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ABSTRACT 

One of most important aspects in the design of multi-robot systems is the allocation of tasks 

among the robots in a productive and efficient manner. Task allocation methodologies must 

ensure that not only the global mission is achieved, but also the tasks are well distributed among 

the robots. An effective task allocation approach considers the available resources, the entities to 

optimize (time, energy, quality), the capabilities of the deployable robots, and appropriately 

allocates the tasks accordingly. This paper presents ten such task allocation methodologies for 

multi-robot systems, providing a review of numerous approaches. 
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1. INTRODUCTION 

One of the important recent trends in robotics is the study of teams of multi-robot systems. 

Research performed under such titles as distributed robotic systems, swarm robotics, 

sociorobotics, decentralized robotics, multi-agent robotics, and cellular robotics, has focused on 

the investigation of issues and applications of systems composed of groups of robots. The 

general idea is that teams of robots, deployed to achieve a common goal, are not only able to 

perform tasks that a single robot is unable to, but also can outperform systems of individual 

robot, in terms of efficiency and quality. In addition, groups of robots provide a level of 

robustness, fault tolerance, and flexibility, as the failure of one robot does not result in the 

unsuccessfulness of the mission, as long as the remaining robots share the tasks of the failed 

robot. Examples of tasks appropriate for robot teams are large area surveillance, environmental 

monitoring, autonomous reconnaissance, large object transportation, planetary exploration, and 

hazardous waste cleanup. 

Applications of robot teams are in four basic areas: large objects must be handled, large areas 

must be covered, iterative tasks must be performed, and robustness and fault tolerance is 

required. In addition, the study of multi-robot systems can help in better understanding of social 

sciences, life sciences and cognitive sciences [1]. There are a number of certain situations that 

lends themselves well to the task decomposition and allocation among multiple robots [2]. 

The most significant concept in multi- robot systems is cooperation. It is only through 

cooperative task performance that the superiority of robot groups can be demonstrated. The 

cooperation of robots in a group can be classified into two categories of implicit cooperation and 

explicit cooperation. In the implicit cooperation case each robots performs individual tasks, 

while the collection of these tasks is toward a unified mission. For example, when multiple 

robots are engaged in collecting rock samples and returning them to a common place, the team is 

accomplishing a global mission while cooperating implicitly. This type of group behavior is also 

called asynchronous cooperation, as it required no synchronization in time or space. The explicit 

cooperation is the case where robots in a team work synchronously with respect to time or space 

in order to achieve a goal. One example of such cooperation is transportation of heavy objects by 
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multiple robots, each having to contribute to the lifting and moving of the object. This task 

requires the robots to be positioned suitably with respect to each other and to function 

simultaneously. Regardless of the type of cooperation, the goal of the team must be transformed 

into tasks to be allocated to the individual robots. 

Multi-robot teamwork is a complex problem consisting of task division, task allocation, 

coordination, and communication. Dudek et al. [29] present a general taxonomy to characterize 

multi-agent systems, consisting of the number of agents, communication (range, bandwidth and 

topology), reconfigurability, processing mechanism, and differentiation. Simultaneous self-

centered actions of robots do not result in multi- robot system teamwork. These actions must be 

defined in a framework of system’s goal, which unites or separates robots in groups. What is the 

reason for robots to function in a group? Do all robots have a unique goal like a soccer team or 

do they have a multiple goals such as a free market system? Do robots act in a self-centered 

manner or as team-aware individuals? How do the robots help or impede one another? All these 

issues can be addressed by the proper task allocation mechanism. The focus of this paper is on 

reviewing different task allocation methodologies for multi-robot systems. 
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2. TASK ALLOCATION 

One main issue in task allocation is the division of the tasks into homogeneous versus 

heterogeneous tasks. Goldberg and Mataric [24, 25, 26] studied homogeneous and heterogeneous 

task allocation for a foraging task such as trash collection. Their implementation ranged from 

homogenous system where all robots have the same task to a grouping, which divides the robots 

in different groups, and each group is assigned to do a different task. They used inference, 

spatial, and temporal parameters to evaluate different methods. Experimental result showed that 

although the grouping system is suitable for reducing interference, the best performance is 

obtained through homogenous task allocation, i.e., the fastest collection of trash than others. In 

another work, Sukthanker and Sycara [32] showed that augmenting homogenous task allocation 

by making robots more team-aware, results in systems that are substantially more efficient. 

