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Prioritized Resource Allocation
for Stressed Networks

Cory C. Beard, Member, IEEE, and Victor S. Frost, Fellow, IEEE

Abstract—Overloads that occur during times of network stress
result in blocked access to all users, independent of importance.
These overloads can occur because of degraded resource avail-
ability or abnormally high demand. Public broadband networks
must dynamically recognize some multimedia connections as
having greater importance than others and allocate resources
accordingly. A new approach to connection admission control is
proposed that uses an upper limit policy to optimize the admission
of connections based on the weighted sum of blocking across traffic
classes. This results in a simple algorithm suitable for multimedia
and packet networks. This work is also the first to demonstrate
that the use of an upper limit policy is superior to traditional
approaches of adding extra capacity or partitioning capacity, both
in terms of the amount of resources required and sensitivity to
load variations. An upper limit policy can also be deployed much
faster when a large overload occurs from a disaster event.

Index Terms—Computer network performance, resource man-
agement.

I. INTRODUCTION

THE PUBLIC data network provides a resource that could
profoundly impact high-priority activities to society like

defense and disaster recovery operations [1]. Under stress, how-
ever, the public network has historically been a virtually unus-
able resource [2]. Today’s public network resource allocation
mechanisms do not prioritize the way they allocate resources,
instead working on a first-come-first-served basis. Loads on
public networks reach up to five times normal during an emer-
gency [3], and important traffic receives equally poor access to
resources as low-priority traffic. In a report by the National Re-
search Council [4], this problem was referred to by emergency
management experts as the need to give “emergency lane” ac-
cess to resources.

The purpose of this work is to support ongoing activities in
the ITU and IETF on developing the International Emergency
Preparedness Scheme (IEPS) [5], [6]. The work here supports
IEPS’s initial focus on IP telephony, as well as applies to all
types of emergency-related multimedia traffic.
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Even though development of mechanisms to support different
levels of quality of service (QoS) promises predictable service to
multimedia connections once they are established, the question
of how and to whom to give access to those resources in crisis
events has not been fully addressed. Blocking must occur, since
it is always possible for resource demand to exceed availability,
but the question is how to control that blocking, especially for
those who need network resources the most.

A. Problem Context

This work proposes the use of prioritized resource alloca-
tion. To accomplish this, an architecture is necessary that con-
sists of two components. The first component recognizes which
connections are more important and classifies them with other
connections of similar importance. This was addressed in [7],
[8] where an architecture of geographically distributed ticket
servers was proposed to issue tickets to important connections
for use when seeking connection admission. In [9], the architec-
ture was shown through simulation and performance analysis to
be implementable and to not introduce prohibitively long con-
nection setup delays.

The second component of the architecture performs the ac-
tual resource allocation according to the priority and multimedia
demands of the connections. Of particular interest are times of
network stress when significant numbers of connection requests
must be denied (i.e., blocked) to preserve QoS for other connec-
tions and protect the potential for subsequent, more important
requests to be admitted.

The approach proposed here is to use an upper limit (UL)
policy for connection admission that uses resources currently
available and sets upper limits on the amount of resources that
can be used for each prioritized class. In effect, this approach
limits the full use of the capacity, at least by lower priority
classes, so that connection requests from higher priority classes
are likely to arrive with free resources available. Alternatives to
this approach would be to partition resources, to add new ca-
pacity when needed, or to allow all connections to be admitted,
but then preempt connections from lower priority classes for
higher priority requests.

Later sections compare the partitioning and new capacity ap-
proaches to the upper limit policy. For typical scenarios, parti-
tioned capacity can cause 50% more blocking compared to a UL
approach. Excess capacity approaches require more than double
the capacity of a UL approach. New capacity may also take sev-
eral more hours to implement in the aftermath of a disaster. The
benefits of a preemption approach are being studied by the au-
thors but are not discussed here. It should also be noted that in
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the U.S., preemption for emergency management activities is
not used [6].

The next subsection defines the scope of the problem. Fol-
lowing that is a discussion of related work on connection admis-
sion policies and approximations of blocking for those policies.

B. Problem Statement

The basic context for the problem lies in the application of
stressed network conditions to the problem of loss networks.
In a loss network, requests for connections are either accepted
or blocked; no queueing of requests occurs. The network is as-
sumed to use connection-oriented resource allocation to pro-
vide levels of QoS, and applies to work being done many areas
(MPLS, ATM, TCP/IP/RSVP, etc.). This does not assume, how-
ever, that connection-oriented mechanisms are used throughout
the network, since scalability concerns might necessitate aggre-
gation or connectionless approaches in backbone networks. It is
only assumed that connection-oriented mechanisms are used in
access networks to limit the number of connections that inject
traffic into backbone networks. This work, however, could still
be useful in backbone networks to estimate capacities needed
for different classes of traffic, even if connection state were not
maintained at every node.

An arbitrary number of traffic classes is allowed here, with
each class defined by an importance level and the amount of
resources used by each connection. These multimedia connec-
tion requests are assumed to arrive according to independent and
identically distributed Markov processes. Service times, how-
ever, are generally distributed [10]. Estimates for the current
overall load and load per class are provided by the ticket server
architecture discussed above [8] that tracks resource utilization
through the frequency of ticket requests granted. It is assumed
that networks can be considered stationary for the periods of
time within which load estimates are conducted. This analysis
first looks at the case of one communication link and one re-
source (effective bandwidth), and then is extended for a network
of links.

Addressed here is the problem of minimizing the weighted
sum of blocking when allocating resources in a network, where

weighted sum of blocking (1)

and

number of classes

weight for class

probability of blocking for class

Classes of traffic are assigned weights that are consistent
with the importance of their activities when using the network.
During normal operations, those with greater importance may
be those which generate greater revenue, but in times of crisis
those that deal with emergencies or natural disasters will be
more important.

While others have proposed optimization based on max-
imizing revenue or utilization [11], [12], this work uses a
weighted blocking metric to directly control, monitor, and

bound blocking probabilities. Controlling blocking gives
network operators a more direct understanding than other
optimization metrics of the level of service given to specific
priority traffic classes. A set of weights reflects the relative cost
of blocking for each class. A policy can then be formulated
from these weights to minimize . This weighted blocking
criteria is used as a basis of comparison between resource
allocation approaches.

For upper limit policies to become well accepted for imple-
mentation, the following two questions must be answered.

1) Is dynamic prioritization of resources really beneficial? A
dynamic prioritization approach requires an architecture
to dynamically determine which connections are more
important given the current state of the environment
(e.g., during disasters). With such an implementation
cost, dynamic prioritization must use significantly fewer
resources or provide significantly lower blocking.

2) If resources are dynamically prioritized, how would
connection admission control (CAC) functions decide
which connections to admit? Could algorithms be simple
enough for use on standard network hardware?

The approach to addressing these questions was to first an-
swer the second question by developing a simple efficient CAC
process for an arbitrarily large number of traffic classes. Such
an approach would be used in policy frameworks for network
QoS provisioning [13]. Then the first question was addressed
by showing the CAC algorithm to provide better utilization of
resources and less sensitivity to load variations than traditional
approaches.

