 * F2

F1f

g g'

f'

In Figure 3, D represents the shared domain of the facet specifications F1 and F2.
Because D is shared, declarations from D appear in both F1 and F2 and refer to the
same specification objects. In keeping with Smith [12, 13], we frequently refer to this
as the shared part because it is shared between specifications. The shared part is vital
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because it provides a common frame of reference for the composed specifications.
Without it, there is no means for both specifications to simultaneously describe the
same observations of the abstract state, X .

f and g represent extensions of D that provide specifics of the actual model. A
domain is included in all facet definitions, thus all facets extend a domain and f and
g always exist for any facet pair. There is no prescriptive guarantee that these exten-
sions will be conservative, complicating the process of writing specifications. How-
ever, Rosetta language design goals place expression above interpretation justifying
this design decision.

Figure 4 Pullback formed from two specifications from the same domain in the context
of the domain semi-lattice.

addFn carryFn

adder = addFn  * carryFn

static

state_based event_based

finite_state infinite_state

null

D′ represents the immediate super-type of D. Without modification, the semi-
lattice is a tree. Thus, D′ is the only direct super-type of D. However, other supertypes
can exist in the tree above D′. The formation of the pullback requires that D be final
in the category. This is trivially true because f and g are simply extension morphisms.
A special case exists when D is the static domain and has no proper supertype. In this
case, D must be final because there are no arrows leaving it in the semi-lattice.

If we examine the commutative diagram within the domain semi-lattice, it rein-
forces the idea that the pullback in fact defines a final object as is required. Fig-
ure 4 graphically shows this result. state based represents the final coalgebra, D. The
dashed arrow represents the implicit morphism that exists due to the coproduct. Thus,
the resulting adder specification is a subtype of state based.

The adder example is trivial because the two facet specifications start in the same
domain and their associated operations are orthogonal. What we have done here is
similar in nature to the schema conjunction operation in Z [14]. The product and co-
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Figure 5 A power consumption specification for a two input device.

facet adderPower
(x,y :: input bit ; p ::output real; pinc :: design real ):: continuous time is
consumedPower::real;

begin
st : consumedPower’ = consumedPower +

if (event(x) or event(y))
then pinc
else 0.0

end if ;
update: p = consumedPower;

end facet adderPower;

product operations are far more interesting when specifications being composed are of
different types.

Consider a new specification of the same adder definition that defines power con-
sumption within the device. Specifically, whenever either of its inputs change the
CMOS implementation will consume power due to transistors changing state. One
model for this is shown in Figure 5.

The product is again used to define a complete adder as adder∗adderPower. Here
the domains are different. adder is of type state based while adderPower is continuous time.
The least common super-type of state based and continuous time is state based, thus
the type associated with the product must also be state based. Figure 6(a) graphically
shows the construction of the morphism from state based to the adderPower facet ver-
ifying the subtype relationship. This allows us to formally define the product:

adderP :: state based is adder∗adderPower

The pullback in the semi-lattice is formed as before with state based defining the
shared part. Figure 6(b) graphically shows the pullback in the context of the semi-
lattice. The arrow between state based and adder is constructed from existing arrow
and is one arrow defining the pullback.

The structure of the semi-lattice ensures that any two facets will have a common
supertype, even if that supertype is static representing the base Rosetta mathematical
system. When composing specifications that share a type or involve composing few
errors, engineering abstractions remain relatively intact in the resulting product. Ex-
amining the adder specifications reveals this – no abstractions are lost in forming the
product.

When specification composition involves intellectually distant domains, functors
can help preserve design abstractions by moving a specification in the semi-lattice.
Transforming specifications into a different domain closer to other domains involved in
the product avoids moving to the static domain where all design abstractions are lost.
Consider Figure 7 where an event based specification is composed with a discrete time
specification with and without first applying a function.