Another main issue in task allocation is the study of multi-robot systems in hardware with small 

population sizes (e.g., under twenty), versus the study of issues in multi-agents systems in 

simulation with large population sizes. Construction, maintenance, and utilization of large groups 

of robots have proven to be infeasible due to time and budget requirements. It is too difficult to 

build a team of 100 robots, make sure that all are functioning and perform experiments with 

them. Instead, the researchers have been conducting the hardware experiments with only a few 

robots, and then they have augmented their hardware studies with computer modeling and 

simulation of robot groups with large populations. It should be noted that the effects of team size 

and its scaling are integral issues in robot group studies, and the reliability of the simulation 

results remains to be seen. In some simulation and analytical studies, the focus is on complex 

emergent behavior of a collection of simple robots, i.e., collective behavior. These works use 

mathematics to predict and design working group of robots. Lerman et al. [37,38] propose a 

mathematical methodology based on viewing large colonies of robots (swarms) as stochastic 

systems, Markov property, to predict their emergent behavior. Because Markov property holds in 

many multi-agent systems (e.g. behavior-based or reactive control) this analysis can be useful in 

many applications. Mathematical analysis has the following capabilities: predicating the 

collective emergent behavior, and the understanding of effects of each parameter on system. 
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In terms of applications, certain missions are more suitable for the study of task allocation. 

Geometric formation is one such application. In geometric formation, a team of mobile robots 

attempts to achieve and maintain a geometrical shape, while moving toward their target. Some 

multi-robot missions such as exploration require team formation. For example, army mechanized 

scout platoon or dynamic radar surface coverage that are based on maintaining a constant 

distance from one another. This type of problem has been studied by multi-robot system 

researchers [3,28]. If formation is treated like a coordination problem a static task allocation 

usually works well. Balch and Arkin [2, 3, 5] proposed a method of team formation where the 

task allocation takes place during system design. In this static approach, all of the robots have a 

predefined and similar task. This task can be expressed as “while avoiding to bump to any object, 

including other robots go to target point and meanwhile maintain formation.” This work used 

schema-based architecture [4] to implement motor schema navigation. Perceiving sensed data 

activates schemas in parallel. These asynchronous processes start behaviors, and the result of 

these behaviors (a vector format) will be multiplied by an importance weight. The sum of these 

factors is used to generate a global output for the control of the actuators (e.g. motors in mobile 

robots). Each robot maintains the formation by calculating its proper position in the group and 

executing a motor schema to move toward the goal position. 

The task allocation methodologies for multi-robot systems are presented in the next section. 
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3. TASK ALLOCATION METHODOLOGIES 

3.1 Murdoch:  Publish/Subscribe System 

Gerkey and Mataric present Murdoch [6, 7, 8], a dynamic task allocation mechanism using a 

communication method called publish/subscribe for performing distributed control and multi-

robot coordination. The proposed system is successfully tested on both tightly coupled and 

loosely coupled systems. The whole system is seen as a collection of resources that must be 

assigned to tasks. Because of the uncertainty associated with the status of each robot, task 

assignments do not address robots directly. Instead, the technique uses publish/subscribe 

paradigm, which provides anonymous task-robot sets. Each robot subscribes to a set of tasks 

based on resources that it can deploy. Robots can subscribe to different message lists based on 

their capabilities (e.g., mobile, sonar, vision, etc.), and based on current state information (e.g., 

seeing an object, pushing one, or so on). The subjects of the message could be the robot’s 

capability or its status. 

Murdoch declares and defines different tasks based on the tasks’ subjects, referred to as subject-

base addressing. These include the robot’s capabilities (ownership of resources for a task) or 

robot status (e.g., the robot’s energy). The system then publishes that message, addressed by the 

content, instead of their targets in entire network. Robots who subscribed to that subject will 

receive the associated message. Thus tasks are divided at the behavior abstraction level instead 

of robot abstraction level. For instance, a task requiring sonar, laser, and vision publishes using 

the tuple of (sonar laser camera). 

A best- fit selection algorithm is used to choose the best among robots that are registered for a 

particular subject. The human user or another component of the system must perform task 

decomposition. Each task is accompanied with a metric as a measure of fitness. This metric is 

application-dependant and can be related to the robot’s state or other computation. Afterwards, 

each registered robot measures its own fitness based on the metric and communicates the score 

to the others. The winner gains a time limit within which to accomplish the given task. 