II. RELATED WORK

In the most general case of resource allocation, all connec-
tions are admitted simply if resources are available at the time
a connection is requested. This is commonly called a complete
sharing (CS) admission policy where the only constraint on the
system is the overall system capacity, . In a CS policy, con-
nections that request fewer resource units are more likely to be
admitted (e.g., a voice connection will more likely be admitted
compared to a video connection). A CS policy does not consider
the importance of a connection when resources are allocated.

A. Types of Policies

Other policies have been derived to provide a more equi-
table balance between users or to provide optimized access to
resources. Ross [14] provides extensive discussion of different
approaches that have been taken. All policies take the state space
(allowable combinations of numbers of connections from each
class) from CS and constrain it in some way. Some have derived
optimal policies [11], [15]–[19]. To implement optimal policies,
however, a detailed accounting may need to be made of every al-
lowable network state and state transition, which is impractical
for networks of even modest size. Therefore, a set of generally
nonoptimal heuristic policies have been developed that are sim-
pler to implement and provide a more intuitive understanding
of how resources are managed. In a complete partitioning (CP)
policy, every class of traffic is allocated a set of resources that
can only be used by that class. A trunk reservation (TR) policy
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says that class may use resources in a network up until the
point that only units remain unused [12]. A guaranteed min-
imum (GM) policy [20], [21] gives each class their own small
partition of resources. Once used up, classes can then attempt
to use resources from a shared pool that all classes use. And fi-
nally, an upper limit (UL) policy [20] places upper limits on the
numbers of connections possible from each class to ensure that
no one class can dominate the use of resources.

Several comparisons have been made between heuristic poli-
cies and with the optimal policy. The upper limit policy was
found to be optimal for maximizing revenue over coordinate
convex policies [18] (i.e., policies where the product form of
Erlang’s equation is preserved) of two classes [11] and maxi-
mizing revenue over coordinate convex policies of an arbitrary
number of classes for asymptotically large links [12]. The CP,
GM, UL, and TR policies were found to outperform the CS
policy (with respect to maximizing revenue when bounds are
placed on blocking for each class) when significant differences
between classes existed in requirements for bandwidth and of-
fered load [22]. UL and GM policies were also shown to sig-
nificantly outperform TR policies, when controlling blocking
performance in the presence of temporary overloads that occur
before system control parameters can be adjusted [21].

The above policies are effective when network traffic behaves
consistent with the loading assumptions made to implement the
policies. Recent work, however, has sought to develop policies
that are robust when class loading increases beyond engineered
loading. Virtual partitioning (VP) [23] uses a variant of trunk
reservation, where classes are assigned one trunk reservation
level normally (i.e., ) but have a different, more stringent one
imposed on them when they exceed the nominal capacity allo-
cated to them. These reservation parameters are assigned based
on optimizing revenue as a combination of rewards and penal-
ties. The objective is to prevent heavily loaded classes from de-
grading the performance of those that have loads within their
prescribed bounds. In essence, to the benefit of underloaded
classes overloaded classes that already experience high blocking
from being overloaded are penalized further by having more
restrictive trunk reservation imposed. In addition to VP, other
work has sought to provide robustness to load variations by ex-
plicitly and dynamically controlling buffer occupancy thresh-
olds [24]–[26].

The work here proceeds with further development of the
upper limit policy. Fig. 1 illustrates an upper limit policy for
two classes of traffic. It shows a linear bound on the number
of connections that the CS policy imposes, and examples of
additional thresholds for each class imposed by the upper
limit policy. A valid upper limit policy need not implement a
threshold for every class.

At engineered loads, a UL policy is competitive with TR and
optimal policies when blocking performance is to be controlled.
When loads deviate from their engineered values, a UL policy
accomplishes the same goals and is simpler mathematically and
simpler to implement than VP. It imposes upper limits on lower
priority classes so their overloads do not affect higher priority
classes. For higher priority classes, no upper limits need be im-
posed at all; if they exceed their engineered loads, they can use
whatever additional capacity might be available at the time. As

Fig. 1. Illustration of the upper limit policy.

seen in Section IV, the impact of overloaded low-priority classes
is then minimal. The UL approach here also is distinct in that it
optimizes based on weighted blocking, not revenue.

The simplicity of the definition of the UL policy provided op-
portunities for developing simple optimization algorithms that
are presented in the next sections. Later sections show that ca-
pacity utilization is not significantly sacrificed and that robust-
ness objectives are met by using the UL policy.

B. Computational Methods

Our work starts from the assumption that effective band-
widths can be assigned to connections in each class that
encapsulate the rate, delay, and loss requirements of a flow
[23], [27]–[29]. We adopt this approach because it allows
blocking analysis to be performed by considering the set of
possible network states where all flows can have their desired
QoS supported. By using effective bandwidths, the boundary
of this state space can be defined by a single linear equation.
This approach has been justified to be useful in many contexts
[27], even when combining buffer and bandwidth allocation to
meet delay, loss, and bandwidth requirements of flows [28].

This work can also serve as a basis for implementing upper
limit policies where more accurate boundary characterizations
can be developed. Nonlinear equations and systems equations
can be derived which provide higher utilization of capacity and
tighter control of bandwidth and buffers to meet QoS require-
ments [28]. This is discussed in Section III-D. For example,
see [30], where multiple equations were defined that ensure
bounded delay for all connections at a node that uses rate based
or deadline ordered schedulers.

Most of the work on computing blocking for CAC policies
has centered on the Erlang loss function, which provides the
ability to exactly compute blocking for different policies under
Markov connection arrival assumptions [12], [15]–[19], but
can only reasonably be used when networks are of modest size
(less than 1000 units of capacity). In detailed work on upper
limit policies, [20], [21] provide a numerical inversion method
using generating functions to find exact blocking probabilities
for UL and GM policies. They conclude, however, that “the
numerical inversion algorithm can also have high complexity
… the current upper limit on the dimension (number of classes)
amenable for computation is about five” [20]. Optimal UL
threshold parameters have been found in [21] and [22], but
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only using heuristic search algorithms. The goal here, however,
is to find the optimal parameters using direct optimization with
no practical limit on the number of classes or the size of the
network.

Approximations for the Erlang loss function as networks
asymptotically grow in size are particularly useful in this re-
gard. An important result was produced by Kelly [31] and then
later expanded by Hunt and Kelly [32]. Kelly approximated
blocking probabilities from the expected value of the number
of connections in progress in a network. From this result, a
class of policies can be defined that all have the same blocking
probability. Kelly’s theory was used as the basis for [33]–[36],
and also the work here. No work had been done to date on
policy optimization in the overloaded conditions that would
occur after a disaster event, where load and capacity tend to
infinity at a constant ratio, while load is greater than capacity.