Figure 7(a) shows the result of composing specifications without first moving a
specification with a functor. The only abstractions that are shared in the resulting spec-
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Figure 6 Graphically constructing the pullback to form the integrated power model.

addFn carryFn

adder = addFn  * carryFn

static

state_based event_based

finite_state infinite_state

null

continuous_time

adderPower

(a) Type relationship constructed between
adderP and state based.

addFn carryFn

adder = addFn  * carryFn

static

state_based event_based

finite_state infinite_state

null

continuous_time

adderP = adder * adderPower

adderPower

(b) Pullback formed from two specifica-
tions from different domains.

Figure 7 Discrete time and signal-based specifications composed with and without a
transformation functor. Note the loss of abstractions when the functor is not included.

static

state_based event_based

finite_state infinite_state

continuous_time discrete time

null

busProtocol

busTimingReq

busTimingReq * busProtocol 

(a) Composition without functor application

static

state_based event_based

finite_state infinite_state

continuous_time discrete time

null

busProtocol

busTimingReq

F

F

busProtocol'

busTimingReq * busProtocol' 

(b) Composition with functor application
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ification are those defined in static . Thus, the concepts of time and event are lost in
the transformation.

Figure 7(b) results from moving the event based specification to the discrete time
domain, then forming the product. In this case, the time abstractions remain as well
as the stateful nature of the requirements specification. Of course, this assumes the
functor, F, can be written. This will not always be the case, but for many domains,
functors of this type are well known.

An alternate case involves taking a general specification and using semi-lattice
transformations to generate a more specific transformation. Exemplifying this com-
mon technique is the task of moving a static power constraint into a temporal domain.
Figure 8 shows the construction of a temporal power constraint definition from a static
definition. A series of products are generated to incrementally move the static speci-
fication through successive refinements to realize a temporal specification that can be
combined with the discrete time power model.

Figure 8 Instantaneous power consumption limit moving down the semi-lattice for
composition with power consumption model.

static

state_based event_based

finite_state infinite_state

continuous_timediscrete time

null

powerCons

powerMax

powerMaxFS * powerCons

powerMaxSB

powerMaxFS

3.4 Algebra Combinators
An algebra combinator is an operator that composes two algebras sharing an abstract
syntax into a single algebra. The signature of a typical algebra combinator is:

(F (a) → a) → (F (b) → b) → (F (a ◦ b) → a ◦ b)

where a and b are value spaces and F is an abstract syntax parameterized over
a value space. F (a) → a is thus a valuation function mapping elements of an ab-
stract syntax defined over the value space a to a. It defines requirements for evaluating
elements of F (a). Given two instances of F over distinct value spaces, the algebra
combinator generates a new algebra over the composition of the original value spaces.
Informally, it composes specifications that share abstract syntax elements.

Algebra combinators are used in conjunction with products and functors to generate
composite specifications. The product brings together two specifications and identifies
their shared abstract syntax. Functors assist this process by allowing the shared ab-
stract syntax to be as rich as possible. The algebra combinators take specifications
represented as sums and products and generates an integrated, single specification for
analysis.

As a trivial example of an algebra combinator, assume a power constraint written
in the static domain in composition with the power consumption model from Figure 5:
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facet adderPowerConstraint(powerLimit::design real)::static is
begin

consumedPower =< powerLimit;
end facet adderPowerConstraint;

adderP :: state based is adderPowerConstraint and adderPower;

adderP should limit the instantaneous power consumption modeled by adderPower
to the value specified as powerLimit by adderPowerConstraint. A simple functor for
composing these specifications is:

limit power( lim :: static ; cons::continuous time)::continuous time is
add term(forall( t :: time | consumedPower@t < lim.consumedPower),cons);

This functor adds a term to the power consumption model limiting consumedPower
to the value specified in the power consumption constraint model. Although this is a
trivial functor, it does add the specified constraint to the consumption specification and
demonstrates capabilities for moving information among domains.

4 Power Analysis – An Example
Rosetta is intended to describe systems in a manner that allows predicting the results of
design decisions on system requirements. In particular, we are interested in providing
analysis early in the design cycle. To demonstrate Rosetta’s capabilities, we have used
several example systems including generating test vectors for a radio transceiver [15],
parametric modification for a dual spring system [16], power/design trade-off anal-
ysis for a hydraulic actuator [1], and power analysis for implementation technology
selection in system design [17]. We will overview the latter system to outline Rosetta
capabilities on a real-world design problem.