7 

3.2 Broadcast of Local Eligibility (BLE) using Port Arbitration Behavior 

(PAB) 

Werger and Mataric [9, 10, 11] present a task allocation methodology based on calculating the 

local efficiency of a robot for a task, and then communicating it with other robots. The most 

efficient robot inhibits others and performs the task. This approach is based on behavior-based 

control, and uses a technique called Port Arbitration Behavior (PAB), which is an architecture 

for conflict resolution among robots. PAB uses a collection of behavior production modules 

(BPM), which are the programmed code that produce a robot behavior. Each BPM can be 

considered as a control software component. Each of these components has an interface port that 

is accessible from the other components. These ports can be connected to each other with 

unidirectional communication paths (called connections). 

In multi- robot applications the separation of BPMs from the connections is advantages in terms 

of the code reusability. Therefore in different coordination methods, only the connections 

attributes must be changed. 

Each BPM computes its own local eligibility and send it to all other robots. This communication 

is very simple. Each robot then sends its calculated eligibility value to all other robots. Each 

robot compares its computed local eligibility in relation to others. If one recognizes that it has the 

best eligibility, then it produces the desired behavior and inhibits the other robots’ behaviors. 

This is achieved by inhibiting the others’ port via the connection between them. One issue of 

concern for the designers is in finding a function to compute local eligibility for any given 

application. The function must be at least partially dependant on the sensor outputs. 

3.3 A Free Market Architecture for Distributed Control of a Multi-Robot   

Systems 

Stenz and Dias [12] implement  task allocation as a free market system. Some of the important 

features of this approach are dynamical task allocation, group learning, and minimum 

communication dependability. This approach is based on free market, i.e., the opposite to the 

central market system. This technique manages the robots as economical entities. Each 
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individual robot acts based on its own benefit and is self-centered but this individuality. This 

results a good group performance, where separate profits are added and thus generate the total 

team profit. The robots may cooperate in order to improve the overall benefits. 

The system’s performance is measured based on the revenue/cost balance. The ultimate goal is to 

maximize the value of the revenue minus the cost. The functions for defining the revenue and the 

cost for the team, and also the method for task and related cost distribution among robots must be 

determined. A robot can gain revenue by contributing to the team’s goal and also through trading 

services and goods with other robots. 

The core of this approach is based on two functions. One function maps the result of each action 

to a revenue value and a second function that maps each method for performing a single task to 

its cost values. The calculation of the minimum value of the difference between the two 

functions results in a factor for selecting the most suitable task. For each given application, the 

human user must customize and change these two functions based on provided requirements. 

3.4 Auction Algorithm 

Berstas [22] presents an algorithm that can be utilized in task allocation in multi-robot 

applications, especially suitable for parallel computation. This approach attempts to find the best 

assignment between tasks and users, while maximizing the total benefit. It iterates between users 

and in each iteration tries to assign a task to a user who offers the most. In consecutive iterations, 

other users may bid for other tasks and if more than one bids for the same task, it will increase 

the cost of task until finally just one task-user pair match takes place, i.e., iterative improvement. 

The iteration terminates when all users are happy with their match, otherwise an unhappy user 

will bid higher for another task and this process will continue. 

Although auction algorithm may have some similarities to the free market approach, there are a 

few differences. One difference is that in the free market approach, robots can cooperate in order 

to gain a maximum profit for all of them, however in the auction algorithm every robot is 

considered a rival. Another dissimilarity is that the auction algorithm uses a unique mathematical 

model for all the applications, while the free market approach does not. In addition, the free 
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market technique is based on the collection of heterogeneous robots, while in the auction 

algorithm the robot set is homogeneous. 

3.5 Alliance 

The Alliance approach [13, 14, 15, 16, 17, 18] is focused on small to medium size robot teams. It 

is a fault-tolerant, behavior-based architecture that assigns tasks dynamically. Its behavior-based 

controller uses different sets of behavior for different tasks. This architecture assumes a 

heterogeneous team of robots. Each robot just needs to run an Alliance process as a requirement 

in order to cooperate. Task allocation between different robots with different structures takes 

place in the Alliance. The robots communicate explicitly and globally. An extended approach, 

which incorporates learning, is called L_Alliance [31, 32]. 

The selection of a suitable action is based on a concept called motivation. Motivation is 

mathematically modeled with two functions of impatience and acquiescence. Each robot has a 

partial knowledge of its own and other robots’ state. This partial knowledge plus impatience and 

acquiesce is used to calculate the level of activation as a probability value computed for each 

action. Impatience happens when a robot perceives that another robot (considering its effect on 

the environment) has not achieved enough. Acquiesce happens when a robot understands its 

incapability to complete a task using its sensory feedback. 