Thus the first contribution of this research is to find a class
of policies that optimize the weighted sum of blocking in over-
loaded conditions. This is provided in Section III. Then in Sec-
tion IV, the second contribution is the selection of one of the
policies within this class, the upper limit policy, to implement
that optimal solution for infinite capacity networks to a practical
network. The final contribution, given in Sections V and VI, is
the demonstration of the usefulness of the UL policy in practical
situations as compared to commonly used alternatives.

III. ASYMPTOTICALLY OPTIMAL WEIGHTED BLOCKING

This section provides a new derivation for optimal resource
allocation in asymptotically large networks based on a weighted
blocking objective function. In asymptotically large networks,
load and capacity asymptotically approach infinity proportion-
ally at a constant ratio of load to capacity greater than 1 (i.e., an
overloaded condition). At first, the system under consideration
has a single resource (effective bandwidth), an arbitrary number
of classes, and a single link. At the end of the section an exten-
sion is provided for an arbitrary number of links.

A. Blocking Probabilities in Asymptotically Large Networks

Kelly’s formulation for asymptotically large networks [31] is
based on a network where each class of traffic uses an integer
number of resources along each link in a path. The analysis as-
sumes that connection holding periods are generally distributed
with unit mean [31]. Each class of traffic is defined by the route
each connection takes and the amount of resources it uses on
each link. A class of traffic is limited in the number of simulta-
neous connections it can have by complete sharing policies on
each link the class traverses, with capacity constraint, , for
link . The constraints for all links on the network are

(2)

where row of defines the CS constraint for link . The vector
is the number of connections in progress per class, and is

the vector of link capacities.
Kelly [31] then proceeds to find the most likely state (MLS),

, and shows that the normalized expected value of the number
of connections in the system asymptotically converges to the
MLS [31]. Given as the average arrival rate per class, the

most likely state can be found as the solution to a constrained
nonlinear optimization problem. Using Lagrange multiplier
methods and converting into a dual problem, the blocking per
class can be found from finding the set of ’s that optimize

subject to

(3)

The variables are the Lagrange multipliers. The MLS (using
real numbers) is , and the coordinate for class of is

(4)

Blocking is found using Little’s Law from the MLS to be

(5)

B. Asymptotically Equivalent Policies

Now we use this result to formulate optimization of the
weighted sum of blocking. The goal is to find a policy where
the most likely state within that policy’s state space optimizes
the weighted sum of blocking formulation given in (1). Since
multiple state spaces can be defined which all have the same
MLS, the solution to such a problem will result in a class of
policies which optimize weighted blocking. When all policies
have the same MLS, the same blocking probabilities and the
same weighted sum of blocking will result; hence, the policies
can be considered asymptotically equivalent.

Under what conditions will policies have the same most likely
states? First of all, if a policy has a most likely state for a state
space , another policy will have the same most likely state if
the following two conditions are met.

1) The state space of the second policy is a subset of the first
policy.

2) The most likely state for the first policy lies within the
state space of the second policy.

These conclusions come from an understanding of the Erlang
loss function which is defined as

(6)

where here it is assumed that mean holding times are equal to
one. The probability of being in a certain state is , when
is within the state space for a given policy.

The most likely state, , comes from finding the maximum
value of . If a new state space is formed as a subset of
the original , the values of in change uniformly in the
multiplier, . If , then is the most likely state of .
No new states have been added and a change in the multiplier

does not affect the location of the most likely state.
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Fig. 2. Illustration of asymptotically equivalent CAC policies.

TABLE I
BLOCKING PROBABILITIES FOR ASYMPTOTICALLY EQUIVALENT POLICIES

The base state space from which to start (i.e., from above),
is the CS policy. This provides the largest possible state space
for a given capacity. In overloaded conditions, the most likely
state will lie on the boundary imposed by the overall capacity.
For policies which are subsets of , but which include the CS
MLS, the blocking will be the same. Fig. 2 shows examples of
policies that share the same MLS with the CS policy. Example
coordinates of the MLS are and , where
values of are integers rounded from the values of found
from (4). Table I shows in the first row the computed blocking
probabilities from the asymptotic approximation that will apply
to all policies. These are compared to the actual blocking prob-
abilities computed using Erlang’s loss function for each policy
in Fig. 2. The values of in the table are upper limits imposed
on each class in addition to the overall capacity constraint, such
that

To change blocking probabilities, we require policies which
are a subset of original , but which do not include the CS MLS.
Note that all possible policies will be a restriction on the CS state
space, but later sections demonstrate that the lowered utilization
of capacity is not significant for the cases considered here.

C. Asymptotically Equivalent CS and CP Policies

To find policies which optimize weighted blocking asymp-
totically, we start with a CS policy, show that a CP policy can

be created that is equivalent to it, and change the CP policy to
improve weighted blocking over the CS policy. Then we show
that the optimal CP policy is optimal over all policies and define
the class of policies that are equivalent to the optimal CP policy.
This discussion is provided in the following subsections.

Consider a CP policy [Fig. 2(b)]. A CP policy could be for-
mulated to be asymptotically equivalent to a CS policy that had
its MLS on the state space boundary, as long as the “corner” of
the CP region corresponded to the CS MLS. In overloaded con-
ditions the MLS for the CP policy will lie on the corner of CP
state space. Weighted blocking, therefore, can be optimized by
modifying the location of the CP corner.

First, consider some properties of the asymptotic CP policy.
To use Kelly’s results from [31] for a CP policy on a single link,
the form of the constraints, , must be changed. Instead
of defining by CS constraints per link, is formulated as
a set of constraints that restrict the usage of each class to the
amount of capacity in its partition, where

(7)

is the capacity in each partition, and

(8)

The form of the matrices then becomes

...
...

...
...

...
... ...

... (9)

The result is Kelly’s same optimization problem over a state
space that is constrained by , now with defined by
thresholds from a complete partitioning policy.

Using (3) results in blocking for class of

(10)

subject to

and (11)

Details of the derivation are given in [7].
This result is surprisingly simple and very useful. Since

and are constants, the blocking probability of a class con-
nection is a simple linear function of size of the partition for that
class, . The interaction between blocking for different classes
is through

which indicates that for every increase in to lower blocking
for one class, one or more other classes must decrease their
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and experience an increase in blocking. As increases for a
particular class, its blocking can go to zero.

While it is reasonable to allow blocking for one class to in-
crease to provide better blocking for another class, it is also
useful to set limits on blocking for any particular class. The con-
straints on from (11) can be modified using (10) with the
following constraints on blocking probabilities:

(12)

to result in the constraints on

(13)

In this work, we are concerned with overloaded conditions. It
is shown in Appendix A that in such conditions, the MLS for the
CS state space always lies on the CS boundary. It is also shown
in Appendix A that the MLS for a CP policy will also be on the
CS boundary (i.e., on the “corner” of the CP region), if

(14)

for all . This means that in addition to all classes together over-
loading the capacity, each class overloads its partition. Note
that in (13), this already serves as a constraint to the asymp-
totic blocking approximation; therefore, the approximation can
be considered as applying to overloaded conditions.