The challenge is to determine whether it is best for a decimator for a TDMA re-
ceiver to be implemented in software, FPGA or ASIC before prototyping the compo-
nent. The approach chosen uses an activity-based power estimation model and sim-
ulation to determine activity in the component. We specialized the power model for
each implementation technology using a refinement on the basic power model. We
specialized the functional model similarly, changing the activity estimation based on
the implementation technology. We then composed the power model and the func-
tional model using a coproduct and applied a functor to generate a simulation model.
The simulation model was then executed to approximate power consumption. Figure 9
graphically represents this construction for FPGA, CMOS and software implementa-
tions.

The model generation process begins with the diagram in Figure 10(a). A segment
of the domain semi-lattice is shown with the three original models of the component
function, an activity-based power consumption model, and a power constraint model.
Each model is define in a domain appropriate for what it represents. The power con-
straint is constant, the power consumption model is defined over state change, and the
functional model is a discrete time system. The remainder of Figure 9 is constructed
by defining morphisms on these original models.
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Figure 9 Full diagram showing refinement and composition of device, power and con-
straint models.

state_based
power

fpga_power

cmos_power

software_power

infinite_state

discrete_time
fpga_power_is

cmos_power_is

software_power_is

fpga_power_dt

cmos_power_dt

software_power_dt

decimator

power_constraint

static

power_constraint_sb

power_constraint_is

power_constraint_dt

decimator_cmos

decimator_fpga

decimator_sw

decimator_sw_c

decimator_fpga_c
decimator_cmos_c

des

F
decimator_sw_sim

decimator_cmos_sim

decimator_fpga_sim

F
F

F

To compose the three models, we could simply form to pullbacks using the static
domain as the shared part. However, this would eliminate all abstractions in our models
and make analysis virtually impossible. Thus, we refine the power consumption and
power constraint models so that they share a less abstract domain with the functional
model.

The refinement of the power constraint model that appears on the right side of Fig-
ure 9 is shown separately in Figure 10(b). Several pullbacks construct the morphism
that transforms the static power constraint model into a discrete time model. This col-
lection of transformations is actually quite trivial as we simply assert that if a property
is constant, it must hold at any time step. Because it is trivial, this “transformation”
is manually performed although the Rhaskell environment could easily automate the
task.

Figure 11(a) shows refinement of the power consumption model from the state based
domain into the discrete time domain. This one of three constructions that generate
FPGA, CMOS and software power consumption models on the left side of Figure 9.
Each of these refinements is similar in nature to the power constraint refinement, except
they are performed automatically operations written in the Raskell environment.

Following the transformation of each model into the discrete time domain, pull-
backs are used to construct a systems model. The functional model is used to generate
activity information for the FPGA, CMOS and software power consumption models
while the power constraint model simply asserts a condition that must hold continu-
ously in each model. In both cases, an algebra combinator is used to compose infor-
mation.
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Figure 10 Original domains and models and refinement of a power constraint model.

state_basedpower

infinite_state

discrete_time

decimator

power_constraint

static

desF

(a) Refinement of domains to a functional model.

state_based

infinite_state

discrete_time

decimator

power_constraint

static

power_constraint_sb

power_constraint_is

power_constraint_dt
decimator_sw

decimator_sw_c

(b) Refinement of the power constraint to a state-
based model.

With the products formed, Figure 11(b) shows a functor applied to generate sim-
ulations from the final models. This functor is simply a compiler that generates an
executable simulation model in the Raskell simulation framework. It should be noted
that the algebra combinator used to compose the functional and power consumption
model is actually applied during this compilation step.

Looking back at Figure 9 it should now be clear how the diagram is formed. The
original models are refined as necessary to generate discrete time models. These mod-
els are composed using products and a functor is used to generate simulation models.
The diagram is busy, but does represent the morphisms necessary to construct the sim-
ulation models.