3.6 Task Acquisition using Multiple Objective Behavior Coordination 

Pirjanian and Mataric present a task allocation approach for deliberative behavior-based 

architecture [19, 20, 21] for multi-robot systems. This methodology uses a behavior-based 

architecture for single robot control, and a deliberative task planning system for team interaction 

and task allocation. In this approach the whole system does not have a unique goal but each robot 

may have its own individual goal. The proposed architecture enables each robot to select its 

action, and to maximize each robot’s achievement while also maximizing the group gain. The 

concept of optimality may not exist in many situations. Therefore this approach looks for 

solutions that are just partially optimal. Action selection is performed through voting and global 
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communication among agents. The Multiple Objective Behavior Coordination (MOBC) is the 

main thesis of this approach and proposes command fusion among robots. 

3.7 Functionally-Accurate Cooperative (FA/C) Distributed Problem 

Solving 

In the FA/C Distributed Problem Solving approach [33] each robot has just partial data for 

solving the imperfect and temporal sub-problems. By considering the issue of reduction of the 

costly communication, this approach provides a structure to cooperate the interactions among the 

robots. In this architecture, robots work interdependently, where each robot is aware of its 

present situation and produces partial and intermediate stage results.  

This approach works even in cases where the lack of data has resulted in system inconsistency 

and uncertainty, through the resolution between interdependent middle data received from the 

other robots. As a result, this architecture has a very low bandwidth, is more reliable, and 

increases the effective agent operation time, i.e., less agent idle time. But it uses exhaustive 

computation. 

3.8 Distributed Multi-Robot Task Allocation for Emergency Handling 

Ostergaard and Mataric [23] propose an algorithm for task allocation that assigns dynamically to 

each “emergency” situation a suitable and capable robot to handle it. Task allocation is dynamic 

and happens on a needed basis. The assignment of tasks to the robots are done based on two 

factors. The first factor is the commitment, defined based on whether a robot should finish its 

assigned task or should move on to the next more beneficial task. The second factor is 

coordination, defined as the awareness of other robots and whether or not to communicate. 

Task allocation utilizes a robot as a blackboard upon which the rest of the robots write to and 

read from. Each robot reads data from the blackboard often and if the intensity of the signal that 

was sent by a goal and received by it is at the maximum value, it then selects that task and starts 

running it. This approach assumes that if all robots have same information, then they collectively 

choose the most efficient task for system performance. Thereafter they update the blackboard. 
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This distributed task selection functions based on selecting the task which sends the maximum 

intensity of the sensed signals. 

3.9 Team Formation-Based Task Allocation 

Stone and Veloso [27] use a dynamic task allocation, targeted for the robot soccer application. In 

this approach all homogeneous robots are set to function with a predefined strategy and have 

predefined tasks. Later on, a robot uses its perception of the world, and can decide to change its 

tasks. Because of the changes in the robot’s internal state, its external behavior will change and 

finally its effect on environment will change. This yields new task requirement for other robots 

in environment. Each change in inner state of a robot is communicated to other robots in order to 

generate a new team formation. A global goal and a set of tasks are assigned to the robot team in 

certain periods, such as half times in soccer. 

3.10 Ants Algorithms 

The basic idea of Ants algorithm [35, 36] is based on adaptability of groups of ants to their 

environment changes. The method is based on some biologic facts about ants, where they leave 

some amount of pheromone on their trail, and they prefer to follow the paths with most 

pheromone on it. This approach can be considered as task allocation, since each path/trail can be 

thought of as a task which must be selected with a probability function. This methodology is 

based on a few assumptions, including the fact that ants walk in a direct path, moving in a two-

dimensional dimension. Another assumption is that when a group of ants encounters an obstacle, 

they divide into two equal sub-groups. An important feature of this approach is the indirect 

communication between ants, resulting in emergent behavior. 
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4. CONCLUSION 

Although numerous important results have been obtained by the researchers in the area of multi-

robot systems, a great deal of work remains to be done in order for the group behavior of robots 

to be fully understood and utilized in real world applications. The concept of task allocation 

remains an essential component of this challenge. A survey of this field was included in this 

paper. Productive, efficient, and dynamic approaches to allocating tasks among robots will result 

in further utilization of multi- robot systems. 

Task allocation and decomposition methodologies will serve as design guidelines to allow multi-

robot systems gain efficiency. It is important to invest time to understand different 

methodologies before applying them to real world applications. We believe that a comprehensive 

and integrated survey will help accelerate this understanding. The intent of this article was to 

provide readers with a global perspective on the research literature on multi-agent task allocation 

systems. 
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