D. Asymptotically Optimal CP Weighted Blocking

With (10), (11), and (13), an optimal CP policy can be de-
rived to minimize the weighted sum of blocking. This can be
viewed as starting from a CP policy that is equivalent to the
CS policy (from the previous subsection) and modifying the CP
policy to improve weighted blocking. Starting with the weighted
blocking metric in (1), the following linear program is formed
to optimize partitions

subject to

(15)

Variables and are slack variables for the inequality
constraints in (13), and is the ratio of weight to load for class
, found from

load for class

load adjusted weight for class (16)

In essence, is a new load-adjusted weight used for the opti-
mization in (15) which is the original weight divided by the class
load. This concept of load-adjusted weights is discussed more
in Section IV-B where guidelines for selecting weights for pri-
ority classes are discussed.

Note that (15) includes the constraint for partition sizes from
(8)

which is derived from the fact that the partition for each class is
defined as

and the boundary of the state space is defined by a single equa-
tion that defines the overall capacity of the system in terms of
effective bandwidths as

If a more detailed model of system bandwidth and buffer alloca-
tion were used, the constraints for the partitions might include
a system of equations, some of which might be nonlinear. In
such cases, for example in [30], the form from (15) would be
the same, except for changes to the form of the constraints for
partition sizes.

For the case here, all that remains is to show that the CP policy
that results from the above linear program optimizes weighted
blocking over all policies, not just over all CP policies. The
MLS for the CP state space must be that state which optimizes
weighted blocking in the CS state space from which CP is a
subset.

Consider the optimal CP policy. The MLS is located at
, and the weighted blocking, , is com-

puted from (1) and (5) as

(17)

To reduce the minimum , one of the adjacent states to
must produce lower weighted blocking. Since is on the CS
boundary, all states adjacent to but beyond the CS boundary
cannot be considered. If a state is chosen where numbers in
no class increase, then (17) will not decrease. If some num-
bers increase and others decrease, then these states will be on
or close to the CS boundary. For those states near but not on
the CS boundary, there will always exist another state that lies
on the CS boundary that will produce lower than that state,
because more connections could still be supported. Therefore,
only states that lie on the CS boundary are candidates for im-
proving . All such states, however, would have been consid-
ered in the optimization in (15). The state would have already
been chosen to produce the lowest weighted blocking. There-
fore, the result from (15) is the asymptotically optimal policy
for minimizing weighted blocking, not just over the set of pos-
sible CP policies, but over all policies.

E. Weighted Blocking Optimization Algorithm

The linear program given in (15) can also be formulated as
the following algorithm.

1) Compute all and sort in descending order.
2) Allocate the minimum to each class.
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3) If , stop. No feasible solution is
possible for this set of minimum ’s. Constraints on the
minimum ’s come from ,
so maximum blocking probabilities must be higher or
loads lower for a feasible solution to exist.

4) Find the remainder of that can still be allocated,

5) Find the class, , which has the largest .
6) Form a new for that class by either allocating all of

or increasing to its upper limit, whichever
would increase the least, according to

7) Update .
8) If , stop. The set of ’s is the optimal

solution.
9) If , move down the list of s to the

next class. If no more classes exist, stop. No feasible
solution is possible since the sum of the maximum s
is less than . Constraints on maximum s come from

, so minimum blocking
probabilities must be lower or loads higher for
a feasible solution to exist.

10) Otherwise, go back to step 5.
The above new algorithm is simple to implement on standard

network hardware. Proof that this algorithm produces the op-
timal solution comes from the fact that no modifications to the
set of s produced from the algorithm would produce a better

. Those classes where an increase in would improve
are already at their maximum, while classes where a decrease
in would improve are already at their minimum. Details
can be found in [7].

Note also that the effect of this algorithm is to attempt to pro-
duce minimum blocking for as many high-priority classes as
possible, since (13) shows that selection of would
produce . For one class, blocking would be between max-
imum and minimum bounds, and all remaining classes would
have blocking at their upper bounds. This is consistent with what
one would expect from the results of a linear program.

F. A Class of Asymptotically Optimal Policies

Once a complete partitioning policy is found that optimizes
weighted blocking, many other asymptotically equivalent poli-
cies can be created that would also optimize weighted blocking.
These would form a class of policies, where each shared the
same most likely state, and, hence, the same weighted blocking.

Fig. 2(b) shows an example of an optimized CP policy for
two classes. It also shows the CS policy state space from which
it is a subset and illustrates the MLS. Additional asymptotically
equivalent policies might be formed by removing states from
the shaded region or adding states from regions or . Re-
moving states, however, would be illogical since it would further
constrain admission. Therefore, it is important to only consider
adding states from regions or while keeping the same MLS.

In region , states would have larger coordinates and
smaller coordinates than the MLS. A state in the region, ,
would have coordinates of the form

(18)

where and are integers and the term for reflects the
fact that class 2 must at least give up enough capacity to support

class 1 connections. This new state must be less likely than
the MLS, or else it would become the new MLS. Appendix B
demonstrates that if the following two relationships are true

(19)

and

(20)

then all of the states in region have lower likelihood and some
or all could be added to the CP state space to create another
policy. Using the same approach for region , if the following
two relationships are true

(21)

and

(22)

then all of the states in region have lower likelihood and some
or all could be added to the CP state space to create another
policy. Note that if both regions and could be added to
the CP policy, the result would be a CS policy and a CP policy
would have created no improvement.

The approach used here for two classes can be extended to
multiple classes using the same method. A later section will
discuss which of these asymptotically equivalent policies would
be most useful in practical implementation, where capacities are
not infinite and the policies are not exactly equivalent.

G. Asymptotically Optimal Policies Over Multiple Links

All of the above development has been based on a single link.
This approach can readily be extended to multiple links. In such
a case, a traffic class would be defined as before by an equiva-
lent bandwidth requirement and a priority weight . In ad-
dition, a class would be defined as having all connections have
the same endpoints over a fixed route. Therefore, if a network
is composed of links, each class connection would use
units of capacity on a subset of those links between the source
and destination, and zero capacity on the other links.

A complete partitioning policy would then be adopted that
limits the number of connections for each class. The partitions
would be selected to optimize weighted blocking within the con-
straints imposed by the capacity on each link. Using a slight
change in notation from before, the partition size for class is
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defined as and the capacity on link is defined as . If
we define a parameter

if class uses link
if class does not use link

(23)

then for link ,

(24)

or generally in matrix form

(25)

where is the matrix of values, and and are the vec-
tors of partitions and link capacities. The linear program from
(15) to create optimal weighted blocking then becomes

subject to

(26)

Note that the form of the linear program is virtually identical
to (15), except that partitions must be small enough to be sup-
ported by each link on a path. Note also that the partition for
a class is the same on every link. Therefore, admission control
need only be implemented at the first link (i.e., at an edge node),
not on every link, because a connection that can be admitted on
the first link will automatically be eligible to be admitted on all
links on the path, since a partition is allocated for that class on
each link.

Once this linear program has been used to produce an optimal
CP policy over multiple links, the same approach as above can
be used to find other policies which are asymptotically equiva-
lent.