Figure 11 Refinement of the CMOS power consumption model model and generating
a simulation model using a functor.

state_based
power

cmos_power

infinite_state

discrete_time

cmos_power_is

cmos_power_dt

decimator
power_constraint_dt

decimator_cmos

decimator_cmos_c

(a) Refinement of a basic state-based power model
to a CMOS power consumption model.

discrete_time

decimator
power_constraint_dt

decimator_cmos

decimator_cmos_c

des

F

decimator_cmos_sim

F

(b) A functor used to generate simulation models
from discrete time models.

14



5 Related Work
The use of category theoretic techniques to describe and manipulate specifications has
long history in language semantics. The composition and construction approaches we
employ have their origins in the work of Ehrig and Mahr [18] and Smith [13].

Using specification morphisms to generate and manipulate facet specifications is
attributable to Smith’s KIDS software synthesis system [12]. Approaches initially ex-
plored in KIDS are generalized to classify various ways of defining specification mor-
phisms [13, 19]. Although Smith is not the only researcher examining such techniques,
the KIDS, PlanWare and SpecWare approaches have proven the most widely useful to
date.

Software morphism approaches typically employ theorem provers to derive speci-
fication morphisms [20, 21, 12] rather than using constructive proofs to derive actual
specifications [22, 23, 24]. Such systems represent the larger class of software en-
gineering tools that use theorem provers [25, 26]. The proposed approach could use
theorem provers to derive morphisms, however we have found this untenable for our
user base. Thus, we use algebra combinators [6]. On particularly promising implemen-
tation direction is the use of monad transformers [27, 28, 29]. In particular, the work
of Lüth [29] using coalgebras to compose monads has provided significant insight.

Institutions [30, 31] represent a formal mechanism for moving information between
formal systems. Rosetta functors can implement a type of institution, but are neither as
general or as powerful as these formal constructions. We believe that our current facet
manipulation semantics is sufficient for our current activities. However, we continue
to examine the potential for incorporating institutions formally in the Rosetta system.

Viewpoints [32] represent a less formal mechanism for composing different views
of specifications. Quite similar to the domain semi-lattice, viewpoints model hierar-
chies of alternative specifications [33] Originally from the software engineering do-
main, Viewpoint analysis is becoming increasingly rigorous supporting examination of
inconsistent views [34] and formal analysis through model checking [35].

The Ptolemy [36, 37] system exemplify a simulation approach to heterogeneity.
Unlike Rosetta, Ptolemy II does not support model composition. However, it does
provide excellent, rigorously defined support for interaction between models from dif-
ferent semantic domains. Unlike Rosetta models, Ptolemy models are executable and
thus lend themselves to simulation. Only operational techniques are applied in Ptolemy
examples we are aware of.

6 Conclusions and Future Work
This paper presents the specification componsition and transformation techniques use
by Rosetta and Rhaskell to analyze heterogeneous specifications. The approach de-
pends composing and transforming specifications rather than composing and trans-
forming analysis results. We have explored this approach in several domains and con-
tinue refining semantics and implementing automated tool support.

Our continuing work explores the implementation of algebra combinators and au-
tomating more specification morphisms. Algebra combinators are critical to specifi-
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cation composition, yet can be brittle. An effective combinator between two domains
may not be at all useful between other domains that appear quite similar. We are work-
ing on general frameworks as well as application to new domains such as assurance
and security. In addition, we are attempting to use combinators to perform synthesis as
well as analysis activities. Specifically, we are beginning to explore hardware/software
codesign techniques.

We continue to automate increasing numbers of functor and combinator applica-
tions. Rosetta is reflective, supporting such automation. However, manipulating speci-
fications in a semantically sound fashion is known to be a difficult problem. However,
we are having success in attacking specific application domains such as embedded sys-
tems and telecommunication systems.

The Rosetta language and semantics are currently undergoing standardization with
support from the Accellera EDA standards organization. We hope to being IEEE stan-
dardization in early 2006. More information on this process can be obtained from the
authors.
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