IV. PRACTICAL SYSTEMS USING AN UPPER LIMIT POLICY

The above analysis applies to networks where the load and ca-
pacity asymptotically approach infinity. This next section con-
siders realistic systems where the capacity is finite. It addresses
the actual implementation of a policy that has been optimized
based on a weighted blocking metric. In such cases, capacity is
not infinite, so policies that are equivalent asymptotically will
not be equivalent. The policies to consider for implementation
range from CP where all classes have limits to UL policies
where some classes have no limits imposed.

First of all, it is important to consider reasons for not simply
using a partitioning approach. Complete partitioning has tra-
ditionally been the approach used to provide disaster response
communications [37]. This approach is attractive because it ef-
fectively creates pools of resources for priority users that are
separated from the general public. The public network is usu-
ally unable to adequately support defense and disaster recovery
communications because it becomes so overloaded that access

to resources is virtually impossible for all users. A partitioned
set of resources is immune to overloads from the general public.

The problems with such a partitioning approach are twofold,
however, as exemplified in the following quote.

“Radio systems designed and used by emergency
management agencies appear to be virtually unused on
a day-to-day basis, yet when a major event occurs, these
same systems are inadequate for meeting the need to
communicate.” [32]

Thus the two problems are:

• wasted, unused resources on a day-to-day basis;
• not enough resource access (i.e., high blocking) during

major events because of large load increases. CP keeps
other classes from using the high-priority partition, but
also keeps high-priority traffic confined only to the re-
sources in that partition.

Other policies, for example, UL policies, can increase re-
source utilization to address the first problem. These are created
by including states from side regions or from Fig. 2(b) as
already discussed. In the most extreme case, an upper limit (UL)
policy could be created where all the states in a region or
are included, effectively creating upper limits for some classes
and no upper limits at all for other classes (i.e., the higher pri-
ority classes). See Fig. 2(d), for example, where class 1 could
be a higher priority class where no upper limit was imposed. An
upper limit policy would share as much of the resources as pos-
sible and only impose limits on lower priority classes.

The UL policy can address the second problem in two ways.
If an existing resource management system using CP cannot
dynamically adjust the resources allocated to each class (e.g.,
because the partitioned resources use separate physical facil-
ities), UL is better simply because it can dynamically adjust.
A UL policy would already be using a shared resource, and
adaptation to load changes would only involve defining new
thresholds for each class. If the CP system can dynamically
adjust, however, the UL policy is still superior because a UL
policy would not implement thresholds for every class. For those
classes without thresholds, the UL policy would be less sensi-
tive to load changes.

Fig. 3 compares CP and UL policies and shows the impact
when loading for a high-priority class increases beyond the base
loading for which the current thresholds were defined. The be-
havior under consideration occurs before new load estimates can
be used to compute new threshold parameters.

Since a UL policy does not impose a limit on the higher pri-
ority class, its blocking does not increase as significantly as with
a CP policy. Blocking for the UL and CP policies is compared
based on and . At base loading, the
overall load is 1.5 times the capacity and results in blocking for
the high-priority class of about 0.1. The ratio of class 1 load to
base class 1 load is then varied from 1 (equal to its base load) to
10 times its base load. Load for class 2 remains fixed. Blocking
probabilities start below 0.1 and then grow sharply as load in-
creases. Until the load ratio reaches 1.5, the two policies provide
about equal blocking. Once the load ratio increases beyond 1.5,
however, blocking for the CP policy is up to 50% higher than
for the UL policy.
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Fig. 3. UL versus CP high-priority blocking for changes to only high-priority
load.

Fig. 4. UL versus CP blocking for changes to only low-priority load.

Fig. 4 shows how blocking changes when only the low-pri-
ority load fluctuates. The same loading assumptions as Fig. 3
are used. As load increases, blocking for high-priority class 1 in-
creases somewhat for the UL policy, whereas CP blocking does
not change at all because it is using a separate partition. Be-
cause the UL policy does share capacity between classes, fluc-
tuations in low-priority load will affect blocking somewhat. No-
tice, however, that UL blocking starts lower than CP blocking
and then approaches CP blocking as low-priority load increases.
This demonstrates the fact that UL policies act like CP policies
at high loads, and more like sharing policies at low loads. For
class 2 blocking, the curves for the CP and UL cases are so close
they cannot be distinguished from each other.

This figure also provides insight into the use of a UL
policy compared to the virtual partitioning policy discussed in
Section II [23]. As low-priority load fluctuates beyond its en-
gineered loading, blocking also increases for the high-priority
class. Virtual partitioning uses a trunk reservation approach
and seeks to remedy this increase in high-priority blocking by
imposing a stricter trunk reservation limit on the low-priority
class. This concept of imposing a stricter limit on a misbehaving
class could also be implemented using an upper limit policy.
This does not appear necessary, however, since Fig. 4 shows

Fig. 5. Blocking variation as the upper limit on class 2 (L ) changes.

that the UL policy by itself already provides shielding from
most of the effects of low-priority load fluctuations.

In summary, load fluctuations will affect CP performance
much more than UL performance, so a UL policy is prefer-
able for implementation. A CP policy is only effective if par-
titions are set to match the exact traffic loading. If a major event
causes abrupt load changes, however, the CP policy loses its ef-
fectiveness. Also, if a CP policy is implemented from inaccurate
load measurements, it becomes less effective. A UL policy over-
comes such limitations.

A. Implementation of an Upper Limit Policy

To implement an upper limit policy, the linear program in (15)
or the optimization algorithm in Section III-E is first used to find
an optimal CP policy. Once optimal partitions are found, the
policy can then be converted into an asymptotically equivalent
upper limit policy by first setting upper limits on the number
of connections per class equal to the partition sizes from the
optimization process. Then if class meets the condition

(27)

then the upper limit for that class can be removed. If class
meets the condition , then its upper limit can auto-
matically be removed. See Appendix C for derivation details.

Optimization results for an example UL policy with two
classes are provided in Figs. 5 and 6. The link is overloaded
at a ratio of overall load ( , the sum of ) to capacity of
2. The weight of the high-priority load (class 1) is ten times
that of class 2 and its load is 1/10 that of class 2. The plots
show how the blocking probabilities for each class change as
the upper limit on class 2 ( ), changes. The optimal value is

. No upper limit constraint is imposed on class 1.
Fig. 5 shows approximate blocking probabilities compared

to the upper limit for class 2; as decreases from ,
blocking for class 2 increases gradually while blocking for
class 1 drops sharply. Because the high-priority load is smaller,
small changes in make a bigger impact on blocking for that
class. The flat parts of the curves denote the areas where the UL
policy is equivalent to a CS policy; changes in UL thresholds do
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Fig. 6. Weighted blocking variation (W ) as the upper limit on class 2 (L )
changes.

not change the most likely state nor the blocking probabilities.
The optimization process makes the blocking for class 1 go to
approximately zero. Fig. 5 also shows actual blocking using
the Erlang loss function. Most notable is the deviation between
approximate and actual values for blocking for class 1 in the
area of . For all other areas, approximate values are
close to actual values. The error in the approximation is on the
order of , where is the overall capacity of the link.
In practice, might be set lower than , (e.g.,

), which would make actual blocking for class 1
nearer to zero and blocking for class 2 slightly higher.

Fig. 6 shows how the weighted sum of blocking, , changes
with . By decreasing to decrease the blocking on class 1,

drops off sharply, since class 1 is weighted more highly. The
gradual increase in blocking for class 2 does not significantly
affect .

The significance of these results is seen in the reduction in
weighted blocking that occurs. By implementing the UL policy,

is reduced from 0.7 to 0.05, only 7% of the weighted
blocking as without the UL policy (i.e., a CS policy). This is
because blocking for high-priority traffic goes from 0.75 to
approximately 0. The upper limit policy caused the blocking for
the low-priority traffic to rise from 0.48 to 0.52, a reasonable
penalty.

B. Selection of Weights

The use of a weighted blocking optimization function in (1)
provides the opportunity for network providers to balance the
service provided to different classes of customers by direct
knowledge and manipulation of blocking probabilities. Suc-
cessful weighted blocking optimization, however, is contingent
upon effective selection of blocking weights. Note that the
main consideration (stated in Section III-E) is that weights
ultimately determine which classes receive blocking at their
minimum bound, which receive blocking at their maximum
bound, and the one class which receives blocking somewhere
in between upper and lower bounds.

For classes that are considered the highest priority, a weight
with a very large value (even infinity) could be used. Opti-
mization results are not sensitive to the specific selection of the

Fig. 7. Percentage reduction in utilization by using an upper limit policy.

weights for the highest priority classes. The linear program in
(15) or the algorithm in Section III-E provides as many of those
classes as possible with minimum blocking. In the same way,
weights for the lowest priority classes could be set to zero; the
algorithm would make as many of those classes as necessary
have blocking at their upper bound.

For classes of medium priority, the optimization approach
takes into account not only the assigned weights, but also the
load for those classes. Classes are ultimately ordered in the algo-
rithm based on their load-adjusted weight, , in (15) and (16).
Classes with higher weights, , may be given lower prece-
dence in the algorithm if their loads are high, since their value
could be lower than another class even if their value were
higher.

Two approaches are suggested to assign weights for medium-
priority classes. The first alternative would be to assign rel-
ative priorities using a priori (for example, using values
1 through 10), and then let the values serve as arbitration
mechanisms between classes. Even if some classes might have
a higher a priori priority, , the values could indicate that
it would be more costly to provide those classes with preferred
blocking performance, since their loads would be higher. The
second alternative would be to assign weights so that the or-
dering of load-adjusted weights, , would never result in an
ordering different than those for . Strict prioritization could
then be implemented without respect to class loading. These
weights could be assigned on a logarithmic scale, for example,
so that one class would have a weight 10 or 100 times that of
the next lower priority class. Even if that lower priority class
had load much lower, its load-adjusted weight, , would not be
higher.

C. Resource Utilization

A valid concern in the use of an upper limit policy (or any-
thing other than a CS policy for that matter) is reduced capacity
utilization because of artificial limits imposed on some traffic
classes. Setting limits that are well short of the capacity would
seem to significantly hamper sharing during normal loading.
This is not the case, however.

First of all, it is helpful to consider capacity utilization in
overloaded conditions. Fig. 7 shows the reduction in capacity
utilization that would be caused by using an optimized upper
limit policy in conditions where the overall load is twice the ca-
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pacity. In such cases, a CS policy would provide 99.9% utiliza-
tion, regardless of the balance of loading between classes. Fig. 7
then shows how much less the utilization would be for a UL
policy, based on various ratios of low-priority load to high-pri-
ority load. As the ratio decreases, lowered utilization increases,
but only to 3% in this example (i.e., down to 97% capacity uti-
lization). For the benefits seen above in how can be reduced
so significantly, such a small reduction in capacity utilization
seems to be a reasonable cost.

During normal operations, network loading would be at
less than capacity. During such times, the most important
consideration would be the effect of load fluctuations. One
might choose to implement a UL policy to provide limits that
assume load fluctuations. For example, if a network’s normal
average loading is 75% of capacity, UL thresholds could be
set assuming twice that (i.e., assuming loading at 150% of
capacity). When loads were at the base loading levels of 75%,
capacity utilization would be at 75% and blocking probabilities
would be very low. The upper limits would not cause any
less capacity utilization compared to a CS policy. When loads
fluctuated even to twice their base level, the UL policy could
still ensure that the optimal (or better) was provided.

Consider a specific example where , ,
, , , and . Use of a

CS policy would result in average capacity utilization of 750.00
and blocking of and . An upper limit policy
designed for loading of 1500 (150% of capacity) would set an
upper limit on class 2 of and yield capacity utilization
during normal conditions of 750-7.2 10 and blocking of

and . As seen in this simple example, as
long as normal loading is not already nearing capacity limits, a
UL policy will perform no worse than a CS policy; when load
fluctuations occur the UL policy will enforce weighted blocking
optimization criteria.

V. COMPARISON OF EXCESS CAPACITY AND UPPER LIMIT

POLICIES FOR PRACTICAL SYSTEMS

An asymptotic approximation that allows optimization of
upper limit thresholds has been found. While it has advan-
tages over other resource allocation policies and is efficient
to implement, it still must be considered against traditional
resource management approaches, e.g., using excess capacity
in the network to control blocking, either by overbuilding or by
deploying new capacity as the need arises.

A. Numerical Comparisons of CS and UL

The key issue is not whether a CS policy could be imple-
mented to provide the same weighted blocking as a UL policy,
but rather how much capacity would be required to adhere to this
goal. Fig. 8 shows how much CS capacity is needed to provide
comparable weighted blocking to a UL policy at various over-
loads for two classes of traffic. The -axis denotes the amount
of load compared to the base capacity, and the -axis shows the
amount of new CS capacity that would need to be installed with
respect to the base capacity. Fig. 8 suggests that a linear rela-
tionship exists between the level of overload and the extra CS
capacity required. This indicates that for an increase in load, a

Fig. 8. Extra CS capacity needed versus a UL policy in overloaded conditions.

proportional amount of new CS capacity would have to be in-
stalled to keep the same as with a UL policy.

For the case where two classes of traffic are involved and both
classes use the same amount of bandwidth, this linear relation-
ship can be derived analytically using the asymptotic blocking
approximation method from [31] in (3). The expression for the
ratio of CS capacity to the original capacity, , given a
level of overload, , is

(28)

This is a linear equation in where and are con-
stants that signify the ratio between weights and loads for the
two classes. The derivation of this equation is in [7].

The slope of the line in Fig. 8, which we call the increment
ratio, is defined from (28) as

(29)

In Fig. 8, the increment ratio is 0.63. A 100% increase in load
would require 63% more new capacity; 160% more load would
require 100% more capacity.

The equation for the increment ratio in (29) is a linear equa-
tion in and a nonlinear equation in . The increment ratio
changes as the ratio between weights, , is varied and has
a limit as tends to infinity of . This asymptotic limit
means that a CS policy will never need to increase capacity more
than the amount load has increased.

B. Typical Conditions

The previous subsection provided a comparison of required
capacity for CS and UL policies for practical nonasymptotic
cases. The remaining issue to consider, however, is what range
of overloads, weights, and load ratios could be expected in a
crisis scenario.

It is reasonable to assume a network could have loads up
to five times its capacity [3] and that high-priority load would
never be greater than the total capacity of the network. It is
also reasonable to assume that high-priority load will be less
than load for low-priority traffic. Even in emergencies where
the high-priority load increases dramatically, the demand for
low-priority traffic increases as well.
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For values of (weight for the high-priority class
at least 5 times that for the low-priority class) and
(load for the high-priority class less than load for the low-pri-
ority class), is between 0.67 and 1.0. If the network experi-
enced the maximum expected overload (400% increase in load),
a 267% to 400% increase in CS capacity would be required. A
150% increase in load would require CS capacity to at least be
doubled. It can then generally be said that a CS policy would
require at least double the capacity of a UL policy for the same
weighted blocking performance.

C. Comparison of CS and UL on Implementation Time Scales

Another potentially more important issue in the comparison
of CS and UL policies is the time scales on which they can be
implemented. If capabilities for a UL policy are already installed
in network hardware, a UL policy can be implemented within
minutes of a major overload. The only delay would be to have
time to assess new load levels. For the CS policy, however, to
deploy new capacity when it was needed, it would take at least
several hours and possibly days for this to occur. The use of a CS
policy would result in extremely high blocking for several hours
at the beginning of a major event when resources are needed
most. Section VI provides an example that illustrates this. It
should also be noted that the overloads that occur as a result
of a major event typically are limited to the first day or two of
an event [38]. If new CS capacity is not deployed soon enough,
it might miss the overload period completely.

D. Knowledge of Resource Utilization

When using a CS policy, connections are admitted with no
knowledge about the types of connections and the purposes for
which they are being used. Network operators, therefore, are not
able to know how their networks are utilized. In a detailed sim-
ulation of a disaster condition in [7], a link was considered that
was loaded at 5 times its normal capacity. Of the offered load,
89.1% consisted of low-priority traffic. If a CS policy were used,
92.7% of the load admitted to the network would come from
low-priority traffic and only 7.3% of the capacity would be used
for high-priority traffic. Not only is the network overloaded, but
the few resources that are available are being monopolized by
low-priority users beyond the knowledge or control of the net-
work operator.

If all high-priority traffic was admitted, however, 53.5% of
the available capacity could be used for high-priority users. With
an upper limit policy, along with the ticket server architecture in
[8], network operators would be aware of the balance between
classes and could control the way classes are defined and allo-
cate resources as necessary. For the above scenario, a UL policy
could have been implemented to give high-priority classes ac-
cess to the 53.5% of the capacity that they needed with blocking
probabilities of approximately zero.

E. Summary of the Comparison of CS and UL

The following summarizes the comparison of UL and CS po-
lices for practical nonasymptotic conditions.

1) CS policies use considerably more capacity than UL poli-
cies. Extra capacity must be deployed at a rate 0.67 to 1.0
times the amount of the extra load from the disaster.

2) Installation of new capacity takes much longer than insti-
tuting an upper limit policy.

3) Typical load surges for a disaster last one or two days, so
if installation of new capacity takes too long, it may not
provide any benefit during the peak loading periods.

4) CS policies provide no knowledge about the use of re-
sources. UL policies provide resource managers with ex-
tensive knowledge and control capabilities.

VI. EXAMPLE

To illustrate the optimal upper limit policy methods proposed
here, consider an example that closely replicates the situation
that occurred during relief efforts for the Alfred P. Murrah Fed-
eral Building Bombing in Oklahoma City in 1995 [39]. The
bombing occurred shortly after 9:00 a.m. on Wednesday, April
19, 1995. Immediately, serious congestion occurred on cellular
telephone service provided by AT&T Wireless Services [39, p.
361]. To alleviate the problem, cellular system capacity was seg-
mented into priority and nonpriority services according to a CP
policy. Priority services were given to the fire department and
other agencies through the use of special telephones that could
use the priority resources. All others without special telephones
could not obtain access to these priority channels. This prioriti-
zation mechanism was in place within 90 minutes of the event.

This prioritization of the cellular system was effective at
reducing blocking for high-priority users that had the special
equipment, but blocking for all others was made higher by
partitioning. After nine hours at 6:00 p.m., a Cell on Wheels
(COW) was installed in an attempt to alleviate congestion. This
new capacity was still not enough, however. A second COW
was installed the second day by 6:00 p.m., 33 hours after the
event, which was able to add enough to the total capacity to
provide sufficiently low blocking for all users.

If an upper limit policy had been used, several benefits would
have been realized. First, if an upper limit policy and the ticket
server architecture had been implemented, lower blocking
would have been possible to all users within minutes, rather
than having to wait 90 minutes. Second, all users would have
been able to gain priority access to resources, not just those with
special equipment. Instead of being given special equipment,
priority users would just have obtained priority tickets. Third,
some priority users did not have special equipment, either
because the equipment had not been distributed yet or because
they were not even considered for distribution of the equipment.

With a UL policy, all users are assumed to have equipment ca-
pable of contacting ticket servers to gain priority access. Users
could be grouped into high priority and low-priority classes,
then upper limits for each class could be set, which would re-
duce the need for installation of new capacity. It might still be
desirable to install some new capacity to carry the nonpriority
load, but it would not be as necessary.

Table II shows user classes for a scenario that reflects this
example, making reasonable assumptions when exact data was
not provided in [39]. Loads are shown for three classes during
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TABLE II
TRAFFIC CLASSES FOR CELLULAR SYSTEM EXAMPLE

TABLE III
BLOCKING PROBABILITIES FOR CELLULAR SYSTEM EXAMPLE

normal conditions and during disaster recovery efforts. It is as-
sumed that the disaster recovery load levels remain constant
throughout the recovery period.

Using the timeline that actually occurred [39], Table III shows
the CS blocking probabilities experienced by each class during
the various time periods. Normal capacity is assumed to be 120
channels. When capacity is partitioned after 1.5 hours, high-
priority traffic is given 70 channels and low-priority traffic is
given 50 channels. These 50 channels expand to 80 and 110
channels with the first and second COWs.

When the priority mechanism is initiated at 1.5 hours,
blocking for class 1 goes down from 0.27 to 0.02, while
blocking for all others goes up from 0.27 to 0.51. The first
COW at the ninth hour only reduces blocking to 0.23, but the
second COW at the 33rd hour reduces blocking to 0.03. A
second COW is necessary since priority users were included in
the group of users who did not have special equipment.

Table III also shows what would happen if an upper limit
policy were implemented. To respond quickly to the disaster, in
ten minutes, a load estimate could be used to assign new upper
limit thresholds to set blocking for the two priority classes to
approximately zero. Over the next 60 to 90 minutes, the esti-
mates could be refined as more arrivals occur. By 90 minutes,
the lowest priority class would have blocking of 0.67. If a COW
is installed to reduce the blocking for the lowest priority class,
it could reduce blocking to 0.17. Use of a second COW might
not be necessary, since blocking would be approximately 0 for
high-priority classes and 0.17 for low-priority users.

An arrival rate estimate can be found by computing as the
average of interarrival times seen from requests at the ticket
server [8]. Assuming arrival times are stationary and exponen-
tially distributed, would be an -stage Erlang random vari-
able with mean and standard deviation of . Then

could be set to , , which would overestimate

the arrival rate so network operators could have high confidence
that low blocking could be provided to priority users (at the ex-
pense of upper limits for other classes being set a little too low).
From Table II, which is based on [39], and assuming average call
holding times of five minutes, in ten minutes approximately 100
arrivals would occur per class. Using would provide
90% confidence that the actual arrival rate was less than .

The results that most clearly highlight the benefit of the UL
policy are for users from class 2. It is not until the 33rd hour
of the event that these high-priority users receive blocking near
zero using a CS policy; blocking near zero is provided within
minutes with a UL policy. Clearly, a UL policy coupled with
the ticket server architecture could have a dramatic effect in this
type of disaster situation. Scenarios are also developed in [7]
that show the benefits of a UL policy for multimedia connec-
tions on broadband landline networks.

VII. SUMMARY

This work showed that the benefits of prioritized resource
allocation can be realized using simple algorithms. The paper
presented a new UL policy methodology that optimized UL
thresholds to provide preferred connection admission to high-
priority traffic classes based on a weighted sum of blocking
metric which had not been used before. The UL policy had al-
ready been found to have many advantages, especially when
trying to explicitly control blocking. Here a new optimization
formulation for upper limit policies was derived from Kelly’s
approximation for asymptotically large networks [31]. The re-
sult was a simple linear program and a simple algorithm that
finds an optical CP policy and then uses a UL policy for prac-
tical implementation for an arbitrarily large network with an ar-
bitrarily large number of classes.

This paper was the first to compare the amount of capacity
needed to implement resource policies and their sensitivity to
load variations. The upper limit policy was demonstrated to use
less than half of the resources of complete sharing to provide
comparable weighted blocking during typical disaster overload
conditions. The UL policy was also demonstrated to be less sen-
sitive than complete partitioning to the large load variations that
can occur in high-priority traffic. When implemented along with
the ticket server architecture in [7], public networks will be able
to give preferred access to resources so that the important needs
of society can be addressed when disasters or other special needs
arise.

APPENDIX A

Overloaded conditions have been defined [32] as

(A-1)

When mean holding times are equal to one, the most likely state
asymptotically, , for CS policies is always on the constraint
boundary

(A-2)
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This can be shown by using Kelly’s equation in (3) with the
constraint

(A-3)

which determines the structure of , resulting in

subject to (A-4)

The variable is the Lagrange multiplier from a nonlinear
optimization problem for finding the most likely state.
Kuhn–Tucker conditions [40, page 314] can be used to deter-
mine if the constraint is active at the optimal point (i.e., the
most likely state lies on the constraint boundary). If , the
constraint need not be active. If , however, the optimal
solution becomes

(A-5)

This result violates the definition of overloaded conditions from
(A-1); therefore, must be true and the constraint is neces-
sarily active. Hence, the most likely state, , for the CS policy
must be on the constraint border for asymptotically large net-
works in overloaded conditions.

Using a similar approach, conditions can be derived where
the MLS for a CP policy is also on the boundary of the CS
region (i.e., on the “corner” of the CP region). It would require
all CP constraints to be active, necessitating for all
constraints from (9), so for all .

APPENDIX B

This Appendix shows that if two particular states within re-
gion of Fig. 2(b) are less likely than the MLS of the CP policy,
then all states within region are less likely. Some or all of them
can be added to the CP region to create a new policy with a re-
gion that has the same MLS.

First of all, consider the following state which corresponds to
adding one class 1 connection to the MLS (assuming
and ).

(B-1)

If the following ratio using (6) of its state probability to the state
probability of the MLS at is less than 1

(B-2)

then this state is less likely than the MLS. Now if we consider
the following state

(B-3)

which is the general state in region , from (18), with one
more class 1 connection, then we find the ratio

(B-4)

This ratio is always less than (B-2), since the numerator of (B-4)
is smaller than the numerator in (B-2), and the denominator is
larger for all greater than 0 and greater than or equal to
0. Therefore, every state is less likely than the state in (B-1) if
(B-2) is less than 1.

Second, consider the following state which corresponds to
removing one class 2 connection from the MLS

(B-5)

If the following ratio using (6) of its state probability to the state
probability of the MLS at is less than 1

(B-6)

then this state is less likely than the MLS. Now if we consider
the following state

(B-7)

which is the general state in region , from (18), with one
less class 2 connection, then we find the ratio

(B-8)

This ratio is always less than (B-6), since the numerator is
smaller than the numerator in (B-6) for all greater than or
equal to 0 and greater than 0. Therefore, every state is less
likely than the state in (B-5) if (B-6) is less than 1.

In conclusion, if (B-2) and (B-6) are less than one, then states
and are less likely than the MLS and all other states

with more class 1 connections and/or less class 2 connections
are less likely than and . Some or all states can be
included in another policy that will have the same MLS and,
hence, the same asymptotic blocking.

APPENDIX C

This section provides details on removing limits of a CP
policy to convert to a UL policy of classes of users. The
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basic approach is to find the most likely state from the optimal
complete partitioning policy, then remove one constraint, ,
and see if a change occurs in the most likely state. The form
of the constraint matrices then becomes the original matrix
with a row removed for constraint , and a new row added for
the overall capacity constraint. By using equation (3), using
to denote the Lagrange multiplier for each constraint, and
to denote the Lagrange multiplier for the capacity constraint,

(C-1)

subject to , .
The partial derivative with respect to is

(C-2)

The partial derivative with respect to is

(C-3)

Putting the results of (C-2) into (C-3)

(C-4)

To meet the requirement , must be true. This
is a constraint of the problem for optimizing weighted blocking
in (13), so this condition will be true for all .

Putting the result of (C-4) back into (C-2)

(C-5)

To have

(C-6)
So, for class to have its constraint removed from the UL policy,
(C-6) must be true for all not equal to . A search can be
conducted over all possible combinations of and to remove
UL constraints that meet (C-6). These constraints can then be
removed, since no changes in the most likely state would result.

One simplification can be made to (C-6), however. For classes
where , the conditions of (C-6) will automatically

be met, since will be true for all . This corresponds
to a class where the CP optimization process has sought to
make blocking from (10)

(C-7)

Therefore, no upper limit need be imposed on any class where
blocking was intended to be zero from the optimization process.
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